fair.c 131 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <trace/events/sched.h>
  29. #include "sched.h"
  30. /*
  31. * Targeted preemption latency for CPU-bound tasks:
  32. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  33. *
  34. * NOTE: this latency value is not the same as the concept of
  35. * 'timeslice length' - timeslices in CFS are of variable length
  36. * and have no persistent notion like in traditional, time-slice
  37. * based scheduling concepts.
  38. *
  39. * (to see the precise effective timeslice length of your workload,
  40. * run vmstat and monitor the context-switches (cs) field)
  41. */
  42. unsigned int sysctl_sched_latency = 6000000ULL;
  43. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  44. /*
  45. * The initial- and re-scaling of tunables is configurable
  46. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  47. *
  48. * Options are:
  49. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  50. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  51. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  52. */
  53. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  54. = SCHED_TUNABLESCALING_LOG;
  55. /*
  56. * Minimal preemption granularity for CPU-bound tasks:
  57. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58. */
  59. unsigned int sysctl_sched_min_granularity = 750000ULL;
  60. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  61. /*
  62. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63. */
  64. static unsigned int sched_nr_latency = 8;
  65. /*
  66. * After fork, child runs first. If set to 0 (default) then
  67. * parent will (try to) run first.
  68. */
  69. unsigned int sysctl_sched_child_runs_first __read_mostly;
  70. /*
  71. * SCHED_OTHER wake-up granularity.
  72. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  73. *
  74. * This option delays the preemption effects of decoupled workloads
  75. * and reduces their over-scheduling. Synchronous workloads will still
  76. * have immediate wakeup/sleep latencies.
  77. */
  78. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  79. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  80. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  81. /*
  82. * The exponential sliding window over which load is averaged for shares
  83. * distribution.
  84. * (default: 10msec)
  85. */
  86. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  87. #ifdef CONFIG_CFS_BANDWIDTH
  88. /*
  89. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  90. * each time a cfs_rq requests quota.
  91. *
  92. * Note: in the case that the slice exceeds the runtime remaining (either due
  93. * to consumption or the quota being specified to be smaller than the slice)
  94. * we will always only issue the remaining available time.
  95. *
  96. * default: 5 msec, units: microseconds
  97. */
  98. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  99. #endif
  100. /*
  101. * Increase the granularity value when there are more CPUs,
  102. * because with more CPUs the 'effective latency' as visible
  103. * to users decreases. But the relationship is not linear,
  104. * so pick a second-best guess by going with the log2 of the
  105. * number of CPUs.
  106. *
  107. * This idea comes from the SD scheduler of Con Kolivas:
  108. */
  109. static int get_update_sysctl_factor(void)
  110. {
  111. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  112. unsigned int factor;
  113. switch (sysctl_sched_tunable_scaling) {
  114. case SCHED_TUNABLESCALING_NONE:
  115. factor = 1;
  116. break;
  117. case SCHED_TUNABLESCALING_LINEAR:
  118. factor = cpus;
  119. break;
  120. case SCHED_TUNABLESCALING_LOG:
  121. default:
  122. factor = 1 + ilog2(cpus);
  123. break;
  124. }
  125. return factor;
  126. }
  127. static void update_sysctl(void)
  128. {
  129. unsigned int factor = get_update_sysctl_factor();
  130. #define SET_SYSCTL(name) \
  131. (sysctl_##name = (factor) * normalized_sysctl_##name)
  132. SET_SYSCTL(sched_min_granularity);
  133. SET_SYSCTL(sched_latency);
  134. SET_SYSCTL(sched_wakeup_granularity);
  135. #undef SET_SYSCTL
  136. }
  137. void sched_init_granularity(void)
  138. {
  139. update_sysctl();
  140. }
  141. #if BITS_PER_LONG == 32
  142. # define WMULT_CONST (~0UL)
  143. #else
  144. # define WMULT_CONST (1UL << 32)
  145. #endif
  146. #define WMULT_SHIFT 32
  147. /*
  148. * Shift right and round:
  149. */
  150. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  151. /*
  152. * delta *= weight / lw
  153. */
  154. static unsigned long
  155. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  156. struct load_weight *lw)
  157. {
  158. u64 tmp;
  159. /*
  160. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  161. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  162. * 2^SCHED_LOAD_RESOLUTION.
  163. */
  164. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  165. tmp = (u64)delta_exec * scale_load_down(weight);
  166. else
  167. tmp = (u64)delta_exec;
  168. if (!lw->inv_weight) {
  169. unsigned long w = scale_load_down(lw->weight);
  170. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  171. lw->inv_weight = 1;
  172. else if (unlikely(!w))
  173. lw->inv_weight = WMULT_CONST;
  174. else
  175. lw->inv_weight = WMULT_CONST / w;
  176. }
  177. /*
  178. * Check whether we'd overflow the 64-bit multiplication:
  179. */
  180. if (unlikely(tmp > WMULT_CONST))
  181. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  182. WMULT_SHIFT/2);
  183. else
  184. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  185. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  186. }
  187. const struct sched_class fair_sched_class;
  188. /**************************************************************
  189. * CFS operations on generic schedulable entities:
  190. */
  191. #ifdef CONFIG_FAIR_GROUP_SCHED
  192. /* cpu runqueue to which this cfs_rq is attached */
  193. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  194. {
  195. return cfs_rq->rq;
  196. }
  197. /* An entity is a task if it doesn't "own" a runqueue */
  198. #define entity_is_task(se) (!se->my_q)
  199. static inline struct task_struct *task_of(struct sched_entity *se)
  200. {
  201. #ifdef CONFIG_SCHED_DEBUG
  202. WARN_ON_ONCE(!entity_is_task(se));
  203. #endif
  204. return container_of(se, struct task_struct, se);
  205. }
  206. /* Walk up scheduling entities hierarchy */
  207. #define for_each_sched_entity(se) \
  208. for (; se; se = se->parent)
  209. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  210. {
  211. return p->se.cfs_rq;
  212. }
  213. /* runqueue on which this entity is (to be) queued */
  214. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  215. {
  216. return se->cfs_rq;
  217. }
  218. /* runqueue "owned" by this group */
  219. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  220. {
  221. return grp->my_q;
  222. }
  223. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  224. {
  225. if (!cfs_rq->on_list) {
  226. /*
  227. * Ensure we either appear before our parent (if already
  228. * enqueued) or force our parent to appear after us when it is
  229. * enqueued. The fact that we always enqueue bottom-up
  230. * reduces this to two cases.
  231. */
  232. if (cfs_rq->tg->parent &&
  233. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  234. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  235. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  236. } else {
  237. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  238. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  239. }
  240. cfs_rq->on_list = 1;
  241. }
  242. }
  243. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  244. {
  245. if (cfs_rq->on_list) {
  246. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  247. cfs_rq->on_list = 0;
  248. }
  249. }
  250. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  251. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  252. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  253. /* Do the two (enqueued) entities belong to the same group ? */
  254. static inline int
  255. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  256. {
  257. if (se->cfs_rq == pse->cfs_rq)
  258. return 1;
  259. return 0;
  260. }
  261. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  262. {
  263. return se->parent;
  264. }
  265. /* return depth at which a sched entity is present in the hierarchy */
  266. static inline int depth_se(struct sched_entity *se)
  267. {
  268. int depth = 0;
  269. for_each_sched_entity(se)
  270. depth++;
  271. return depth;
  272. }
  273. static void
  274. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  275. {
  276. int se_depth, pse_depth;
  277. /*
  278. * preemption test can be made between sibling entities who are in the
  279. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  280. * both tasks until we find their ancestors who are siblings of common
  281. * parent.
  282. */
  283. /* First walk up until both entities are at same depth */
  284. se_depth = depth_se(*se);
  285. pse_depth = depth_se(*pse);
  286. while (se_depth > pse_depth) {
  287. se_depth--;
  288. *se = parent_entity(*se);
  289. }
  290. while (pse_depth > se_depth) {
  291. pse_depth--;
  292. *pse = parent_entity(*pse);
  293. }
  294. while (!is_same_group(*se, *pse)) {
  295. *se = parent_entity(*se);
  296. *pse = parent_entity(*pse);
  297. }
  298. }
  299. #else /* !CONFIG_FAIR_GROUP_SCHED */
  300. static inline struct task_struct *task_of(struct sched_entity *se)
  301. {
  302. return container_of(se, struct task_struct, se);
  303. }
  304. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  305. {
  306. return container_of(cfs_rq, struct rq, cfs);
  307. }
  308. #define entity_is_task(se) 1
  309. #define for_each_sched_entity(se) \
  310. for (; se; se = NULL)
  311. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  312. {
  313. return &task_rq(p)->cfs;
  314. }
  315. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  316. {
  317. struct task_struct *p = task_of(se);
  318. struct rq *rq = task_rq(p);
  319. return &rq->cfs;
  320. }
  321. /* runqueue "owned" by this group */
  322. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  323. {
  324. return NULL;
  325. }
  326. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  327. {
  328. }
  329. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  330. {
  331. }
  332. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  333. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  334. static inline int
  335. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  336. {
  337. return 1;
  338. }
  339. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  340. {
  341. return NULL;
  342. }
  343. static inline void
  344. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  345. {
  346. }
  347. #endif /* CONFIG_FAIR_GROUP_SCHED */
  348. static __always_inline
  349. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
  350. /**************************************************************
  351. * Scheduling class tree data structure manipulation methods:
  352. */
  353. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  354. {
  355. s64 delta = (s64)(vruntime - min_vruntime);
  356. if (delta > 0)
  357. min_vruntime = vruntime;
  358. return min_vruntime;
  359. }
  360. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - min_vruntime);
  363. if (delta < 0)
  364. min_vruntime = vruntime;
  365. return min_vruntime;
  366. }
  367. static inline int entity_before(struct sched_entity *a,
  368. struct sched_entity *b)
  369. {
  370. return (s64)(a->vruntime - b->vruntime) < 0;
  371. }
  372. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  373. {
  374. u64 vruntime = cfs_rq->min_vruntime;
  375. if (cfs_rq->curr)
  376. vruntime = cfs_rq->curr->vruntime;
  377. if (cfs_rq->rb_leftmost) {
  378. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  379. struct sched_entity,
  380. run_node);
  381. if (!cfs_rq->curr)
  382. vruntime = se->vruntime;
  383. else
  384. vruntime = min_vruntime(vruntime, se->vruntime);
  385. }
  386. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  387. #ifndef CONFIG_64BIT
  388. smp_wmb();
  389. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  390. #endif
  391. }
  392. /*
  393. * Enqueue an entity into the rb-tree:
  394. */
  395. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  396. {
  397. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  398. struct rb_node *parent = NULL;
  399. struct sched_entity *entry;
  400. int leftmost = 1;
  401. /*
  402. * Find the right place in the rbtree:
  403. */
  404. while (*link) {
  405. parent = *link;
  406. entry = rb_entry(parent, struct sched_entity, run_node);
  407. /*
  408. * We dont care about collisions. Nodes with
  409. * the same key stay together.
  410. */
  411. if (entity_before(se, entry)) {
  412. link = &parent->rb_left;
  413. } else {
  414. link = &parent->rb_right;
  415. leftmost = 0;
  416. }
  417. }
  418. /*
  419. * Maintain a cache of leftmost tree entries (it is frequently
  420. * used):
  421. */
  422. if (leftmost)
  423. cfs_rq->rb_leftmost = &se->run_node;
  424. rb_link_node(&se->run_node, parent, link);
  425. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  426. }
  427. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  428. {
  429. if (cfs_rq->rb_leftmost == &se->run_node) {
  430. struct rb_node *next_node;
  431. next_node = rb_next(&se->run_node);
  432. cfs_rq->rb_leftmost = next_node;
  433. }
  434. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  435. }
  436. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  437. {
  438. struct rb_node *left = cfs_rq->rb_leftmost;
  439. if (!left)
  440. return NULL;
  441. return rb_entry(left, struct sched_entity, run_node);
  442. }
  443. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  444. {
  445. struct rb_node *next = rb_next(&se->run_node);
  446. if (!next)
  447. return NULL;
  448. return rb_entry(next, struct sched_entity, run_node);
  449. }
  450. #ifdef CONFIG_SCHED_DEBUG
  451. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  452. {
  453. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  454. if (!last)
  455. return NULL;
  456. return rb_entry(last, struct sched_entity, run_node);
  457. }
  458. /**************************************************************
  459. * Scheduling class statistics methods:
  460. */
  461. int sched_proc_update_handler(struct ctl_table *table, int write,
  462. void __user *buffer, size_t *lenp,
  463. loff_t *ppos)
  464. {
  465. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  466. int factor = get_update_sysctl_factor();
  467. if (ret || !write)
  468. return ret;
  469. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  470. sysctl_sched_min_granularity);
  471. #define WRT_SYSCTL(name) \
  472. (normalized_sysctl_##name = sysctl_##name / (factor))
  473. WRT_SYSCTL(sched_min_granularity);
  474. WRT_SYSCTL(sched_latency);
  475. WRT_SYSCTL(sched_wakeup_granularity);
  476. #undef WRT_SYSCTL
  477. return 0;
  478. }
  479. #endif
  480. /*
  481. * delta /= w
  482. */
  483. static inline unsigned long
  484. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  485. {
  486. if (unlikely(se->load.weight != NICE_0_LOAD))
  487. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  488. return delta;
  489. }
  490. /*
  491. * The idea is to set a period in which each task runs once.
  492. *
  493. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  494. * this period because otherwise the slices get too small.
  495. *
  496. * p = (nr <= nl) ? l : l*nr/nl
  497. */
  498. static u64 __sched_period(unsigned long nr_running)
  499. {
  500. u64 period = sysctl_sched_latency;
  501. unsigned long nr_latency = sched_nr_latency;
  502. if (unlikely(nr_running > nr_latency)) {
  503. period = sysctl_sched_min_granularity;
  504. period *= nr_running;
  505. }
  506. return period;
  507. }
  508. /*
  509. * We calculate the wall-time slice from the period by taking a part
  510. * proportional to the weight.
  511. *
  512. * s = p*P[w/rw]
  513. */
  514. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  515. {
  516. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  517. for_each_sched_entity(se) {
  518. struct load_weight *load;
  519. struct load_weight lw;
  520. cfs_rq = cfs_rq_of(se);
  521. load = &cfs_rq->load;
  522. if (unlikely(!se->on_rq)) {
  523. lw = cfs_rq->load;
  524. update_load_add(&lw, se->load.weight);
  525. load = &lw;
  526. }
  527. slice = calc_delta_mine(slice, se->load.weight, load);
  528. }
  529. return slice;
  530. }
  531. /*
  532. * We calculate the vruntime slice of a to be inserted task
  533. *
  534. * vs = s/w
  535. */
  536. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  537. {
  538. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  539. }
  540. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  541. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  542. /*
  543. * Update the current task's runtime statistics. Skip current tasks that
  544. * are not in our scheduling class.
  545. */
  546. static inline void
  547. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  548. unsigned long delta_exec)
  549. {
  550. unsigned long delta_exec_weighted;
  551. schedstat_set(curr->statistics.exec_max,
  552. max((u64)delta_exec, curr->statistics.exec_max));
  553. curr->sum_exec_runtime += delta_exec;
  554. schedstat_add(cfs_rq, exec_clock, delta_exec);
  555. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  556. curr->vruntime += delta_exec_weighted;
  557. update_min_vruntime(cfs_rq);
  558. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  559. cfs_rq->load_unacc_exec_time += delta_exec;
  560. #endif
  561. }
  562. static void update_curr(struct cfs_rq *cfs_rq)
  563. {
  564. struct sched_entity *curr = cfs_rq->curr;
  565. u64 now = rq_of(cfs_rq)->clock_task;
  566. unsigned long delta_exec;
  567. if (unlikely(!curr))
  568. return;
  569. /*
  570. * Get the amount of time the current task was running
  571. * since the last time we changed load (this cannot
  572. * overflow on 32 bits):
  573. */
  574. delta_exec = (unsigned long)(now - curr->exec_start);
  575. if (!delta_exec)
  576. return;
  577. __update_curr(cfs_rq, curr, delta_exec);
  578. curr->exec_start = now;
  579. if (entity_is_task(curr)) {
  580. struct task_struct *curtask = task_of(curr);
  581. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  582. cpuacct_charge(curtask, delta_exec);
  583. account_group_exec_runtime(curtask, delta_exec);
  584. }
  585. account_cfs_rq_runtime(cfs_rq, delta_exec);
  586. }
  587. static inline void
  588. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  589. {
  590. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  591. }
  592. /*
  593. * Task is being enqueued - update stats:
  594. */
  595. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  596. {
  597. /*
  598. * Are we enqueueing a waiting task? (for current tasks
  599. * a dequeue/enqueue event is a NOP)
  600. */
  601. if (se != cfs_rq->curr)
  602. update_stats_wait_start(cfs_rq, se);
  603. }
  604. static void
  605. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  606. {
  607. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  608. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  609. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  610. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  611. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  612. #ifdef CONFIG_SCHEDSTATS
  613. if (entity_is_task(se)) {
  614. trace_sched_stat_wait(task_of(se),
  615. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  616. }
  617. #endif
  618. schedstat_set(se->statistics.wait_start, 0);
  619. }
  620. static inline void
  621. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  622. {
  623. /*
  624. * Mark the end of the wait period if dequeueing a
  625. * waiting task:
  626. */
  627. if (se != cfs_rq->curr)
  628. update_stats_wait_end(cfs_rq, se);
  629. }
  630. /*
  631. * We are picking a new current task - update its stats:
  632. */
  633. static inline void
  634. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  635. {
  636. /*
  637. * We are starting a new run period:
  638. */
  639. se->exec_start = rq_of(cfs_rq)->clock_task;
  640. }
  641. /**************************************************
  642. * Scheduling class queueing methods:
  643. */
  644. static void
  645. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  646. {
  647. update_load_add(&cfs_rq->load, se->load.weight);
  648. if (!parent_entity(se))
  649. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  650. #ifdef CONFIG_SMP
  651. if (entity_is_task(se))
  652. list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
  653. #endif
  654. cfs_rq->nr_running++;
  655. }
  656. static void
  657. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. update_load_sub(&cfs_rq->load, se->load.weight);
  660. if (!parent_entity(se))
  661. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  662. if (entity_is_task(se))
  663. list_del_init(&se->group_node);
  664. cfs_rq->nr_running--;
  665. }
  666. #ifdef CONFIG_FAIR_GROUP_SCHED
  667. /* we need this in update_cfs_load and load-balance functions below */
  668. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  669. # ifdef CONFIG_SMP
  670. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  671. int global_update)
  672. {
  673. struct task_group *tg = cfs_rq->tg;
  674. long load_avg;
  675. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  676. load_avg -= cfs_rq->load_contribution;
  677. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  678. atomic_add(load_avg, &tg->load_weight);
  679. cfs_rq->load_contribution += load_avg;
  680. }
  681. }
  682. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  683. {
  684. u64 period = sysctl_sched_shares_window;
  685. u64 now, delta;
  686. unsigned long load = cfs_rq->load.weight;
  687. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  688. return;
  689. now = rq_of(cfs_rq)->clock_task;
  690. delta = now - cfs_rq->load_stamp;
  691. /* truncate load history at 4 idle periods */
  692. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  693. now - cfs_rq->load_last > 4 * period) {
  694. cfs_rq->load_period = 0;
  695. cfs_rq->load_avg = 0;
  696. delta = period - 1;
  697. }
  698. cfs_rq->load_stamp = now;
  699. cfs_rq->load_unacc_exec_time = 0;
  700. cfs_rq->load_period += delta;
  701. if (load) {
  702. cfs_rq->load_last = now;
  703. cfs_rq->load_avg += delta * load;
  704. }
  705. /* consider updating load contribution on each fold or truncate */
  706. if (global_update || cfs_rq->load_period > period
  707. || !cfs_rq->load_period)
  708. update_cfs_rq_load_contribution(cfs_rq, global_update);
  709. while (cfs_rq->load_period > period) {
  710. /*
  711. * Inline assembly required to prevent the compiler
  712. * optimising this loop into a divmod call.
