core.c 167 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/idr.h>
  16. #include <linux/file.h>
  17. #include <linux/poll.h>
  18. #include <linux/slab.h>
  19. #include <linux/hash.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/dcache.h>
  22. #include <linux/percpu.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/reboot.h>
  25. #include <linux/vmstat.h>
  26. #include <linux/device.h>
  27. #include <linux/export.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/hardirq.h>
  30. #include <linux/rculist.h>
  31. #include <linux/uaccess.h>
  32. #include <linux/syscalls.h>
  33. #include <linux/anon_inodes.h>
  34. #include <linux/kernel_stat.h>
  35. #include <linux/perf_event.h>
  36. #include <linux/ftrace_event.h>
  37. #include <linux/hw_breakpoint.h>
  38. #include "internal.h"
  39. #include <asm/irq_regs.h>
  40. struct remote_function_call {
  41. struct task_struct *p;
  42. int (*func)(void *info);
  43. void *info;
  44. int ret;
  45. };
  46. static void remote_function(void *data)
  47. {
  48. struct remote_function_call *tfc = data;
  49. struct task_struct *p = tfc->p;
  50. if (p) {
  51. tfc->ret = -EAGAIN;
  52. if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  53. return;
  54. }
  55. tfc->ret = tfc->func(tfc->info);
  56. }
  57. /**
  58. * task_function_call - call a function on the cpu on which a task runs
  59. * @p: the task to evaluate
  60. * @func: the function to be called
  61. * @info: the function call argument
  62. *
  63. * Calls the function @func when the task is currently running. This might
  64. * be on the current CPU, which just calls the function directly
  65. *
  66. * returns: @func return value, or
  67. * -ESRCH - when the process isn't running
  68. * -EAGAIN - when the process moved away
  69. */
  70. static int
  71. task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  72. {
  73. struct remote_function_call data = {
  74. .p = p,
  75. .func = func,
  76. .info = info,
  77. .ret = -ESRCH, /* No such (running) process */
  78. };
  79. if (task_curr(p))
  80. smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  81. return data.ret;
  82. }
  83. /**
  84. * cpu_function_call - call a function on the cpu
  85. * @func: the function to be called
  86. * @info: the function call argument
  87. *
  88. * Calls the function @func on the remote cpu.
  89. *
  90. * returns: @func return value or -ENXIO when the cpu is offline
  91. */
  92. static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
  93. {
  94. struct remote_function_call data = {
  95. .p = NULL,
  96. .func = func,
  97. .info = info,
  98. .ret = -ENXIO, /* No such CPU */
  99. };
  100. smp_call_function_single(cpu, remote_function, &data, 1);
  101. return data.ret;
  102. }
  103. #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
  104. PERF_FLAG_FD_OUTPUT |\
  105. PERF_FLAG_PID_CGROUP)
  106. /*
  107. * branch priv levels that need permission checks
  108. */
  109. #define PERF_SAMPLE_BRANCH_PERM_PLM \
  110. (PERF_SAMPLE_BRANCH_KERNEL |\
  111. PERF_SAMPLE_BRANCH_HV)
  112. enum event_type_t {
  113. EVENT_FLEXIBLE = 0x1,
  114. EVENT_PINNED = 0x2,
  115. EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  116. };
  117. /*
  118. * perf_sched_events : >0 events exist
  119. * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
  120. */
  121. struct static_key_deferred perf_sched_events __read_mostly;
  122. static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
  123. static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
  124. static atomic_t nr_mmap_events __read_mostly;
  125. static atomic_t nr_comm_events __read_mostly;
  126. static atomic_t nr_task_events __read_mostly;
  127. static LIST_HEAD(pmus);
  128. static DEFINE_MUTEX(pmus_lock);
  129. static struct srcu_struct pmus_srcu;
  130. /*
  131. * perf event paranoia level:
  132. * -1 - not paranoid at all
  133. * 0 - disallow raw tracepoint access for unpriv
  134. * 1 - disallow cpu events for unpriv
  135. * 2 - disallow kernel profiling for unpriv
  136. */
  137. int sysctl_perf_event_paranoid __read_mostly = 1;
  138. /* Minimum for 512 kiB + 1 user control page */
  139. int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
  140. /*
  141. * max perf event sample rate
  142. */
  143. #define DEFAULT_MAX_SAMPLE_RATE 100000
  144. int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
  145. static int max_samples_per_tick __read_mostly =
  146. DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
  147. int perf_proc_update_handler(struct ctl_table *table, int write,
  148. void __user *buffer, size_t *lenp,
  149. loff_t *ppos)
  150. {
  151. int ret = proc_dointvec(table, write, buffer, lenp, ppos);
  152. if (ret || !write)
  153. return ret;
  154. max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
  155. return 0;
  156. }
  157. static atomic64_t perf_event_id;
  158. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  159. enum event_type_t event_type);
  160. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  161. enum event_type_t event_type,
  162. struct task_struct *task);
  163. static void update_context_time(struct perf_event_context *ctx);
  164. static u64 perf_event_time(struct perf_event *event);
  165. static void ring_buffer_attach(struct perf_event *event,
  166. struct ring_buffer *rb);
  167. void __weak perf_event_print_debug(void) { }
  168. extern __weak const char *perf_pmu_name(void)
  169. {
  170. return "pmu";
  171. }
  172. static inline u64 perf_clock(void)
  173. {
  174. return local_clock();
  175. }
  176. static inline struct perf_cpu_context *
  177. __get_cpu_context(struct perf_event_context *ctx)
  178. {
  179. return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  180. }
  181. static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
  182. struct perf_event_context *ctx)
  183. {
  184. raw_spin_lock(&cpuctx->ctx.lock);
  185. if (ctx)
  186. raw_spin_lock(&ctx->lock);
  187. }
  188. static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
  189. struct perf_event_context *ctx)
  190. {
  191. if (ctx)
  192. raw_spin_unlock(&ctx->lock);
  193. raw_spin_unlock(&cpuctx->ctx.lock);
  194. }
  195. #ifdef CONFIG_CGROUP_PERF
  196. /*
  197. * Must ensure cgroup is pinned (css_get) before calling
  198. * this function. In other words, we cannot call this function
  199. * if there is no cgroup event for the current CPU context.
  200. */
  201. static inline struct perf_cgroup *
  202. perf_cgroup_from_task(struct task_struct *task)
  203. {
  204. return container_of(task_subsys_state(task, perf_subsys_id),
  205. struct perf_cgroup, css);
  206. }
  207. static inline bool
  208. perf_cgroup_match(struct perf_event *event)
  209. {
  210. struct perf_event_context *ctx = event->ctx;
  211. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  212. return !event->cgrp || event->cgrp == cpuctx->cgrp;
  213. }
  214. static inline void perf_get_cgroup(struct perf_event *event)
  215. {
  216. css_get(&event->cgrp->css);
  217. }
  218. static inline void perf_put_cgroup(struct perf_event *event)
  219. {
  220. css_put(&event->cgrp->css);
  221. }
  222. static inline void perf_detach_cgroup(struct perf_event *event)
  223. {
  224. perf_put_cgroup(event);
  225. event->cgrp = NULL;
  226. }
  227. static inline int is_cgroup_event(struct perf_event *event)
  228. {
  229. return event->cgrp != NULL;
  230. }
  231. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  232. {
  233. struct perf_cgroup_info *t;
  234. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  235. return t->time;
  236. }
  237. static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
  238. {
  239. struct perf_cgroup_info *info;
  240. u64 now;
  241. now = perf_clock();
  242. info = this_cpu_ptr(cgrp->info);
  243. info->time += now - info->timestamp;
  244. info->timestamp = now;
  245. }
  246. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  247. {
  248. struct perf_cgroup *cgrp_out = cpuctx->cgrp;
  249. if (cgrp_out)
  250. __update_cgrp_time(cgrp_out);
  251. }
  252. static inline void update_cgrp_time_from_event(struct perf_event *event)
  253. {
  254. struct perf_cgroup *cgrp;
  255. /*
  256. * ensure we access cgroup data only when needed and
  257. * when we know the cgroup is pinned (css_get)
  258. */
  259. if (!is_cgroup_event(event))
  260. return;
  261. cgrp = perf_cgroup_from_task(current);
  262. /*
  263. * Do not update time when cgroup is not active
  264. */
  265. if (cgrp == event->cgrp)
  266. __update_cgrp_time(event->cgrp);
  267. }
  268. static inline void
  269. perf_cgroup_set_timestamp(struct task_struct *task,
  270. struct perf_event_context *ctx)
  271. {
  272. struct perf_cgroup *cgrp;
  273. struct perf_cgroup_info *info;
  274. /*
  275. * ctx->lock held by caller
  276. * ensure we do not access cgroup data
  277. * unless we have the cgroup pinned (css_get)
  278. */
  279. if (!task || !ctx->nr_cgroups)
  280. return;
  281. cgrp = perf_cgroup_from_task(task);
  282. info = this_cpu_ptr(cgrp->info);
  283. info->timestamp = ctx->timestamp;
  284. }
  285. #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
  286. #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
  287. /*
  288. * reschedule events based on the cgroup constraint of task.
  289. *
  290. * mode SWOUT : schedule out everything
  291. * mode SWIN : schedule in based on cgroup for next
  292. */
  293. void perf_cgroup_switch(struct task_struct *task, int mode)
  294. {
  295. struct perf_cpu_context *cpuctx;
  296. struct pmu *pmu;
  297. unsigned long flags;
  298. /*
  299. * disable interrupts to avoid geting nr_cgroup
  300. * changes via __perf_event_disable(). Also
  301. * avoids preemption.
  302. */
  303. local_irq_save(flags);
  304. /*
  305. * we reschedule only in the presence of cgroup
  306. * constrained events.
  307. */
  308. rcu_read_lock();
  309. list_for_each_entry_rcu(pmu, &pmus, entry) {
  310. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  311. /*
  312. * perf_cgroup_events says at least one
  313. * context on this CPU has cgroup events.
  314. *
  315. * ctx->nr_cgroups reports the number of cgroup
  316. * events for a context.
  317. */
  318. if (cpuctx->ctx.nr_cgroups > 0) {
  319. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  320. perf_pmu_disable(cpuctx->ctx.pmu);
  321. if (mode & PERF_CGROUP_SWOUT) {
  322. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  323. /*
  324. * must not be done before ctxswout due
  325. * to event_filter_match() in event_sched_out()
  326. */
  327. cpuctx->cgrp = NULL;
  328. }
  329. if (mode & PERF_CGROUP_SWIN) {
  330. WARN_ON_ONCE(cpuctx->cgrp);
  331. /* set cgrp before ctxsw in to
  332. * allow event_filter_match() to not
  333. * have to pass task around
  334. */
  335. cpuctx->cgrp = perf_cgroup_from_task(task);
  336. cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
  337. }
  338. perf_pmu_enable(cpuctx->ctx.pmu);
  339. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  340. }
  341. }
  342. rcu_read_unlock();
  343. local_irq_restore(flags);
  344. }
  345. static inline void perf_cgroup_sched_out(struct task_struct *task,
  346. struct task_struct *next)
  347. {
  348. struct perf_cgroup *cgrp1;
  349. struct perf_cgroup *cgrp2 = NULL;
  350. /*
  351. * we come here when we know perf_cgroup_events > 0
  352. */
  353. cgrp1 = perf_cgroup_from_task(task);
  354. /*
  355. * next is NULL when called from perf_event_enable_on_exec()
  356. * that will systematically cause a cgroup_switch()
  357. */
  358. if (next)
  359. cgrp2 = perf_cgroup_from_task(next);
  360. /*
  361. * only schedule out current cgroup events if we know
  362. * that we are switching to a different cgroup. Otherwise,
  363. * do no touch the cgroup events.
  364. */
  365. if (cgrp1 != cgrp2)
  366. perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
  367. }
  368. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  369. struct task_struct *task)
  370. {
  371. struct perf_cgroup *cgrp1;
  372. struct perf_cgroup *cgrp2 = NULL;
  373. /*
  374. * we come here when we know perf_cgroup_events > 0
  375. */
  376. cgrp1 = perf_cgroup_from_task(task);
  377. /* prev can never be NULL */
  378. cgrp2 = perf_cgroup_from_task(prev);
  379. /*
  380. * only need to schedule in cgroup events if we are changing
  381. * cgroup during ctxsw. Cgroup events were not scheduled
  382. * out of ctxsw out if that was not the case.
  383. */
  384. if (cgrp1 != cgrp2)
  385. perf_cgroup_switch(task, PERF_CGROUP_SWIN);
  386. }
  387. static inline int perf_cgroup_connect(int fd, struct perf_event *event,
  388. struct perf_event_attr *attr,
  389. struct perf_event *group_leader)
  390. {
  391. struct perf_cgroup *cgrp;
  392. struct cgroup_subsys_state *css;
  393. struct file *file;
  394. int ret = 0, fput_needed;
  395. file = fget_light(fd, &fput_needed);
  396. if (!file)
  397. return -EBADF;
  398. css = cgroup_css_from_dir(file, perf_subsys_id);
  399. if (IS_ERR(css)) {
  400. ret = PTR_ERR(css);
  401. goto out;
  402. }
  403. cgrp = container_of(css, struct perf_cgroup, css);
  404. event->cgrp = cgrp;
  405. /* must be done before we fput() the file */
  406. perf_get_cgroup(event);
  407. /*
  408. * all events in a group must monitor
  409. * the same cgroup because a task belongs
  410. * to only one perf cgroup at a time
  411. */
  412. if (group_leader && group_leader->cgrp != cgrp) {
  413. perf_detach_cgroup(event);
  414. ret = -EINVAL;
  415. }
  416. out:
  417. fput_light(file, fput_needed);
  418. return ret;
  419. }
  420. static inline void
  421. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  422. {
  423. struct perf_cgroup_info *t;
  424. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  425. event->shadow_ctx_time = now - t->timestamp;
  426. }
  427. static inline void
  428. perf_cgroup_defer_enabled(struct perf_event *event)
  429. {
  430. /*
  431. * when the current task's perf cgroup does not match
  432. * the event's, we need to remember to call the
  433. * perf_mark_enable() function the first time a task with
  434. * a matching perf cgroup is scheduled in.
  435. */
  436. if (is_cgroup_event(event) && !perf_cgroup_match(event))
  437. event->cgrp_defer_enabled = 1;
  438. }
  439. static inline void
  440. perf_cgroup_mark_enabled(struct perf_event *event,
  441. struct perf_event_context *ctx)
  442. {
  443. struct perf_event *sub;
  444. u64 tstamp = perf_event_time(event);
  445. if (!event->cgrp_defer_enabled)
  446. return;
  447. event->cgrp_defer_enabled = 0;
  448. event->tstamp_enabled = tstamp - event->total_time_enabled;
  449. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  450. if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
  451. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  452. sub->cgrp_defer_enabled = 0;
  453. }
  454. }
  455. }
  456. #else /* !CONFIG_CGROUP_PERF */
  457. static inline bool
  458. perf_cgroup_match(struct perf_event *event)
  459. {
  460. return true;
  461. }
  462. static inline void perf_detach_cgroup(struct perf_event *event)
  463. {}
  464. static inline int is_cgroup_event(struct perf_event *event)
  465. {
  466. return 0;
  467. }
  468. static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
  469. {
  470. return 0;
  471. }
  472. static inline void update_cgrp_time_from_event(struct perf_event *event)
  473. {
  474. }
  475. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  476. {
  477. }
  478. static inline void perf_cgroup_sched_out(struct task_struct *task,
  479. struct task_struct *next)
  480. {
  481. }
  482. static inline void perf_cgroup_sched_in(struct task_struct *prev,
  483. struct task_struct *task)
  484. {
  485. }
  486. static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
  487. struct perf_event_attr *attr,
  488. struct perf_event *group_leader)
  489. {
  490. return -EINVAL;
  491. }
  492. static inline void
  493. perf_cgroup_set_timestamp(struct task_struct *task,
  494. struct perf_event_context *ctx)
  495. {
  496. }
  497. void
  498. perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
  499. {
  500. }
  501. static inline void
  502. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  503. {
  504. }
  505. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  506. {
  507. return 0;
  508. }
  509. static inline void
  510. perf_cgroup_defer_enabled(struct perf_event *event)
  511. {
  512. }
  513. static inline void
  514. perf_cgroup_mark_enabled(struct perf_event *event,
  515. struct perf_event_context *ctx)
  516. {
  517. }
  518. #endif
  519. void perf_pmu_disable(struct pmu *pmu)
  520. {
  521. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  522. if (!(*count)++)
  523. pmu->pmu_disable(pmu);
  524. }
  525. void perf_pmu_enable(struct pmu *pmu)
  526. {
  527. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  528. if (!--(*count))
  529. pmu->pmu_enable(pmu);
  530. }
  531. static DEFINE_PER_CPU(struct list_head, rotation_list);
  532. /*
  533. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  534. * because they're strictly cpu affine and rotate_start is called with IRQs
  535. * disabled, while rotate_context is called from IRQ context.
  536. */
  537. static void perf_pmu_rotate_start(struct pmu *pmu)
  538. {
  539. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  540. struct list_head *head = &__get_cpu_var(rotation_list);
  541. WARN_ON(!irqs_disabled());
  542. if (list_empty(&cpuctx->rotation_list))
  543. list_add(&cpuctx->rotation_list, head);
  544. }
  545. static void get_ctx(struct perf_event_context *ctx)
  546. {
  547. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  548. }
  549. static void put_ctx(struct perf_event_context *ctx)
  550. {
  551. if (atomic_dec_and_test(&ctx->refcount)) {
  552. if (ctx->parent_ctx)
  553. put_ctx(ctx->parent_ctx);
  554. if (ctx->task)
  555. put_task_struct(ctx->task);
  556. kfree_rcu(ctx, rcu_head);
  557. }
  558. }
  559. static void unclone_ctx(struct perf_event_context *ctx)
  560. {
  561. if (ctx->parent_ctx) {
  562. put_ctx(ctx->parent_ctx);
  563. ctx->parent_ctx = NULL;
  564. }
  565. }
  566. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  567. {
  568. /*
  569. * only top level events have the pid namespace they were created in
  570. */
  571. if (event->parent)
  572. event = event->parent;
  573. return task_tgid_nr_ns(p, event->ns);
  574. }
  575. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  576. {
  577. /*
  578. * only top level events have the pid namespace they were created in
  579. */
  580. if (event->parent)
  581. event = event->parent;
  582. return task_pid_nr_ns(p, event->ns);
  583. }
  584. /*
  585. * If we inherit events we want to return the parent event id
  586. * to userspace.