  713. * See __iter_div_u64_rem() for another example of this.
  714. */
  715. asm("" : "+rm" (cfs_rq->load_period));
  716. cfs_rq->load_period /= 2;
  717. cfs_rq->load_avg /= 2;
  718. }
  719. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  720. list_del_leaf_cfs_rq(cfs_rq);
  721. }
  722. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  723. {
  724. long tg_weight;
  725. /*
  726. * Use this CPU's actual weight instead of the last load_contribution
  727. * to gain a more accurate current total weight. See
  728. * update_cfs_rq_load_contribution().
  729. */
  730. tg_weight = atomic_read(&tg->load_weight);
  731. tg_weight -= cfs_rq->load_contribution;
  732. tg_weight += cfs_rq->load.weight;
  733. return tg_weight;
  734. }
  735. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  736. {
  737. long tg_weight, load, shares;
  738. tg_weight = calc_tg_weight(tg, cfs_rq);
  739. load = cfs_rq->load.weight;
  740. shares = (tg->shares * load);
  741. if (tg_weight)
  742. shares /= tg_weight;
  743. if (shares < MIN_SHARES)
  744. shares = MIN_SHARES;
  745. if (shares > tg->shares)
  746. shares = tg->shares;
  747. return shares;
  748. }
  749. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  750. {
  751. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  752. update_cfs_load(cfs_rq, 0);
  753. update_cfs_shares(cfs_rq);
  754. }
  755. }
  756. # else /* CONFIG_SMP */
  757. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  758. {
  759. }
  760. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  761. {
  762. return tg->shares;
  763. }
  764. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  765. {
  766. }
  767. # endif /* CONFIG_SMP */
  768. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  769. unsigned long weight)
  770. {
  771. if (se->on_rq) {
  772. /* commit outstanding execution time */
  773. if (cfs_rq->curr == se)
  774. update_curr(cfs_rq);
  775. account_entity_dequeue(cfs_rq, se);
  776. }
  777. update_load_set(&se->load, weight);
  778. if (se->on_rq)
  779. account_entity_enqueue(cfs_rq, se);
  780. }
  781. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  782. {
  783. struct task_group *tg;
  784. struct sched_entity *se;
  785. long shares;
  786. tg = cfs_rq->tg;
  787. se = tg->se[cpu_of(rq_of(cfs_rq))];
  788. if (!se || throttled_hierarchy(cfs_rq))
  789. return;
  790. #ifndef CONFIG_SMP
  791. if (likely(se->load.weight == tg->shares))
  792. return;
  793. #endif
  794. shares = calc_cfs_shares(cfs_rq, tg);
  795. reweight_entity(cfs_rq_of(se), se, shares);
  796. }
  797. #else /* CONFIG_FAIR_GROUP_SCHED */
  798. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  799. {
  800. }
  801. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  802. {
  803. }
  804. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  805. {
  806. }
  807. #endif /* CONFIG_FAIR_GROUP_SCHED */
  808. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  809. {
  810. #ifdef CONFIG_SCHEDSTATS
  811. struct task_struct *tsk = NULL;
  812. if (entity_is_task(se))
  813. tsk = task_of(se);
  814. if (se->statistics.sleep_start) {
  815. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  816. if ((s64)delta < 0)
  817. delta = 0;
  818. if (unlikely(delta > se->statistics.sleep_max))
  819. se->statistics.sleep_max = delta;
  820. se->statistics.sleep_start = 0;
  821. se->statistics.sum_sleep_runtime += delta;
  822. if (tsk) {
  823. account_scheduler_latency(tsk, delta >> 10, 1);
  824. trace_sched_stat_sleep(tsk, delta);
  825. }
  826. }
  827. if (se->statistics.block_start) {
  828. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  829. if ((s64)delta < 0)
  830. delta = 0;
  831. if (unlikely(delta > se->statistics.block_max))
  832. se->statistics.block_max = delta;
  833. se->statistics.block_start = 0;
  834. se->statistics.sum_sleep_runtime += delta;
  835. if (tsk) {
  836. if (tsk->in_iowait) {
  837. se->statistics.iowait_sum += delta;
  838. se->statistics.iowait_count++;
  839. trace_sched_stat_iowait(tsk, delta);
  840. }
  841. trace_sched_stat_blocked(tsk, delta);
  842. /*
  843. * Blocking time is in units of nanosecs, so shift by
  844. * 20 to get a milliseconds-range estimation of the
  845. * amount of time that the task spent sleeping:
  846. */
  847. if (unlikely(prof_on == SLEEP_PROFILING)) {
  848. profile_hits(SLEEP_PROFILING,
  849. (void *)get_wchan(tsk),
  850. delta >> 20);
  851. }
  852. account_scheduler_latency(tsk, delta >> 10, 0);
  853. }
  854. }
  855. #endif
  856. }
  857. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  858. {
  859. #ifdef CONFIG_SCHED_DEBUG
  860. s64 d = se->vruntime - cfs_rq->min_vruntime;
  861. if (d < 0)
  862. d = -d;
  863. if (d > 3*sysctl_sched_latency)
  864. schedstat_inc(cfs_rq, nr_spread_over);
  865. #endif
  866. }
  867. static void
  868. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  869. {
  870. u64 vruntime = cfs_rq->min_vruntime;
  871. /*
  872. * The 'current' period is already promised to the current tasks,
  873. * however the extra weight of the new task will slow them down a
  874. * little, place the new task so that it fits in the slot that
  875. * stays open at the end.
  876. */
  877. if (initial && sched_feat(START_DEBIT))
  878. vruntime += sched_vslice(cfs_rq, se);
  879. /* sleeps up to a single latency don't count. */
  880. if (!initial) {
  881. unsigned long thresh = sysctl_sched_latency;
  882. /*
  883. * Halve their sleep time's effect, to allow
  884. * for a gentler effect of sleepers:
  885. */
  886. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  887. thresh >>= 1;
  888. vruntime -= thresh;
  889. }
  890. /* ensure we never gain time by being placed backwards. */
  891. vruntime = max_vruntime(se->vruntime, vruntime);
  892. se->vruntime = vruntime;
  893. }
  894. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  895. static void
  896. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  897. {
  898. /*
  899. * Update the normalized vruntime before updating min_vruntime
  900. * through callig update_curr().
  901. */
  902. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  903. se->vruntime += cfs_rq->min_vruntime;
  904. /*
  905. * Update run-time statistics of the 'current'.
  906. */
  907. update_curr(cfs_rq);
  908. update_cfs_load(cfs_rq, 0);
  909. account_entity_enqueue(cfs_rq, se);
  910. update_cfs_shares(cfs_rq);
  911. if (flags & ENQUEUE_WAKEUP) {
  912. place_entity(cfs_rq, se, 0);
  913. enqueue_sleeper(cfs_rq, se);
  914. }
  915. update_stats_enqueue(cfs_rq, se);
  916. check_spread(cfs_rq, se);
  917. if (se != cfs_rq->curr)
  918. __enqueue_entity(cfs_rq, se);
  919. se->on_rq = 1;
  920. if (cfs_rq->nr_running == 1) {
  921. list_add_leaf_cfs_rq(cfs_rq);
  922. check_enqueue_throttle(cfs_rq);
  923. }
  924. }
  925. static void __clear_buddies_last(struct sched_entity *se)
  926. {
  927. for_each_sched_entity(se) {
  928. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  929. if (cfs_rq->last == se)
  930. cfs_rq->last = NULL;
  931. else
  932. break;
  933. }
  934. }
  935. static void __clear_buddies_next(struct sched_entity *se)
  936. {
  937. for_each_sched_entity(se) {
  938. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  939. if (cfs_rq->next == se)
  940. cfs_rq->next = NULL;
  941. else
  942. break;
  943. }
  944. }
  945. static void __clear_buddies_skip(struct sched_entity *se)
  946. {
  947. for_each_sched_entity(se) {
  948. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  949. if (cfs_rq->skip == se)
  950. cfs_rq->skip = NULL;
  951. else
  952. break;
  953. }
  954. }
  955. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  956. {
  957. if (cfs_rq->last == se)
  958. __clear_buddies_last(se);
  959. if (cfs_rq->next == se)
  960. __clear_buddies_next(se);
  961. if (cfs_rq->skip == se)
  962. __clear_buddies_skip(se);
  963. }
  964. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  965. static void
  966. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  967. {
  968. /*
  969. * Update run-time statistics of the 'current'.
  970. */
  971. update_curr(cfs_rq);
  972. update_stats_dequeue(cfs_rq, se);
  973. if (flags & DEQUEUE_SLEEP) {
  974. #ifdef CONFIG_SCHEDSTATS
  975. if (entity_is_task(se)) {
  976. struct task_struct *tsk = task_of(se);
  977. if (tsk->state & TASK_INTERRUPTIBLE)
  978. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  979. if (tsk->state & TASK_UNINTERRUPTIBLE)
  980. se->statistics.block_start = rq_of(cfs_rq)->clock;
  981. }
  982. #endif
  983. }
  984. clear_buddies(cfs_rq, se);
  985. if (se != cfs_rq->curr)
  986. __dequeue_entity(cfs_rq, se);
  987. se->on_rq = 0;
  988. update_cfs_load(cfs_rq, 0);
  989. account_entity_dequeue(cfs_rq, se);
  990. /*
  991. * Normalize the entity after updating the min_vruntime because the
  992. * update can refer to the ->curr item and we need to reflect this
  993. * movement in our normalized position.
  994. */
  995. if (!(flags & DEQUEUE_SLEEP))
  996. se->vruntime -= cfs_rq->min_vruntime;
  997. /* return excess runtime on last dequeue */
  998. return_cfs_rq_runtime(cfs_rq);
  999. update_min_vruntime(cfs_rq);
  1000. update_cfs_shares(cfs_rq);
  1001. }
  1002. /*
  1003. * Preempt the current task with a newly woken task if needed:
  1004. */
  1005. static void
  1006. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1007. {
  1008. unsigned long ideal_runtime, delta_exec;
  1009. struct sched_entity *se;
  1010. s64 delta;
  1011. ideal_runtime = sched_slice(cfs_rq, curr);
  1012. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1013. if (delta_exec > ideal_runtime) {
  1014. resched_task(rq_of(cfs_rq)->curr);
  1015. /*
  1016. * The current task ran long enough, ensure it doesn't get
  1017. * re-elected due to buddy favours.
  1018. */
  1019. clear_buddies(cfs_rq, curr);
  1020. return;
  1021. }
  1022. /*
  1023. * Ensure that a task that missed wakeup preemption by a
  1024. * narrow margin doesn't have to wait for a full slice.
  1025. * This also mitigates buddy induced latencies under load.
  1026. */
  1027. if (delta_exec < sysctl_sched_min_granularity)
  1028. return;
  1029. se = __pick_first_entity(cfs_rq);
  1030. delta = curr->vruntime - se->vruntime;
  1031. if (delta < 0)
  1032. return;
  1033. if (delta > ideal_runtime)
  1034. resched_task(rq_of(cfs_rq)->curr);
  1035. }
  1036. static void
  1037. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1038. {
  1039. /* 'current' is not kept within the tree. */
  1040. if (se->on_rq) {
  1041. /*
  1042. * Any task has to be enqueued before it get to execute on
  1043. * a CPU. So account for the time it spent waiting on the
  1044. * runqueue.
  1045. */
  1046. update_stats_wait_end(cfs_rq, se);
  1047. __dequeue_entity(cfs_rq, se);
  1048. }
  1049. update_stats_curr_start(cfs_rq, se);
  1050. cfs_rq->curr = se;
  1051. #ifdef CONFIG_SCHEDSTATS
  1052. /*
  1053. * Track our maximum slice length, if the CPU's load is at
  1054. * least twice that of our own weight (i.e. dont track it
  1055. * when there are only lesser-weight tasks around):
  1056. */
  1057. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1058. se->statistics.slice_max = max(se->statistics.slice_max,
  1059. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1060. }
  1061. #endif
  1062. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1063. }
  1064. static int
  1065. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1066. /*
  1067. * Pick the next process, keeping these things in mind, in this order:
  1068. * 1) keep things fair between processes/task groups
  1069. * 2) pick the "next" process, since someone really wants that to run
  1070. * 3) pick the "last" process, for cache locality
  1071. * 4) do not run the "skip" process, if something else is available
  1072. */
  1073. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1074. {
  1075. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1076. struct sched_entity *left = se;
  1077. /*
  1078. * Avoid running the skip buddy, if running something else can
  1079. * be done without getting too unfair.
  1080. */
  1081. if (cfs_rq->skip == se) {
  1082. struct sched_entity *second = __pick_next_entity(se);
  1083. if (second && wakeup_preempt_entity(second, left) < 1)
  1084. se = second;
  1085. }
  1086. /*
  1087. * Prefer last buddy, try to return the CPU to a preempted task.
  1088. */
  1089. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1090. se = cfs_rq->last;
  1091. /*
  1092. * Someone really wants this to run. If it's not unfair, run it.
  1093. */
  1094. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1095. se = cfs_rq->next;
  1096. clear_buddies(cfs_rq, se);
  1097. return se;
  1098. }
  1099. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1100. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1101. {
  1102. /*
  1103. * If still on the runqueue then deactivate_task()
  1104. * was not called and update_curr() has to be done:
  1105. */
  1106. if (prev->on_rq)
  1107. update_curr(cfs_rq);
  1108. /* throttle cfs_rqs exceeding runtime */
  1109. check_cfs_rq_runtime(cfs_rq);
  1110. check_spread(cfs_rq, prev);
  1111. if (prev->on_rq) {
  1112. update_stats_wait_start(cfs_rq, prev);
  1113. /* Put 'current' back into the tree. */
  1114. __enqueue_entity(cfs_rq, prev);
  1115. }
  1116. cfs_rq->curr = NULL;
  1117. }
  1118. static void
  1119. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1120. {
  1121. /*
  1122. * Update run-time statistics of the 'current'.
  1123. */
  1124. update_curr(cfs_rq);
  1125. /*
  1126. * Update share accounting for long-running entities.
  1127. */
  1128. update_entity_shares_tick(cfs_rq);
  1129. #ifdef CONFIG_SCHED_HRTICK
  1130. /*
  1131. * queued ticks are scheduled to match the slice, so don't bother
  1132. * validating it and just reschedule.
  1133. */
  1134. if (queued) {
  1135. resched_task(rq_of(cfs_rq)->curr);
  1136. return;
  1137. }
  1138. /*
  1139. * don't let the period tick interfere with the hrtick preemption
  1140. */
  1141. if (!sched_feat(DOUBLE_TICK) &&
  1142. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1143. return;
  1144. #endif
  1145. if (cfs_rq->nr_running > 1)
  1146. check_preempt_tick(cfs_rq, curr);
  1147. }
  1148. /**************************************************
  1149. * CFS bandwidth control machinery
  1150. */
  1151. #ifdef CONFIG_CFS_BANDWIDTH
  1152. #ifdef HAVE_JUMP_LABEL
  1153. static struct static_key __cfs_bandwidth_used;
  1154. static inline bool cfs_bandwidth_used(void)
  1155. {
  1156. return static_key_false(&__cfs_bandwidth_used);
  1157. }
  1158. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1159. {
  1160. /* only need to count groups transitioning between enabled/!enabled */
  1161. if (enabled && !was_enabled)
  1162. static_key_slow_inc(&__cfs_bandwidth_used);
  1163. else if (!enabled && was_enabled)
  1164. static_key_slow_dec(&__cfs_bandwidth_used);
  1165. }
  1166. #else /* HAVE_JUMP_LABEL */
  1167. static bool cfs_bandwidth_used(void)
  1168. {
  1169. return true;
  1170. }
  1171. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1172. #endif /* HAVE_JUMP_LABEL */
  1173. /*
  1174. * default period for cfs group bandwidth.
  1175. * default: 0.1s, units: nanoseconds
  1176. */
  1177. static inline u64 default_cfs_period(void)
  1178. {
  1179. return 100000000ULL;
  1180. }
  1181. static inline u64 sched_cfs_bandwidth_slice(void)
  1182. {
  1183. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1184. }
  1185. /*
  1186. * Replenish runtime according to assigned quota and update expiration time.
  1187. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1188. * additional synchronization around rq->lock.
  1189. *
  1190. * requires cfs_b->lock
  1191. */
  1192. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1193. {
  1194. u64 now;
  1195. if (cfs_b->quota == RUNTIME_INF)
  1196. return;
  1197. now = sched_clock_cpu(smp_processor_id());
  1198. cfs_b->runtime = cfs_b->quota;
  1199. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1200. }
  1201. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1202. {
  1203. return &tg->cfs_bandwidth;
  1204. }
  1205. /* returns 0 on failure to allocate runtime */
  1206. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1207. {
  1208. struct task_group *tg = cfs_rq->tg;
  1209. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1210. u64 amount = 0, min_amount, expires;
  1211. /* note: this is a positive sum as runtime_remaining <= 0 */
  1212. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1213. raw_spin_lock(&cfs_b->lock);
  1214. if (cfs_b->quota == RUNTIME_INF)
  1215. amount = min_amount;
  1216. else {
  1217. /*
  1218. * If the bandwidth pool has become inactive, then at least one
  1219. * period must have elapsed since the last consumption.
  1220. * Refresh the global state and ensure bandwidth timer becomes
  1221. * active.
  1222. */
  1223. if (!cfs_b->timer_active) {
  1224. __refill_cfs_bandwidth_runtime(cfs_b);
  1225. __start_cfs_bandwidth(cfs_b);
  1226. }
  1227. if (cfs_b->runtime > 0) {
  1228. amount = min(cfs_b->runtime, min_amount);
  1229. cfs_b->runtime -= amount;
  1230. cfs_b->idle = 0;
  1231. }
  1232. }
  1233. expires = cfs_b->runtime_expires;
  1234. raw_spin_unlock(&cfs_b->lock);
  1235. cfs_rq->runtime_remaining += amount;
  1236. /*
  1237. * we may have advanced our local expiration to account for allowed
  1238. * spread between our sched_clock and the one on which runtime was
  1239. * issued.
  1240. */
  1241. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1242. cfs_rq->runtime_expires = expires;
  1243. return cfs_rq->runtime_remaining > 0;
  1244. }
  1245. /*
  1246. * Note: This depends on the synchronization provided by sched_clock and the
  1247. * fact that rq->clock snapshots this value.
  1248. */
  1249. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1250. {
  1251. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1252. struct rq *rq = rq_of(cfs_rq);
  1253. /* if the deadline is ahead of our clock, nothing to do */
  1254. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1255. return;
  1256. if (cfs_rq->runtime_remaining < 0)
  1257. return;
  1258. /*
  1259. * If the local deadline has passed we have to consider the
  1260. * possibility that our sched_clock is 'fast' and the global deadline
  1261. * has not truly expired.
  1262. *
  1263. * Fortunately we can check determine whether this the case by checking
  1264. * whether the global deadline has advanced.
  1265. */
  1266. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1267. /* extend local deadline, drift is bounded above by 2 ticks */
  1268. cfs_rq->runtime_expires += TICK_NSEC;
  1269. } else {
  1270. /* global deadline is ahead, expiration has passed */
  1271. cfs_rq->runtime_remaining = 0;
  1272. }
  1273. }
  1274. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1275. unsigned long delta_exec)
  1276. {
  1277. /* dock delta_exec before expiring quota (as it could span periods) */
  1278. cfs_rq->runtime_remaining -= delta_exec;
  1279. expire_cfs_rq_runtime(cfs_rq);
  1280. if (likely(cfs_rq->runtime_remaining > 0))
  1281. return;
  1282. /*
  1283. * if we're unable to extend our runtime we resched so that the active
  1284. * hierarchy can be throttled
  1285. */
  1286. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1287. resched_task(rq_of(cfs_rq)->curr);
  1288. }
  1289. static __always_inline
  1290. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
  1291. {
  1292. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1293. return;
  1294. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1295. }
  1296. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1297. {
  1298. return cfs_bandwidth_used() && cfs_rq->throttled;
  1299. }
  1300. /* check whether cfs_rq, or any parent, is throttled */
  1301. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1302. {
  1303. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1304. }
  1305. /*
  1306. * Ensure that neither of the group entities corresponding to src_cpu or
  1307. * dest_cpu are members of a throttled hierarchy when performing group
  1308. * load-balance operations.
  1309. */
  1310. static inline int throttled_lb_pair(struct task_group *tg,
  1311. int src_cpu, int dest_cpu)
  1312. {
  1313. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1314. src_cfs_rq = tg->cfs_rq[src_cpu];
  1315. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1316. return throttled_hierarchy(src_cfs_rq) ||
  1317. throttled_hierarchy(dest_cfs_rq);
  1318. }
  1319. /* updated child weight may affect parent so we have to do this bottom up */
  1320. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1321. {
  1322. struct rq *rq = data;
  1323. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1324. cfs_rq->throttle_count--;
  1325. #ifdef CONFIG_SMP
  1326. if (!cfs_rq->throttle_count) {
  1327. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1328. /* leaving throttled state, advance shares averaging windows */
  1329. cfs_rq->load_stamp += delta;
  1330. cfs_rq->load_last += delta;
  1331. /* update entity weight now that we are on_rq again */
  1332. update_cfs_shares(cfs_rq);
  1333. }
  1334. #endif
  1335. return 0;
  1336. }
  1337. static int tg_throttle_down(struct task_group *tg, void *data)
  1338. {
  1339. struct rq *rq = data;
  1340. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1341. /* group is entering throttled state, record last load */
  1342. if (!cfs_rq->throttle_count)
  1343. update_cfs_load(cfs_rq, 0);
  1344. cfs_rq->throttle_count++;
  1345. return 0;
  1346. }
  1347. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1348. {
  1349. struct rq *rq = rq_of(cfs_rq);
  1350. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1351. struct sched_entity *se;
  1352. long task_delta, dequeue = 1;
  1353. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1354. /* account load preceding throttle */
  1355. rcu_read_lock();
  1356. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1357. rcu_read_unlock();
  1358. task_delta = cfs_rq->h_nr_running;
  1359. for_each_sched_entity(se) {
  1360. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1361. /* throttled entity or throttle-on-deactivate */
  1362. if (!se->on_rq)
  1363. break;
  1364. if (dequeue)
  1365. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1366. qcfs_rq->h_nr_running -= task_delta;
  1367. if (qcfs_rq->load.weight)
  1368. dequeue = 0;
  1369. }
  1370. if (!se)
  1371. rq->nr_running -= task_delta;
  1372. cfs_rq->throttled = 1;
  1373. cfs_rq->throttled_timestamp = rq->clock;
  1374. raw_spin_lock(&cfs_b->lock);
  1375. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1376. raw_spin_unlock(&cfs_b->lock);
  1377. }
  1378. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1379. {
  1380. struct rq *rq = rq_of(cfs_rq);
  1381. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1382. struct sched_entity *se;
  1383. int enqueue = 1;
  1384. long task_delta;
  1385. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1386. cfs_rq->throttled = 0;
  1387. raw_spin_lock(&cfs_b->lock);
  1388. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1389. list_del_rcu(&cfs_rq->throttled_list);
  1390. raw_spin_unlock(&cfs_b->lock);
  1391. cfs_rq->throttled_timestamp = 0;
  1392. update_rq_clock(rq);
  1393. /* update hierarchical throttle state */
  1394. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1395. if (!cfs_rq->load.weight)
  1396. return;
  1397. task_delta = cfs_rq->h_nr_running;
  1398. for_each_sched_entity(se) {
  1399. if (se->on_rq)
  1400. enqueue = 0;
  1401. cfs_rq = cfs_rq_of(se);
  1402. if (enqueue)
  1403. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1404. cfs_rq->h_nr_running += task_delta;
  1405. if (cfs_rq_throttled(cfs_rq))
  1406. break;
  1407. }
  1408. if (!se)
  1409. rq->nr_running += task_delta;
  1410. /* determine whether we need to wake up potentially idle cpu */
  1411. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1412. resched_task(rq->curr);
  1413. }
  1414. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1415. u64 remaining, u64 expires)
  1416. {
  1417. struct cfs_rq *cfs_rq;
  1418. u64 runtime = remaining;
  1419. rcu_read_lock();
  1420. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1421. throttled_list) {
  1422. struct rq *rq = rq_of(cfs_rq);
  1423. raw_spin_lock(&rq->lock);
  1424. if (!cfs_rq_throttled(cfs_rq))
  1425. goto next;
  1426. runtime = -cfs_rq->runtime_remaining + 1;
  1427. if (runtime > remaining)
  1428. runtime = remaining;
  1429. remaining -= runtime;
  1430. cfs_rq->runtime_remaining += runtime;
  1431. cfs_rq->runtime_expires = expires;
  1432. /* we check whether we're throttled above */
  1433. if (cfs_rq->runtime_remaining > 0)
  1434. unthrottle_cfs_rq(cfs_rq);
  1435. next:
  1436. raw_spin_unlock(&rq->lock);
  1437. if (!remaining)
  1438. break;
  1439. }
  1440. rcu_read_unlock();
  1441. return remaining;
  1442. }
  1443. /*
  1444. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1445. * cfs_rqs as appropriate. If there has been no activity within the last
  1446. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1447. * used to track this state.
  1448. */
  1449. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1450. {
  1451. u64 runtime, runtime_expires;
  1452. int idle = 1, throttled;
  1453. raw_spin_lock(&cfs_b->lock);
  1454. /* no need to continue the timer with no bandwidth constraint */
  1455. if (cfs_b->quota == RUNTIME_INF)
  1456. goto out_unlock;
  1457. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1458. /* idle depends on !throttled (for the case of a large deficit) */
  1459. idle = cfs_b->idle && !throttled;
  1460. cfs_b->nr_periods += overrun;
  1461. /* if we're going inactive then everything else can be deferred */
  1462. if (idle)
  1463. goto out_unlock;
  1464. __refill_cfs_bandwidth_runtime(cfs_b);
  1465. if (!throttled) {
  1466. /* mark as potentially idle for the upcoming period */
  1467. cfs_b->idle = 1;
  1468. goto out_unlock;
  1469. }
  1470. /* account preceding periods in which throttling occurred */
  1471. cfs_b->nr_throttled += overrun;
  1472. /*
  1473. * There are throttled entities so we must first use the new bandwidth
  1474. * to unthrottle them before making it generally available. This
  1475. * ensures that all existing debts will be paid before a new cfs_rq is
  1476. * allowed to run.
  1477. */
  1478. runtime = cfs_b->runtime;
  1479. runtime_expires = cfs_b->runtime_expires;
  1480. cfs_b->runtime = 0;
  1481. /*
  1482. * This check is repeated as we are holding onto the new bandwidth
  1483. * while we unthrottle. This can potentially race with an unthrottled
  1484. * group trying to acquire new bandwidth from the global pool.
  1485. */
  1486. while (throttled && runtime > 0) {
  1487. raw_spin_unlock(&cfs_b->lock);
  1488. /* we can't nest cfs_b->lock while distributing bandwidth */
  1489. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1490. runtime_expires);
  1491. raw_spin_lock(&cfs_b->lock);
  1492. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1493. }
  1494. /* return (any) remaining runtime */
  1495. cfs_b->runtime = runtime;
  1496. /*
  1497. * While we are ensured activity in the period following an
  1498. * unthrottle, this also covers the case in which the new bandwidth is
  1499. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1500. * timer to remain active while there are any throttled entities.)
  1501. */
  1502. cfs_b->idle = 0;
  1503. out_unlock:
  1504. if (idle)
  1505. cfs_b->timer_active = 0;
  1506. raw_spin_unlock(&cfs_b->lock);
  1507. return idle;
  1508. }
  1509. /* a cfs_rq won't donate quota below this amount */
  1510. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1511. /* minimum remaining period time to redistribute slack quota */
  1512. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1513. /* how long we wait to gather additional slack before distributing */
  1514. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1515. /* are we near the end of the current quota period? */
  1516. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1517. {
  1518. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1519. u64 remaining;
  1520. /* if the call-back is running a quota refresh is already occurring */
  1521. if (hrtimer_callback_running(refresh_timer))
  1522. return 1;
  1523. /* is a quota refresh about to occur? */
  1524. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1525. if (remaining < min_expire)
  1526. return 1;
  1527. return 0;
  1528. }
  1529. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1530. {
  1531. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1532. /* if there's a quota refresh soon don't bother with slack */
  1533. if (runtime_refresh_within(cfs_b, min_left))
  1534. return;
  1535. start_bandwidth_timer(&cfs_b->slack_timer,
  1536. ns_to_ktime(cfs_bandwidth_slack_period));
  1537. }
  1538. /* we know any runtime found here is valid as update_curr() precedes return */
  1539. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1540. {
  1541. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1542. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1543. if (slack_runtime <= 0)
  1544. return;
  1545. raw_spin_lock(&cfs_b->lock);
  1546. if (cfs_b->quota != RUNTIME_INF &&
  1547. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1548. cfs_b->runtime += slack_runtime;
  1549. /* we are under rq->lock, defer unthrottling using a timer */
  1550. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1551. !list_empty(&cfs_b->throttled_cfs_rq))
  1552. start_cfs_slack_bandwidth(cfs_b);
  1553. }
  1554. raw_spin_unlock(&cfs_b->lock);
  1555. /* even if it's not valid for return we don't want to try again */
  1556. cfs_rq->runtime_remaining -= slack_runtime;
  1557. }
  1558. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1559. {
  1560. if (!cfs_bandwidth_used())
  1561. return;
  1562. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1563. return;
  1564. __return_cfs_rq_runtime(cfs_rq);
  1565. }
  1566. /*
  1567. * This is done with a timer (instead of inline with bandwidth return) since
  1568. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1569. */
  1570. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1571. {
  1572. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1573. u64 expires;
  1574. /* confirm we're still not at a refresh boundary */
  1575. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  1576. return;
  1577. raw_spin_lock(&cfs_b->lock);
  1578. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1579. runtime = cfs_b->runtime;
  1580. cfs_b->runtime = 0;
  1581. }
  1582. expires = cfs_b->runtime_expires;
  1583. raw_spin_unlock(&cfs_b->lock);
  1584. if (!runtime)
  1585. return;
  1586. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1587. raw_spin_lock(&cfs_b->lock);
  1588. if (expires == cfs_b->runtime_expires)
  1589. cfs_b->runtime = runtime;
  1590. raw_spin_unlock(&cfs_b->lock);
  1591. }
  1592. /*
  1593. * When a group wakes up we want to make sure that its quota is not already
  1594. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1595. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1596. */
  1597. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1598. {
  1599. if (!cfs_bandwidth_used())
  1600. return;
  1601. /* an active group must be handled by the update_curr()->put() path */
  1602. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1603. return;
  1604. /* ensure the group is not already throttled */
  1605. if (cfs_rq_throttled(cfs_rq))
  1606. return;
  1607. /* update runtime allocation */
  1608. account_cfs_rq_runtime(cfs_rq, 0);
  1609. if (cfs_rq->runtime_remaining <= 0)
  1610. throttle_cfs_rq(cfs_rq);
  1611. }
  1612. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1613. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1614. {
  1615. if (!cfs_bandwidth_used())
  1616. return;
  1617. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1618. return;
  1619. /*
  1620. * it's possible for a throttled entity to be forced into a running
  1621. * state (e.g. set_curr_task), in this case we're finished.
  1622. */
  1623. if (cfs_rq_throttled(cfs_rq))
  1624. return;
  1625. throttle_cfs_rq(cfs_rq);
  1626. }
  1627. static inline u64 default_cfs_period(void);
  1628. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  1629. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  1630. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  1631. {
  1632. struct cfs_bandwidth *cfs_b =
  1633. container_of(timer, struct cfs_bandwidth, slack_timer);
  1634. do_sched_cfs_slack_timer(cfs_b);
  1635. return HRTIMER_NORESTART;
  1636. }
  1637. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  1638. {
  1639. struct cfs_bandwidth *cfs_b =
  1640. container_of(timer, struct cfs_bandwidth, period_timer);
  1641. ktime_t now;
  1642. int overrun;
  1643. int idle = 0;
  1644. for (;;) {
  1645. now = hrtimer_cb_get_time(timer);
  1646. overrun = hrtimer_forward(timer, now, cfs_b->period);
  1647. if (!overrun)
  1648. break;
  1649. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  1650. }
  1651. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  1652. }
  1653. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1654. {
  1655. raw_spin_lock_init(&cfs_b->lock);
  1656. cfs_b->runtime = 0;
  1657. cfs_b->quota = RUNTIME_INF;
  1658. cfs_b->period = ns_to_ktime(default_cfs_period());
  1659. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  1660. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1661. cfs_b->period_timer.function = sched_cfs_period_timer;
  1662. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1663. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  1664. }
  1665. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1666. {
  1667. cfs_rq->runtime_enabled = 0;
  1668. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  1669. }
  1670. /* requires cfs_b->lock, may release to reprogram timer */
  1671. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1672. {
  1673. /*
  1674. * The timer may be active because we're trying to set a new bandwidth
  1675. * period or because we're racing with the tear-down path
  1676. * (timer_active==0 becomes visible before the hrtimer call-back
  1677. * terminates). In either case we ensure that it's re-programmed
  1678. */
  1679. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  1680. raw_spin_unlock(&cfs_b->lock);
  1681. /* ensure cfs_b->lock is available while we wait */
  1682. hrtimer_cancel(&cfs_b->period_timer);
  1683. raw_spin_lock(&cfs_b->lock);
  1684. /* if someone else restarted the timer then we're done */
  1685. if (cfs_b->timer_active)
  1686. return;
  1687. }
  1688. cfs_b->timer_active = 1;
  1689. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  1690. }
  1691. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1692. {
  1693. hrtimer_cancel(&cfs_b->period_timer);
  1694. hrtimer_cancel(&cfs_b->slack_timer);
  1695. }
  1696. void unthrottle_offline_cfs_rqs(struct rq *rq)
  1697. {
  1698. struct cfs_rq *cfs_rq;
  1699. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1700. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1701. if (!cfs_rq->runtime_enabled)
  1702. continue;
  1703. /*
  1704. * clock_task is not advancing so we just need to make sure
  1705. * there's some valid quota amount
  1706. */
  1707. cfs_rq->runtime_remaining = cfs_b->quota;
  1708. if (cfs_rq_throttled(cfs_rq))
  1709. unthrottle_cfs_rq(cfs_rq);
  1710. }
  1711. }
  1712. #else /* CONFIG_CFS_BANDWIDTH */
  1713. static __always_inline
  1714. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
  1715. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1716. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1717. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1718. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1719. {
  1720. return 0;
  1721. }
  1722. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1723. {
  1724. return 0;
  1725. }
  1726. static inline int throttled_lb_pair(struct task_group *tg,
  1727. int src_cpu, int dest_cpu)
  1728. {
  1729. return 0;
  1730. }
  1731. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1732. #ifdef CONFIG_FAIR_GROUP_SCHED
  1733. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1734. #endif
  1735. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1736. {
  1737. return NULL;
  1738. }
  1739. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1740. void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  1741. #endif /* CONFIG_CFS_BANDWIDTH */
  1742. /**************************************************
  1743. * CFS operations on tasks:
  1744. */
  1745. #ifdef CONFIG_SCHED_HRTICK
  1746. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1747. {
  1748. struct sched_entity *se = &p->se;
  1749. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1750. WARN_ON(task_rq(p) != rq);
  1751. if (cfs_rq->nr_running > 1) {
  1752. u64 slice = sched_slice(cfs_rq, se);
  1753. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1754. s64 delta = slice - ran;
  1755. if (delta < 0) {
  1756. if (rq->curr == p)
  1757. resched_task(p);
  1758. return;
  1759. }
  1760. /*
  1761. * Don't schedule slices shorter than 10000ns, that just
  1762. * doesn't make sense. Rely on vruntime for fairness.
  1763. */
  1764. if (rq->curr != p)
  1765. delta = max_t(s64, 10000LL, delta);
  1766. hrtick_start(rq, delta);
  1767. }
  1768. }
  1769. /*
  1770. * called from enqueue/dequeue and updates the hrtick when the
  1771. * current task is from our class and nr_running is low enough
  1772. * to matter.