  587. */
  588. static u64 primary_event_id(struct perf_event *event)
  589. {
  590. u64 id = event->id;
  591. if (event->parent)
  592. id = event->parent->id;
  593. return id;
  594. }
  595. /*
  596. * Get the perf_event_context for a task and lock it.
  597. * This has to cope with with the fact that until it is locked,
  598. * the context could get moved to another task.
  599. */
  600. static struct perf_event_context *
  601. perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
  602. {
  603. struct perf_event_context *ctx;
  604. rcu_read_lock();
  605. retry:
  606. ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
  607. if (ctx) {
  608. /*
  609. * If this context is a clone of another, it might
  610. * get swapped for another underneath us by
  611. * perf_event_task_sched_out, though the
  612. * rcu_read_lock() protects us from any context
  613. * getting freed. Lock the context and check if it
  614. * got swapped before we could get the lock, and retry
  615. * if so. If we locked the right context, then it
  616. * can't get swapped on us any more.
  617. */
  618. raw_spin_lock_irqsave(&ctx->lock, *flags);
  619. if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
  620. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  621. goto retry;
  622. }
  623. if (!atomic_inc_not_zero(&ctx->refcount)) {
  624. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  625. ctx = NULL;
  626. }
  627. }
  628. rcu_read_unlock();
  629. return ctx;
  630. }
  631. /*
  632. * Get the context for a task and increment its pin_count so it
  633. * can't get swapped to another task. This also increments its
  634. * reference count so that the context can't get freed.
  635. */
  636. static struct perf_event_context *
  637. perf_pin_task_context(struct task_struct *task, int ctxn)
  638. {
  639. struct perf_event_context *ctx;
  640. unsigned long flags;
  641. ctx = perf_lock_task_context(task, ctxn, &flags);
  642. if (ctx) {
  643. ++ctx->pin_count;
  644. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  645. }
  646. return ctx;
  647. }
  648. static void perf_unpin_context(struct perf_event_context *ctx)
  649. {
  650. unsigned long flags;
  651. raw_spin_lock_irqsave(&ctx->lock, flags);
  652. --ctx->pin_count;
  653. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  654. }
  655. /*
  656. * Update the record of the current time in a context.
  657. */
  658. static void update_context_time(struct perf_event_context *ctx)
  659. {
  660. u64 now = perf_clock();
  661. ctx->time += now - ctx->timestamp;
  662. ctx->timestamp = now;
  663. }
  664. static u64 perf_event_time(struct perf_event *event)
  665. {
  666. struct perf_event_context *ctx = event->ctx;
  667. if (is_cgroup_event(event))
  668. return perf_cgroup_event_time(event);
  669. return ctx ? ctx->time : 0;
  670. }
  671. /*
  672. * Update the total_time_enabled and total_time_running fields for a event.
  673. * The caller of this function needs to hold the ctx->lock.
  674. */
  675. static void update_event_times(struct perf_event *event)
  676. {
  677. struct perf_event_context *ctx = event->ctx;
  678. u64 run_end;
  679. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  680. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  681. return;
  682. /*
  683. * in cgroup mode, time_enabled represents
  684. * the time the event was enabled AND active
  685. * tasks were in the monitored cgroup. This is
  686. * independent of the activity of the context as
  687. * there may be a mix of cgroup and non-cgroup events.
  688. *
  689. * That is why we treat cgroup events differently
  690. * here.
  691. */
  692. if (is_cgroup_event(event))
  693. run_end = perf_cgroup_event_time(event);
  694. else if (ctx->is_active)
  695. run_end = ctx->time;
  696. else
  697. run_end = event->tstamp_stopped;
  698. event->total_time_enabled = run_end - event->tstamp_enabled;
  699. if (event->state == PERF_EVENT_STATE_INACTIVE)
  700. run_end = event->tstamp_stopped;
  701. else
  702. run_end = perf_event_time(event);
  703. event->total_time_running = run_end - event->tstamp_running;
  704. }
  705. /*
  706. * Update total_time_enabled and total_time_running for all events in a group.
  707. */
  708. static void update_group_times(struct perf_event *leader)
  709. {
  710. struct perf_event *event;
  711. update_event_times(leader);
  712. list_for_each_entry(event, &leader->sibling_list, group_entry)
  713. update_event_times(event);
  714. }
  715. static struct list_head *
  716. ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
  717. {
  718. if (event->attr.pinned)
  719. return &ctx->pinned_groups;
  720. else
  721. return &ctx->flexible_groups;
  722. }
  723. /*
  724. * Add a event from the lists for its context.
  725. * Must be called with ctx->mutex and ctx->lock held.
  726. */
  727. static void
  728. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  729. {
  730. WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
  731. event->attach_state |= PERF_ATTACH_CONTEXT;
  732. /*
  733. * If we're a stand alone event or group leader, we go to the context
  734. * list, group events are kept attached to the group so that
  735. * perf_group_detach can, at all times, locate all siblings.
  736. */
  737. if (event->group_leader == event) {
  738. struct list_head *list;
  739. if (is_software_event(event))
  740. event->group_flags |= PERF_GROUP_SOFTWARE;
  741. list = ctx_group_list(event, ctx);
  742. list_add_tail(&event->group_entry, list);
  743. }
  744. if (is_cgroup_event(event))
  745. ctx->nr_cgroups++;
  746. if (has_branch_stack(event))
  747. ctx->nr_branch_stack++;
  748. list_add_rcu(&event->event_entry, &ctx->event_list);
  749. if (!ctx->nr_events)
  750. perf_pmu_rotate_start(ctx->pmu);
  751. ctx->nr_events++;
  752. if (event->attr.inherit_stat)
  753. ctx->nr_stat++;
  754. }
  755. /*
  756. * Called at perf_event creation and when events are attached/detached from a
  757. * group.
  758. */
  759. static void perf_event__read_size(struct perf_event *event)
  760. {
  761. int entry = sizeof(u64); /* value */
  762. int size = 0;
  763. int nr = 1;
  764. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  765. size += sizeof(u64);
  766. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  767. size += sizeof(u64);
  768. if (event->attr.read_format & PERF_FORMAT_ID)
  769. entry += sizeof(u64);
  770. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  771. nr += event->group_leader->nr_siblings;
  772. size += sizeof(u64);
  773. }
  774. size += entry * nr;
  775. event->read_size = size;
  776. }
  777. static void perf_event__header_size(struct perf_event *event)
  778. {
  779. struct perf_sample_data *data;
  780. u64 sample_type = event->attr.sample_type;
  781. u16 size = 0;
  782. perf_event__read_size(event);
  783. if (sample_type & PERF_SAMPLE_IP)
  784. size += sizeof(data->ip);
  785. if (sample_type & PERF_SAMPLE_ADDR)
  786. size += sizeof(data->addr);
  787. if (sample_type & PERF_SAMPLE_PERIOD)
  788. size += sizeof(data->period);
  789. if (sample_type & PERF_SAMPLE_READ)
  790. size += event->read_size;
  791. event->header_size = size;
  792. }
  793. static void perf_event__id_header_size(struct perf_event *event)
  794. {
  795. struct perf_sample_data *data;
  796. u64 sample_type = event->attr.sample_type;
  797. u16 size = 0;
  798. if (sample_type & PERF_SAMPLE_TID)
  799. size += sizeof(data->tid_entry);
  800. if (sample_type & PERF_SAMPLE_TIME)
  801. size += sizeof(data->time);
  802. if (sample_type & PERF_SAMPLE_ID)
  803. size += sizeof(data->id);
  804. if (sample_type & PERF_SAMPLE_STREAM_ID)
  805. size += sizeof(data->stream_id);
  806. if (sample_type & PERF_SAMPLE_CPU)
  807. size += sizeof(data->cpu_entry);
  808. event->id_header_size = size;
  809. }
  810. static void perf_group_attach(struct perf_event *event)
  811. {
  812. struct perf_event *group_leader = event->group_leader, *pos;
  813. /*
  814. * We can have double attach due to group movement in perf_event_open.
  815. */
  816. if (event->attach_state & PERF_ATTACH_GROUP)
  817. return;
  818. event->attach_state |= PERF_ATTACH_GROUP;
  819. if (group_leader == event)
  820. return;
  821. if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
  822. !is_software_event(event))
  823. group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
  824. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  825. group_leader->nr_siblings++;
  826. perf_event__header_size(group_leader);
  827. list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
  828. perf_event__header_size(pos);
  829. }
  830. /*
  831. * Remove a event from the lists for its context.
  832. * Must be called with ctx->mutex and ctx->lock held.
  833. */
  834. static void
  835. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  836. {
  837. struct perf_cpu_context *cpuctx;
  838. /*
  839. * We can have double detach due to exit/hot-unplug + close.
  840. */
  841. if (!(event->attach_state & PERF_ATTACH_CONTEXT))
  842. return;
  843. event->attach_state &= ~PERF_ATTACH_CONTEXT;
  844. if (is_cgroup_event(event)) {
  845. ctx->nr_cgroups--;
  846. cpuctx = __get_cpu_context(ctx);
  847. /*
  848. * if there are no more cgroup events
  849. * then cler cgrp to avoid stale pointer
  850. * in update_cgrp_time_from_cpuctx()
  851. */
  852. if (!ctx->nr_cgroups)
  853. cpuctx->cgrp = NULL;
  854. }
  855. if (has_branch_stack(event))
  856. ctx->nr_branch_stack--;
  857. ctx->nr_events--;
  858. if (event->attr.inherit_stat)
  859. ctx->nr_stat--;
  860. list_del_rcu(&event->event_entry);
  861. if (event->group_leader == event)
  862. list_del_init(&event->group_entry);
  863. update_group_times(event);
  864. /*
  865. * If event was in error state, then keep it
  866. * that way, otherwise bogus counts will be
  867. * returned on read(). The only way to get out
  868. * of error state is by explicit re-enabling
  869. * of the event
  870. */
  871. if (event->state > PERF_EVENT_STATE_OFF)
  872. event->state = PERF_EVENT_STATE_OFF;
  873. }
  874. static void perf_group_detach(struct perf_event *event)
  875. {
  876. struct perf_event *sibling, *tmp;
  877. struct list_head *list = NULL;
  878. /*
  879. * We can have double detach due to exit/hot-unplug + close.
  880. */
  881. if (!(event->attach_state & PERF_ATTACH_GROUP))
  882. return;
  883. event->attach_state &= ~PERF_ATTACH_GROUP;
  884. /*
  885. * If this is a sibling, remove it from its group.
  886. */
  887. if (event->group_leader != event) {
  888. list_del_init(&event->group_entry);
  889. event->group_leader->nr_siblings--;
  890. goto out;
  891. }
  892. if (!list_empty(&event->group_entry))
  893. list = &event->group_entry;
  894. /*
  895. * If this was a group event with sibling events then
  896. * upgrade the siblings to singleton events by adding them
  897. * to whatever list we are on.
  898. */
  899. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  900. if (list)
  901. list_move_tail(&sibling->group_entry, list);
  902. sibling->group_leader = sibling;
  903. /* Inherit group flags from the previous leader */
  904. sibling->group_flags = event->group_flags;
  905. }
  906. out:
  907. perf_event__header_size(event->group_leader);
  908. list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
  909. perf_event__header_size(tmp);
  910. }
  911. static inline int
  912. event_filter_match(struct perf_event *event)
  913. {
  914. return (event->cpu == -1 || event->cpu == smp_processor_id())
  915. && perf_cgroup_match(event);
  916. }
  917. static void
  918. event_sched_out(struct perf_event *event,
  919. struct perf_cpu_context *cpuctx,
  920. struct perf_event_context *ctx)
  921. {
  922. u64 tstamp = perf_event_time(event);
  923. u64 delta;
  924. /*
  925. * An event which could not be activated because of
  926. * filter mismatch still needs to have its timings
  927. * maintained, otherwise bogus information is return
  928. * via read() for time_enabled, time_running:
  929. */
  930. if (event->state == PERF_EVENT_STATE_INACTIVE
  931. && !event_filter_match(event)) {
  932. delta = tstamp - event->tstamp_stopped;
  933. event->tstamp_running += delta;
  934. event->tstamp_stopped = tstamp;
  935. }
  936. if (event->state != PERF_EVENT_STATE_ACTIVE)
  937. return;
  938. event->state = PERF_EVENT_STATE_INACTIVE;
  939. if (event->pending_disable) {
  940. event->pending_disable = 0;
  941. event->state = PERF_EVENT_STATE_OFF;
  942. }
  943. event->tstamp_stopped = tstamp;
  944. event->pmu->del(event, 0);
  945. event->oncpu = -1;
  946. if (!is_software_event(event))
  947. cpuctx->active_oncpu--;
  948. ctx->nr_active--;
  949. if (event->attr.freq && event->attr.sample_freq)
  950. ctx->nr_freq--;
  951. if (event->attr.exclusive || !cpuctx->active_oncpu)
  952. cpuctx->exclusive = 0;
  953. }
  954. static void
  955. group_sched_out(struct perf_event *group_event,
  956. struct perf_cpu_context *cpuctx,
  957. struct perf_event_context *ctx)
  958. {
  959. struct perf_event *event;
  960. int state = group_event->state;
  961. event_sched_out(group_event, cpuctx, ctx);
  962. /*
  963. * Schedule out siblings (if any):
  964. */
  965. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  966. event_sched_out(event, cpuctx, ctx);
  967. if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
  968. cpuctx->exclusive = 0;
  969. }
  970. /*
  971. * Cross CPU call to remove a performance event
  972. *
  973. * We disable the event on the hardware level first. After that we
  974. * remove it from the context list.
  975. */
  976. static int __perf_remove_from_context(void *info)
  977. {
  978. struct perf_event *event = info;
  979. struct perf_event_context *ctx = event->ctx;
  980. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  981. raw_spin_lock(&ctx->lock);
  982. event_sched_out(event, cpuctx, ctx);
  983. list_del_event(event, ctx);
  984. if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
  985. ctx->is_active = 0;
  986. cpuctx->task_ctx = NULL;
  987. }
  988. raw_spin_unlock(&ctx->lock);
  989. return 0;
  990. }
  991. /*
  992. * Remove the event from a task's (or a CPU's) list of events.
  993. *
  994. * CPU events are removed with a smp call. For task events we only
  995. * call when the task is on a CPU.
  996. *
  997. * If event->ctx is a cloned context, callers must make sure that
  998. * every task struct that event->ctx->task could possibly point to
  999. * remains valid. This is OK when called from perf_release since
  1000. * that only calls us on the top-level context, which can't be a clone.
  1001. * When called from perf_event_exit_task, it's OK because the
  1002. * context has been detached from its task.
  1003. */
  1004. static void perf_remove_from_context(struct perf_event *event)
  1005. {
  1006. struct perf_event_context *ctx = event->ctx;
  1007. struct task_struct *task = ctx->task;
  1008. lockdep_assert_held(&ctx->mutex);
  1009. if (!task) {
  1010. /*
  1011. * Per cpu events are removed via an smp call and
  1012. * the removal is always successful.
  1013. */
  1014. cpu_function_call(event->cpu, __perf_remove_from_context, event);
  1015. return;
  1016. }
  1017. retry:
  1018. if (!task_function_call(task, __perf_remove_from_context, event))
  1019. return;
  1020. raw_spin_lock_irq(&ctx->lock);
  1021. /*
  1022. * If we failed to find a running task, but find the context active now
  1023. * that we've acquired the ctx->lock, retry.
  1024. */
  1025. if (ctx->is_active) {
  1026. raw_spin_unlock_irq(&ctx->lock);
  1027. goto retry;
  1028. }
  1029. /*
  1030. * Since the task isn't running, its safe to remove the event, us
  1031. * holding the ctx->lock ensures the task won't get scheduled in.
  1032. */
  1033. list_del_event(event, ctx);
  1034. raw_spin_unlock_irq(&ctx->lock);
  1035. }
  1036. /*
  1037. * Cross CPU call to disable a performance event
  1038. */
  1039. static int __perf_event_disable(void *info)
  1040. {
  1041. struct perf_event *event = info;
  1042. struct perf_event_context *ctx = event->ctx;
  1043. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1044. /*
  1045. * If this is a per-task event, need to check whether this
  1046. * event's task is the current task on this cpu.
  1047. *
  1048. * Can trigger due to concurrent perf_event_context_sched_out()
  1049. * flipping contexts around.
  1050. */
  1051. if (ctx->task && cpuctx->task_ctx != ctx)
  1052. return -EINVAL;
  1053. raw_spin_lock(&ctx->lock);
  1054. /*
  1055. * If the event is on, turn it off.
  1056. * If it is in error state, leave it in error state.
  1057. */
  1058. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  1059. update_context_time(ctx);
  1060. update_cgrp_time_from_event(event);
  1061. update_group_times(event);
  1062. if (event == event->group_leader)
  1063. group_sched_out(event, cpuctx, ctx);
  1064. else
  1065. event_sched_out(event, cpuctx, ctx);
  1066. event->state = PERF_EVENT_STATE_OFF;
  1067. }
  1068. raw_spin_unlock(&ctx->lock);
  1069. return 0;
  1070. }
  1071. /*
  1072. * Disable a event.
  1073. *
  1074. * If event->ctx is a cloned context, callers must make sure that
  1075. * every task struct that event->ctx->task could possibly point to
  1076. * remains valid. This condition is satisifed when called through
  1077. * perf_event_for_each_child or perf_event_for_each because they
  1078. * hold the top-level event's child_mutex, so any descendant that
  1079. * goes to exit will block in sync_child_event.