  1773. */
  1774. static void hrtick_update(struct rq *rq)
  1775. {
  1776. struct task_struct *curr = rq->curr;
  1777. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  1778. return;
  1779. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1780. hrtick_start_fair(rq, curr);
  1781. }
  1782. #else /* !CONFIG_SCHED_HRTICK */
  1783. static inline void
  1784. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1785. {
  1786. }
  1787. static inline void hrtick_update(struct rq *rq)
  1788. {
  1789. }
  1790. #endif
  1791. /*
  1792. * The enqueue_task method is called before nr_running is
  1793. * increased. Here we update the fair scheduling stats and
  1794. * then put the task into the rbtree:
  1795. */
  1796. static void
  1797. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1798. {
  1799. struct cfs_rq *cfs_rq;
  1800. struct sched_entity *se = &p->se;
  1801. for_each_sched_entity(se) {
  1802. if (se->on_rq)
  1803. break;
  1804. cfs_rq = cfs_rq_of(se);
  1805. enqueue_entity(cfs_rq, se, flags);
  1806. /*
  1807. * end evaluation on encountering a throttled cfs_rq
  1808. *
  1809. * note: in the case of encountering a throttled cfs_rq we will
  1810. * post the final h_nr_running increment below.
  1811. */
  1812. if (cfs_rq_throttled(cfs_rq))
  1813. break;
  1814. cfs_rq->h_nr_running++;
  1815. flags = ENQUEUE_WAKEUP;
  1816. }
  1817. for_each_sched_entity(se) {
  1818. cfs_rq = cfs_rq_of(se);
  1819. cfs_rq->h_nr_running++;
  1820. if (cfs_rq_throttled(cfs_rq))
  1821. break;
  1822. update_cfs_load(cfs_rq, 0);
  1823. update_cfs_shares(cfs_rq);
  1824. }
  1825. if (!se)
  1826. inc_nr_running(rq);
  1827. hrtick_update(rq);
  1828. }
  1829. static void set_next_buddy(struct sched_entity *se);
  1830. /*
  1831. * The dequeue_task method is called before nr_running is
  1832. * decreased. We remove the task from the rbtree and
  1833. * update the fair scheduling stats:
  1834. */
  1835. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1836. {
  1837. struct cfs_rq *cfs_rq;
  1838. struct sched_entity *se = &p->se;
  1839. int task_sleep = flags & DEQUEUE_SLEEP;
  1840. for_each_sched_entity(se) {
  1841. cfs_rq = cfs_rq_of(se);
  1842. dequeue_entity(cfs_rq, se, flags);
  1843. /*
  1844. * end evaluation on encountering a throttled cfs_rq
  1845. *
  1846. * note: in the case of encountering a throttled cfs_rq we will
  1847. * post the final h_nr_running decrement below.
  1848. */
  1849. if (cfs_rq_throttled(cfs_rq))
  1850. break;
  1851. cfs_rq->h_nr_running--;
  1852. /* Don't dequeue parent if it has other entities besides us */
  1853. if (cfs_rq->load.weight) {
  1854. /*
  1855. * Bias pick_next to pick a task from this cfs_rq, as
  1856. * p is sleeping when it is within its sched_slice.
  1857. */
  1858. if (task_sleep && parent_entity(se))
  1859. set_next_buddy(parent_entity(se));
  1860. /* avoid re-evaluating load for this entity */
  1861. se = parent_entity(se);
  1862. break;
  1863. }
  1864. flags |= DEQUEUE_SLEEP;
  1865. }
  1866. for_each_sched_entity(se) {
  1867. cfs_rq = cfs_rq_of(se);
  1868. cfs_rq->h_nr_running--;
  1869. if (cfs_rq_throttled(cfs_rq))
  1870. break;
  1871. update_cfs_load(cfs_rq, 0);
  1872. update_cfs_shares(cfs_rq);
  1873. }
  1874. if (!se)
  1875. dec_nr_running(rq);
  1876. hrtick_update(rq);
  1877. }
  1878. #ifdef CONFIG_SMP
  1879. /* Used instead of source_load when we know the type == 0 */
  1880. static unsigned long weighted_cpuload(const int cpu)
  1881. {
  1882. return cpu_rq(cpu)->load.weight;
  1883. }
  1884. /*
  1885. * Return a low guess at the load of a migration-source cpu weighted
  1886. * according to the scheduling class and "nice" value.
  1887. *
  1888. * We want to under-estimate the load of migration sources, to
  1889. * balance conservatively.
  1890. */
  1891. static unsigned long source_load(int cpu, int type)
  1892. {
  1893. struct rq *rq = cpu_rq(cpu);
  1894. unsigned long total = weighted_cpuload(cpu);
  1895. if (type == 0 || !sched_feat(LB_BIAS))
  1896. return total;
  1897. return min(rq->cpu_load[type-1], total);
  1898. }
  1899. /*
  1900. * Return a high guess at the load of a migration-target cpu weighted
  1901. * according to the scheduling class and "nice" value.
  1902. */
  1903. static unsigned long target_load(int cpu, int type)
  1904. {
  1905. struct rq *rq = cpu_rq(cpu);
  1906. unsigned long total = weighted_cpuload(cpu);
  1907. if (type == 0 || !sched_feat(LB_BIAS))
  1908. return total;
  1909. return max(rq->cpu_load[type-1], total);
  1910. }
  1911. static unsigned long power_of(int cpu)
  1912. {
  1913. return cpu_rq(cpu)->cpu_power;
  1914. }
  1915. static unsigned long cpu_avg_load_per_task(int cpu)
  1916. {
  1917. struct rq *rq = cpu_rq(cpu);
  1918. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1919. if (nr_running)
  1920. return rq->load.weight / nr_running;
  1921. return 0;
  1922. }
  1923. static void task_waking_fair(struct task_struct *p)
  1924. {
  1925. struct sched_entity *se = &p->se;
  1926. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1927. u64 min_vruntime;
  1928. #ifndef CONFIG_64BIT
  1929. u64 min_vruntime_copy;
  1930. do {
  1931. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1932. smp_rmb();
  1933. min_vruntime = cfs_rq->min_vruntime;
  1934. } while (min_vruntime != min_vruntime_copy);
  1935. #else
  1936. min_vruntime = cfs_rq->min_vruntime;
  1937. #endif
  1938. se->vruntime -= min_vruntime;
  1939. }
  1940. #ifdef CONFIG_FAIR_GROUP_SCHED
  1941. /*
  1942. * effective_load() calculates the load change as seen from the root_task_group
  1943. *
  1944. * Adding load to a group doesn't make a group heavier, but can cause movement
  1945. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1946. * can calculate the shift in shares.
  1947. *
  1948. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  1949. * on this @cpu and results in a total addition (subtraction) of @wg to the
  1950. * total group weight.
  1951. *
  1952. * Given a runqueue weight distribution (rw_i) we can compute a shares
  1953. * distribution (s_i) using:
  1954. *
  1955. * s_i = rw_i / \Sum rw_j (1)
  1956. *
  1957. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  1958. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  1959. * shares distribution (s_i):
  1960. *
  1961. * rw_i = { 2, 4, 1, 0 }
  1962. * s_i = { 2/7, 4/7, 1/7, 0 }
  1963. *
  1964. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  1965. * task used to run on and the CPU the waker is running on), we need to
  1966. * compute the effect of waking a task on either CPU and, in case of a sync
  1967. * wakeup, compute the effect of the current task going to sleep.
  1968. *
  1969. * So for a change of @wl to the local @cpu with an overall group weight change
  1970. * of @wl we can compute the new shares distribution (s'_i) using:
  1971. *
  1972. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  1973. *
  1974. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  1975. * differences in waking a task to CPU 0. The additional task changes the
  1976. * weight and shares distributions like:
  1977. *
  1978. * rw'_i = { 3, 4, 1, 0 }
  1979. * s'_i = { 3/8, 4/8, 1/8, 0 }
  1980. *
  1981. * We can then compute the difference in effective weight by using:
  1982. *
  1983. * dw_i = S * (s'_i - s_i) (3)
  1984. *
  1985. * Where 'S' is the group weight as seen by its parent.
  1986. *
  1987. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  1988. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  1989. * 4/7) times the weight of the group.
  1990. */
  1991. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1992. {
  1993. struct sched_entity *se = tg->se[cpu];
  1994. if (!tg->parent) /* the trivial, non-cgroup case */
  1995. return wl;
  1996. for_each_sched_entity(se) {
  1997. long w, W;
  1998. tg = se->my_q->tg;
  1999. /*
  2000. * W = @wg + \Sum rw_j
  2001. */
  2002. W = wg + calc_tg_weight(tg, se->my_q);
  2003. /*
  2004. * w = rw_i + @wl
  2005. */
  2006. w = se->my_q->load.weight + wl;
  2007. /*
  2008. * wl = S * s'_i; see (2)
  2009. */
  2010. if (W > 0 && w < W)
  2011. wl = (w * tg->shares) / W;
  2012. else
  2013. wl = tg->shares;
  2014. /*
  2015. * Per the above, wl is the new se->load.weight value; since
  2016. * those are clipped to [MIN_SHARES, ...) do so now. See
  2017. * calc_cfs_shares().
  2018. */
  2019. if (wl < MIN_SHARES)
  2020. wl = MIN_SHARES;
  2021. /*
  2022. * wl = dw_i = S * (s'_i - s_i); see (3)
  2023. */
  2024. wl -= se->load.weight;
  2025. /*
  2026. * Recursively apply this logic to all parent groups to compute
  2027. * the final effective load change on the root group. Since
  2028. * only the @tg group gets extra weight, all parent groups can
  2029. * only redistribute existing shares. @wl is the shift in shares
  2030. * resulting from this level per the above.
  2031. */
  2032. wg = 0;
  2033. }
  2034. return wl;
  2035. }
  2036. #else
  2037. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2038. unsigned long wl, unsigned long wg)
  2039. {
  2040. return wl;
  2041. }
  2042. #endif
  2043. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2044. {
  2045. s64 this_load, load;
  2046. int idx, this_cpu, prev_cpu;
  2047. unsigned long tl_per_task;
  2048. struct task_group *tg;
  2049. unsigned long weight;
  2050. int balanced;
  2051. idx = sd->wake_idx;
  2052. this_cpu = smp_processor_id();
  2053. prev_cpu = task_cpu(p);
  2054. load = source_load(prev_cpu, idx);
  2055. this_load = target_load(this_cpu, idx);
  2056. /*
  2057. * If sync wakeup then subtract the (maximum possible)
  2058. * effect of the currently running task from the load
  2059. * of the current CPU:
  2060. */
  2061. if (sync) {
  2062. tg = task_group(current);
  2063. weight = current->se.load.weight;
  2064. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2065. load += effective_load(tg, prev_cpu, 0, -weight);
  2066. }
  2067. tg = task_group(p);
  2068. weight = p->se.load.weight;
  2069. /*
  2070. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2071. * due to the sync cause above having dropped this_load to 0, we'll
  2072. * always have an imbalance, but there's really nothing you can do
  2073. * about that, so that's good too.
  2074. *
  2075. * Otherwise check if either cpus are near enough in load to allow this
  2076. * task to be woken on this_cpu.
  2077. */
  2078. if (this_load > 0) {
  2079. s64 this_eff_load, prev_eff_load;
  2080. this_eff_load = 100;
  2081. this_eff_load *= power_of(prev_cpu);
  2082. this_eff_load *= this_load +
  2083. effective_load(tg, this_cpu, weight, weight);
  2084. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2085. prev_eff_load *= power_of(this_cpu);
  2086. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2087. balanced = this_eff_load <= prev_eff_load;
  2088. } else
  2089. balanced = true;
  2090. /*
  2091. * If the currently running task will sleep within
  2092. * a reasonable amount of time then attract this newly
  2093. * woken task:
  2094. */
  2095. if (sync && balanced)
  2096. return 1;
  2097. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2098. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2099. if (balanced ||
  2100. (this_load <= load &&
  2101. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2102. /*
  2103. * This domain has SD_WAKE_AFFINE and
  2104. * p is cache cold in this domain, and
  2105. * there is no bad imbalance.
  2106. */
  2107. schedstat_inc(sd, ttwu_move_affine);
  2108. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2109. return 1;
  2110. }
  2111. return 0;
  2112. }
  2113. /*
  2114. * find_idlest_group finds and returns the least busy CPU group within the
  2115. * domain.
  2116. */
  2117. static struct sched_group *
  2118. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2119. int this_cpu, int load_idx)
  2120. {
  2121. struct sched_group *idlest = NULL, *group = sd->groups;
  2122. unsigned long min_load = ULONG_MAX, this_load = 0;
  2123. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2124. do {
  2125. unsigned long load, avg_load;
  2126. int local_group;
  2127. int i;
  2128. /* Skip over this group if it has no CPUs allowed */
  2129. if (!cpumask_intersects(sched_group_cpus(group),
  2130. tsk_cpus_allowed(p)))
  2131. continue;
  2132. local_group = cpumask_test_cpu(this_cpu,
  2133. sched_group_cpus(group));
  2134. /* Tally up the load of all CPUs in the group */
  2135. avg_load = 0;
  2136. for_each_cpu(i, sched_group_cpus(group)) {
  2137. /* Bias balancing toward cpus of our domain */
  2138. if (local_group)
  2139. load = source_load(i, load_idx);
  2140. else
  2141. load = target_load(i, load_idx);
  2142. avg_load += load;
  2143. }
  2144. /* Adjust by relative CPU power of the group */
  2145. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2146. if (local_group) {
  2147. this_load = avg_load;
  2148. } else if (avg_load < min_load) {
  2149. min_load = avg_load;
  2150. idlest = group;
  2151. }
  2152. } while (group = group->next, group != sd->groups);
  2153. if (!idlest || 100*this_load < imbalance*min_load)
  2154. return NULL;
  2155. return idlest;
  2156. }
  2157. /*
  2158. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2159. */
  2160. static int
  2161. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2162. {
  2163. unsigned long load, min_load = ULONG_MAX;
  2164. int idlest = -1;
  2165. int i;
  2166. /* Traverse only the allowed CPUs */
  2167. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2168. load = weighted_cpuload(i);
  2169. if (load < min_load || (load == min_load && i == this_cpu)) {
  2170. min_load = load;
  2171. idlest = i;
  2172. }
  2173. }
  2174. return idlest;
  2175. }
  2176. /*
  2177. * Try and locate an idle CPU in the sched_domain.
  2178. */
  2179. static int select_idle_sibling(struct task_struct *p, int target)
  2180. {
  2181. int cpu = smp_processor_id();
  2182. int prev_cpu = task_cpu(p);
  2183. struct sched_domain *sd;
  2184. struct sched_group *sg;
  2185. int i;
  2186. /*
  2187. * If the task is going to be woken-up on this cpu and if it is
  2188. * already idle, then it is the right target.
  2189. */
  2190. if (target == cpu && idle_cpu(cpu))
  2191. return cpu;
  2192. /*
  2193. * If the task is going to be woken-up on the cpu where it previously
  2194. * ran and if it is currently idle, then it the right target.
  2195. */
  2196. if (target == prev_cpu && idle_cpu(prev_cpu))
  2197. return prev_cpu;
  2198. /*
  2199. * Otherwise, iterate the domains and find an elegible idle cpu.
  2200. */
  2201. sd = rcu_dereference(per_cpu(sd_llc, target));
  2202. for_each_lower_domain(sd) {
  2203. sg = sd->groups;
  2204. do {
  2205. if (!cpumask_intersects(sched_group_cpus(sg),
  2206. tsk_cpus_allowed(p)))
  2207. goto next;
  2208. for_each_cpu(i, sched_group_cpus(sg)) {
  2209. if (!idle_cpu(i))
  2210. goto next;
  2211. }
  2212. target = cpumask_first_and(sched_group_cpus(sg),
  2213. tsk_cpus_allowed(p));
  2214. goto done;
  2215. next:
  2216. sg = sg->next;
  2217. } while (sg != sd->groups);
  2218. }
  2219. done:
  2220. return target;
  2221. }
  2222. /*
  2223. * sched_balance_self: balance the current task (running on cpu) in domains
  2224. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2225. * SD_BALANCE_EXEC.
  2226. *
  2227. * Balance, ie. select the least loaded group.
  2228. *
  2229. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2230. *
  2231. * preempt must be disabled.
  2232. */
  2233. static int
  2234. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2235. {
  2236. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2237. int cpu = smp_processor_id();
  2238. int prev_cpu = task_cpu(p);
  2239. int new_cpu = cpu;
  2240. int want_affine = 0;
  2241. int want_sd = 1;
  2242. int sync = wake_flags & WF_SYNC;
  2243. if (p->nr_cpus_allowed == 1)
  2244. return prev_cpu;
  2245. if (sd_flag & SD_BALANCE_WAKE) {
  2246. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2247. want_affine = 1;
  2248. new_cpu = prev_cpu;
  2249. }
  2250. rcu_read_lock();
  2251. for_each_domain(cpu, tmp) {
  2252. if (!(tmp->flags & SD_LOAD_BALANCE))
  2253. continue;
  2254. /*
  2255. * If power savings logic is enabled for a domain, see if we
  2256. * are not overloaded, if so, don't balance wider.
  2257. */
  2258. if (tmp->flags & (SD_PREFER_LOCAL)) {
  2259. unsigned long power = 0;
  2260. unsigned long nr_running = 0;
  2261. unsigned long capacity;
  2262. int i;
  2263. for_each_cpu(i, sched_domain_span(tmp)) {
  2264. power += power_of(i);
  2265. nr_running += cpu_rq(i)->cfs.nr_running;
  2266. }
  2267. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2268. if (nr_running < capacity)
  2269. want_sd = 0;
  2270. }
  2271. /*
  2272. * If both cpu and prev_cpu are part of this domain,
  2273. * cpu is a valid SD_WAKE_AFFINE target.
  2274. */
  2275. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2276. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2277. affine_sd = tmp;
  2278. want_affine = 0;
  2279. }
  2280. if (!want_sd && !want_affine)
  2281. break;
  2282. if (!(tmp->flags & sd_flag))
  2283. continue;
  2284. if (want_sd)
  2285. sd = tmp;
  2286. }
  2287. if (affine_sd) {
  2288. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2289. prev_cpu = cpu;
  2290. new_cpu = select_idle_sibling(p, prev_cpu);
  2291. goto unlock;
  2292. }
  2293. while (sd) {
  2294. int load_idx = sd->forkexec_idx;
  2295. struct sched_group *group;
  2296. int weight;
  2297. if (!(sd->flags & sd_flag)) {
  2298. sd = sd->child;
  2299. continue;
  2300. }
  2301. if (sd_flag & SD_BALANCE_WAKE)
  2302. load_idx = sd->wake_idx;
  2303. group = find_idlest_group(sd, p, cpu, load_idx);
  2304. if (!group) {
  2305. sd = sd->child;
  2306. continue;
  2307. }
  2308. new_cpu = find_idlest_cpu(group, p, cpu);
  2309. if (new_cpu == -1 || new_cpu == cpu) {
  2310. /* Now try balancing at a lower domain level of cpu */
  2311. sd = sd->child;
  2312. continue;
  2313. }
  2314. /* Now try balancing at a lower domain level of new_cpu */
  2315. cpu = new_cpu;
  2316. weight = sd->span_weight;
  2317. sd = NULL;
  2318. for_each_domain(cpu, tmp) {
  2319. if (weight <= tmp->span_weight)
  2320. break;
  2321. if (tmp->flags & sd_flag)
  2322. sd = tmp;
  2323. }
  2324. /* while loop will break here if sd == NULL */
  2325. }
  2326. unlock:
  2327. rcu_read_unlock();
  2328. return new_cpu;
  2329. }
  2330. #endif /* CONFIG_SMP */
  2331. static unsigned long
  2332. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2333. {
  2334. unsigned long gran = sysctl_sched_wakeup_granularity;
  2335. /*
  2336. * Since its curr running now, convert the gran from real-time
  2337. * to virtual-time in his units.
  2338. *
  2339. * By using 'se' instead of 'curr' we penalize light tasks, so
  2340. * they get preempted easier. That is, if 'se' < 'curr' then
  2341. * the resulting gran will be larger, therefore penalizing the
  2342. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2343. * be smaller, again penalizing the lighter task.
  2344. *
  2345. * This is especially important for buddies when the leftmost
  2346. * task is higher priority than the buddy.
  2347. */
  2348. return calc_delta_fair(gran, se);
  2349. }
  2350. /*
  2351. * Should 'se' preempt 'curr'.
  2352. *
  2353. * |s1
  2354. * |s2
  2355. * |s3
  2356. * g
  2357. * |<--->|c
  2358. *
  2359. * w(c, s1) = -1
  2360. * w(c, s2) = 0
  2361. * w(c, s3) = 1
  2362. *
  2363. */
  2364. static int
  2365. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2366. {
  2367. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2368. if (vdiff <= 0)
  2369. return -1;
  2370. gran = wakeup_gran(curr, se);
  2371. if (vdiff > gran)
  2372. return 1;
  2373. return 0;
  2374. }
  2375. static void set_last_buddy(struct sched_entity *se)
  2376. {
  2377. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2378. return;
  2379. for_each_sched_entity(se)
  2380. cfs_rq_of(se)->last = se;
  2381. }
  2382. static void set_next_buddy(struct sched_entity *se)
  2383. {
  2384. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2385. return;
  2386. for_each_sched_entity(se)
  2387. cfs_rq_of(se)->next = se;
  2388. }
  2389. static void set_skip_buddy(struct sched_entity *se)
  2390. {
  2391. for_each_sched_entity(se)
  2392. cfs_rq_of(se)->skip = se;
  2393. }
  2394. /*
  2395. * Preempt the current task with a newly woken task if needed:
  2396. */
  2397. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2398. {
  2399. struct task_struct *curr = rq->curr;
  2400. struct sched_entity *se = &curr->se, *pse = &p->se;
  2401. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2402. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2403. int next_buddy_marked = 0;
  2404. if (unlikely(se == pse))
  2405. return;
  2406. /*
  2407. * This is possible from callers such as move_task(), in which we
  2408. * unconditionally check_prempt_curr() after an enqueue (which may have
  2409. * lead to a throttle). This both saves work and prevents false
  2410. * next-buddy nomination below.
  2411. */
  2412. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2413. return;
  2414. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2415. set_next_buddy(pse);
  2416. next_buddy_marked = 1;
  2417. }
  2418. /*
  2419. * We can come here with TIF_NEED_RESCHED already set from new task
  2420. * wake up path.
  2421. *
  2422. * Note: this also catches the edge-case of curr being in a throttled
  2423. * group (e.g. via set_curr_task), since update_curr() (in the
  2424. * enqueue of curr) will have resulted in resched being set. This
  2425. * prevents us from potentially nominating it as a false LAST_BUDDY
  2426. * below.
  2427. */
  2428. if (test_tsk_need_resched(curr))
  2429. return;
  2430. /* Idle tasks are by definition preempted by non-idle tasks. */
  2431. if (unlikely(curr->policy == SCHED_IDLE) &&
  2432. likely(p->policy != SCHED_IDLE))
  2433. goto preempt;
  2434. /*
  2435. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2436. * is driven by the tick):
  2437. */
  2438. if (unlikely(p->policy != SCHED_NORMAL))
  2439. return;
  2440. find_matching_se(&se, &pse);
  2441. update_curr(cfs_rq_of(se));
  2442. BUG_ON(!pse);
  2443. if (wakeup_preempt_entity(se, pse) == 1) {
  2444. /*
  2445. * Bias pick_next to pick the sched entity that is
  2446. * triggering this preemption.
  2447. */
  2448. if (!next_buddy_marked)
  2449. set_next_buddy(pse);
  2450. goto preempt;
  2451. }
  2452. return;
  2453. preempt:
  2454. resched_task(curr);
  2455. /*
  2456. * Only set the backward buddy when the current task is still
  2457. * on the rq. This can happen when a wakeup gets interleaved
  2458. * with schedule on the ->pre_schedule() or idle_balance()
  2459. * point, either of which can * drop the rq lock.
  2460. *
  2461. * Also, during early boot the idle thread is in the fair class,
  2462. * for obvious reasons its a bad idea to schedule back to it.
  2463. */
  2464. if (unlikely(!se->on_rq || curr == rq->idle))
  2465. return;
  2466. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2467. set_last_buddy(se);
  2468. }
  2469. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2470. {
  2471. struct task_struct *p;
  2472. struct cfs_rq *cfs_rq = &rq->cfs;
  2473. struct sched_entity *se;
  2474. if (!cfs_rq->nr_running)
  2475. return NULL;
  2476. do {
  2477. se = pick_next_entity(cfs_rq);
  2478. set_next_entity(cfs_rq, se);
  2479. cfs_rq = group_cfs_rq(se);
  2480. } while (cfs_rq);
  2481. p = task_of(se);
  2482. if (hrtick_enabled(rq))
  2483. hrtick_start_fair(rq, p);
  2484. return p;
  2485. }
  2486. /*
  2487. * Account for a descheduled task:
  2488. */
  2489. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2490. {
  2491. struct sched_entity *se = &prev->se;
  2492. struct cfs_rq *cfs_rq;
  2493. for_each_sched_entity(se) {
  2494. cfs_rq = cfs_rq_of(se);
  2495. put_prev_entity(cfs_rq, se);
  2496. }
  2497. }
  2498. /*
  2499. * sched_yield() is very simple
  2500. *
  2501. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2502. */
  2503. static void yield_task_fair(struct rq *rq)
  2504. {
  2505. struct task_struct *curr = rq->curr;
  2506. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2507. struct sched_entity *se = &curr->se;
  2508. /*
  2509. * Are we the only task in the tree?
  2510. */
  2511. if (unlikely(rq->nr_running == 1))
  2512. return;
  2513. clear_buddies(cfs_rq, se);
  2514. if (curr->policy != SCHED_BATCH) {
  2515. update_rq_clock(rq);
  2516. /*
  2517. * Update run-time statistics of the 'current'.
  2518. */
  2519. update_curr(cfs_rq);
  2520. /*
  2521. * Tell update_rq_clock() that we've just updated,
  2522. * so we don't do microscopic update in schedule()
  2523. * and double the fastpath cost.
  2524. */
  2525. rq->skip_clock_update = 1;
  2526. }
  2527. set_skip_buddy(se);
  2528. }
  2529. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2530. {
  2531. struct sched_entity *se = &p->se;
  2532. /* throttled hierarchies are not runnable */
  2533. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2534. return false;
  2535. /* Tell the scheduler that we'd really like pse to run next. */
  2536. set_next_buddy(se);
  2537. yield_task_fair(rq);
  2538. return true;
  2539. }
  2540. #ifdef CONFIG_SMP
  2541. /**************************************************
  2542. * Fair scheduling class load-balancing methods:
  2543. */
  2544. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  2545. #define LBF_ALL_PINNED 0x01
  2546. #define LBF_NEED_BREAK 0x02
  2547. struct lb_env {
  2548. struct sched_domain *sd;
  2549. int src_cpu;
  2550. struct rq *src_rq;
  2551. int dst_cpu;
  2552. struct rq *dst_rq;
  2553. enum cpu_idle_type idle;
  2554. long imbalance;
  2555. unsigned int flags;
  2556. unsigned int loop;
  2557. unsigned int loop_break;
  2558. unsigned int loop_max;
  2559. };
  2560. /*
  2561. * move_task - move a task from one runqueue to another runqueue.
  2562. * Both runqueues must be locked.
  2563. */
  2564. static void move_task(struct task_struct *p, struct lb_env *env)
  2565. {
  2566. deactivate_task(env->src_rq, p, 0);
  2567. set_task_cpu(p, env->dst_cpu);
  2568. activate_task(env->dst_rq, p, 0);
  2569. check_preempt_curr(env->dst_rq, p, 0);
  2570. }
  2571. /*
  2572. * Is this task likely cache-hot:
  2573. */
  2574. static int
  2575. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  2576. {
  2577. s64 delta;
  2578. if (p->sched_class != &fair_sched_class)
  2579. return 0;
  2580. if (unlikely(p->policy == SCHED_IDLE))
  2581. return 0;
  2582. /*
  2583. * Buddy candidates are cache hot:
  2584. */
  2585. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  2586. (&p->se == cfs_rq_of(&p->se)->next ||
  2587. &p->se == cfs_rq_of(&p->se)->last))
  2588. return 1;
  2589. if (sysctl_sched_migration_cost == -1)
  2590. return 1;
  2591. if (sysctl_sched_migration_cost == 0)
  2592. return 0;
  2593. delta = now - p->se.exec_start;
  2594. return delta < (s64)sysctl_sched_migration_cost;
  2595. }
  2596. /*
  2597. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2598. */
  2599. static
  2600. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  2601. {
  2602. int tsk_cache_hot = 0;
  2603. /*
  2604. * We do not migrate tasks that are:
  2605. * 1) running (obviously), or
  2606. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2607. * 3) are cache-hot on their current CPU.
  2608. */
  2609. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  2610. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2611. return 0;
  2612. }
  2613. env->flags &= ~LBF_ALL_PINNED;
  2614. if (task_running(env->src_rq, p)) {
  2615. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2616. return 0;
  2617. }
  2618. /*
  2619. * Aggressive migration if:
  2620. * 1) task is cache cold, or
  2621. * 2) too many balance attempts have failed.
  2622. */
  2623. tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
  2624. if (!tsk_cache_hot ||
  2625. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  2626. #ifdef CONFIG_SCHEDSTATS
  2627. if (tsk_cache_hot) {
  2628. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  2629. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2630. }
  2631. #endif
  2632. return 1;
  2633. }
  2634. if (tsk_cache_hot) {
  2635. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2636. return 0;
  2637. }
  2638. return 1;
  2639. }
  2640. /*
  2641. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2642. * part of active balancing operations within "domain".
  2643. * Returns 1 if successful and 0 otherwise.
  2644. *
  2645. * Called with both runqueues locked.
  2646. */
  2647. static int move_one_task(struct lb_env *env)
  2648. {
  2649. struct task_struct *p, *n;
  2650. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  2651. if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
  2652. continue;
  2653. if (!can_migrate_task(p, env))
  2654. continue;
  2655. move_task(p, env);
  2656. /*
  2657. * Right now, this is only the second place move_task()
  2658. * is called, so we can safely collect move_task()
  2659. * stats here rather than inside move_task().
  2660. */
  2661. schedstat_inc(env->sd, lb_gained[env->idle]);
  2662. return 1;
  2663. }
  2664. return 0;
  2665. }
  2666. static unsigned long task_h_load(struct task_struct *p);
  2667. static const unsigned int sched_nr_migrate_break = 32;
  2668. /*
  2669. * move_tasks tries to move up to imbalance weighted load from busiest to
  2670. * this_rq, as part of a balancing operation within domain "sd".
  2671. * Returns 1 if successful and 0 otherwise.
  2672. *
  2673. * Called with both runqueues locked.
  2674. */
  2675. static int move_tasks(struct lb_env *env)
  2676. {
  2677. struct list_head *tasks = &env->src_rq->cfs_tasks;
  2678. struct task_struct *p;
  2679. unsigned long load;
  2680. int pulled = 0;
  2681. if (env->imbalance <= 0)
  2682. return 0;
  2683. while (!list_empty(tasks)) {
  2684. p = list_first_entry(tasks, struct task_struct, se.group_node);
  2685. env->loop++;
  2686. /* We've more or less seen every task there is, call it quits */
  2687. if (env->loop > env->loop_max)
  2688. break;
  2689. /* take a breather every nr_migrate tasks */
  2690. if (env->loop > env->loop_break) {
  2691. env->loop_break += sched_nr_migrate_break;
  2692. env->flags |= LBF_NEED_BREAK;
  2693. break;
  2694. }
  2695. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  2696. goto next;
  2697. load = task_h_load(p);
  2698. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  2699. goto next;
  2700. if ((load / 2) > env->imbalance)
  2701. goto next;
  2702. if (!can_migrate_task(p, env))
  2703. goto next;
  2704. move_task(p, env);
  2705. pulled++;
  2706. env->imbalance -= load;
  2707. #ifdef CONFIG_PREEMPT
  2708. /*
  2709. * NEWIDLE balancing is a source of latency, so preemptible
  2710. * kernels will stop after the first task is pulled to minimize
  2711. * the critical section.
  2712. */
  2713. if (env->idle == CPU_NEWLY_IDLE)
  2714. break;
  2715. #endif
  2716. /*
  2717. * We only want to steal up to the prescribed amount of
  2718. * weighted load.
  2719. */
  2720. if (env->imbalance <= 0)
  2721. break;
  2722. continue;
  2723. next:
  2724. list_move_tail(&p->se.group_node, tasks);
  2725. }
  2726. /*
  2727. * Right now, this is one of only two places move_task() is called,
  2728. * so we can safely collect move_task() stats here rather than
  2729. * inside move_task().
  2730. */
  2731. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  2732. return pulled;
  2733. }
  2734. #ifdef CONFIG_FAIR_GROUP_SCHED
  2735. /*
  2736. * update tg->load_weight by folding this cpu's load_avg
  2737. */
  2738. static int update_shares_cpu(struct task_group *tg, int cpu)
  2739. {
  2740. struct cfs_rq *cfs_rq;
  2741. unsigned long flags;
  2742. struct rq *rq;
  2743. if (!tg->se[cpu])
  2744. return 0;
  2745. rq = cpu_rq(cpu);
  2746. cfs_rq = tg->cfs_rq[cpu];
  2747. raw_spin_lock_irqsave(&rq->lock, flags);
  2748. update_rq_clock(rq);
  2749. update_cfs_load(cfs_rq, 1);
  2750. /*
  2751. * We need to update shares after updating tg->load_weight in
  2752. * order to adjust the weight of groups with long running tasks.
  2753. */
  2754. update_cfs_shares(cfs_rq);
  2755. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2756. return 0;
  2757. }
  2758. static void update_shares(int cpu)
  2759. {
  2760. struct cfs_rq *cfs_rq;
  2761. struct rq *rq = cpu_rq(cpu);
  2762. rcu_read_lock();
  2763. /*
  2764. * Iterates the task_group tree in a bottom up fashion, see
  2765. * list_add_leaf_cfs_rq() for details.
  2766. */
  2767. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2768. /* throttled entities do not contribute to load */
  2769. if (throttled_hierarchy(cfs_rq))
  2770. continue;
  2771. update_shares_cpu(cfs_rq->tg, cpu);
  2772. }
  2773. rcu_read_unlock();
  2774. }
  2775. /*
  2776. * Compute the cpu's hierarchical load factor for each task group.
  2777. * This needs to be done in a top-down fashion because the load of a child
  2778. * group is a fraction of its parents load.
  2779. */
  2780. static int tg_load_down(struct task_group *tg, void *data)
  2781. {
  2782. unsigned long load;
  2783. long cpu = (long)data;
  2784. if (!tg->parent) {
  2785. load = cpu_rq(cpu)->load.weight;
  2786. } else {
  2787. load = tg->parent->cfs_rq[cpu]->h_load;
  2788. load *= tg->se[cpu]->load.weight;
  2789. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2790. }
  2791. tg->cfs_rq[cpu]->h_load = load;
  2792. return 0;
  2793. }
  2794. static void update_h_load(long cpu)
  2795. {
  2796. rcu_read_lock();
  2797. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2798. rcu_read_unlock();
  2799. }
  2800. static unsigned long task_h_load(struct task_struct *p)
  2801. {
  2802. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  2803. unsigned long load;
  2804. load = p->se.load.weight;
  2805. load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
  2806. return load;
  2807. }
  2808. #else
  2809. static inline void update_shares(int cpu)
  2810. {
  2811. }
  2812. static inline void update_h_load(long cpu)
  2813. {
  2814. }
  2815. static unsigned long task_h_load(struct task_struct *p)
  2816. {
  2817. return p->se.load.weight;
  2818. }
  2819. #endif
  2820. /********** Helpers for find_busiest_group ************************/
  2821. /*
  2822. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2823. * during load balancing.
  2824. */
  2825. struct sd_lb_stats {
  2826. struct sched_group *busiest; /* Busiest group in this sd */
  2827. struct sched_group *this; /* Local group in this sd */
  2828. unsigned long total_load; /* Total load of all groups in sd */
  2829. unsigned long total_pwr; /* Total power of all groups in sd */
  2830. unsigned long avg_load; /* Average load across all groups in sd */
  2831. /** Statistics of this group */
  2832. unsigned long this_load;
  2833. unsigned long this_load_per_task;
  2834. unsigned long this_nr_running;
  2835. unsigned long this_has_capacity;
  2836. unsigned int this_idle_cpus;
  2837. /* Statistics of the busiest group */
  2838. unsigned int busiest_idle_cpus;
  2839. unsigned long max_load;
  2840. unsigned long busiest_load_per_task;
  2841. unsigned long busiest_nr_running;
  2842. unsigned long busiest_group_capacity;
  2843. unsigned long busiest_has_capacity;
  2844. unsigned int busiest_group_weight;
  2845. int group_imb; /* Is there imbalance in this sd */
  2846. };
  2847. /*
  2848. * sg_lb_stats - stats of a sched_group required for load_balancing
  2849. */
  2850. struct sg_lb_stats {
  2851. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2852. unsigned long group_load; /* Total load over the CPUs of the group */
  2853. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2854. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2855. unsigned long group_capacity;
  2856. unsigned long idle_cpus;
  2857. unsigned long group_weight;
  2858. int group_imb; /* Is there an imbalance in the group ? */
  2859. int group_has_capacity; /* Is there extra capacity in the group? */
  2860. };
  2861. /**
  2862. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2863. * @sd: The sched_domain whose load_idx is to be obtained.