  1080. * When called from perf_pending_event it's OK because event->ctx
  1081. * is the current context on this CPU and preemption is disabled,
  1082. * hence we can't get into perf_event_task_sched_out for this context.
  1083. */
  1084. void perf_event_disable(struct perf_event *event)
  1085. {
  1086. struct perf_event_context *ctx = event->ctx;
  1087. struct task_struct *task = ctx->task;
  1088. if (!task) {
  1089. /*
  1090. * Disable the event on the cpu that it's on
  1091. */
  1092. cpu_function_call(event->cpu, __perf_event_disable, event);
  1093. return;
  1094. }
  1095. retry:
  1096. if (!task_function_call(task, __perf_event_disable, event))
  1097. return;
  1098. raw_spin_lock_irq(&ctx->lock);
  1099. /*
  1100. * If the event is still active, we need to retry the cross-call.
  1101. */
  1102. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1103. raw_spin_unlock_irq(&ctx->lock);
  1104. /*
  1105. * Reload the task pointer, it might have been changed by
  1106. * a concurrent perf_event_context_sched_out().
  1107. */
  1108. task = ctx->task;
  1109. goto retry;
  1110. }
  1111. /*
  1112. * Since we have the lock this context can't be scheduled
  1113. * in, so we can change the state safely.
  1114. */
  1115. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1116. update_group_times(event);
  1117. event->state = PERF_EVENT_STATE_OFF;
  1118. }
  1119. raw_spin_unlock_irq(&ctx->lock);
  1120. }
  1121. EXPORT_SYMBOL_GPL(perf_event_disable);
  1122. static void perf_set_shadow_time(struct perf_event *event,
  1123. struct perf_event_context *ctx,
  1124. u64 tstamp)
  1125. {
  1126. /*
  1127. * use the correct time source for the time snapshot
  1128. *
  1129. * We could get by without this by leveraging the
  1130. * fact that to get to this function, the caller
  1131. * has most likely already called update_context_time()
  1132. * and update_cgrp_time_xx() and thus both timestamp
  1133. * are identical (or very close). Given that tstamp is,
  1134. * already adjusted for cgroup, we could say that:
  1135. * tstamp - ctx->timestamp
  1136. * is equivalent to
  1137. * tstamp - cgrp->timestamp.
  1138. *
  1139. * Then, in perf_output_read(), the calculation would
  1140. * work with no changes because:
  1141. * - event is guaranteed scheduled in
  1142. * - no scheduled out in between
  1143. * - thus the timestamp would be the same
  1144. *
  1145. * But this is a bit hairy.
  1146. *
  1147. * So instead, we have an explicit cgroup call to remain
  1148. * within the time time source all along. We believe it
  1149. * is cleaner and simpler to understand.
  1150. */
  1151. if (is_cgroup_event(event))
  1152. perf_cgroup_set_shadow_time(event, tstamp);
  1153. else
  1154. event->shadow_ctx_time = tstamp - ctx->timestamp;
  1155. }
  1156. #define MAX_INTERRUPTS (~0ULL)
  1157. static void perf_log_throttle(struct perf_event *event, int enable);
  1158. static int
  1159. event_sched_in(struct perf_event *event,
  1160. struct perf_cpu_context *cpuctx,
  1161. struct perf_event_context *ctx)
  1162. {
  1163. u64 tstamp = perf_event_time(event);
  1164. if (event->state <= PERF_EVENT_STATE_OFF)
  1165. return 0;
  1166. event->state = PERF_EVENT_STATE_ACTIVE;
  1167. event->oncpu = smp_processor_id();
  1168. /*
  1169. * Unthrottle events, since we scheduled we might have missed several
  1170. * ticks already, also for a heavily scheduling task there is little
  1171. * guarantee it'll get a tick in a timely manner.
  1172. */
  1173. if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
  1174. perf_log_throttle(event, 1);
  1175. event->hw.interrupts = 0;
  1176. }
  1177. /*
  1178. * The new state must be visible before we turn it on in the hardware:
  1179. */
  1180. smp_wmb();
  1181. if (event->pmu->add(event, PERF_EF_START)) {
  1182. event->state = PERF_EVENT_STATE_INACTIVE;
  1183. event->oncpu = -1;
  1184. return -EAGAIN;
  1185. }
  1186. event->tstamp_running += tstamp - event->tstamp_stopped;
  1187. perf_set_shadow_time(event, ctx, tstamp);
  1188. if (!is_software_event(event))
  1189. cpuctx->active_oncpu++;
  1190. ctx->nr_active++;
  1191. if (event->attr.freq && event->attr.sample_freq)
  1192. ctx->nr_freq++;
  1193. if (event->attr.exclusive)
  1194. cpuctx->exclusive = 1;
  1195. return 0;
  1196. }
  1197. static int
  1198. group_sched_in(struct perf_event *group_event,
  1199. struct perf_cpu_context *cpuctx,
  1200. struct perf_event_context *ctx)
  1201. {
  1202. struct perf_event *event, *partial_group = NULL;
  1203. struct pmu *pmu = group_event->pmu;
  1204. u64 now = ctx->time;
  1205. bool simulate = false;
  1206. if (group_event->state == PERF_EVENT_STATE_OFF)
  1207. return 0;
  1208. pmu->start_txn(pmu);
  1209. if (event_sched_in(group_event, cpuctx, ctx)) {
  1210. pmu->cancel_txn(pmu);
  1211. return -EAGAIN;
  1212. }
  1213. /*
  1214. * Schedule in siblings as one group (if any):
  1215. */
  1216. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1217. if (event_sched_in(event, cpuctx, ctx)) {
  1218. partial_group = event;
  1219. goto group_error;
  1220. }
  1221. }
  1222. if (!pmu->commit_txn(pmu))
  1223. return 0;
  1224. group_error:
  1225. /*
  1226. * Groups can be scheduled in as one unit only, so undo any
  1227. * partial group before returning:
  1228. * The events up to the failed event are scheduled out normally,
  1229. * tstamp_stopped will be updated.
  1230. *
  1231. * The failed events and the remaining siblings need to have
  1232. * their timings updated as if they had gone thru event_sched_in()
  1233. * and event_sched_out(). This is required to get consistent timings
  1234. * across the group. This also takes care of the case where the group
  1235. * could never be scheduled by ensuring tstamp_stopped is set to mark
  1236. * the time the event was actually stopped, such that time delta
  1237. * calculation in update_event_times() is correct.
  1238. */
  1239. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1240. if (event == partial_group)
  1241. simulate = true;
  1242. if (simulate) {
  1243. event->tstamp_running += now - event->tstamp_stopped;
  1244. event->tstamp_stopped = now;
  1245. } else {
  1246. event_sched_out(event, cpuctx, ctx);
  1247. }
  1248. }
  1249. event_sched_out(group_event, cpuctx, ctx);
  1250. pmu->cancel_txn(pmu);
  1251. return -EAGAIN;
  1252. }
  1253. /*
  1254. * Work out whether we can put this event group on the CPU now.
  1255. */
  1256. static int group_can_go_on(struct perf_event *event,
  1257. struct perf_cpu_context *cpuctx,
  1258. int can_add_hw)
  1259. {
  1260. /*
  1261. * Groups consisting entirely of software events can always go on.
  1262. */
  1263. if (event->group_flags & PERF_GROUP_SOFTWARE)
  1264. return 1;
  1265. /*
  1266. * If an exclusive group is already on, no other hardware
  1267. * events can go on.
  1268. */
  1269. if (cpuctx->exclusive)
  1270. return 0;
  1271. /*
  1272. * If this group is exclusive and there are already
  1273. * events on the CPU, it can't go on.
  1274. */
  1275. if (event->attr.exclusive && cpuctx->active_oncpu)
  1276. return 0;
  1277. /*
  1278. * Otherwise, try to add it if all previous groups were able
  1279. * to go on.
  1280. */
  1281. return can_add_hw;
  1282. }
  1283. static void add_event_to_ctx(struct perf_event *event,
  1284. struct perf_event_context *ctx)
  1285. {
  1286. u64 tstamp = perf_event_time(event);
  1287. list_add_event(event, ctx);
  1288. perf_group_attach(event);
  1289. event->tstamp_enabled = tstamp;
  1290. event->tstamp_running = tstamp;
  1291. event->tstamp_stopped = tstamp;
  1292. }
  1293. static void task_ctx_sched_out(struct perf_event_context *ctx);
  1294. static void
  1295. ctx_sched_in(struct perf_event_context *ctx,
  1296. struct perf_cpu_context *cpuctx,
  1297. enum event_type_t event_type,
  1298. struct task_struct *task);
  1299. static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
  1300. struct perf_event_context *ctx,
  1301. struct task_struct *task)
  1302. {
  1303. cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
  1304. if (ctx)
  1305. ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
  1306. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
  1307. if (ctx)
  1308. ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
  1309. }
  1310. /*
  1311. * Cross CPU call to install and enable a performance event
  1312. *
  1313. * Must be called with ctx->mutex held
  1314. */
  1315. static int __perf_install_in_context(void *info)
  1316. {
  1317. struct perf_event *event = info;
  1318. struct perf_event_context *ctx = event->ctx;
  1319. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1320. struct perf_event_context *task_ctx = cpuctx->task_ctx;
  1321. struct task_struct *task = current;
  1322. perf_ctx_lock(cpuctx, task_ctx);
  1323. perf_pmu_disable(cpuctx->ctx.pmu);
  1324. /*
  1325. * If there was an active task_ctx schedule it out.
  1326. */
  1327. if (task_ctx)
  1328. task_ctx_sched_out(task_ctx);
  1329. /*
  1330. * If the context we're installing events in is not the
  1331. * active task_ctx, flip them.
  1332. */
  1333. if (ctx->task && task_ctx != ctx) {
  1334. if (task_ctx)
  1335. raw_spin_unlock(&task_ctx->lock);
  1336. raw_spin_lock(&ctx->lock);
  1337. task_ctx = ctx;
  1338. }
  1339. if (task_ctx) {
  1340. cpuctx->task_ctx = task_ctx;
  1341. task = task_ctx->task;
  1342. }
  1343. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  1344. update_context_time(ctx);
  1345. /*
  1346. * update cgrp time only if current cgrp
  1347. * matches event->cgrp. Must be done before
  1348. * calling add_event_to_ctx()
  1349. */
  1350. update_cgrp_time_from_event(event);
  1351. add_event_to_ctx(event, ctx);
  1352. /*
  1353. * Schedule everything back in
  1354. */
  1355. perf_event_sched_in(cpuctx, task_ctx, task);
  1356. perf_pmu_enable(cpuctx->ctx.pmu);
  1357. perf_ctx_unlock(cpuctx, task_ctx);
  1358. return 0;
  1359. }
  1360. /*
  1361. * Attach a performance event to a context
  1362. *
  1363. * First we add the event to the list with the hardware enable bit
  1364. * in event->hw_config cleared.
  1365. *
  1366. * If the event is attached to a task which is on a CPU we use a smp
  1367. * call to enable it in the task context. The task might have been
  1368. * scheduled away, but we check this in the smp call again.
  1369. */
  1370. static void
  1371. perf_install_in_context(struct perf_event_context *ctx,
  1372. struct perf_event *event,
  1373. int cpu)
  1374. {
  1375. struct task_struct *task = ctx->task;
  1376. lockdep_assert_held(&ctx->mutex);
  1377. event->ctx = ctx;
  1378. if (!task) {
  1379. /*
  1380. * Per cpu events are installed via an smp call and
  1381. * the install is always successful.
  1382. */
  1383. cpu_function_call(cpu, __perf_install_in_context, event);
  1384. return;
  1385. }
  1386. retry:
  1387. if (!task_function_call(task, __perf_install_in_context, event))
  1388. return;
  1389. raw_spin_lock_irq(&ctx->lock);
  1390. /*
  1391. * If we failed to find a running task, but find the context active now
  1392. * that we've acquired the ctx->lock, retry.
  1393. */
  1394. if (ctx->is_active) {
  1395. raw_spin_unlock_irq(&ctx->lock);
  1396. goto retry;
  1397. }
  1398. /*
  1399. * Since the task isn't running, its safe to add the event, us holding
  1400. * the ctx->lock ensures the task won't get scheduled in.
  1401. */
  1402. add_event_to_ctx(event, ctx);
  1403. raw_spin_unlock_irq(&ctx->lock);
  1404. }
  1405. /*
  1406. * Put a event into inactive state and update time fields.
  1407. * Enabling the leader of a group effectively enables all
  1408. * the group members that aren't explicitly disabled, so we
  1409. * have to update their ->tstamp_enabled also.
  1410. * Note: this works for group members as well as group leaders
  1411. * since the non-leader members' sibling_lists will be empty.
  1412. */
  1413. static void __perf_event_mark_enabled(struct perf_event *event)
  1414. {
  1415. struct perf_event *sub;
  1416. u64 tstamp = perf_event_time(event);
  1417. event->state = PERF_EVENT_STATE_INACTIVE;
  1418. event->tstamp_enabled = tstamp - event->total_time_enabled;
  1419. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  1420. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  1421. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  1422. }
  1423. }
  1424. /*
  1425. * Cross CPU call to enable a performance event
  1426. */
  1427. static int __perf_event_enable(void *info)
  1428. {
  1429. struct perf_event *event = info;
  1430. struct perf_event_context *ctx = event->ctx;
  1431. struct perf_event *leader = event->group_leader;
  1432. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1433. int err;
  1434. if (WARN_ON_ONCE(!ctx->is_active))
  1435. return -EINVAL;
  1436. raw_spin_lock(&ctx->lock);
  1437. update_context_time(ctx);
  1438. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1439. goto unlock;
  1440. /*
  1441. * set current task's cgroup time reference point
  1442. */
  1443. perf_cgroup_set_timestamp(current, ctx);
  1444. __perf_event_mark_enabled(event);
  1445. if (!event_filter_match(event)) {
  1446. if (is_cgroup_event(event))
  1447. perf_cgroup_defer_enabled(event);
  1448. goto unlock;
  1449. }
  1450. /*
  1451. * If the event is in a group and isn't the group leader,
  1452. * then don't put it on unless the group is on.
  1453. */
  1454. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  1455. goto unlock;
  1456. if (!group_can_go_on(event, cpuctx, 1)) {
  1457. err = -EEXIST;
  1458. } else {
  1459. if (event == leader)
  1460. err = group_sched_in(event, cpuctx, ctx);
  1461. else
  1462. err = event_sched_in(event, cpuctx, ctx);
  1463. }
  1464. if (err) {
  1465. /*
  1466. * If this event can't go on and it's part of a
  1467. * group, then the whole group has to come off.
  1468. */
  1469. if (leader != event)
  1470. group_sched_out(leader, cpuctx, ctx);
  1471. if (leader->attr.pinned) {
  1472. update_group_times(leader);
  1473. leader->state = PERF_EVENT_STATE_ERROR;
  1474. }
  1475. }
  1476. unlock:
  1477. raw_spin_unlock(&ctx->lock);
  1478. return 0;
  1479. }
  1480. /*
  1481. * Enable a event.
  1482. *
  1483. * If event->ctx is a cloned context, callers must make sure that
  1484. * every task struct that event->ctx->task could possibly point to
  1485. * remains valid. This condition is satisfied when called through
  1486. * perf_event_for_each_child or perf_event_for_each as described
  1487. * for perf_event_disable.
  1488. */
  1489. void perf_event_enable(struct perf_event *event)
  1490. {
  1491. struct perf_event_context *ctx = event->ctx;
  1492. struct task_struct *task = ctx->task;
  1493. if (!task) {
  1494. /*
  1495. * Enable the event on the cpu that it's on
  1496. */
  1497. cpu_function_call(event->cpu, __perf_event_enable, event);
  1498. return;
  1499. }
  1500. raw_spin_lock_irq(&ctx->lock);
  1501. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1502. goto out;
  1503. /*
  1504. * If the event is in error state, clear that first.
  1505. * That way, if we see the event in error state below, we
  1506. * know that it has gone back into error state, as distinct
  1507. * from the task having been scheduled away before the
  1508. * cross-call arrived.
  1509. */
  1510. if (event->state == PERF_EVENT_STATE_ERROR)
  1511. event->state = PERF_EVENT_STATE_OFF;
  1512. retry:
  1513. if (!ctx->is_active) {
  1514. __perf_event_mark_enabled(event);
  1515. goto out;
  1516. }
  1517. raw_spin_unlock_irq(&ctx->lock);
  1518. if (!task_function_call(task, __perf_event_enable, event))
  1519. return;
  1520. raw_spin_lock_irq(&ctx->lock);
  1521. /*
  1522. * If the context is active and the event is still off,
  1523. * we need to retry the cross-call.
  1524. */
  1525. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
  1526. /*
  1527. * task could have been flipped by a concurrent
  1528. * perf_event_context_sched_out()
  1529. */
  1530. task = ctx->task;
  1531. goto retry;
  1532. }
  1533. out:
  1534. raw_spin_unlock_irq(&ctx->lock);
  1535. }
  1536. EXPORT_SYMBOL_GPL(perf_event_enable);
  1537. int perf_event_refresh(struct perf_event *event, int refresh)
  1538. {
  1539. /*
  1540. * not supported on inherited events
  1541. */
  1542. if (event->attr.inherit || !is_sampling_event(event))
  1543. return -EINVAL;
  1544. atomic_add(refresh, &event->event_limit);
  1545. perf_event_enable(event);
  1546. return 0;
  1547. }
  1548. EXPORT_SYMBOL_GPL(perf_event_refresh);
  1549. static void ctx_sched_out(struct perf_event_context *ctx,
  1550. struct perf_cpu_context *cpuctx,
  1551. enum event_type_t event_type)
  1552. {
  1553. struct perf_event *event;
  1554. int is_active = ctx->is_active;
  1555. ctx->is_active &= ~event_type;
  1556. if (likely(!ctx->nr_events))
  1557. return;
  1558. update_context_time(ctx);
  1559. update_cgrp_time_from_cpuctx(cpuctx);
  1560. if (!ctx->nr_active)
  1561. return;
  1562. perf_pmu_disable(ctx->pmu);
  1563. if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
  1564. list_for_each_entry(event, &ctx->pinned_groups, group_entry)
  1565. group_sched_out(event, cpuctx, ctx);
  1566. }
  1567. if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
  1568. list_for_each_entry(event, &ctx->flexible_groups, group_entry)
  1569. group_sched_out(event, cpuctx, ctx);
  1570. }
  1571. perf_pmu_enable(ctx->pmu);
  1572. }
  1573. /*
  1574. * Test whether two contexts are equivalent, i.e. whether they
  1575. * have both been cloned from the same version of the same context
  1576. * and they both have the same number of enabled events.