  2864. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2865. */
  2866. static inline int get_sd_load_idx(struct sched_domain *sd,
  2867. enum cpu_idle_type idle)
  2868. {
  2869. int load_idx;
  2870. switch (idle) {
  2871. case CPU_NOT_IDLE:
  2872. load_idx = sd->busy_idx;
  2873. break;
  2874. case CPU_NEWLY_IDLE:
  2875. load_idx = sd->newidle_idx;
  2876. break;
  2877. default:
  2878. load_idx = sd->idle_idx;
  2879. break;
  2880. }
  2881. return load_idx;
  2882. }
  2883. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2884. {
  2885. return SCHED_POWER_SCALE;
  2886. }
  2887. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2888. {
  2889. return default_scale_freq_power(sd, cpu);
  2890. }
  2891. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2892. {
  2893. unsigned long weight = sd->span_weight;
  2894. unsigned long smt_gain = sd->smt_gain;
  2895. smt_gain /= weight;
  2896. return smt_gain;
  2897. }
  2898. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2899. {
  2900. return default_scale_smt_power(sd, cpu);
  2901. }
  2902. unsigned long scale_rt_power(int cpu)
  2903. {
  2904. struct rq *rq = cpu_rq(cpu);
  2905. u64 total, available, age_stamp, avg;
  2906. /*
  2907. * Since we're reading these variables without serialization make sure
  2908. * we read them once before doing sanity checks on them.
  2909. */
  2910. age_stamp = ACCESS_ONCE(rq->age_stamp);
  2911. avg = ACCESS_ONCE(rq->rt_avg);
  2912. total = sched_avg_period() + (rq->clock - age_stamp);
  2913. if (unlikely(total < avg)) {
  2914. /* Ensures that power won't end up being negative */
  2915. available = 0;
  2916. } else {
  2917. available = total - avg;
  2918. }
  2919. if (unlikely((s64)total < SCHED_POWER_SCALE))
  2920. total = SCHED_POWER_SCALE;
  2921. total >>= SCHED_POWER_SHIFT;
  2922. return div_u64(available, total);
  2923. }
  2924. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2925. {
  2926. unsigned long weight = sd->span_weight;
  2927. unsigned long power = SCHED_POWER_SCALE;
  2928. struct sched_group *sdg = sd->groups;
  2929. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2930. if (sched_feat(ARCH_POWER))
  2931. power *= arch_scale_smt_power(sd, cpu);
  2932. else
  2933. power *= default_scale_smt_power(sd, cpu);
  2934. power >>= SCHED_POWER_SHIFT;
  2935. }
  2936. sdg->sgp->power_orig = power;
  2937. if (sched_feat(ARCH_POWER))
  2938. power *= arch_scale_freq_power(sd, cpu);
  2939. else
  2940. power *= default_scale_freq_power(sd, cpu);
  2941. power >>= SCHED_POWER_SHIFT;
  2942. power *= scale_rt_power(cpu);
  2943. power >>= SCHED_POWER_SHIFT;
  2944. if (!power)
  2945. power = 1;
  2946. cpu_rq(cpu)->cpu_power = power;
  2947. sdg->sgp->power = power;
  2948. }
  2949. void update_group_power(struct sched_domain *sd, int cpu)
  2950. {
  2951. struct sched_domain *child = sd->child;
  2952. struct sched_group *group, *sdg = sd->groups;
  2953. unsigned long power;
  2954. unsigned long interval;
  2955. interval = msecs_to_jiffies(sd->balance_interval);
  2956. interval = clamp(interval, 1UL, max_load_balance_interval);
  2957. sdg->sgp->next_update = jiffies + interval;
  2958. if (!child) {
  2959. update_cpu_power(sd, cpu);
  2960. return;
  2961. }
  2962. power = 0;
  2963. if (child->flags & SD_OVERLAP) {
  2964. /*
  2965. * SD_OVERLAP domains cannot assume that child groups
  2966. * span the current group.
  2967. */
  2968. for_each_cpu(cpu, sched_group_cpus(sdg))
  2969. power += power_of(cpu);
  2970. } else {
  2971. /*
  2972. * !SD_OVERLAP domains can assume that child groups
  2973. * span the current group.
  2974. */
  2975. group = child->groups;
  2976. do {
  2977. power += group->sgp->power;
  2978. group = group->next;
  2979. } while (group != child->groups);
  2980. }
  2981. sdg->sgp->power_orig = sdg->sgp->power = power;
  2982. }
  2983. /*
  2984. * Try and fix up capacity for tiny siblings, this is needed when
  2985. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2986. * which on its own isn't powerful enough.
  2987. *
  2988. * See update_sd_pick_busiest() and check_asym_packing().
  2989. */
  2990. static inline int
  2991. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2992. {
  2993. /*
  2994. * Only siblings can have significantly less than SCHED_POWER_SCALE
  2995. */
  2996. if (!(sd->flags & SD_SHARE_CPUPOWER))
  2997. return 0;
  2998. /*
  2999. * If ~90% of the cpu_power is still there, we're good.
  3000. */
  3001. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3002. return 1;
  3003. return 0;
  3004. }
  3005. /**
  3006. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3007. * @env: The load balancing environment.
  3008. * @group: sched_group whose statistics are to be updated.
  3009. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3010. * @local_group: Does group contain this_cpu.
  3011. * @cpus: Set of cpus considered for load balancing.
  3012. * @balance: Should we balance.
  3013. * @sgs: variable to hold the statistics for this group.
  3014. */
  3015. static inline void update_sg_lb_stats(struct lb_env *env,
  3016. struct sched_group *group, int load_idx,
  3017. int local_group, const struct cpumask *cpus,
  3018. int *balance, struct sg_lb_stats *sgs)
  3019. {
  3020. unsigned long nr_running, max_nr_running, min_nr_running;
  3021. unsigned long load, max_cpu_load, min_cpu_load;
  3022. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3023. unsigned long avg_load_per_task = 0;
  3024. int i;
  3025. if (local_group)
  3026. balance_cpu = group_balance_cpu(group);
  3027. /* Tally up the load of all CPUs in the group */
  3028. max_cpu_load = 0;
  3029. min_cpu_load = ~0UL;
  3030. max_nr_running = 0;
  3031. min_nr_running = ~0UL;
  3032. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3033. struct rq *rq = cpu_rq(i);
  3034. nr_running = rq->nr_running;
  3035. /* Bias balancing toward cpus of our domain */
  3036. if (local_group) {
  3037. if (idle_cpu(i) && !first_idle_cpu &&
  3038. cpumask_test_cpu(i, sched_group_mask(group))) {
  3039. first_idle_cpu = 1;
  3040. balance_cpu = i;
  3041. }
  3042. load = target_load(i, load_idx);
  3043. } else {
  3044. load = source_load(i, load_idx);
  3045. if (load > max_cpu_load)
  3046. max_cpu_load = load;
  3047. if (min_cpu_load > load)
  3048. min_cpu_load = load;
  3049. if (nr_running > max_nr_running)
  3050. max_nr_running = nr_running;
  3051. if (min_nr_running > nr_running)
  3052. min_nr_running = nr_running;
  3053. }
  3054. sgs->group_load += load;
  3055. sgs->sum_nr_running += nr_running;
  3056. sgs->sum_weighted_load += weighted_cpuload(i);
  3057. if (idle_cpu(i))
  3058. sgs->idle_cpus++;
  3059. }
  3060. /*
  3061. * First idle cpu or the first cpu(busiest) in this sched group
  3062. * is eligible for doing load balancing at this and above
  3063. * domains. In the newly idle case, we will allow all the cpu's
  3064. * to do the newly idle load balance.
  3065. */
  3066. if (local_group) {
  3067. if (env->idle != CPU_NEWLY_IDLE) {
  3068. if (balance_cpu != env->dst_cpu) {
  3069. *balance = 0;
  3070. return;
  3071. }
  3072. update_group_power(env->sd, env->dst_cpu);
  3073. } else if (time_after_eq(jiffies, group->sgp->next_update))
  3074. update_group_power(env->sd, env->dst_cpu);
  3075. }
  3076. /* Adjust by relative CPU power of the group */
  3077. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3078. /*
  3079. * Consider the group unbalanced when the imbalance is larger
  3080. * than the average weight of a task.
  3081. *
  3082. * APZ: with cgroup the avg task weight can vary wildly and
  3083. * might not be a suitable number - should we keep a
  3084. * normalized nr_running number somewhere that negates
  3085. * the hierarchy?
  3086. */
  3087. if (sgs->sum_nr_running)
  3088. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3089. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
  3090. (max_nr_running - min_nr_running) > 1)
  3091. sgs->group_imb = 1;
  3092. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3093. SCHED_POWER_SCALE);
  3094. if (!sgs->group_capacity)
  3095. sgs->group_capacity = fix_small_capacity(env->sd, group);
  3096. sgs->group_weight = group->group_weight;
  3097. if (sgs->group_capacity > sgs->sum_nr_running)
  3098. sgs->group_has_capacity = 1;
  3099. }
  3100. /**
  3101. * update_sd_pick_busiest - return 1 on busiest group
  3102. * @env: The load balancing environment.
  3103. * @sds: sched_domain statistics
  3104. * @sg: sched_group candidate to be checked for being the busiest
  3105. * @sgs: sched_group statistics
  3106. *
  3107. * Determine if @sg is a busier group than the previously selected
  3108. * busiest group.
  3109. */
  3110. static bool update_sd_pick_busiest(struct lb_env *env,
  3111. struct sd_lb_stats *sds,
  3112. struct sched_group *sg,
  3113. struct sg_lb_stats *sgs)
  3114. {
  3115. if (sgs->avg_load <= sds->max_load)
  3116. return false;
  3117. if (sgs->sum_nr_running > sgs->group_capacity)
  3118. return true;
  3119. if (sgs->group_imb)
  3120. return true;
  3121. /*
  3122. * ASYM_PACKING needs to move all the work to the lowest
  3123. * numbered CPUs in the group, therefore mark all groups
  3124. * higher than ourself as busy.
  3125. */
  3126. if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3127. env->dst_cpu < group_first_cpu(sg)) {
  3128. if (!sds->busiest)
  3129. return true;
  3130. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3131. return true;
  3132. }
  3133. return false;
  3134. }
  3135. /**
  3136. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3137. * @env: The load balancing environment.
  3138. * @cpus: Set of cpus considered for load balancing.
  3139. * @balance: Should we balance.
  3140. * @sds: variable to hold the statistics for this sched_domain.
  3141. */
  3142. static inline void update_sd_lb_stats(struct lb_env *env,
  3143. const struct cpumask *cpus,
  3144. int *balance, struct sd_lb_stats *sds)
  3145. {
  3146. struct sched_domain *child = env->sd->child;
  3147. struct sched_group *sg = env->sd->groups;
  3148. struct sg_lb_stats sgs;
  3149. int load_idx, prefer_sibling = 0;
  3150. if (child && child->flags & SD_PREFER_SIBLING)
  3151. prefer_sibling = 1;
  3152. load_idx = get_sd_load_idx(env->sd, env->idle);
  3153. do {
  3154. int local_group;
  3155. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  3156. memset(&sgs, 0, sizeof(sgs));
  3157. update_sg_lb_stats(env, sg, load_idx, local_group,
  3158. cpus, balance, &sgs);
  3159. if (local_group && !(*balance))
  3160. return;
  3161. sds->total_load += sgs.group_load;
  3162. sds->total_pwr += sg->sgp->power;
  3163. /*
  3164. * In case the child domain prefers tasks go to siblings
  3165. * first, lower the sg capacity to one so that we'll try
  3166. * and move all the excess tasks away. We lower the capacity
  3167. * of a group only if the local group has the capacity to fit
  3168. * these excess tasks, i.e. nr_running < group_capacity. The
  3169. * extra check prevents the case where you always pull from the
  3170. * heaviest group when it is already under-utilized (possible
  3171. * with a large weight task outweighs the tasks on the system).
  3172. */
  3173. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3174. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3175. if (local_group) {
  3176. sds->this_load = sgs.avg_load;
  3177. sds->this = sg;
  3178. sds->this_nr_running = sgs.sum_nr_running;
  3179. sds->this_load_per_task = sgs.sum_weighted_load;
  3180. sds->this_has_capacity = sgs.group_has_capacity;
  3181. sds->this_idle_cpus = sgs.idle_cpus;
  3182. } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
  3183. sds->max_load = sgs.avg_load;
  3184. sds->busiest = sg;
  3185. sds->busiest_nr_running = sgs.sum_nr_running;
  3186. sds->busiest_idle_cpus = sgs.idle_cpus;
  3187. sds->busiest_group_capacity = sgs.group_capacity;
  3188. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3189. sds->busiest_has_capacity = sgs.group_has_capacity;
  3190. sds->busiest_group_weight = sgs.group_weight;
  3191. sds->group_imb = sgs.group_imb;
  3192. }
  3193. sg = sg->next;
  3194. } while (sg != env->sd->groups);
  3195. }
  3196. /**
  3197. * check_asym_packing - Check to see if the group is packed into the
  3198. * sched doman.
  3199. *
  3200. * This is primarily intended to used at the sibling level. Some
  3201. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3202. * case of POWER7, it can move to lower SMT modes only when higher
  3203. * threads are idle. When in lower SMT modes, the threads will
  3204. * perform better since they share less core resources. Hence when we
  3205. * have idle threads, we want them to be the higher ones.
  3206. *
  3207. * This packing function is run on idle threads. It checks to see if
  3208. * the busiest CPU in this domain (core in the P7 case) has a higher
  3209. * CPU number than the packing function is being run on. Here we are
  3210. * assuming lower CPU number will be equivalent to lower a SMT thread
  3211. * number.
  3212. *
  3213. * Returns 1 when packing is required and a task should be moved to
  3214. * this CPU. The amount of the imbalance is returned in *imbalance.
  3215. *
  3216. * @env: The load balancing environment.
  3217. * @sds: Statistics of the sched_domain which is to be packed
  3218. */
  3219. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  3220. {
  3221. int busiest_cpu;
  3222. if (!(env->sd->flags & SD_ASYM_PACKING))
  3223. return 0;
  3224. if (!sds->busiest)
  3225. return 0;
  3226. busiest_cpu = group_first_cpu(sds->busiest);
  3227. if (env->dst_cpu > busiest_cpu)
  3228. return 0;
  3229. env->imbalance = DIV_ROUND_CLOSEST(
  3230. sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
  3231. return 1;
  3232. }
  3233. /**
  3234. * fix_small_imbalance - Calculate the minor imbalance that exists
  3235. * amongst the groups of a sched_domain, during
  3236. * load balancing.
  3237. * @env: The load balancing environment.
  3238. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3239. */
  3240. static inline
  3241. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3242. {
  3243. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3244. unsigned int imbn = 2;
  3245. unsigned long scaled_busy_load_per_task;
  3246. if (sds->this_nr_running) {
  3247. sds->this_load_per_task /= sds->this_nr_running;
  3248. if (sds->busiest_load_per_task >
  3249. sds->this_load_per_task)
  3250. imbn = 1;
  3251. } else {
  3252. sds->this_load_per_task =
  3253. cpu_avg_load_per_task(env->dst_cpu);
  3254. }
  3255. scaled_busy_load_per_task = sds->busiest_load_per_task
  3256. * SCHED_POWER_SCALE;
  3257. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3258. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3259. (scaled_busy_load_per_task * imbn)) {
  3260. env->imbalance = sds->busiest_load_per_task;
  3261. return;
  3262. }
  3263. /*
  3264. * OK, we don't have enough imbalance to justify moving tasks,
  3265. * however we may be able to increase total CPU power used by
  3266. * moving them.
  3267. */
  3268. pwr_now += sds->busiest->sgp->power *
  3269. min(sds->busiest_load_per_task, sds->max_load);
  3270. pwr_now += sds->this->sgp->power *
  3271. min(sds->this_load_per_task, sds->this_load);
  3272. pwr_now /= SCHED_POWER_SCALE;
  3273. /* Amount of load we'd subtract */
  3274. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3275. sds->busiest->sgp->power;
  3276. if (sds->max_load > tmp)
  3277. pwr_move += sds->busiest->sgp->power *
  3278. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3279. /* Amount of load we'd add */
  3280. if (sds->max_load * sds->busiest->sgp->power <
  3281. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3282. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3283. sds->this->sgp->power;
  3284. else
  3285. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3286. sds->this->sgp->power;
  3287. pwr_move += sds->this->sgp->power *
  3288. min(sds->this_load_per_task, sds->this_load + tmp);
  3289. pwr_move /= SCHED_POWER_SCALE;
  3290. /* Move if we gain throughput */
  3291. if (pwr_move > pwr_now)
  3292. env->imbalance = sds->busiest_load_per_task;
  3293. }
  3294. /**
  3295. * calculate_imbalance - Calculate the amount of imbalance present within the
  3296. * groups of a given sched_domain during load balance.
  3297. * @env: load balance environment
  3298. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3299. */
  3300. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3301. {
  3302. unsigned long max_pull, load_above_capacity = ~0UL;
  3303. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3304. if (sds->group_imb) {
  3305. sds->busiest_load_per_task =
  3306. min(sds->busiest_load_per_task, sds->avg_load);
  3307. }
  3308. /*
  3309. * In the presence of smp nice balancing, certain scenarios can have
  3310. * max load less than avg load(as we skip the groups at or below
  3311. * its cpu_power, while calculating max_load..)
  3312. */
  3313. if (sds->max_load < sds->avg_load) {
  3314. env->imbalance = 0;
  3315. return fix_small_imbalance(env, sds);
  3316. }
  3317. if (!sds->group_imb) {
  3318. /*
  3319. * Don't want to pull so many tasks that a group would go idle.
  3320. */
  3321. load_above_capacity = (sds->busiest_nr_running -
  3322. sds->busiest_group_capacity);
  3323. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3324. load_above_capacity /= sds->busiest->sgp->power;
  3325. }
  3326. /*
  3327. * We're trying to get all the cpus to the average_load, so we don't
  3328. * want to push ourselves above the average load, nor do we wish to
  3329. * reduce the max loaded cpu below the average load. At the same time,
  3330. * we also don't want to reduce the group load below the group capacity
  3331. * (so that we can implement power-savings policies etc). Thus we look
  3332. * for the minimum possible imbalance.
  3333. * Be careful of negative numbers as they'll appear as very large values
  3334. * with unsigned longs.
  3335. */
  3336. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3337. /* How much load to actually move to equalise the imbalance */
  3338. env->imbalance = min(max_pull * sds->busiest->sgp->power,
  3339. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3340. / SCHED_POWER_SCALE;
  3341. /*
  3342. * if *imbalance is less than the average load per runnable task
  3343. * there is no guarantee that any tasks will be moved so we'll have
  3344. * a think about bumping its value to force at least one task to be
  3345. * moved
  3346. */
  3347. if (env->imbalance < sds->busiest_load_per_task)
  3348. return fix_small_imbalance(env, sds);
  3349. }
  3350. /******* find_busiest_group() helpers end here *********************/
  3351. /**
  3352. * find_busiest_group - Returns the busiest group within the sched_domain
  3353. * if there is an imbalance. If there isn't an imbalance, and
  3354. * the user has opted for power-savings, it returns a group whose
  3355. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3356. * such a group exists.
  3357. *
  3358. * Also calculates the amount of weighted load which should be moved
  3359. * to restore balance.
  3360. *
  3361. * @env: The load balancing environment.
  3362. * @cpus: The set of CPUs under consideration for load-balancing.
  3363. * @balance: Pointer to a variable indicating if this_cpu
  3364. * is the appropriate cpu to perform load balancing at this_level.
  3365. *
  3366. * Returns: - the busiest group if imbalance exists.
  3367. * - If no imbalance and user has opted for power-savings balance,
  3368. * return the least loaded group whose CPUs can be
  3369. * put to idle by rebalancing its tasks onto our group.
  3370. */
  3371. static struct sched_group *
  3372. find_busiest_group(struct lb_env *env, const struct cpumask *cpus, int *balance)
  3373. {
  3374. struct sd_lb_stats sds;
  3375. memset(&sds, 0, sizeof(sds));
  3376. /*
  3377. * Compute the various statistics relavent for load balancing at
  3378. * this level.
  3379. */
  3380. update_sd_lb_stats(env, cpus, balance, &sds);
  3381. /*
  3382. * this_cpu is not the appropriate cpu to perform load balancing at
  3383. * this level.
  3384. */
  3385. if (!(*balance))
  3386. goto ret;
  3387. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  3388. check_asym_packing(env, &sds))
  3389. return sds.busiest;
  3390. /* There is no busy sibling group to pull tasks from */
  3391. if (!sds.busiest || sds.busiest_nr_running == 0)
  3392. goto out_balanced;
  3393. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3394. /*
  3395. * If the busiest group is imbalanced the below checks don't
  3396. * work because they assumes all things are equal, which typically
  3397. * isn't true due to cpus_allowed constraints and the like.
  3398. */
  3399. if (sds.group_imb)
  3400. goto force_balance;
  3401. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3402. if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3403. !sds.busiest_has_capacity)
  3404. goto force_balance;
  3405. /*
  3406. * If the local group is more busy than the selected busiest group
  3407. * don't try and pull any tasks.
  3408. */
  3409. if (sds.this_load >= sds.max_load)
  3410. goto out_balanced;
  3411. /*
  3412. * Don't pull any tasks if this group is already above the domain
  3413. * average load.
  3414. */
  3415. if (sds.this_load >= sds.avg_load)
  3416. goto out_balanced;
  3417. if (env->idle == CPU_IDLE) {
  3418. /*
  3419. * This cpu is idle. If the busiest group load doesn't
  3420. * have more tasks than the number of available cpu's and
  3421. * there is no imbalance between this and busiest group
  3422. * wrt to idle cpu's, it is balanced.
  3423. */
  3424. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3425. sds.busiest_nr_running <= sds.busiest_group_weight)
  3426. goto out_balanced;
  3427. } else {
  3428. /*
  3429. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3430. * imbalance_pct to be conservative.
  3431. */
  3432. if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
  3433. goto out_balanced;
  3434. }
  3435. force_balance:
  3436. /* Looks like there is an imbalance. Compute it */
  3437. calculate_imbalance(env, &sds);
  3438. return sds.busiest;
  3439. out_balanced:
  3440. ret:
  3441. env->imbalance = 0;
  3442. return NULL;
  3443. }
  3444. /*
  3445. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3446. */
  3447. static struct rq *find_busiest_queue(struct lb_env *env,
  3448. struct sched_group *group,
  3449. const struct cpumask *cpus)
  3450. {
  3451. struct rq *busiest = NULL, *rq;
  3452. unsigned long max_load = 0;
  3453. int i;
  3454. for_each_cpu(i, sched_group_cpus(group)) {
  3455. unsigned long power = power_of(i);
  3456. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3457. SCHED_POWER_SCALE);
  3458. unsigned long wl;
  3459. if (!capacity)
  3460. capacity = fix_small_capacity(env->sd, group);
  3461. if (!cpumask_test_cpu(i, cpus))
  3462. continue;
  3463. rq = cpu_rq(i);
  3464. wl = weighted_cpuload(i);
  3465. /*
  3466. * When comparing with imbalance, use weighted_cpuload()
  3467. * which is not scaled with the cpu power.
  3468. */
  3469. if (capacity && rq->nr_running == 1 && wl > env->imbalance)
  3470. continue;
  3471. /*
  3472. * For the load comparisons with the other cpu's, consider
  3473. * the weighted_cpuload() scaled with the cpu power, so that
  3474. * the load can be moved away from the cpu that is potentially
  3475. * running at a lower capacity.
  3476. */
  3477. wl = (wl * SCHED_POWER_SCALE) / power;
  3478. if (wl > max_load) {
  3479. max_load = wl;
  3480. busiest = rq;
  3481. }
  3482. }
  3483. return busiest;
  3484. }
  3485. /*
  3486. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3487. * so long as it is large enough.
  3488. */
  3489. #define MAX_PINNED_INTERVAL 512
  3490. /* Working cpumask for load_balance and load_balance_newidle. */
  3491. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3492. static int need_active_balance(struct lb_env *env)
  3493. {
  3494. struct sched_domain *sd = env->sd;
  3495. if (env->idle == CPU_NEWLY_IDLE) {
  3496. /*
  3497. * ASYM_PACKING needs to force migrate tasks from busy but
  3498. * higher numbered CPUs in order to pack all tasks in the
  3499. * lowest numbered CPUs.
  3500. */
  3501. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  3502. return 1;
  3503. }
  3504. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3505. }
  3506. static int active_load_balance_cpu_stop(void *data);
  3507. /*
  3508. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3509. * tasks if there is an imbalance.
  3510. */
  3511. static int load_balance(int this_cpu, struct rq *this_rq,
  3512. struct sched_domain *sd, enum cpu_idle_type idle,
  3513. int *balance)
  3514. {
  3515. int ld_moved, active_balance = 0;
  3516. struct sched_group *group;
  3517. struct rq *busiest;
  3518. unsigned long flags;
  3519. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3520. struct lb_env env = {
  3521. .sd = sd,
  3522. .dst_cpu = this_cpu,
  3523. .dst_rq = this_rq,
  3524. .idle = idle,
  3525. .loop_break = sched_nr_migrate_break,
  3526. };
  3527. cpumask_copy(cpus, cpu_active_mask);
  3528. schedstat_inc(sd, lb_count[idle]);
  3529. redo:
  3530. group = find_busiest_group(&env, cpus, balance);
  3531. if (*balance == 0)
  3532. goto out_balanced;
  3533. if (!group) {
  3534. schedstat_inc(sd, lb_nobusyg[idle]);
  3535. goto out_balanced;
  3536. }
  3537. busiest = find_busiest_queue(&env, group, cpus);
  3538. if (!busiest) {
  3539. schedstat_inc(sd, lb_nobusyq[idle]);
  3540. goto out_balanced;
  3541. }
  3542. BUG_ON(busiest == this_rq);
  3543. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  3544. ld_moved = 0;
  3545. if (busiest->nr_running > 1) {
  3546. /*
  3547. * Attempt to move tasks. If find_busiest_group has found
  3548. * an imbalance but busiest->nr_running <= 1, the group is
  3549. * still unbalanced. ld_moved simply stays zero, so it is
  3550. * correctly treated as an imbalance.
  3551. */
  3552. env.flags |= LBF_ALL_PINNED;
  3553. env.src_cpu = busiest->cpu;
  3554. env.src_rq = busiest;
  3555. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  3556. more_balance:
  3557. local_irq_save(flags);
  3558. double_rq_lock(this_rq, busiest);
  3559. if (!env.loop)
  3560. update_h_load(env.src_cpu);
  3561. ld_moved += move_tasks(&env);
  3562. double_rq_unlock(this_rq, busiest);
  3563. local_irq_restore(flags);
  3564. if (env.flags & LBF_NEED_BREAK) {
  3565. env.flags &= ~LBF_NEED_BREAK;
  3566. goto more_balance;
  3567. }
  3568. /*
  3569. * some other cpu did the load balance for us.
  3570. */
  3571. if (ld_moved && this_cpu != smp_processor_id())
  3572. resched_cpu(this_cpu);
  3573. /* All tasks on this runqueue were pinned by CPU affinity */
  3574. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  3575. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3576. if (!cpumask_empty(cpus))
  3577. goto redo;
  3578. goto out_balanced;
  3579. }
  3580. }
  3581. if (!ld_moved) {
  3582. schedstat_inc(sd, lb_failed[idle]);
  3583. /*
  3584. * Increment the failure counter only on periodic balance.
  3585. * We do not want newidle balance, which can be very
  3586. * frequent, pollute the failure counter causing
  3587. * excessive cache_hot migrations and active balances.
  3588. */
  3589. if (idle != CPU_NEWLY_IDLE)
  3590. sd->nr_balance_failed++;
  3591. if (need_active_balance(&env)) {
  3592. raw_spin_lock_irqsave(&busiest->lock, flags);
  3593. /* don't kick the active_load_balance_cpu_stop,
  3594. * if the curr task on busiest cpu can't be
  3595. * moved to this_cpu
  3596. */
  3597. if (!cpumask_test_cpu(this_cpu,
  3598. tsk_cpus_allowed(busiest->curr))) {
  3599. raw_spin_unlock_irqrestore(&busiest->lock,
  3600. flags);
  3601. env.flags |= LBF_ALL_PINNED;
  3602. goto out_one_pinned;
  3603. }
  3604. /*
  3605. * ->active_balance synchronizes accesses to
  3606. * ->active_balance_work. Once set, it's cleared
  3607. * only after active load balance is finished.
  3608. */
  3609. if (!busiest->active_balance) {
  3610. busiest->active_balance = 1;
  3611. busiest->push_cpu = this_cpu;
  3612. active_balance = 1;
  3613. }
  3614. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3615. if (active_balance) {
  3616. stop_one_cpu_nowait(cpu_of(busiest),
  3617. active_load_balance_cpu_stop, busiest,
  3618. &busiest->active_balance_work);
  3619. }
  3620. /*
  3621. * We've kicked active balancing, reset the failure
  3622. * counter.
  3623. */
  3624. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3625. }
  3626. } else
  3627. sd->nr_balance_failed = 0;
  3628. if (likely(!active_balance)) {
  3629. /* We were unbalanced, so reset the balancing interval */
  3630. sd->balance_interval = sd->min_interval;
  3631. } else {
  3632. /*
  3633. * If we've begun active balancing, start to back off. This
  3634. * case may not be covered by the all_pinned logic if there
  3635. * is only 1 task on the busy runqueue (because we don't call
  3636. * move_tasks).
  3637. */
  3638. if (sd->balance_interval < sd->max_interval)
  3639. sd->balance_interval *= 2;
  3640. }
  3641. goto out;
  3642. out_balanced:
  3643. schedstat_inc(sd, lb_balanced[idle]);
  3644. sd->nr_balance_failed = 0;
  3645. out_one_pinned:
  3646. /* tune up the balancing interval */
  3647. if (((env.flags & LBF_ALL_PINNED) &&
  3648. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3649. (sd->balance_interval < sd->max_interval))
  3650. sd->balance_interval *= 2;
  3651. ld_moved = 0;
  3652. out:
  3653. return ld_moved;
  3654. }
  3655. /*
  3656. * idle_balance is called by schedule() if this_cpu is about to become
  3657. * idle. Attempts to pull tasks from other CPUs.
  3658. */
  3659. void idle_balance(int this_cpu, struct rq *this_rq)
  3660. {
  3661. struct sched_domain *sd;
  3662. int pulled_task = 0;
  3663. unsigned long next_balance = jiffies + HZ;
  3664. this_rq->idle_stamp = this_rq->clock;
  3665. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3666. return;
  3667. /*
  3668. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3669. */
  3670. raw_spin_unlock(&this_rq->lock);
  3671. update_shares(this_cpu);
  3672. rcu_read_lock();
  3673. for_each_domain(this_cpu, sd) {
  3674. unsigned long interval;
  3675. int balance = 1;
  3676. if (!(sd->flags & SD_LOAD_BALANCE))
  3677. continue;
  3678. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3679. /* If we've pulled tasks over stop searching: */
  3680. pulled_task = load_balance(this_cpu, this_rq,
  3681. sd, CPU_NEWLY_IDLE, &balance);
  3682. }
  3683. interval = msecs_to_jiffies(sd->balance_interval);
  3684. if (time_after(next_balance, sd->last_balance + interval))
  3685. next_balance = sd->last_balance + interval;
  3686. if (pulled_task) {
  3687. this_rq->idle_stamp = 0;
  3688. break;
  3689. }
  3690. }
  3691. rcu_read_unlock();
  3692. raw_spin_lock(&this_rq->lock);
  3693. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3694. /*
  3695. * We are going idle. next_balance may be set based on
  3696. * a busy processor. So reset next_balance.
  3697. */
  3698. this_rq->next_balance = next_balance;
  3699. }
  3700. }
  3701. /*
  3702. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3703. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3704. * least 1 task to be running on each physical CPU where possible, and
  3705. * avoids physical / logical imbalances.
  3706. */
  3707. static int active_load_balance_cpu_stop(void *data)
  3708. {
  3709. struct rq *busiest_rq = data;
  3710. int busiest_cpu = cpu_of(busiest_rq);
  3711. int target_cpu = busiest_rq->push_cpu;
  3712. struct rq *target_rq = cpu_rq(target_cpu);
  3713. struct sched_domain *sd;
  3714. raw_spin_lock_irq(&busiest_rq->lock);
  3715. /* make sure the requested cpu hasn't gone down in the meantime */
  3716. if (unlikely(busiest_cpu != smp_processor_id() ||
  3717. !busiest_rq->active_balance))
  3718. goto out_unlock;
  3719. /* Is there any task to move? */
  3720. if (busiest_rq->nr_running <= 1)
  3721. goto out_unlock;
  3722. /*
  3723. * This condition is "impossible", if it occurs
  3724. * we need to fix it. Originally reported by
  3725. * Bjorn Helgaas on a 128-cpu setup.
  3726. */
  3727. BUG_ON(busiest_rq == target_rq);
  3728. /* move a task from busiest_rq to target_rq */
  3729. double_lock_balance(busiest_rq, target_rq);
  3730. /* Search for an sd spanning us and the target CPU. */
  3731. rcu_read_lock();
  3732. for_each_domain(target_cpu, sd) {
  3733. if ((sd->flags & SD_LOAD_BALANCE) &&
  3734. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3735. break;
  3736. }
  3737. if (likely(sd)) {
  3738. struct lb_env env = {
  3739. .sd = sd,
  3740. .dst_cpu = target_cpu,
  3741. .dst_rq = target_rq,
  3742. .src_cpu = busiest_rq->cpu,
  3743. .src_rq = busiest_rq,
  3744. .idle = CPU_IDLE,
  3745. };
  3746. schedstat_inc(sd, alb_count);
  3747. if (move_one_task(&env))
  3748. schedstat_inc(sd, alb_pushed);
  3749. else
  3750. schedstat_inc(sd, alb_failed);
  3751. }
  3752. rcu_read_unlock();
  3753. double_unlock_balance(busiest_rq, target_rq);
  3754. out_unlock:
  3755. busiest_rq->active_balance = 0;
  3756. raw_spin_unlock_irq(&busiest_rq->lock);
  3757. return 0;
  3758. }
  3759. #ifdef CONFIG_NO_HZ
  3760. /*
  3761. * idle load balancing details
  3762. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3763. * needed, they will kick the idle load balancer, which then does idle
  3764. * load balancing for all the idle CPUs.
  3765. */
  3766. static struct {
  3767. cpumask_var_t idle_cpus_mask;
  3768. atomic_t nr_cpus;
  3769. unsigned long next_balance; /* in jiffy units */
  3770. } nohz ____cacheline_aligned;
  3771. static inline int find_new_ilb(int call_cpu)
  3772. {
  3773. int ilb = cpumask_first(nohz.idle_cpus_mask);
  3774. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  3775. return ilb;
  3776. return nr_cpu_ids;
  3777. }
  3778. /*
  3779. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3780. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3781. * CPU (if there is one).
  3782. */
  3783. static void nohz_balancer_kick(int cpu)
  3784. {
  3785. int ilb_cpu;
  3786. nohz.next_balance++;
  3787. ilb_cpu = find_new_ilb(cpu);
  3788. if (ilb_cpu >= nr_cpu_ids)
  3789. return;
  3790. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  3791. return;
  3792. /*
  3793. * Use smp_send_reschedule() instead of resched_cpu().
  3794. * This way we generate a sched IPI on the target cpu which
  3795. * is idle. And the softirq performing nohz idle load balance
  3796. * will be run before returning from the IPI.
  3797. */
  3798. smp_send_reschedule(ilb_cpu);
  3799. return;
  3800. }
  3801. static inline void clear_nohz_tick_stopped(int cpu)
  3802. {
  3803. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  3804. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3805. atomic_dec(&nohz.nr_cpus);
  3806. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  3807. }
  3808. }
  3809. static inline void set_cpu_sd_state_busy(void)
  3810. {
  3811. struct sched_domain *sd;
  3812. int cpu = smp_processor_id();
  3813. if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  3814. return;
  3815. clear_bit(NOHZ_IDLE, nohz_flags(cpu));
  3816. rcu_read_lock();
  3817. for_each_domain(cpu, sd)
  3818. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  3819. rcu_read_unlock();
  3820. }
  3821. void set_cpu_sd_state_idle(void)
  3822. {
  3823. struct sched_domain *sd;
  3824. int cpu = smp_processor_id();
  3825. if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  3826. return;
  3827. set_bit(NOHZ_IDLE, nohz_flags(cpu));
  3828. rcu_read_lock();
  3829. for_each_domain(cpu, sd)
  3830. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  3831. rcu_read_unlock();
  3832. }
  3833. /*
  3834. * This routine will record that this cpu is going idle with tick stopped.
  3835. * This info will be used in performing idle load balancing in the future.
  3836. */
  3837. void select_nohz_load_balancer(int stop_tick)
  3838. {
  3839. int cpu = smp_processor_id();
  3840. /*
  3841. * If this cpu is going down, then nothing needs to be done.
  3842. */
  3843. if (!cpu_active(cpu))
  3844. return;
  3845. if (stop_tick) {
  3846. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  3847. return;
  3848. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3849. atomic_inc(&nohz.nr_cpus);
  3850. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  3851. }
  3852. return;
  3853. }
  3854. static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
  3855. unsigned long action, void *hcpu)
  3856. {
  3857. switch (action & ~CPU_TASKS_FROZEN) {
  3858. case CPU_DYING:
  3859. clear_nohz_tick_stopped(smp_processor_id());
  3860. return NOTIFY_OK;
  3861. default:
  3862. return NOTIFY_DONE;
  3863. }
  3864. }
  3865. #endif
  3866. static DEFINE_SPINLOCK(balancing);
  3867. /*
  3868. * Scale the max load_balance interval with the number of CPUs in the system.
  3869. * This trades load-balance latency on larger machines for less cross talk.
  3870. */
  3871. void update_max_interval(void)
  3872. {
  3873. max_load_balance_interval = HZ*num_online_cpus()/10;
  3874. }
  3875. /*
  3876. * It checks each scheduling domain to see if it is due to be balanced,
  3877. * and initiates a balancing operation if so.
  3878. *
  3879. * Balancing parameters are set up in arch_init_sched_domains.