  1577. * If the number of enabled events is the same, then the set
  1578. * of enabled events should be the same, because these are both
  1579. * inherited contexts, therefore we can't access individual events
  1580. * in them directly with an fd; we can only enable/disable all
  1581. * events via prctl, or enable/disable all events in a family
  1582. * via ioctl, which will have the same effect on both contexts.
  1583. */
  1584. static int context_equiv(struct perf_event_context *ctx1,
  1585. struct perf_event_context *ctx2)
  1586. {
  1587. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  1588. && ctx1->parent_gen == ctx2->parent_gen
  1589. && !ctx1->pin_count && !ctx2->pin_count;
  1590. }
  1591. static void __perf_event_sync_stat(struct perf_event *event,
  1592. struct perf_event *next_event)
  1593. {
  1594. u64 value;
  1595. if (!event->attr.inherit_stat)
  1596. return;
  1597. /*
  1598. * Update the event value, we cannot use perf_event_read()
  1599. * because we're in the middle of a context switch and have IRQs
  1600. * disabled, which upsets smp_call_function_single(), however
  1601. * we know the event must be on the current CPU, therefore we
  1602. * don't need to use it.
  1603. */
  1604. switch (event->state) {
  1605. case PERF_EVENT_STATE_ACTIVE:
  1606. event->pmu->read(event);
  1607. /* fall-through */
  1608. case PERF_EVENT_STATE_INACTIVE:
  1609. update_event_times(event);
  1610. break;
  1611. default:
  1612. break;
  1613. }
  1614. /*
  1615. * In order to keep per-task stats reliable we need to flip the event
  1616. * values when we flip the contexts.
  1617. */
  1618. value = local64_read(&next_event->count);
  1619. value = local64_xchg(&event->count, value);
  1620. local64_set(&next_event->count, value);
  1621. swap(event->total_time_enabled, next_event->total_time_enabled);
  1622. swap(event->total_time_running, next_event->total_time_running);
  1623. /*
  1624. * Since we swizzled the values, update the user visible data too.
  1625. */
  1626. perf_event_update_userpage(event);
  1627. perf_event_update_userpage(next_event);
  1628. }
  1629. #define list_next_entry(pos, member) \
  1630. list_entry(pos->member.next, typeof(*pos), member)
  1631. static void perf_event_sync_stat(struct perf_event_context *ctx,
  1632. struct perf_event_context *next_ctx)
  1633. {
  1634. struct perf_event *event, *next_event;
  1635. if (!ctx->nr_stat)
  1636. return;
  1637. update_context_time(ctx);
  1638. event = list_first_entry(&ctx->event_list,
  1639. struct perf_event, event_entry);
  1640. next_event = list_first_entry(&next_ctx->event_list,
  1641. struct perf_event, event_entry);
  1642. while (&event->event_entry != &ctx->event_list &&
  1643. &next_event->event_entry != &next_ctx->event_list) {
  1644. __perf_event_sync_stat(event, next_event);
  1645. event = list_next_entry(event, event_entry);
  1646. next_event = list_next_entry(next_event, event_entry);
  1647. }
  1648. }
  1649. static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
  1650. struct task_struct *next)
  1651. {
  1652. struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
  1653. struct perf_event_context *next_ctx;
  1654. struct perf_event_context *parent;
  1655. struct perf_cpu_context *cpuctx;
  1656. int do_switch = 1;
  1657. if (likely(!ctx))
  1658. return;
  1659. cpuctx = __get_cpu_context(ctx);
  1660. if (!cpuctx->task_ctx)
  1661. return;
  1662. rcu_read_lock();
  1663. parent = rcu_dereference(ctx->parent_ctx);
  1664. next_ctx = next->perf_event_ctxp[ctxn];
  1665. if (parent && next_ctx &&
  1666. rcu_dereference(next_ctx->parent_ctx) == parent) {
  1667. /*
  1668. * Looks like the two contexts are clones, so we might be
  1669. * able to optimize the context switch. We lock both
  1670. * contexts and check that they are clones under the
  1671. * lock (including re-checking that neither has been
  1672. * uncloned in the meantime). It doesn't matter which
  1673. * order we take the locks because no other cpu could
  1674. * be trying to lock both of these tasks.
  1675. */
  1676. raw_spin_lock(&ctx->lock);
  1677. raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1678. if (context_equiv(ctx, next_ctx)) {
  1679. /*
  1680. * XXX do we need a memory barrier of sorts
  1681. * wrt to rcu_dereference() of perf_event_ctxp
  1682. */
  1683. task->perf_event_ctxp[ctxn] = next_ctx;
  1684. next->perf_event_ctxp[ctxn] = ctx;
  1685. ctx->task = next;
  1686. next_ctx->task = task;
  1687. do_switch = 0;
  1688. perf_event_sync_stat(ctx, next_ctx);
  1689. }
  1690. raw_spin_unlock(&next_ctx->lock);
  1691. raw_spin_unlock(&ctx->lock);
  1692. }
  1693. rcu_read_unlock();
  1694. if (do_switch) {
  1695. raw_spin_lock(&ctx->lock);
  1696. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1697. cpuctx->task_ctx = NULL;
  1698. raw_spin_unlock(&ctx->lock);
  1699. }
  1700. }
  1701. #define for_each_task_context_nr(ctxn) \
  1702. for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
  1703. /*
  1704. * Called from scheduler to remove the events of the current task,
  1705. * with interrupts disabled.
  1706. *
  1707. * We stop each event and update the event value in event->count.
  1708. *
  1709. * This does not protect us against NMI, but disable()
  1710. * sets the disabled bit in the control field of event _before_
  1711. * accessing the event control register. If a NMI hits, then it will
  1712. * not restart the event.
  1713. */
  1714. void __perf_event_task_sched_out(struct task_struct *task,
  1715. struct task_struct *next)
  1716. {
  1717. int ctxn;
  1718. for_each_task_context_nr(ctxn)
  1719. perf_event_context_sched_out(task, ctxn, next);
  1720. /*
  1721. * if cgroup events exist on this CPU, then we need
  1722. * to check if we have to switch out PMU state.
  1723. * cgroup event are system-wide mode only
  1724. */
  1725. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1726. perf_cgroup_sched_out(task, next);
  1727. }
  1728. static void task_ctx_sched_out(struct perf_event_context *ctx)
  1729. {
  1730. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1731. if (!cpuctx->task_ctx)
  1732. return;
  1733. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1734. return;
  1735. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1736. cpuctx->task_ctx = NULL;
  1737. }
  1738. /*
  1739. * Called with IRQs disabled
  1740. */
  1741. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  1742. enum event_type_t event_type)
  1743. {
  1744. ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
  1745. }
  1746. static void
  1747. ctx_pinned_sched_in(struct perf_event_context *ctx,
  1748. struct perf_cpu_context *cpuctx)
  1749. {
  1750. struct perf_event *event;
  1751. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  1752. if (event->state <= PERF_EVENT_STATE_OFF)
  1753. continue;
  1754. if (!event_filter_match(event))
  1755. continue;
  1756. /* may need to reset tstamp_enabled */
  1757. if (is_cgroup_event(event))
  1758. perf_cgroup_mark_enabled(event, ctx);
  1759. if (group_can_go_on(event, cpuctx, 1))
  1760. group_sched_in(event, cpuctx, ctx);
  1761. /*
  1762. * If this pinned group hasn't been scheduled,
  1763. * put it in error state.
  1764. */
  1765. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1766. update_group_times(event);
  1767. event->state = PERF_EVENT_STATE_ERROR;
  1768. }
  1769. }
  1770. }
  1771. static void
  1772. ctx_flexible_sched_in(struct perf_event_context *ctx,
  1773. struct perf_cpu_context *cpuctx)
  1774. {
  1775. struct perf_event *event;
  1776. int can_add_hw = 1;
  1777. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  1778. /* Ignore events in OFF or ERROR state */
  1779. if (event->state <= PERF_EVENT_STATE_OFF)
  1780. continue;
  1781. /*
  1782. * Listen to the 'cpu' scheduling filter constraint
  1783. * of events:
  1784. */
  1785. if (!event_filter_match(event))
  1786. continue;
  1787. /* may need to reset tstamp_enabled */
  1788. if (is_cgroup_event(event))
  1789. perf_cgroup_mark_enabled(event, ctx);
  1790. if (group_can_go_on(event, cpuctx, can_add_hw)) {
  1791. if (group_sched_in(event, cpuctx, ctx))
  1792. can_add_hw = 0;
  1793. }
  1794. }
  1795. }
  1796. static void
  1797. ctx_sched_in(struct perf_event_context *ctx,
  1798. struct perf_cpu_context *cpuctx,
  1799. enum event_type_t event_type,
  1800. struct task_struct *task)
  1801. {
  1802. u64 now;
  1803. int is_active = ctx->is_active;
  1804. ctx->is_active |= event_type;
  1805. if (likely(!ctx->nr_events))
  1806. return;
  1807. now = perf_clock();
  1808. ctx->timestamp = now;
  1809. perf_cgroup_set_timestamp(task, ctx);
  1810. /*
  1811. * First go through the list and put on any pinned groups
  1812. * in order to give them the best chance of going on.
  1813. */
  1814. if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
  1815. ctx_pinned_sched_in(ctx, cpuctx);
  1816. /* Then walk through the lower prio flexible groups */
  1817. if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
  1818. ctx_flexible_sched_in(ctx, cpuctx);
  1819. }
  1820. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  1821. enum event_type_t event_type,
  1822. struct task_struct *task)
  1823. {
  1824. struct perf_event_context *ctx = &cpuctx->ctx;
  1825. ctx_sched_in(ctx, cpuctx, event_type, task);
  1826. }
  1827. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  1828. struct task_struct *task)
  1829. {
  1830. struct perf_cpu_context *cpuctx;
  1831. cpuctx = __get_cpu_context(ctx);
  1832. if (cpuctx->task_ctx == ctx)
  1833. return;
  1834. perf_ctx_lock(cpuctx, ctx);
  1835. perf_pmu_disable(ctx->pmu);
  1836. /*
  1837. * We want to keep the following priority order:
  1838. * cpu pinned (that don't need to move), task pinned,
  1839. * cpu flexible, task flexible.
  1840. */
  1841. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1842. if (ctx->nr_events)
  1843. cpuctx->task_ctx = ctx;
  1844. perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
  1845. perf_pmu_enable(ctx->pmu);
  1846. perf_ctx_unlock(cpuctx, ctx);
  1847. /*
  1848. * Since these rotations are per-cpu, we need to ensure the
  1849. * cpu-context we got scheduled on is actually rotating.
  1850. */
  1851. perf_pmu_rotate_start(ctx->pmu);
  1852. }
  1853. /*
  1854. * When sampling the branck stack in system-wide, it may be necessary
  1855. * to flush the stack on context switch. This happens when the branch
  1856. * stack does not tag its entries with the pid of the current task.
  1857. * Otherwise it becomes impossible to associate a branch entry with a
  1858. * task. This ambiguity is more likely to appear when the branch stack
  1859. * supports priv level filtering and the user sets it to monitor only
  1860. * at the user level (which could be a useful measurement in system-wide
  1861. * mode). In that case, the risk is high of having a branch stack with
  1862. * branch from multiple tasks. Flushing may mean dropping the existing
  1863. * entries or stashing them somewhere in the PMU specific code layer.
  1864. *
  1865. * This function provides the context switch callback to the lower code
  1866. * layer. It is invoked ONLY when there is at least one system-wide context
  1867. * with at least one active event using taken branch sampling.
  1868. */
  1869. static void perf_branch_stack_sched_in(struct task_struct *prev,
  1870. struct task_struct *task)
  1871. {
  1872. struct perf_cpu_context *cpuctx;
  1873. struct pmu *pmu;
  1874. unsigned long flags;
  1875. /* no need to flush branch stack if not changing task */
  1876. if (prev == task)
  1877. return;
  1878. local_irq_save(flags);
  1879. rcu_read_lock();
  1880. list_for_each_entry_rcu(pmu, &pmus, entry) {
  1881. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  1882. /*
  1883. * check if the context has at least one
  1884. * event using PERF_SAMPLE_BRANCH_STACK
  1885. */
  1886. if (cpuctx->ctx.nr_branch_stack > 0
  1887. && pmu->flush_branch_stack) {
  1888. pmu = cpuctx->ctx.pmu;
  1889. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  1890. perf_pmu_disable(pmu);
  1891. pmu->flush_branch_stack();
  1892. perf_pmu_enable(pmu);
  1893. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  1894. }
  1895. }
  1896. rcu_read_unlock();
  1897. local_irq_restore(flags);
  1898. }
  1899. /*
  1900. * Called from scheduler to add the events of the current task
  1901. * with interrupts disabled.
  1902. *
  1903. * We restore the event value and then enable it.
  1904. *
  1905. * This does not protect us against NMI, but enable()
  1906. * sets the enabled bit in the control field of event _before_
  1907. * accessing the event control register. If a NMI hits, then it will
  1908. * keep the event running.
  1909. */
  1910. void __perf_event_task_sched_in(struct task_struct *prev,
  1911. struct task_struct *task)
  1912. {
  1913. struct perf_event_context *ctx;
  1914. int ctxn;
  1915. for_each_task_context_nr(ctxn) {
  1916. ctx = task->perf_event_ctxp[ctxn];
  1917. if (likely(!ctx))
  1918. continue;
  1919. perf_event_context_sched_in(ctx, task);
  1920. }
  1921. /*
  1922. * if cgroup events exist on this CPU, then we need
  1923. * to check if we have to switch in PMU state.
  1924. * cgroup event are system-wide mode only
  1925. */
  1926. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1927. perf_cgroup_sched_in(prev, task);
  1928. /* check for system-wide branch_stack events */
  1929. if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
  1930. perf_branch_stack_sched_in(prev, task);
  1931. }
  1932. static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
  1933. {
  1934. u64 frequency = event->attr.sample_freq;
  1935. u64 sec = NSEC_PER_SEC;
  1936. u64 divisor, dividend;
  1937. int count_fls, nsec_fls, frequency_fls, sec_fls;
  1938. count_fls = fls64(count);
  1939. nsec_fls = fls64(nsec);
  1940. frequency_fls = fls64(frequency);
  1941. sec_fls = 30;
  1942. /*
  1943. * We got @count in @nsec, with a target of sample_freq HZ
  1944. * the target period becomes:
  1945. *
  1946. * @count * 10^9
  1947. * period = -------------------
  1948. * @nsec * sample_freq
  1949. *
  1950. */
  1951. /*
  1952. * Reduce accuracy by one bit such that @a and @b converge
  1953. * to a similar magnitude.
  1954. */
  1955. #define REDUCE_FLS(a, b) \
  1956. do { \
  1957. if (a##_fls > b##_fls) { \
  1958. a >>= 1; \
  1959. a##_fls--; \
  1960. } else { \
  1961. b >>= 1; \
  1962. b##_fls--; \
  1963. } \
  1964. } while (0)
  1965. /*
  1966. * Reduce accuracy until either term fits in a u64, then proceed with
  1967. * the other, so that finally we can do a u64/u64 division.
  1968. */
  1969. while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
  1970. REDUCE_FLS(nsec, frequency);
  1971. REDUCE_FLS(sec, count);
  1972. }
  1973. if (count_fls + sec_fls > 64) {
  1974. divisor = nsec * frequency;
  1975. while (count_fls + sec_fls > 64) {
  1976. REDUCE_FLS(count, sec);
  1977. divisor >>= 1;
  1978. }
  1979. dividend = count * sec;
  1980. } else {
  1981. dividend = count * sec;
  1982. while (nsec_fls + frequency_fls > 64) {
  1983. REDUCE_FLS(nsec, frequency);
  1984. dividend >>= 1;
  1985. }
  1986. divisor = nsec * frequency;
  1987. }
  1988. if (!divisor)
  1989. return dividend;
  1990. return div64_u64(dividend, divisor);
  1991. }
  1992. static DEFINE_PER_CPU(int, perf_throttled_count);
  1993. static DEFINE_PER_CPU(u64, perf_throttled_seq);
  1994. static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
  1995. {
  1996. struct hw_perf_event *hwc = &event->hw;
  1997. s64 period, sample_period;
  1998. s64 delta;
  1999. period = perf_calculate_period(event, nsec, count);
  2000. delta = (s64)(period - hwc->sample_period);
  2001. delta = (delta + 7) / 8; /* low pass filter */
  2002. sample_period = hwc->sample_period + delta;
  2003. if (!sample_period)
  2004. sample_period = 1;
  2005. hwc->sample_period = sample_period;
  2006. if (local64_read(&hwc->period_left) > 8*sample_period) {
  2007. if (disable)
  2008. event->pmu->stop(event, PERF_EF_UPDATE);
  2009. local64_set(&hwc->period_left, 0);
  2010. if (disable)
  2011. event->pmu->start(event, PERF_EF_RELOAD);
  2012. }
  2013. }
  2014. /*
  2015. * combine freq adjustment with unthrottling to avoid two passes over the
  2016. * events. At the same time, make sure, having freq events does not change
  2017. * the rate of unthrottling as that would introduce bias.
  2018. */
  2019. static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
  2020. int needs_unthr)
  2021. {
  2022. struct perf_event *event;
  2023. struct hw_perf_event *hwc;
  2024. u64 now, period = TICK_NSEC;
  2025. s64 delta;
  2026. /*
  2027. * only need to iterate over all events iff:
  2028. * - context have events in frequency mode (needs freq adjust)
  2029. * - there are events to unthrottle on this cpu
  2030. */
  2031. if (!(ctx->nr_freq || needs_unthr))
  2032. return;
  2033. raw_spin_lock(&ctx->lock);
  2034. perf_pmu_disable(ctx->pmu);
  2035. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2036. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2037. continue;
  2038. if (!event_filter_match(event))
  2039. continue;
  2040. hwc = &event->hw;
  2041. if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
  2042. hwc->interrupts = 0;
  2043. perf_log_throttle(event, 1);
  2044. event->pmu->start(event, 0);
  2045. }
  2046. if (!event->attr.freq || !event->attr.sample_freq)
  2047. continue;
  2048. /*
  2049. * stop the event and update event->count
  2050. */
  2051. event->pmu->stop(event, PERF_EF_UPDATE);
  2052. now = local64_read(&event->count);
  2053. delta = now - hwc->freq_count_stamp;
  2054. hwc->freq_count_stamp = now;
  2055. /*
  2056. * restart the event
  2057. * reload only if value has changed
  2058. * we have stopped the event so tell that
  2059. * to perf_adjust_period() to avoid stopping it
  2060. * twice.
  2061. */
  2062. if (delta > 0)
  2063. perf_adjust_period(event, period, delta, false);
  2064. event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
  2065. }
  2066. perf_pmu_enable(ctx->pmu);
  2067. raw_spin_unlock(&ctx->lock);
  2068. }
  2069. /*
  2070. * Round-robin a context's events:
  2071. */
  2072. static void rotate_ctx(struct perf_event_context *ctx)
  2073. {
  2074. /*
  2075. * Rotate the first entry last of non-pinned groups. Rotation might be
  2076. * disabled by the inheritance code.
  2077. */
  2078. if (!ctx->rotate_disable)
  2079. list_rotate_left(&ctx->flexible_groups);
  2080. }
  2081. /*
  2082. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  2083. * because they're strictly cpu affine and rotate_start is called with IRQs
  2084. * disabled, while rotate_context is called from IRQ context.
  2085. */
  2086. static void perf_rotate_context(struct perf_cpu_context *cpuctx)
  2087. {
  2088. struct perf_event_context *ctx = NULL;
  2089. int rotate = 0, remove = 1;
  2090. if (cpuctx->ctx.nr_events) {
  2091. remove = 0;
  2092. if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
  2093. rotate = 1;
  2094. }
  2095. ctx = cpuctx->task_ctx;
  2096. if (ctx && ctx->nr_events) {
  2097. remove = 0;
  2098. if (ctx->nr_events != ctx->nr_active)
  2099. rotate = 1;
  2100. }
  2101. if (!rotate)
  2102. goto done;
  2103. perf_ctx_lock(cpuctx, cpuctx->task_ctx);
  2104. perf_pmu_disable(cpuctx->ctx.pmu);
  2105. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  2106. if (ctx)
  2107. ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
  2108. rotate_ctx(&cpuctx->ctx);
  2109. if (ctx)
  2110. rotate_ctx(ctx);
  2111. perf_event_sched_in(cpuctx, ctx, current);
  2112. perf_pmu_enable(cpuctx->ctx.pmu);
  2113. perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
  2114. done:
  2115. if (remove)
  2116. list_del_init(&cpuctx->rotation_list);
  2117. }
  2118. void perf_event_task_tick(void)
  2119. {
  2120. struct list_head *head = &__get_cpu_var(rotation_list);
  2121. struct perf_cpu_context *cpuctx, *tmp;
  2122. struct perf_event_context *ctx;
  2123. int throttled;
  2124. WARN_ON(!irqs_disabled());
  2125. __this_cpu_inc(perf_throttled_seq);
  2126. throttled = __this_cpu_xchg(perf_throttled_count, 0);
  2127. list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
  2128. ctx = &cpuctx->ctx;
  2129. perf_adjust_freq_unthr_context(ctx, throttled);
  2130. ctx = cpuctx->task_ctx;
  2131. if (ctx)
  2132. perf_adjust_freq_unthr_context(ctx, throttled);
  2133. if (cpuctx->jiffies_interval == 1 ||
  2134. !(jiffies % cpuctx->jiffies_interval))
  2135. perf_rotate_context(cpuctx);
  2136. }
  2137. }
  2138. static int event_enable_on_exec(struct perf_event *event,
  2139. struct perf_event_context *ctx)
  2140. {
  2141. if (!event->attr.enable_on_exec)
  2142. return 0;
  2143. event->attr.enable_on_exec = 0;
  2144. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  2145. return 0;
  2146. __perf_event_mark_enabled(event);
  2147. return 1;
  2148. }
  2149. /*
  2150. * Enable all of a task's events that have been marked enable-on-exec.
  2151. * This expects task == current.
  2152. */
  2153. static void perf_event_enable_on_exec(struct perf_event_context *ctx)
  2154. {
  2155. struct perf_event *event;
  2156. unsigned long flags;
  2157. int enabled = 0;
  2158. int ret;
  2159. local_irq_save(flags);
  2160. if (!ctx || !ctx->nr_events)
  2161. goto out;
  2162. /*
  2163. * We must ctxsw out cgroup events to avoid conflict
  2164. * when invoking perf_task_event_sched_in() later on
  2165. * in this function. Otherwise we end up trying to
  2166. * ctxswin cgroup events which are already scheduled
  2167. * in.
  2168. */
  2169. perf_cgroup_sched_out(current, NULL);
  2170. raw_spin_lock(&ctx->lock);
  2171. task_ctx_sched_out(ctx);
  2172. list_for_each_entry(event, &ctx->event_list, event_entry) {
  2173. ret = event_enable_on_exec(event, ctx);
  2174. if (ret)
  2175. enabled = 1;
  2176. }
  2177. /*
  2178. * Unclone this context if we enabled any event.
  2179. */
  2180. if (enabled)
  2181. unclone_ctx(ctx);
  2182. raw_spin_unlock(&ctx->lock);
  2183. /*
  2184. * Also calls ctxswin for cgroup events, if any:
  2185. */
  2186. perf_event_context_sched_in(ctx, ctx->task);
  2187. out:
  2188. local_irq_restore(flags);
  2189. }
  2190. /*
  2191. * Cross CPU call to read the hardware event
  2192. */
  2193. static void __perf_event_read(void *info)
  2194. {
  2195. struct perf_event *event = info;
  2196. struct perf_event_context *ctx = event->ctx;
  2197. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2198. /*
  2199. * If this is a task context, we need to check whether it is
  2200. * the current task context of this cpu. If not it has been
  2201. * scheduled out before the smp call arrived. In that case
  2202. * event->count would have been updated to a recent sample
  2203. * when the event was scheduled out.
  2204. */
  2205. if (ctx->task && cpuctx->task_ctx != ctx)
  2206. return;
  2207. raw_spin_lock(&ctx->lock);
  2208. if (ctx->is_active) {
  2209. update_context_time(ctx);
  2210. update_cgrp_time_from_event(event);
  2211. }
  2212. update_event_times(event);
  2213. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2214. event->pmu->read(event);
  2215. raw_spin_unlock(&ctx->lock);
  2216. }
  2217. static inline u64 perf_event_count(struct perf_event *event)
  2218. {
  2219. return local64_read(&event->count) + atomic64_read(&event->child_count);
  2220. }
  2221. static u64 perf_event_read(struct perf_event *event)
  2222. {
  2223. /*
  2224. * If event is enabled and currently active on a CPU, update the
  2225. * value in the event structure:
  2226. */
  2227. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  2228. smp_call_function_single(event->oncpu,
  2229. __perf_event_read, event, 1);
  2230. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2231. struct perf_event_context *ctx = event->ctx;
  2232. unsigned long flags;
  2233. raw_spin_lock_irqsave(&ctx->lock, flags);
  2234. /*
  2235. * may read while context is not active
  2236. * (e.g., thread is blocked), in that case
  2237. * we cannot update context time
  2238. */
  2239. if (ctx->is_active) {
  2240. update_context_time(ctx);
  2241. update_cgrp_time_from_event(event);
  2242. }
  2243. update_event_times(event);
  2244. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2245. }
  2246. return perf_event_count(event);
  2247. }
  2248. /*
  2249. * Initialize the perf_event context in a task_struct:
  2250. */
  2251. static void __perf_event_init_context(struct perf_event_context *ctx)
  2252. {
  2253. raw_spin_lock_init(&ctx->lock);
  2254. mutex_init(&ctx->mutex);
  2255. INIT_LIST_HEAD(&ctx->pinned_groups);
  2256. INIT_LIST_HEAD(&ctx->flexible_groups);
  2257. INIT_LIST_HEAD(&ctx->event_list);
  2258. atomic_set(&ctx->refcount, 1);
  2259. }
  2260. static struct perf_event_context *
  2261. alloc_perf_context(struct pmu *pmu, struct task_struct *task)
  2262. {
  2263. struct perf_event_context *ctx;
  2264. ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  2265. if (!ctx)
  2266. return NULL;
  2267. __perf_event_init_context(ctx);
  2268. if (task) {
  2269. ctx->task = task;
  2270. get_task_struct(task);
  2271. }
  2272. ctx->pmu = pmu;
  2273. return ctx;
  2274. }
  2275. static struct task_struct *
  2276. find_lively_task_by_vpid(pid_t vpid)
  2277. {
  2278. struct task_struct *task;
  2279. int err;
  2280. rcu_read_lock();
  2281. if (!vpid)
  2282. task = current;
  2283. else
  2284. task = find_task_by_vpid(vpid);
  2285. if (task)
  2286. get_task_struct(task);
  2287. rcu_read_unlock();
  2288. if (!task)
  2289. return ERR_PTR(-ESRCH);
  2290. /* Reuse ptrace permission checks for now. */
  2291. err = -EACCES;
  2292. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  2293. goto errout;
  2294. return task;
  2295. errout:
  2296. put_task_struct(task);
  2297. return ERR_PTR(err);
  2298. }
  2299. /*
  2300. * Returns a matching context with refcount and pincount.
  2301. */
  2302. static struct perf_event_context *
  2303. find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
  2304. {
  2305. struct perf_event_context *ctx;
  2306. struct perf_cpu_context *cpuctx;
  2307. unsigned long flags;
  2308. int ctxn, err;
  2309. if (!task) {
  2310. /* Must be root to operate on a CPU event: */
  2311. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2312. return ERR_PTR(-EACCES);
  2313. /*
  2314. * We could be clever and allow to attach a event to an
  2315. * offline CPU and activate it when the CPU comes up, but
  2316. * that's for later.
  2317. */
  2318. if (!cpu_online(cpu))
  2319. return ERR_PTR(-ENODEV);
  2320. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  2321. ctx = &cpuctx->ctx;
  2322. get_ctx(ctx);
  2323. ++ctx->pin_count;
  2324. return ctx;
  2325. }
  2326. err = -EINVAL;
  2327. ctxn = pmu->task_ctx_nr;
  2328. if (ctxn < 0)
  2329. goto errout;
  2330. retry:
  2331. ctx = perf_lock_task_context(task, ctxn, &flags);
  2332. if (ctx) {
  2333. unclone_ctx(ctx);
  2334. ++ctx->pin_count;
  2335. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2336. } else {
  2337. ctx = alloc_perf_context(pmu, task);
  2338. err = -ENOMEM;
  2339. if (!ctx)
  2340. goto errout;
  2341. err = 0;
  2342. mutex_lock(&task->perf_event_mutex);
  2343. /*
  2344. * If it has already passed perf_event_exit_task().
  2345. * we must see PF_EXITING, it takes this mutex too.
  2346. */
  2347. if (task->flags & PF_EXITING)
  2348. err = -ESRCH;
  2349. else if (task->perf_event_ctxp[ctxn])
  2350. err = -EAGAIN;
  2351. else {
  2352. get_ctx(ctx);
  2353. ++ctx->pin_count;
  2354. rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
  2355. }
  2356. mutex_unlock(&task->perf_event_mutex);
  2357. if (unlikely(err)) {
  2358. put_ctx(ctx);
  2359. if (err == -EAGAIN)
  2360. goto retry;
  2361. goto errout;
  2362. }
  2363. }
  2364. return ctx;
  2365. errout:
  2366. return ERR_PTR(err);
  2367. }
  2368. static void perf_event_free_filter(struct perf_event *event);
  2369. static void free_event_rcu(struct rcu_head *head)
  2370. {
  2371. struct perf_event *event;
  2372. event = container_of(head, struct perf_event, rcu_head);
  2373. if (event->ns)
  2374. put_pid_ns(event->ns);
  2375. perf_event_free_filter(event);
  2376. kfree(event);
  2377. }
  2378. static void ring_buffer_put(struct ring_buffer *rb);
  2379. static void free_event(struct perf_event *event)
  2380. {
  2381. irq_work_sync(&event->pending);
  2382. if (!event->parent) {
  2383. if (event->attach_state & PERF_ATTACH_TASK)
  2384. static_key_slow_dec_deferred(&perf_sched_events);
  2385. if (event->attr.mmap || event->attr.mmap_data)
  2386. atomic_dec(&nr_mmap_events);
  2387. if (event->attr.comm)
  2388. atomic_dec(&nr_comm_events);
  2389. if (event->attr.task)
  2390. atomic_dec(&nr_task_events);
  2391. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
  2392. put_callchain_buffers();
  2393. if (is_cgroup_event(event)) {
  2394. atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
  2395. static_key_slow_dec_deferred(&perf_sched_events);
  2396. }
  2397. if (has_branch_stack(event)) {
  2398. static_key_slow_dec_deferred(&perf_sched_events);
  2399. /* is system-wide event */
  2400. if (!(event->attach_state & PERF_ATTACH_TASK))
  2401. atomic_dec(&per_cpu(perf_branch_stack_events,
  2402. event->cpu));
  2403. }
  2404. }
  2405. if (event->rb) {
  2406. ring_buffer_put(event->rb);
  2407. event->rb = NULL;
  2408. }
  2409. if (is_cgroup_event(event))
  2410. perf_detach_cgroup(event);
  2411. if (event->destroy)
  2412. event->destroy(event);
  2413. if (event->ctx)
  2414. put_ctx(event->ctx);
  2415. call_rcu(&event->rcu_head, free_event_rcu);
  2416. }
  2417. int perf_event_release_kernel(struct perf_event *event)
  2418. {
  2419. struct perf_event_context *ctx = event->ctx;
  2420. WARN_ON_ONCE(ctx->parent_ctx);
  2421. /*
  2422. * There are two ways this annotation is useful:
  2423. *
  2424. * 1) there is a lock recursion from perf_event_exit_task
  2425. * see the comment there.
  2426. *
  2427. * 2) there is a lock-inversion with mmap_sem through
  2428. * perf_event_read_group(), which takes faults while
  2429. * holding ctx->mutex, however this is called after
  2430. * the last filedesc died, so there is no possibility
  2431. * to trigger the AB-BA case.
  2432. */
  2433. mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
  2434. raw_spin_lock_irq(&ctx->lock);
  2435. perf_group_detach(event);
  2436. raw_spin_unlock_irq(&ctx->lock);
  2437. perf_remove_from_context(event);
  2438. mutex_unlock(&ctx->mutex);
  2439. free_event(event);
  2440. return 0;
  2441. }
  2442. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  2443. /*
  2444. * Called when the last reference to the file is gone.
  2445. */
  2446. static int perf_release(struct inode *inode, struct file *file)
  2447. {
  2448. struct perf_event *event = file->private_data;
  2449. struct task_struct *owner;
  2450. file->private_data = NULL;
  2451. rcu_read_lock();
  2452. owner = ACCESS_ONCE(event->owner);
  2453. /*
  2454. * Matches the smp_wmb() in perf_event_exit_task(). If we observe
  2455. * !owner it means the list deletion is complete and we can indeed
  2456. * free this event, otherwise we need to serialize on
  2457. * owner->perf_event_mutex.
  2458. */
  2459. smp_read_barrier_depends();
  2460. if (owner) {
  2461. /*
  2462. * Since delayed_put_task_struct() also drops the last
  2463. * task reference we can safely take a new reference
  2464. * while holding the rcu_read_lock().
  2465. */
  2466. get_task_struct(owner);
  2467. }
  2468. rcu_read_unlock();
  2469. if (owner) {
  2470. mutex_lock(&owner->perf_event_mutex);
  2471. /*
  2472. * We have to re-check the event->owner field, if it is cleared
  2473. * we raced with perf_event_exit_task(), acquiring the mutex
  2474. * ensured they're done, and we can proceed with freeing the
  2475. * event.