  3880. */
  3881. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3882. {
  3883. int balance = 1;
  3884. struct rq *rq = cpu_rq(cpu);
  3885. unsigned long interval;
  3886. struct sched_domain *sd;
  3887. /* Earliest time when we have to do rebalance again */
  3888. unsigned long next_balance = jiffies + 60*HZ;
  3889. int update_next_balance = 0;
  3890. int need_serialize;
  3891. update_shares(cpu);
  3892. rcu_read_lock();
  3893. for_each_domain(cpu, sd) {
  3894. if (!(sd->flags & SD_LOAD_BALANCE))
  3895. continue;
  3896. interval = sd->balance_interval;
  3897. if (idle != CPU_IDLE)
  3898. interval *= sd->busy_factor;
  3899. /* scale ms to jiffies */
  3900. interval = msecs_to_jiffies(interval);
  3901. interval = clamp(interval, 1UL, max_load_balance_interval);
  3902. need_serialize = sd->flags & SD_SERIALIZE;
  3903. if (need_serialize) {
  3904. if (!spin_trylock(&balancing))
  3905. goto out;
  3906. }
  3907. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3908. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3909. /*
  3910. * We've pulled tasks over so either we're no
  3911. * longer idle.
  3912. */
  3913. idle = CPU_NOT_IDLE;
  3914. }
  3915. sd->last_balance = jiffies;
  3916. }
  3917. if (need_serialize)
  3918. spin_unlock(&balancing);
  3919. out:
  3920. if (time_after(next_balance, sd->last_balance + interval)) {
  3921. next_balance = sd->last_balance + interval;
  3922. update_next_balance = 1;
  3923. }
  3924. /*
  3925. * Stop the load balance at this level. There is another
  3926. * CPU in our sched group which is doing load balancing more
  3927. * actively.
  3928. */
  3929. if (!balance)
  3930. break;
  3931. }
  3932. rcu_read_unlock();
  3933. /*
  3934. * next_balance will be updated only when there is a need.
  3935. * When the cpu is attached to null domain for ex, it will not be
  3936. * updated.
  3937. */
  3938. if (likely(update_next_balance))
  3939. rq->next_balance = next_balance;
  3940. }
  3941. #ifdef CONFIG_NO_HZ
  3942. /*
  3943. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3944. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3945. */
  3946. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3947. {
  3948. struct rq *this_rq = cpu_rq(this_cpu);
  3949. struct rq *rq;
  3950. int balance_cpu;
  3951. if (idle != CPU_IDLE ||
  3952. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  3953. goto end;
  3954. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3955. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  3956. continue;
  3957. /*
  3958. * If this cpu gets work to do, stop the load balancing
  3959. * work being done for other cpus. Next load
  3960. * balancing owner will pick it up.
  3961. */
  3962. if (need_resched())
  3963. break;
  3964. raw_spin_lock_irq(&this_rq->lock);
  3965. update_rq_clock(this_rq);
  3966. update_idle_cpu_load(this_rq);
  3967. raw_spin_unlock_irq(&this_rq->lock);
  3968. rebalance_domains(balance_cpu, CPU_IDLE);
  3969. rq = cpu_rq(balance_cpu);
  3970. if (time_after(this_rq->next_balance, rq->next_balance))
  3971. this_rq->next_balance = rq->next_balance;
  3972. }
  3973. nohz.next_balance = this_rq->next_balance;
  3974. end:
  3975. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  3976. }
  3977. /*
  3978. * Current heuristic for kicking the idle load balancer in the presence
  3979. * of an idle cpu is the system.
  3980. * - This rq has more than one task.
  3981. * - At any scheduler domain level, this cpu's scheduler group has multiple
  3982. * busy cpu's exceeding the group's power.
  3983. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  3984. * domain span are idle.
  3985. */
  3986. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3987. {
  3988. unsigned long now = jiffies;
  3989. struct sched_domain *sd;
  3990. if (unlikely(idle_cpu(cpu)))
  3991. return 0;
  3992. /*
  3993. * We may be recently in ticked or tickless idle mode. At the first
  3994. * busy tick after returning from idle, we will update the busy stats.
  3995. */
  3996. set_cpu_sd_state_busy();
  3997. clear_nohz_tick_stopped(cpu);
  3998. /*
  3999. * None are in tickless mode and hence no need for NOHZ idle load
  4000. * balancing.
  4001. */
  4002. if (likely(!atomic_read(&nohz.nr_cpus)))
  4003. return 0;
  4004. if (time_before(now, nohz.next_balance))
  4005. return 0;
  4006. if (rq->nr_running >= 2)
  4007. goto need_kick;
  4008. rcu_read_lock();
  4009. for_each_domain(cpu, sd) {
  4010. struct sched_group *sg = sd->groups;
  4011. struct sched_group_power *sgp = sg->sgp;
  4012. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4013. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4014. goto need_kick_unlock;
  4015. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4016. && (cpumask_first_and(nohz.idle_cpus_mask,
  4017. sched_domain_span(sd)) < cpu))
  4018. goto need_kick_unlock;
  4019. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4020. break;
  4021. }
  4022. rcu_read_unlock();
  4023. return 0;
  4024. need_kick_unlock:
  4025. rcu_read_unlock();
  4026. need_kick:
  4027. return 1;
  4028. }
  4029. #else
  4030. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4031. #endif
  4032. /*
  4033. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4034. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4035. */
  4036. static void run_rebalance_domains(struct softirq_action *h)
  4037. {
  4038. int this_cpu = smp_processor_id();
  4039. struct rq *this_rq = cpu_rq(this_cpu);
  4040. enum cpu_idle_type idle = this_rq->idle_balance ?
  4041. CPU_IDLE : CPU_NOT_IDLE;
  4042. rebalance_domains(this_cpu, idle);
  4043. /*
  4044. * If this cpu has a pending nohz_balance_kick, then do the
  4045. * balancing on behalf of the other idle cpus whose ticks are
  4046. * stopped.
  4047. */
  4048. nohz_idle_balance(this_cpu, idle);
  4049. }
  4050. static inline int on_null_domain(int cpu)
  4051. {
  4052. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4053. }
  4054. /*
  4055. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4056. */
  4057. void trigger_load_balance(struct rq *rq, int cpu)
  4058. {
  4059. /* Don't need to rebalance while attached to NULL domain */
  4060. if (time_after_eq(jiffies, rq->next_balance) &&
  4061. likely(!on_null_domain(cpu)))
  4062. raise_softirq(SCHED_SOFTIRQ);
  4063. #ifdef CONFIG_NO_HZ
  4064. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4065. nohz_balancer_kick(cpu);
  4066. #endif
  4067. }
  4068. static void rq_online_fair(struct rq *rq)
  4069. {
  4070. update_sysctl();
  4071. }
  4072. static void rq_offline_fair(struct rq *rq)
  4073. {
  4074. update_sysctl();
  4075. }
  4076. #endif /* CONFIG_SMP */
  4077. /*
  4078. * scheduler tick hitting a task of our scheduling class:
  4079. */
  4080. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4081. {
  4082. struct cfs_rq *cfs_rq;
  4083. struct sched_entity *se = &curr->se;
  4084. for_each_sched_entity(se) {
  4085. cfs_rq = cfs_rq_of(se);
  4086. entity_tick(cfs_rq, se, queued);
  4087. }
  4088. }
  4089. /*
  4090. * called on fork with the child task as argument from the parent's context
  4091. * - child not yet on the tasklist
  4092. * - preemption disabled
  4093. */
  4094. static void task_fork_fair(struct task_struct *p)
  4095. {
  4096. struct cfs_rq *cfs_rq;
  4097. struct sched_entity *se = &p->se, *curr;
  4098. int this_cpu = smp_processor_id();
  4099. struct rq *rq = this_rq();
  4100. unsigned long flags;
  4101. raw_spin_lock_irqsave(&rq->lock, flags);
  4102. update_rq_clock(rq);
  4103. cfs_rq = task_cfs_rq(current);
  4104. curr = cfs_rq->curr;
  4105. if (unlikely(task_cpu(p) != this_cpu)) {
  4106. rcu_read_lock();
  4107. __set_task_cpu(p, this_cpu);
  4108. rcu_read_unlock();
  4109. }
  4110. update_curr(cfs_rq);
  4111. if (curr)
  4112. se->vruntime = curr->vruntime;
  4113. place_entity(cfs_rq, se, 1);
  4114. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4115. /*
  4116. * Upon rescheduling, sched_class::put_prev_task() will place
  4117. * 'current' within the tree based on its new key value.
  4118. */
  4119. swap(curr->vruntime, se->vruntime);
  4120. resched_task(rq->curr);
  4121. }
  4122. se->vruntime -= cfs_rq->min_vruntime;
  4123. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4124. }
  4125. /*
  4126. * Priority of the task has changed. Check to see if we preempt
  4127. * the current task.
  4128. */
  4129. static void
  4130. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4131. {
  4132. if (!p->se.on_rq)
  4133. return;
  4134. /*
  4135. * Reschedule if we are currently running on this runqueue and
  4136. * our priority decreased, or if we are not currently running on
  4137. * this runqueue and our priority is higher than the current's
  4138. */
  4139. if (rq->curr == p) {
  4140. if (p->prio > oldprio)
  4141. resched_task(rq->curr);
  4142. } else
  4143. check_preempt_curr(rq, p, 0);
  4144. }
  4145. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4146. {
  4147. struct sched_entity *se = &p->se;
  4148. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4149. /*
  4150. * Ensure the task's vruntime is normalized, so that when its
  4151. * switched back to the fair class the enqueue_entity(.flags=0) will
  4152. * do the right thing.
  4153. *
  4154. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4155. * have normalized the vruntime, if it was !on_rq, then only when
  4156. * the task is sleeping will it still have non-normalized vruntime.
  4157. */
  4158. if (!se->on_rq && p->state != TASK_RUNNING) {
  4159. /*
  4160. * Fix up our vruntime so that the current sleep doesn't
  4161. * cause 'unlimited' sleep bonus.
  4162. */
  4163. place_entity(cfs_rq, se, 0);
  4164. se->vruntime -= cfs_rq->min_vruntime;
  4165. }
  4166. }
  4167. /*
  4168. * We switched to the sched_fair class.
  4169. */
  4170. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4171. {
  4172. if (!p->se.on_rq)
  4173. return;
  4174. /*
  4175. * We were most likely switched from sched_rt, so
  4176. * kick off the schedule if running, otherwise just see
  4177. * if we can still preempt the current task.
  4178. */
  4179. if (rq->curr == p)
  4180. resched_task(rq->curr);
  4181. else
  4182. check_preempt_curr(rq, p, 0);
  4183. }
  4184. /* Account for a task changing its policy or group.
  4185. *
  4186. * This routine is mostly called to set cfs_rq->curr field when a task
  4187. * migrates between groups/classes.
  4188. */
  4189. static void set_curr_task_fair(struct rq *rq)
  4190. {
  4191. struct sched_entity *se = &rq->curr->se;
  4192. for_each_sched_entity(se) {
  4193. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4194. set_next_entity(cfs_rq, se);
  4195. /* ensure bandwidth has been allocated on our new cfs_rq */
  4196. account_cfs_rq_runtime(cfs_rq, 0);
  4197. }
  4198. }
  4199. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4200. {
  4201. cfs_rq->tasks_timeline = RB_ROOT;
  4202. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4203. #ifndef CONFIG_64BIT
  4204. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4205. #endif
  4206. }
  4207. #ifdef CONFIG_FAIR_GROUP_SCHED
  4208. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4209. {
  4210. /*
  4211. * If the task was not on the rq at the time of this cgroup movement
  4212. * it must have been asleep, sleeping tasks keep their ->vruntime
  4213. * absolute on their old rq until wakeup (needed for the fair sleeper
  4214. * bonus in place_entity()).
  4215. *
  4216. * If it was on the rq, we've just 'preempted' it, which does convert
  4217. * ->vruntime to a relative base.
  4218. *
  4219. * Make sure both cases convert their relative position when migrating
  4220. * to another cgroup's rq. This does somewhat interfere with the
  4221. * fair sleeper stuff for the first placement, but who cares.
  4222. */
  4223. /*
  4224. * When !on_rq, vruntime of the task has usually NOT been normalized.
  4225. * But there are some cases where it has already been normalized:
  4226. *
  4227. * - Moving a forked child which is waiting for being woken up by
  4228. * wake_up_new_task().
  4229. * - Moving a task which has been woken up by try_to_wake_up() and
  4230. * waiting for actually being woken up by sched_ttwu_pending().
  4231. *
  4232. * To prevent boost or penalty in the new cfs_rq caused by delta
  4233. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  4234. */
  4235. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  4236. on_rq = 1;
  4237. if (!on_rq)
  4238. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4239. set_task_rq(p, task_cpu(p));
  4240. if (!on_rq)
  4241. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4242. }
  4243. void free_fair_sched_group(struct task_group *tg)
  4244. {
  4245. int i;
  4246. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4247. for_each_possible_cpu(i) {
  4248. if (tg->cfs_rq)
  4249. kfree(tg->cfs_rq[i]);
  4250. if (tg->se)
  4251. kfree(tg->se[i]);
  4252. }
  4253. kfree(tg->cfs_rq);
  4254. kfree(tg->se);
  4255. }
  4256. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4257. {
  4258. struct cfs_rq *cfs_rq;
  4259. struct sched_entity *se;
  4260. int i;
  4261. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  4262. if (!tg->cfs_rq)
  4263. goto err;
  4264. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  4265. if (!tg->se)
  4266. goto err;
  4267. tg->shares = NICE_0_LOAD;
  4268. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4269. for_each_possible_cpu(i) {
  4270. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  4271. GFP_KERNEL, cpu_to_node(i));
  4272. if (!cfs_rq)
  4273. goto err;
  4274. se = kzalloc_node(sizeof(struct sched_entity),
  4275. GFP_KERNEL, cpu_to_node(i));
  4276. if (!se)
  4277. goto err_free_rq;
  4278. init_cfs_rq(cfs_rq);
  4279. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  4280. }
  4281. return 1;
  4282. err_free_rq:
  4283. kfree(cfs_rq);
  4284. err:
  4285. return 0;
  4286. }
  4287. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  4288. {
  4289. struct rq *rq = cpu_rq(cpu);
  4290. unsigned long flags;
  4291. /*
  4292. * Only empty task groups can be destroyed; so we can speculatively
  4293. * check on_list without danger of it being re-added.
  4294. */
  4295. if (!tg->cfs_rq[cpu]->on_list)
  4296. return;
  4297. raw_spin_lock_irqsave(&rq->lock, flags);
  4298. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  4299. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4300. }
  4301. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  4302. struct sched_entity *se, int cpu,
  4303. struct sched_entity *parent)
  4304. {
  4305. struct rq *rq = cpu_rq(cpu);
  4306. cfs_rq->tg = tg;
  4307. cfs_rq->rq = rq;
  4308. #ifdef CONFIG_SMP
  4309. /* allow initial update_cfs_load() to truncate */
  4310. cfs_rq->load_stamp = 1;
  4311. #endif
  4312. init_cfs_rq_runtime(cfs_rq);
  4313. tg->cfs_rq[cpu] = cfs_rq;
  4314. tg->se[cpu] = se;
  4315. /* se could be NULL for root_task_group */
  4316. if (!se)
  4317. return;
  4318. if (!parent)
  4319. se->cfs_rq = &rq->cfs;
  4320. else
  4321. se->cfs_rq = parent->my_q;
  4322. se->my_q = cfs_rq;
  4323. update_load_set(&se->load, 0);
  4324. se->parent = parent;
  4325. }
  4326. static DEFINE_MUTEX(shares_mutex);
  4327. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  4328. {
  4329. int i;
  4330. unsigned long flags;
  4331. /*
  4332. * We can't change the weight of the root cgroup.
  4333. */
  4334. if (!tg->se[0])
  4335. return -EINVAL;
  4336. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  4337. mutex_lock(&shares_mutex);
  4338. if (tg->shares == shares)
  4339. goto done;
  4340. tg->shares = shares;
  4341. for_each_possible_cpu(i) {
  4342. struct rq *rq = cpu_rq(i);
  4343. struct sched_entity *se;
  4344. se = tg->se[i];
  4345. /* Propagate contribution to hierarchy */
  4346. raw_spin_lock_irqsave(&rq->lock, flags);
  4347. for_each_sched_entity(se)
  4348. update_cfs_shares(group_cfs_rq(se));
  4349. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4350. }
  4351. done:
  4352. mutex_unlock(&shares_mutex);
  4353. return 0;
  4354. }
  4355. #else /* CONFIG_FAIR_GROUP_SCHED */
  4356. void free_fair_sched_group(struct task_group *tg) { }
  4357. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4358. {
  4359. return 1;
  4360. }
  4361. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  4362. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4363. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4364. {
  4365. struct sched_entity *se = &task->se;
  4366. unsigned int rr_interval = 0;
  4367. /*
  4368. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4369. * idle runqueue:
  4370. */
  4371. if (rq->cfs.load.weight)
  4372. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4373. return rr_interval;
  4374. }
  4375. /*
  4376. * All the scheduling class methods:
  4377. */
  4378. const struct sched_class fair_sched_class = {
  4379. .next = &idle_sched_class,
  4380. .enqueue_task = enqueue_task_fair,
  4381. .dequeue_task = dequeue_task_fair,
  4382. .yield_task = yield_task_fair,
  4383. .yield_to_task = yield_to_task_fair,
  4384. .check_preempt_curr = check_preempt_wakeup,
  4385. .pick_next_task = pick_next_task_fair,
  4386. .put_prev_task = put_prev_task_fair,
  4387. #ifdef CONFIG_SMP
  4388. .select_task_rq = select_task_rq_fair,
  4389. .rq_online = rq_online_fair,
  4390. .rq_offline = rq_offline_fair,
  4391. .task_waking = task_waking_fair,
  4392. #endif
  4393. .set_curr_task = set_curr_task_fair,
  4394. .task_tick = task_tick_fair,
  4395. .task_fork = task_fork_fair,
  4396. .prio_changed = prio_changed_fair,
  4397. .switched_from = switched_from_fair,
  4398. .switched_to = switched_to_fair,
  4399. .get_rr_interval = get_rr_interval_fair,
  4400. #ifdef CONFIG_FAIR_GROUP_SCHED
  4401. .task_move_group = task_move_group_fair,
  4402. #endif
  4403. };
  4404. #ifdef CONFIG_SCHED_DEBUG
  4405. void print_cfs_stats(struct seq_file *m, int cpu)
  4406. {
  4407. struct cfs_rq *cfs_rq;
  4408. rcu_read_lock();
  4409. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4410. print_cfs_rq(m, cpu, cfs_rq);
  4411. rcu_read_unlock();
  4412. }
  4413. #endif
  4414. __init void init_sched_fair_class(void)
  4415. {
  4416. #ifdef CONFIG_SMP
  4417. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  4418. #ifdef CONFIG_NO_HZ
  4419. nohz.next_balance = jiffies;
  4420. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  4421. cpu_notifier(sched_ilb_notifier, 0);
  4422. #endif
  4423. #endif /* SMP */
  4424. }