  2476. */
  2477. if (event->owner)
  2478. list_del_init(&event->owner_entry);
  2479. mutex_unlock(&owner->perf_event_mutex);
  2480. put_task_struct(owner);
  2481. }
  2482. return perf_event_release_kernel(event);
  2483. }
  2484. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  2485. {
  2486. struct perf_event *child;
  2487. u64 total = 0;
  2488. *enabled = 0;
  2489. *running = 0;
  2490. mutex_lock(&event->child_mutex);
  2491. total += perf_event_read(event);
  2492. *enabled += event->total_time_enabled +
  2493. atomic64_read(&event->child_total_time_enabled);
  2494. *running += event->total_time_running +
  2495. atomic64_read(&event->child_total_time_running);
  2496. list_for_each_entry(child, &event->child_list, child_list) {
  2497. total += perf_event_read(child);
  2498. *enabled += child->total_time_enabled;
  2499. *running += child->total_time_running;
  2500. }
  2501. mutex_unlock(&event->child_mutex);
  2502. return total;
  2503. }
  2504. EXPORT_SYMBOL_GPL(perf_event_read_value);
  2505. static int perf_event_read_group(struct perf_event *event,
  2506. u64 read_format, char __user *buf)
  2507. {
  2508. struct perf_event *leader = event->group_leader, *sub;
  2509. int n = 0, size = 0, ret = -EFAULT;
  2510. struct perf_event_context *ctx = leader->ctx;
  2511. u64 values[5];
  2512. u64 count, enabled, running;
  2513. mutex_lock(&ctx->mutex);
  2514. count = perf_event_read_value(leader, &enabled, &running);
  2515. values[n++] = 1 + leader->nr_siblings;
  2516. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2517. values[n++] = enabled;
  2518. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2519. values[n++] = running;
  2520. values[n++] = count;
  2521. if (read_format & PERF_FORMAT_ID)
  2522. values[n++] = primary_event_id(leader);
  2523. size = n * sizeof(u64);
  2524. if (copy_to_user(buf, values, size))
  2525. goto unlock;
  2526. ret = size;
  2527. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2528. n = 0;
  2529. values[n++] = perf_event_read_value(sub, &enabled, &running);
  2530. if (read_format & PERF_FORMAT_ID)
  2531. values[n++] = primary_event_id(sub);
  2532. size = n * sizeof(u64);
  2533. if (copy_to_user(buf + ret, values, size)) {
  2534. ret = -EFAULT;
  2535. goto unlock;
  2536. }
  2537. ret += size;
  2538. }
  2539. unlock:
  2540. mutex_unlock(&ctx->mutex);
  2541. return ret;
  2542. }
  2543. static int perf_event_read_one(struct perf_event *event,
  2544. u64 read_format, char __user *buf)
  2545. {
  2546. u64 enabled, running;
  2547. u64 values[4];
  2548. int n = 0;
  2549. values[n++] = perf_event_read_value(event, &enabled, &running);
  2550. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2551. values[n++] = enabled;
  2552. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2553. values[n++] = running;
  2554. if (read_format & PERF_FORMAT_ID)
  2555. values[n++] = primary_event_id(event);
  2556. if (copy_to_user(buf, values, n * sizeof(u64)))
  2557. return -EFAULT;
  2558. return n * sizeof(u64);
  2559. }
  2560. /*
  2561. * Read the performance event - simple non blocking version for now
  2562. */
  2563. static ssize_t
  2564. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  2565. {
  2566. u64 read_format = event->attr.read_format;
  2567. int ret;
  2568. /*
  2569. * Return end-of-file for a read on a event that is in
  2570. * error state (i.e. because it was pinned but it couldn't be
  2571. * scheduled on to the CPU at some point).
  2572. */
  2573. if (event->state == PERF_EVENT_STATE_ERROR)
  2574. return 0;
  2575. if (count < event->read_size)
  2576. return -ENOSPC;
  2577. WARN_ON_ONCE(event->ctx->parent_ctx);
  2578. if (read_format & PERF_FORMAT_GROUP)
  2579. ret = perf_event_read_group(event, read_format, buf);
  2580. else
  2581. ret = perf_event_read_one(event, read_format, buf);
  2582. return ret;
  2583. }
  2584. static ssize_t
  2585. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  2586. {
  2587. struct perf_event *event = file->private_data;
  2588. return perf_read_hw(event, buf, count);
  2589. }
  2590. static unsigned int perf_poll(struct file *file, poll_table *wait)
  2591. {
  2592. struct perf_event *event = file->private_data;
  2593. struct ring_buffer *rb;
  2594. unsigned int events = POLL_HUP;
  2595. /*
  2596. * Race between perf_event_set_output() and perf_poll(): perf_poll()
  2597. * grabs the rb reference but perf_event_set_output() overrides it.
  2598. * Here is the timeline for two threads T1, T2:
  2599. * t0: T1, rb = rcu_dereference(event->rb)
  2600. * t1: T2, old_rb = event->rb
  2601. * t2: T2, event->rb = new rb
  2602. * t3: T2, ring_buffer_detach(old_rb)
  2603. * t4: T1, ring_buffer_attach(rb1)
  2604. * t5: T1, poll_wait(event->waitq)
  2605. *
  2606. * To avoid this problem, we grab mmap_mutex in perf_poll()
  2607. * thereby ensuring that the assignment of the new ring buffer
  2608. * and the detachment of the old buffer appear atomic to perf_poll()
  2609. */
  2610. mutex_lock(&event->mmap_mutex);
  2611. rcu_read_lock();
  2612. rb = rcu_dereference(event->rb);
  2613. if (rb) {
  2614. ring_buffer_attach(event, rb);
  2615. events = atomic_xchg(&rb->poll, 0);
  2616. }
  2617. rcu_read_unlock();
  2618. mutex_unlock(&event->mmap_mutex);
  2619. poll_wait(file, &event->waitq, wait);
  2620. return events;
  2621. }
  2622. static void perf_event_reset(struct perf_event *event)
  2623. {
  2624. (void)perf_event_read(event);
  2625. local64_set(&event->count, 0);
  2626. perf_event_update_userpage(event);
  2627. }
  2628. /*
  2629. * Holding the top-level event's child_mutex means that any
  2630. * descendant process that has inherited this event will block
  2631. * in sync_child_event if it goes to exit, thus satisfying the
  2632. * task existence requirements of perf_event_enable/disable.
  2633. */
  2634. static void perf_event_for_each_child(struct perf_event *event,
  2635. void (*func)(struct perf_event *))
  2636. {
  2637. struct perf_event *child;
  2638. WARN_ON_ONCE(event->ctx->parent_ctx);
  2639. mutex_lock(&event->child_mutex);
  2640. func(event);
  2641. list_for_each_entry(child, &event->child_list, child_list)
  2642. func(child);
  2643. mutex_unlock(&event->child_mutex);
  2644. }
  2645. static void perf_event_for_each(struct perf_event *event,
  2646. void (*func)(struct perf_event *))
  2647. {
  2648. struct perf_event_context *ctx = event->ctx;
  2649. struct perf_event *sibling;
  2650. WARN_ON_ONCE(ctx->parent_ctx);
  2651. mutex_lock(&ctx->mutex);
  2652. event = event->group_leader;
  2653. perf_event_for_each_child(event, func);
  2654. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  2655. perf_event_for_each_child(sibling, func);
  2656. mutex_unlock(&ctx->mutex);
  2657. }
  2658. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  2659. {
  2660. struct perf_event_context *ctx = event->ctx;
  2661. int ret = 0;
  2662. u64 value;
  2663. if (!is_sampling_event(event))
  2664. return -EINVAL;
  2665. if (copy_from_user(&value, arg, sizeof(value)))
  2666. return -EFAULT;
  2667. if (!value)
  2668. return -EINVAL;
  2669. raw_spin_lock_irq(&ctx->lock);
  2670. if (event->attr.freq) {
  2671. if (value > sysctl_perf_event_sample_rate) {
  2672. ret = -EINVAL;
  2673. goto unlock;
  2674. }
  2675. event->attr.sample_freq = value;
  2676. } else {
  2677. event->attr.sample_period = value;
  2678. event->hw.sample_period = value;
  2679. }
  2680. unlock:
  2681. raw_spin_unlock_irq(&ctx->lock);
  2682. return ret;
  2683. }
  2684. static const struct file_operations perf_fops;
  2685. static struct perf_event *perf_fget_light(int fd, int *fput_needed)
  2686. {
  2687. struct file *file;
  2688. file = fget_light(fd, fput_needed);
  2689. if (!file)
  2690. return ERR_PTR(-EBADF);
  2691. if (file->f_op != &perf_fops) {
  2692. fput_light(file, *fput_needed);
  2693. *fput_needed = 0;
  2694. return ERR_PTR(-EBADF);
  2695. }
  2696. return file->private_data;
  2697. }
  2698. static int perf_event_set_output(struct perf_event *event,
  2699. struct perf_event *output_event);
  2700. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  2701. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2702. {
  2703. struct perf_event *event = file->private_data;
  2704. void (*func)(struct perf_event *);
  2705. u32 flags = arg;
  2706. switch (cmd) {
  2707. case PERF_EVENT_IOC_ENABLE:
  2708. func = perf_event_enable;
  2709. break;
  2710. case PERF_EVENT_IOC_DISABLE:
  2711. func = perf_event_disable;
  2712. break;
  2713. case PERF_EVENT_IOC_RESET:
  2714. func = perf_event_reset;
  2715. break;
  2716. case PERF_EVENT_IOC_REFRESH:
  2717. return perf_event_refresh(event, arg);
  2718. case PERF_EVENT_IOC_PERIOD:
  2719. return perf_event_period(event, (u64 __user *)arg);
  2720. case PERF_EVENT_IOC_SET_OUTPUT:
  2721. {
  2722. struct perf_event *output_event = NULL;
  2723. int fput_needed = 0;
  2724. int ret;
  2725. if (arg != -1) {
  2726. output_event = perf_fget_light(arg, &fput_needed);
  2727. if (IS_ERR(output_event))
  2728. return PTR_ERR(output_event);
  2729. }
  2730. ret = perf_event_set_output(event, output_event);
  2731. if (output_event)
  2732. fput_light(output_event->filp, fput_needed);
  2733. return ret;
  2734. }
  2735. case PERF_EVENT_IOC_SET_FILTER:
  2736. return perf_event_set_filter(event, (void __user *)arg);
  2737. default:
  2738. return -ENOTTY;
  2739. }
  2740. if (flags & PERF_IOC_FLAG_GROUP)
  2741. perf_event_for_each(event, func);
  2742. else
  2743. perf_event_for_each_child(event, func);
  2744. return 0;
  2745. }
  2746. int perf_event_task_enable(void)
  2747. {
  2748. struct perf_event *event;
  2749. mutex_lock(&current->perf_event_mutex);
  2750. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2751. perf_event_for_each_child(event, perf_event_enable);
  2752. mutex_unlock(&current->perf_event_mutex);
  2753. return 0;
  2754. }
  2755. int perf_event_task_disable(void)
  2756. {
  2757. struct perf_event *event;
  2758. mutex_lock(&current->perf_event_mutex);
  2759. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2760. perf_event_for_each_child(event, perf_event_disable);
  2761. mutex_unlock(&current->perf_event_mutex);
  2762. return 0;
  2763. }
  2764. static int perf_event_index(struct perf_event *event)
  2765. {
  2766. if (event->hw.state & PERF_HES_STOPPED)
  2767. return 0;
  2768. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2769. return 0;
  2770. return event->pmu->event_idx(event);
  2771. }
  2772. static void calc_timer_values(struct perf_event *event,
  2773. u64 *now,
  2774. u64 *enabled,
  2775. u64 *running)
  2776. {
  2777. u64 ctx_time;
  2778. *now = perf_clock();
  2779. ctx_time = event->shadow_ctx_time + *now;
  2780. *enabled = ctx_time - event->tstamp_enabled;
  2781. *running = ctx_time - event->tstamp_running;
  2782. }
  2783. void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
  2784. {
  2785. }
  2786. /*
  2787. * Callers need to ensure there can be no nesting of this function, otherwise
  2788. * the seqlock logic goes bad. We can not serialize this because the arch
  2789. * code calls this from NMI context.
  2790. */
  2791. void perf_event_update_userpage(struct perf_event *event)
  2792. {
  2793. struct perf_event_mmap_page *userpg;
  2794. struct ring_buffer *rb;
  2795. u64 enabled, running, now;
  2796. rcu_read_lock();
  2797. /*
  2798. * compute total_time_enabled, total_time_running
  2799. * based on snapshot values taken when the event
  2800. * was last scheduled in.
  2801. *
  2802. * we cannot simply called update_context_time()
  2803. * because of locking issue as we can be called in
  2804. * NMI context
  2805. */
  2806. calc_timer_values(event, &now, &enabled, &running);
  2807. rb = rcu_dereference(event->rb);
  2808. if (!rb)
  2809. goto unlock;
  2810. userpg = rb->user_page;
  2811. /*
  2812. * Disable preemption so as to not let the corresponding user-space
  2813. * spin too long if we get preempted.
  2814. */
  2815. preempt_disable();
  2816. ++userpg->lock;
  2817. barrier();
  2818. userpg->index = perf_event_index(event);
  2819. userpg->offset = perf_event_count(event);
  2820. if (userpg->index)
  2821. userpg->offset -= local64_read(&event->hw.prev_count);
  2822. userpg->time_enabled = enabled +
  2823. atomic64_read(&event->child_total_time_enabled);
  2824. userpg->time_running = running +
  2825. atomic64_read(&event->child_total_time_running);
  2826. arch_perf_update_userpage(userpg, now);
  2827. barrier();
  2828. ++userpg->lock;
  2829. preempt_enable();
  2830. unlock:
  2831. rcu_read_unlock();
  2832. }
  2833. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  2834. {
  2835. struct perf_event *event = vma->vm_file->private_data;
  2836. struct ring_buffer *rb;
  2837. int ret = VM_FAULT_SIGBUS;
  2838. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  2839. if (vmf->pgoff == 0)
  2840. ret = 0;
  2841. return ret;
  2842. }
  2843. rcu_read_lock();
  2844. rb = rcu_dereference(event->rb);
  2845. if (!rb)
  2846. goto unlock;
  2847. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  2848. goto unlock;
  2849. vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
  2850. if (!vmf->page)
  2851. goto unlock;
  2852. get_page(vmf->page);
  2853. vmf->page->mapping = vma->vm_file->f_mapping;
  2854. vmf->page->index = vmf->pgoff;
  2855. ret = 0;
  2856. unlock:
  2857. rcu_read_unlock();
  2858. return ret;
  2859. }
  2860. static void ring_buffer_attach(struct perf_event *event,
  2861. struct ring_buffer *rb)
  2862. {
  2863. unsigned long flags;
  2864. if (!list_empty(&event->rb_entry))
  2865. return;
  2866. spin_lock_irqsave(&rb->event_lock, flags);
  2867. if (!list_empty(&event->rb_entry))
  2868. goto unlock;
  2869. list_add(&event->rb_entry, &rb->event_list);
  2870. unlock:
  2871. spin_unlock_irqrestore(&rb->event_lock, flags);
  2872. }
  2873. static void ring_buffer_detach(struct perf_event *event,
  2874. struct ring_buffer *rb)
  2875. {
  2876. unsigned long flags;
  2877. if (list_empty(&event->rb_entry))
  2878. return;
  2879. spin_lock_irqsave(&rb->event_lock, flags);
  2880. list_del_init(&event->rb_entry);
  2881. wake_up_all(&event->waitq);
  2882. spin_unlock_irqrestore(&rb->event_lock, flags);
  2883. }
  2884. static void ring_buffer_wakeup(struct perf_event *event)
  2885. {
  2886. struct ring_buffer *rb;
  2887. rcu_read_lock();
  2888. rb = rcu_dereference(event->rb);
  2889. if (!rb)
  2890. goto unlock;
  2891. list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
  2892. wake_up_all(&event->waitq);
  2893. unlock:
  2894. rcu_read_unlock();
  2895. }
  2896. static void rb_free_rcu(struct rcu_head *rcu_head)
  2897. {
  2898. struct ring_buffer *rb;
  2899. rb = container_of(rcu_head, struct ring_buffer, rcu_head);
  2900. rb_free(rb);
  2901. }
  2902. static struct ring_buffer *ring_buffer_get(struct perf_event *event)
  2903. {
  2904. struct ring_buffer *rb;
  2905. rcu_read_lock();
  2906. rb = rcu_dereference(event->rb);
  2907. if (rb) {
  2908. if (!atomic_inc_not_zero(&rb->refcount))
  2909. rb = NULL;
  2910. }
  2911. rcu_read_unlock();
  2912. return rb;
  2913. }
  2914. static void ring_buffer_put(struct ring_buffer *rb)
  2915. {
  2916. struct perf_event *event, *n;
  2917. unsigned long flags;
  2918. if (!atomic_dec_and_test(&rb->refcount))
  2919. return;
  2920. spin_lock_irqsave(&rb->event_lock, flags);
  2921. list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
  2922. list_del_init(&event->rb_entry);
  2923. wake_up_all(&event->waitq);
  2924. }
  2925. spin_unlock_irqrestore(&rb->event_lock, flags);
  2926. call_rcu(&rb->rcu_head, rb_free_rcu);
  2927. }
  2928. static void perf_mmap_open(struct vm_area_struct *vma)
  2929. {
  2930. struct perf_event *event = vma->vm_file->private_data;
  2931. atomic_inc(&event->mmap_count);
  2932. }
  2933. static void perf_mmap_close(struct vm_area_struct *vma)
  2934. {
  2935. struct perf_event *event = vma->vm_file->private_data;
  2936. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  2937. unsigned long size = perf_data_size(event->rb);
  2938. struct user_struct *user = event->mmap_user;
  2939. struct ring_buffer *rb = event->rb;
  2940. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  2941. vma->vm_mm->pinned_vm -= event->mmap_locked;
  2942. rcu_assign_pointer(event->rb, NULL);
  2943. ring_buffer_detach(event, rb);
  2944. mutex_unlock(&event->mmap_mutex);
  2945. ring_buffer_put(rb);
  2946. free_uid(user);
  2947. }
  2948. }
  2949. static const struct vm_operations_struct perf_mmap_vmops = {
  2950. .open = perf_mmap_open,
  2951. .close = perf_mmap_close,
  2952. .fault = perf_mmap_fault,
  2953. .page_mkwrite = perf_mmap_fault,
  2954. };
  2955. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  2956. {
  2957. struct perf_event *event = file->private_data;
  2958. unsigned long user_locked, user_lock_limit;
  2959. struct user_struct *user = current_user();
  2960. unsigned long locked, lock_limit;
  2961. struct ring_buffer *rb;
  2962. unsigned long vma_size;
  2963. unsigned long nr_pages;
  2964. long user_extra, extra;
  2965. int ret = 0, flags = 0;
  2966. /*
  2967. * Don't allow mmap() of inherited per-task counters. This would
  2968. * create a performance issue due to all children writing to the
  2969. * same rb.
  2970. */
  2971. if (event->cpu == -1 && event->attr.inherit)
  2972. return -EINVAL;
  2973. if (!(vma->vm_flags & VM_SHARED))
  2974. return -EINVAL;
  2975. vma_size = vma->vm_end - vma->vm_start;
  2976. nr_pages = (vma_size / PAGE_SIZE) - 1;
  2977. /*
  2978. * If we have rb pages ensure they're a power-of-two number, so we
  2979. * can do bitmasks instead of modulo.
  2980. */
  2981. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  2982. return -EINVAL;
  2983. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  2984. return -EINVAL;
  2985. if (vma->vm_pgoff != 0)
  2986. return -EINVAL;
  2987. WARN_ON_ONCE(event->ctx->parent_ctx);
  2988. mutex_lock(&event->mmap_mutex);
  2989. if (event->rb) {
  2990. if (event->rb->nr_pages == nr_pages)
  2991. atomic_inc(&event->rb->refcount);
  2992. else
  2993. ret = -EINVAL;
  2994. goto unlock;
  2995. }
  2996. user_extra = nr_pages + 1;
  2997. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  2998. /*
  2999. * Increase the limit linearly with more CPUs:
  3000. */
  3001. user_lock_limit *= num_online_cpus();
  3002. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  3003. extra = 0;
  3004. if (user_locked > user_lock_limit)
  3005. extra = user_locked - user_lock_limit;
  3006. lock_limit = rlimit(RLIMIT_MEMLOCK);
  3007. lock_limit >>= PAGE_SHIFT;
  3008. locked = vma->vm_mm->pinned_vm + extra;
  3009. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  3010. !capable(CAP_IPC_LOCK)) {
  3011. ret = -EPERM;
  3012. goto unlock;
  3013. }
  3014. WARN_ON(event->rb);
  3015. if (vma->vm_flags & VM_WRITE)
  3016. flags |= RING_BUFFER_WRITABLE;
  3017. rb = rb_alloc(nr_pages,
  3018. event->attr.watermark ? event->attr.wakeup_watermark : 0,
  3019. event->cpu, flags);
  3020. if (!rb) {
  3021. ret = -ENOMEM;
  3022. goto unlock;
  3023. }
  3024. rcu_assign_pointer(event->rb, rb);
  3025. atomic_long_add(user_extra, &user->locked_vm);
  3026. event->mmap_locked = extra;
  3027. event->mmap_user = get_current_user();
  3028. vma->vm_mm->pinned_vm += event->mmap_locked;
  3029. perf_event_update_userpage(event);
  3030. unlock:
  3031. if (!ret)
  3032. atomic_inc(&event->mmap_count);
  3033. mutex_unlock(&event->mmap_mutex);
  3034. vma->vm_flags |= VM_RESERVED;
  3035. vma->vm_ops = &perf_mmap_vmops;
  3036. return ret;
  3037. }
  3038. static int perf_fasync(int fd, struct file *filp, int on)
  3039. {
  3040. struct inode *inode = filp->f_path.dentry->d_inode;
  3041. struct perf_event *event = filp->private_data;
  3042. int retval;
  3043. mutex_lock(&inode->i_mutex);
  3044. retval = fasync_helper(fd, filp, on, &event->fasync);
  3045. mutex_unlock(&inode->i_mutex);
  3046. if (retval < 0)
  3047. return retval;
  3048. return 0;
  3049. }
  3050. static const struct file_operations perf_fops = {
  3051. .llseek = no_llseek,
  3052. .release = perf_release,
  3053. .read = perf_read,
  3054. .poll = perf_poll,
  3055. .unlocked_ioctl = perf_ioctl,
  3056. .compat_ioctl = perf_ioctl,
  3057. .mmap = perf_mmap,
  3058. .fasync = perf_fasync,
  3059. };
  3060. /*
  3061. * Perf event wakeup
  3062. *
  3063. * If there's data, ensure we set the poll() state and publish everything
  3064. * to user-space before waking everybody up.
  3065. */
  3066. void perf_event_wakeup(struct perf_event *event)
  3067. {
  3068. ring_buffer_wakeup(event);
  3069. if (event->pending_kill) {
  3070. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  3071. event->pending_kill = 0;
  3072. }
  3073. }
  3074. static void perf_pending_event(struct irq_work *entry)
  3075. {
  3076. struct perf_event *event = container_of(entry,
  3077. struct perf_event, pending);
  3078. if (event->pending_disable) {
  3079. event->pending_disable = 0;
  3080. __perf_event_disable(event);
  3081. }
  3082. if (event->pending_wakeup) {
  3083. event->pending_wakeup = 0;
  3084. perf_event_wakeup(event);
  3085. }
  3086. }
  3087. /*
  3088. * We assume there is only KVM supporting the callbacks.
  3089. * Later on, we might change it to a list if there is
  3090. * another virtualization implementation supporting the callbacks.
  3091. */
  3092. struct perf_guest_info_callbacks *perf_guest_cbs;
  3093. int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3094. {
  3095. perf_guest_cbs = cbs;
  3096. return 0;
  3097. }
  3098. EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
  3099. int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3100. {
  3101. perf_guest_cbs = NULL;
  3102. return 0;
  3103. }
  3104. EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
  3105. static void __perf_event_header__init_id(struct perf_event_header *header,
  3106. struct perf_sample_data *data,
  3107. struct perf_event *event)
  3108. {
  3109. u64 sample_type = event->attr.sample_type;
  3110. data->type = sample_type;
  3111. header->size += event->id_header_size;
  3112. if (sample_type & PERF_SAMPLE_TID) {
  3113. /* namespace issues */
  3114. data->tid_entry.pid = perf_event_pid(event, current);
  3115. data->tid_entry.tid = perf_event_tid(event, current);
  3116. }
  3117. if (sample_type & PERF_SAMPLE_TIME)
  3118. data->time = perf_clock();
  3119. if (sample_type & PERF_SAMPLE_ID)
  3120. data->id = primary_event_id(event);
  3121. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3122. data->stream_id = event->id;
  3123. if (sample_type & PERF_SAMPLE_CPU) {
  3124. data->cpu_entry.cpu = raw_smp_processor_id();
  3125. data->cpu_entry.reserved = 0;
  3126. }
  3127. }
  3128. void perf_event_header__init_id(struct perf_event_header *header,
  3129. struct perf_sample_data *data,
  3130. struct perf_event *event)
  3131. {
  3132. if (event->attr.sample_id_all)
  3133. __perf_event_header__init_id(header, data, event);
  3134. }
  3135. static void __perf_event__output_id_sample(struct perf_output_handle *handle,
  3136. struct perf_sample_data *data)
  3137. {
  3138. u64 sample_type = data->type;
  3139. if (sample_type & PERF_SAMPLE_TID)
  3140. perf_output_put(handle, data->tid_entry);
  3141. if (sample_type & PERF_SAMPLE_TIME)
  3142. perf_output_put(handle, data->time);
  3143. if (sample_type & PERF_SAMPLE_ID)
  3144. perf_output_put(handle, data->id);
  3145. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3146. perf_output_put(handle, data->stream_id);
  3147. if (sample_type & PERF_SAMPLE_CPU)
  3148. perf_output_put(handle, data->cpu_entry);
  3149. }
  3150. void perf_event__output_id_sample(struct perf_event *event,
  3151. struct perf_output_handle *handle,
  3152. struct perf_sample_data *sample)
  3153. {
  3154. if (event->attr.sample_id_all)
  3155. __perf_event__output_id_sample(handle, sample);
  3156. }
  3157. static void perf_output_read_one(struct perf_output_handle *handle,
  3158. struct perf_event *event,
  3159. u64 enabled, u64 running)
  3160. {
  3161. u64 read_format = event->attr.read_format;
  3162. u64 values[4];
  3163. int n = 0;
  3164. values[n++] = perf_event_count(event);
  3165. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  3166. values[n++] = enabled +
  3167. atomic64_read(&event->child_total_time_enabled);
  3168. }
  3169. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  3170. values[n++] = running +
  3171. atomic64_read(&event->child_total_time_running);
  3172. }
  3173. if (read_format & PERF_FORMAT_ID)
  3174. values[n++] = primary_event_id(event);
  3175. __output_copy(handle, values, n * sizeof(u64));
  3176. }
  3177. /*
  3178. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  3179. */
  3180. static void perf_output_read_group(struct perf_output_handle *handle,
  3181. struct perf_event *event,
  3182. u64 enabled, u64 running)
  3183. {
  3184. struct perf_event *leader = event->group_leader, *sub;
  3185. u64 read_format = event->attr.read_format;
  3186. u64 values[5];
  3187. int n = 0;
  3188. values[n++] = 1 + leader->nr_siblings;
  3189. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3190. values[n++] = enabled;
  3191. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  3192. values[n++] = running;
  3193. if (leader != event)
  3194. leader->pmu->read(leader);
  3195. values[n++] = perf_event_count(leader);
  3196. if (read_format & PERF_FORMAT_ID)
  3197. values[n++] = primary_event_id(leader);
  3198. __output_copy(handle, values, n * sizeof(u64));
  3199. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  3200. n = 0;
  3201. if (sub != event)
  3202. sub->pmu->read(sub);
  3203. values[n++] = perf_event_count(sub);
  3204. if (read_format & PERF_FORMAT_ID)
  3205. values[n++] = primary_event_id(sub);
  3206. __output_copy(handle, values, n * sizeof(u64));
  3207. }
  3208. }
  3209. #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
  3210. PERF_FORMAT_TOTAL_TIME_RUNNING)
  3211. static void perf_output_read(struct perf_output_handle *handle,
  3212. struct perf_event *event)
  3213. {
  3214. u64 enabled = 0, running = 0, now;
  3215. u64 read_format = event->attr.read_format;
  3216. /*
  3217. * compute total_time_enabled, total_time_running
  3218. * based on snapshot values taken when the event
  3219. * was last scheduled in.
  3220. *
  3221. * we cannot simply called update_context_time()
  3222. * because of locking issue as we are called in
  3223. * NMI context
  3224. */
  3225. if (read_format & PERF_FORMAT_TOTAL_TIMES)
  3226. calc_timer_values(event, &now, &enabled, &running);
  3227. if (event->attr.read_format & PERF_FORMAT_GROUP)
  3228. perf_output_read_group(handle, event, enabled, running);
  3229. else
  3230. perf_output_read_one(handle, event, enabled, running);
  3231. }
  3232. void perf_output_sample(struct perf_output_handle *handle,
  3233. struct perf_event_header *header,
  3234. struct perf_sample_data *data,
  3235. struct perf_event *event)
  3236. {
  3237. u64 sample_type = data->type;
  3238. perf_output_put(handle, *header);
  3239. if (sample_type & PERF_SAMPLE_IP)
  3240. perf_output_put(handle, data->ip);
  3241. if (sample_type & PERF_SAMPLE_TID)
  3242. perf_output_put(handle, data->tid_entry);
  3243. if (sample_type & PERF_SAMPLE_TIME)
  3244. perf_output_put(handle, data->time);
  3245. if (sample_type & PERF_SAMPLE_ADDR)
  3246. perf_output_put(handle, data->addr);
  3247. if (sample_type & PERF_SAMPLE_ID)
  3248. perf_output_put(handle, data->id);
  3249. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3250. perf_output_put(handle, data->stream_id);
  3251. if (sample_type & PERF_SAMPLE_CPU)
  3252. perf_output_put(handle, data->cpu_entry);
  3253. if (sample_type & PERF_SAMPLE_PERIOD)
  3254. perf_output_put(handle, data->period);
  3255. if (sample_type & PERF_SAMPLE_READ)
  3256. perf_output_read(handle, event);
  3257. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3258. if (data->callchain) {
  3259. int size = 1;
  3260. if (data->callchain)
  3261. size += data->callchain->nr;
  3262. size *= sizeof(u64);
  3263. __output_copy(handle, data->callchain, size);
  3264. } else {
  3265. u64 nr = 0;
  3266. perf_output_put(handle, nr);
  3267. }
  3268. }
  3269. if (sample_type & PERF_SAMPLE_RAW) {
  3270. if (data->raw) {
  3271. perf_output_put(handle, data->raw->size);
  3272. __output_copy(handle, data->raw->data,
  3273. data->raw->size);
  3274. } else {
  3275. struct {
  3276. u32 size;
  3277. u32 data;
  3278. } raw = {
  3279. .size = sizeof(u32),
  3280. .data = 0,
  3281. };
  3282. perf_output_put(handle, raw);
  3283. }
  3284. }
  3285. if (!event->attr.watermark) {
  3286. int wakeup_events = event->attr.wakeup_events;
  3287. if (wakeup_events) {
  3288. struct ring_buffer *rb = handle->rb;
  3289. int events = local_inc_return(&rb->events);
  3290. if (events >= wakeup_events) {
  3291. local_sub(wakeup_events, &rb->events);
  3292. local_inc(&rb->wakeup);
  3293. }
  3294. }
  3295. }
  3296. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  3297. if (data->br_stack) {
  3298. size_t size;
  3299. size = data->br_stack->nr
  3300. * sizeof(struct perf_branch_entry);
  3301. perf_output_put(handle, data->br_stack->nr);
  3302. perf_output_copy(handle, data->br_stack->entries, size);
  3303. } else {
  3304. /*
  3305. * we always store at least the value of nr
  3306. */
  3307. u64 nr = 0;
  3308. perf_output_put(handle, nr);
  3309. }
  3310. }
  3311. }
  3312. void perf_prepare_sample(struct perf_event_header *header,
  3313. struct perf_sample_data *data,
  3314. struct perf_event *event,
  3315. struct pt_regs *regs)
  3316. {
  3317. u64 sample_type = event->attr.sample_type;
  3318. header->type = PERF_RECORD_SAMPLE;
  3319. header->size = sizeof(*header) + event->header_size;
  3320. header->misc = 0;
  3321. header->misc |= perf_misc_flags(regs);
  3322. __perf_event_header__init_id(header, data, event);
  3323. if (sample_type & PERF_SAMPLE_IP)
  3324. data->ip = perf_instruction_pointer(regs);
  3325. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3326. int size = 1;
  3327. data->callchain = perf_callchain(regs);
  3328. if (data->callchain)
  3329. size += data->callchain->nr;
  3330. header->size += size * sizeof(u64);
  3331. }
  3332. if (sample_type & PERF_SAMPLE_RAW) {
  3333. int size = sizeof(u32);
  3334. if (data->raw)
  3335. size += data->raw->size;
  3336. else
  3337. size += sizeof(u32);
  3338. WARN_ON_ONCE(size & (sizeof(u64)-1));
  3339. header->size += size;
  3340. }
  3341. if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
  3342. int size = sizeof(u64); /* nr */
  3343. if (data->br_stack) {
  3344. size += data->br_stack->nr
  3345. * sizeof(struct perf_branch_entry);
  3346. }
  3347. header->size += size;
  3348. }
  3349. }
  3350. static void perf_event_output(struct perf_event *event,
  3351. struct perf_sample_data *data,
  3352. struct pt_regs *regs)
  3353. {
  3354. struct perf_output_handle handle;
  3355. struct perf_event_header header;
  3356. /* protect the callchain buffers */
  3357. rcu_read_lock();
  3358. perf_prepare_sample(&header, data, event, regs);
  3359. if (perf_output_begin(&handle, event, header.size))
  3360. goto exit;
  3361. perf_output_sample(&handle, &header, data, event);
  3362. perf_output_end(&handle);
  3363. exit:
  3364. rcu_read_unlock();
  3365. }
  3366. /*
  3367. * read event_id
  3368. */
  3369. struct perf_read_event {
  3370. struct perf_event_header header;
  3371. u32 pid;
  3372. u32 tid;
  3373. };
  3374. static void
  3375. perf_event_read_event(struct perf_event *event,
  3376. struct task_struct *task)
  3377. {
  3378. struct perf_output_handle handle;
  3379. struct perf_sample_data sample;
  3380. struct perf_read_event read_event = {
  3381. .header = {
  3382. .type = PERF_RECORD_READ,
  3383. .misc = 0,
  3384. .size = sizeof(read_event) + event->read_size,
  3385. },
  3386. .pid = perf_event_pid(event, task),
  3387. .tid = perf_event_tid(event, task),
  3388. };
  3389. int ret;
  3390. perf_event_header__init_id(&read_event.header, &sample, event);
  3391. ret = perf_output_begin(&handle, event, read_event.header.size);
  3392. if (ret)
  3393. return;
  3394. perf_output_put(&handle, read_event);
  3395. perf_output_read(&handle, event);
  3396. perf_event__output_id_sample(event, &handle, &sample);
  3397. perf_output_end(&handle);
  3398. }
  3399. /*
  3400. * task tracking -- fork/exit
  3401. *
  3402. * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
  3403. */
  3404. struct perf_task_event {
  3405. struct task_struct *task;
  3406. struct perf_event_context *task_ctx;
  3407. struct {
  3408. struct perf_event_header header;
  3409. u32 pid;
  3410. u32 ppid;
  3411. u32 tid;
  3412. u32 ptid;
  3413. u64 time;
  3414. } event_id;
  3415. };
  3416. static void perf_event_task_output(struct perf_event *event,
  3417. struct perf_task_event *task_event)
  3418. {
  3419. struct perf_output_handle handle;
  3420. struct perf_sample_data sample;
  3421. struct task_struct *task = task_event->task;
  3422. int ret, size = task_event->event_id.header.size;
  3423. perf_event_header__init_id(&task_event->event_id.header, &sample, event);
  3424. ret = perf_output_begin(&handle, event,
  3425. task_event->event_id.header.size);
  3426. if (ret)
  3427. goto out;
  3428. task_event->event_id.pid = perf_event_pid(event, task);
  3429. task_event->event_id.ppid = perf_event_pid(event, current);
  3430. task_event->event_id.tid = perf_event_tid(event, task);
  3431. task_event->event_id.ptid = perf_event_tid(event, current);
  3432. perf_output_put(&handle, task_event->event_id);
  3433. perf_event__output_id_sample(event, &handle, &sample);
  3434. perf_output_end(&handle);
  3435. out:
  3436. task_event->event_id.header.size = size;
  3437. }
  3438. static int perf_event_task_match(struct perf_event *event)
  3439. {
  3440. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3441. return 0;
  3442. if (!event_filter_match(event))
  3443. return 0;
  3444. if (event->attr.comm || event->attr.mmap ||
  3445. event->attr.mmap_data || event->attr.task)
  3446. return 1;
  3447. return 0;
  3448. }
  3449. static void perf_event_task_ctx(struct perf_event_context *ctx,
  3450. struct perf_task_event *task_event)
  3451. {
  3452. struct perf_event *event;
  3453. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3454. if (perf_event_task_match(event))
  3455. perf_event_task_output(event, task_event);
  3456. }
  3457. }
  3458. static void perf_event_task_event(struct perf_task_event *task_event)
  3459. {
  3460. struct perf_cpu_context *cpuctx;
  3461. struct perf_event_context *ctx;
  3462. struct pmu *pmu;
  3463. int ctxn;
  3464. rcu_read_lock();
  3465. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3466. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3467. if (cpuctx->active_pmu != pmu)
  3468. goto next;
  3469. perf_event_task_ctx(&cpuctx->ctx, task_event);
  3470. ctx = task_event->task_ctx;
  3471. if (!ctx) {
  3472. ctxn = pmu->task_ctx_nr;
  3473. if (ctxn < 0)
  3474. goto next;
  3475. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3476. }
  3477. if (ctx)
  3478. perf_event_task_ctx(ctx, task_event);
  3479. next:
  3480. put_cpu_ptr(pmu->pmu_cpu_context);
  3481. }
  3482. rcu_read_unlock();
  3483. }
  3484. static void perf_event_task(struct task_struct *task,
  3485. struct perf_event_context *task_ctx,
  3486. int new)
  3487. {
  3488. struct perf_task_event task_event;
  3489. if (!atomic_read(&nr_comm_events) &&
  3490. !atomic_read(&nr_mmap_events) &&
  3491. !atomic_read(&nr_task_events))
  3492. return;
  3493. task_event = (struct perf_task_event){
  3494. .task = task,
  3495. .task_ctx = task_ctx,
  3496. .event_id = {
  3497. .header = {
  3498. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  3499. .misc = 0,
  3500. .size = sizeof(task_event.event_id),
  3501. },
  3502. /* .pid */
  3503. /* .ppid */
  3504. /* .tid */
  3505. /* .ptid */
  3506. .time = perf_clock(),
  3507. },
  3508. };
  3509. perf_event_task_event(&task_event);
  3510. }
  3511. void perf_event_fork(struct task_struct *task)
  3512. {
  3513. perf_event_task(task, NULL, 1);
  3514. }
  3515. /*
  3516. * comm tracking
  3517. */
  3518. struct perf_comm_event {
  3519. struct task_struct *task;
  3520. char *comm;
  3521. int comm_size;
  3522. struct {
  3523. struct perf_event_header header;
  3524. u32 pid;
  3525. u32 tid;
  3526. } event_id;
  3527. };
  3528. static void perf_event_comm_output(struct perf_event *event,
  3529. struct perf_comm_event *comm_event)
  3530. {
  3531. struct perf_output_handle handle;
  3532. struct perf_sample_data sample;
  3533. int size = comm_event->event_id.header.size;
  3534. int ret;
  3535. perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
  3536. ret = perf_output_begin(&handle, event,
  3537. comm_event->event_id.header.size);
  3538. if (ret)
  3539. goto out;
  3540. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  3541. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  3542. perf_output_put(&handle, comm_event->event_id);
  3543. __output_copy(&handle, comm_event->comm,
  3544. comm_event->comm_size);
  3545. perf_event__output_id_sample(event, &handle, &sample);
  3546. perf_output_end(&handle);
  3547. out:
  3548. comm_event->event_id.header.size = size;
  3549. }
  3550. static int perf_event_comm_match(struct perf_event *event)
  3551. {
  3552. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3553. return 0;
  3554. if (!event_filter_match(event))
  3555. return 0;
  3556. if (event->attr.comm)
  3557. return 1;
  3558. return 0;
  3559. }
  3560. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  3561. struct perf_comm_event *comm_event)
  3562. {
  3563. struct perf_event *event;
  3564. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3565. if (perf_event_comm_match(event))
  3566. perf_event_comm_output(event, comm_event);
  3567. }
  3568. }
  3569. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  3570. {
  3571. struct perf_cpu_context *cpuctx;
  3572. struct perf_event_context *ctx;
  3573. char comm[TASK_COMM_LEN];
  3574. unsigned int size;
  3575. struct pmu *pmu;
  3576. int ctxn;
  3577. memset(comm, 0, sizeof(comm));
  3578. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  3579. size = ALIGN(strlen(comm)+1, sizeof(u64));
  3580. comm_event->comm = comm;
  3581. comm_event->comm_size = size;
  3582. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  3583. rcu_read_lock();
  3584. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3585. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3586. if (cpuctx->active_pmu != pmu)
  3587. goto next;
  3588. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  3589. ctxn = pmu->task_ctx_nr;
  3590. if (ctxn < 0)
  3591. goto next;
  3592. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3593. if (ctx)
  3594. perf_event_comm_ctx(ctx, comm_event);
  3595. next:
  3596. put_cpu_ptr(pmu->pmu_cpu_context);
  3597. }
  3598. rcu_read_unlock();
  3599. }
  3600. void perf_event_comm(struct task_struct *task)
  3601. {
  3602. struct perf_comm_event comm_event;
  3603. struct perf_event_context *ctx;
  3604. int ctxn;
  3605. for_each_task_context_nr(ctxn) {
  3606. ctx = task->perf_event_ctxp[ctxn];
  3607. if (!ctx)
  3608. continue;
  3609. perf_event_enable_on_exec(ctx);
  3610. }
  3611. if (!atomic_read(&nr_comm_events))
  3612. return;
  3613. comm_event = (struct perf_comm_event){
  3614. .task = task,
  3615. /* .comm */
  3616. /* .comm_size */
  3617. .event_id = {
  3618. .header = {
  3619. .type = PERF_RECORD_COMM,
  3620. .misc = 0,
  3621. /* .size */
  3622. },
  3623. /* .pid */
  3624. /* .tid */
  3625. },
  3626. };
  3627. perf_event_comm_event(&comm_event);
  3628. }
  3629. /*
  3630. * mmap tracking
  3631. */
  3632. struct perf_mmap_event {
  3633. struct vm_area_struct *vma;
  3634. const char *file_name;
  3635. int file_size;
  3636. struct {
  3637. struct perf_event_header header;
  3638. u32 pid;
  3639. u32 tid;
  3640. u64 start;
  3641. u64 len;
  3642. u64 pgoff;
  3643. } event_id;
  3644. };
  3645. static void perf_event_mmap_output(struct perf_event *event,
  3646. struct perf_mmap_event *mmap_event)
  3647. {
  3648. struct perf_output_handle handle;
  3649. struct perf_sample_data sample;
  3650. int size = mmap_event->event_id.header.size;
  3651. int ret;
  3652. perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
  3653. ret = perf_output_begin(&handle, event,
  3654. mmap_event->event_id.header.size);
  3655. if (ret)
  3656. goto out;
  3657. mmap_event->event_id.pid = perf_event_pid(event, current);
  3658. mmap_event->event_id.tid = perf_event_tid(event, current);
  3659. perf_output_put(&handle, mmap_event->event_id);
  3660. __output_copy(&handle, mmap_event->file_name,
  3661. mmap_event->file_size);
  3662. perf_event__output_id_sample(event, &handle, &sample);
  3663. perf_output_end(&handle);
  3664. out:
  3665. mmap_event->event_id.header.size = size;
  3666. }
  3667. static int perf_event_mmap_match(struct perf_event *event,
  3668. struct perf_mmap_event *mmap_event,
  3669. int executable)
  3670. {
  3671. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3672. return 0;
  3673. if (!event_filter_match(event))
  3674. return 0;
  3675. if ((!executable && event->attr.mmap_data) ||
  3676. (executable && event->attr.mmap))
  3677. return 1;
  3678. return 0;
  3679. }
  3680. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  3681. struct perf_mmap_event *mmap_event,
  3682. int executable)
  3683. {
  3684. struct perf_event *event;
  3685. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3686. if (perf_event_mmap_match(event, mmap_event, executable))
  3687. perf_event_mmap_output(event, mmap_event);
  3688. }
  3689. }
  3690. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  3691. {
  3692. struct perf_cpu_context *cpuctx;
  3693. struct perf_event_context *ctx;
  3694. struct vm_area_struct *vma = mmap_event->vma;
  3695. struct file *file = vma->vm_file;
  3696. unsigned int size;
  3697. char tmp[16];
  3698. char *buf = NULL;
  3699. const char *name;
  3700. struct pmu *pmu;
  3701. int ctxn;
  3702. memset(tmp, 0, sizeof(tmp));
  3703. if (file) {
  3704. /*
  3705. * d_path works from the end of the rb backwards, so we
  3706. * need to add enough zero bytes after the string to handle
  3707. * the 64bit alignment we do later.
  3708. */
  3709. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  3710. if (!buf) {
  3711. name = strncpy(tmp, "//enomem", sizeof(tmp));
  3712. goto got_name;
  3713. }
  3714. name = d_path(&file->f_path, buf, PATH_MAX);
  3715. if (IS_ERR(name)) {
  3716. name = strncpy(tmp, "//toolong", sizeof(tmp));
  3717. goto got_name;
  3718. }
  3719. } else {
  3720. if (arch_vma_name(mmap_event->vma)) {
  3721. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  3722. sizeof(tmp));
  3723. goto got_name;
  3724. }
  3725. if (!vma->vm_mm) {
  3726. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  3727. goto got_name;
  3728. } else if (vma->vm_start <= vma->vm_mm->start_brk &&
  3729. vma->vm_end >= vma->vm_mm->brk) {
  3730. name = strncpy(tmp, "[heap]", sizeof(tmp));
  3731. goto got_name;
  3732. } else if (vma->vm_start <= vma->vm_mm->start_stack &&
  3733. vma->vm_end >= vma->vm_mm->start_stack) {
  3734. name = strncpy(tmp, "[stack]", sizeof(tmp));
  3735. goto got_name;
  3736. }
  3737. name = strncpy(tmp, "//anon", sizeof(tmp));
  3738. goto got_name;
  3739. }
  3740. got_name:
  3741. size = ALIGN(strlen(name)+1, sizeof(u64));
  3742. mmap_event->file_name = name;
  3743. mmap_event->file_size = size;
  3744. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  3745. rcu_read_lock();
  3746. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3747. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3748. if (cpuctx->active_pmu != pmu)
  3749. goto next;
  3750. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
  3751. vma->vm_flags & VM_EXEC);
  3752. ctxn = pmu->task_ctx_nr;
  3753. if (ctxn < 0)
  3754. goto next;
  3755. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3756. if (ctx) {
  3757. perf_event_mmap_ctx(ctx, mmap_event,
  3758. vma->vm_flags & VM_EXEC);
  3759. }
  3760. next:
  3761. put_cpu_ptr(pmu->pmu_cpu_context);
  3762. }
  3763. rcu_read_unlock();
  3764. kfree(buf);
  3765. }
  3766. void perf_event_mmap(struct vm_area_struct *vma)
  3767. {
  3768. struct perf_mmap_event mmap_event;
  3769. if (!atomic_read(&nr_mmap_events))
  3770. return;
  3771. mmap_event = (struct perf_mmap_event){
  3772. .vma = vma,
  3773. /* .file_name */
  3774. /* .file_size */
  3775. .event_id = {
  3776. .header = {
  3777. .type = PERF_RECORD_MMAP,
  3778. .misc = PERF_RECORD_MISC_USER,
  3779. /* .size */
  3780. },
  3781. /* .pid */
  3782. /* .tid */
  3783. .start = vma->vm_start,
  3784. .len = vma->vm_end - vma->vm_start,
  3785. .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
  3786. },
  3787. };
  3788. perf_event_mmap_event(&mmap_event);
  3789. }
  3790. /*
  3791. * IRQ throttle logging
  3792. */
  3793. static void perf_log_throttle(struct perf_event *event, int enable)
  3794. {
  3795. struct perf_output_handle handle;
  3796. struct perf_sample_data sample;
  3797. int ret;
  3798. struct {
  3799. struct perf_event_header header;
  3800. u64 time;
  3801. u64 id;
  3802. u64 stream_id;
  3803. } throttle_event = {
  3804. .header = {
  3805. .type = PERF_RECORD_THROTTLE,
  3806. .misc = 0,
  3807. .size = sizeof(throttle_event),
  3808. },
  3809. .time = perf_clock(),
  3810. .id = primary_event_id(event),
  3811. .stream_id = event->id,
  3812. };
  3813. if (enable)
  3814. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  3815. perf_event_header__init_id(&throttle_event.header, &sample, event);
  3816. ret = perf_output_begin(&handle, event,
  3817. throttle_event.header.size);
  3818. if (ret)
  3819. return;
  3820. perf_output_put(&handle, throttle_event);
  3821. perf_event__output_id_sample(event, &handle, &sample);
  3822. perf_output_end(&handle);
  3823. }
  3824. /*
  3825. * Generic event overflow handling, sampling.
  3826. */
  3827. static int __perf_event_overflow(struct perf_event *event,
  3828. int throttle, struct perf_sample_data *data,
  3829. struct pt_regs *regs)
  3830. {
  3831. int events = atomic_read(&event->event_limit);
  3832. struct hw_perf_event *hwc = &event->hw;
  3833. u64 seq;
  3834. int ret = 0;
  3835. /*
  3836. * Non-sampling counters might still use the PMI to fold short
  3837. * hardware counters, ignore those.
  3838. */
  3839. if (unlikely(!is_sampling_event(event)))
  3840. return 0;
  3841. seq = __this_cpu_read(perf_throttled_seq);
  3842. if (seq != hwc->interrupts_seq) {
  3843. hwc->interrupts_seq = seq;
  3844. hwc->interrupts = 1;
  3845. } else {
  3846. hwc->interrupts++;
  3847. if (unlikely(throttle
  3848. && hwc->interrupts >= max_samples_per_tick)) {
  3849. __this_cpu_inc(perf_throttled_count);
  3850. hwc->interrupts = MAX_INTERRUPTS;
  3851. perf_log_throttle(event, 0);
  3852. ret = 1;
  3853. }
  3854. }
  3855. if (event->attr.freq) {
  3856. u64 now = perf_clock();
  3857. s64 delta = now - hwc->freq_time_stamp;
  3858. hwc->freq_time_stamp = now;
  3859. if (delta > 0 && delta < 2*TICK_NSEC)
  3860. perf_adjust_period(event, delta, hwc->last_period, true);
  3861. }
  3862. /*
  3863. * XXX event_limit might not quite work as expected on inherited
  3864. * events
  3865. */
  3866. event->pending_kill = POLL_IN;
  3867. if (events && atomic_dec_and_test(&event->event_limit)) {
  3868. ret = 1;
  3869. event->pending_kill = POLL_HUP;
  3870. event->pending_disable = 1;
  3871. irq_work_queue(&event->pending);
  3872. }
  3873. if (event->overflow_handler)
  3874. event->overflow_handler(event, data, regs);
  3875. else
  3876. perf_event_output(event, data, regs);
  3877. if (event->fasync && event->pending_kill) {
  3878. event->pending_wakeup = 1;
  3879. irq_work_queue(&event->pending);
  3880. }
  3881. return ret;
  3882. }
  3883. int perf_event_overflow(struct perf_event *event,
  3884. struct perf_sample_data *data,
  3885. struct pt_regs *regs)
  3886. {
  3887. return __perf_event_overflow(event, 1, data, regs);
  3888. }
  3889. /*
  3890. * Generic software event infrastructure
  3891. */
  3892. struct swevent_htable {
  3893. struct swevent_hlist *swevent_hlist;
  3894. struct mutex hlist_mutex;
  3895. int hlist_refcount;
  3896. /* Recursion avoidance in each contexts */
  3897. int recursion[PERF_NR_CONTEXTS];
  3898. };
  3899. static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
  3900. /*
  3901. * We directly increment event->count and keep a second value in
  3902. * event->hw.period_left to count intervals. This period event
  3903. * is kept in the range [-sample_period, 0] so that we can use the
  3904. * sign as trigger.
  3905. */
  3906. static u64 perf_swevent_set_period(struct perf_event *event)
  3907. {
  3908. struct hw_perf_event *hwc = &event->hw;
  3909. u64 period = hwc->last_period;
  3910. u64 nr, offset;
  3911. s64 old, val;
  3912. hwc->last_period = hwc->sample_period;
  3913. again:
  3914. old = val = local64_read(&hwc->period_left);
  3915. if (val < 0)
  3916. return 0;
  3917. nr = div64_u64(period + val, period);
  3918. offset = nr * period;
  3919. val -= offset;
  3920. if (local64_cmpxchg(&hwc->period_left, old, val) != old)
  3921. goto again;
  3922. return nr;
  3923. }
  3924. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  3925. struct perf_sample_data *data,
  3926. struct pt_regs *regs)
  3927. {
  3928. struct hw_perf_event *hwc = &event->hw;
  3929. int throttle = 0;
  3930. if (!overflow)
  3931. overflow = perf_swevent_set_period(event);
  3932. if (hwc->interrupts == MAX_INTERRUPTS)
  3933. return;
  3934. for (; overflow; overflow--) {
  3935. if (__perf_event_overflow(event, throttle,
  3936. data, regs)) {
  3937. /*
  3938. * We inhibit the overflow from happening when
  3939. * hwc->interrupts == MAX_INTERRUPTS.
  3940. */
  3941. break;
  3942. }
  3943. throttle = 1;
  3944. }
  3945. }
  3946. static void perf_swevent_event(struct perf_event *event, u64 nr,
  3947. struct perf_sample_data *data,
  3948. struct pt_regs *regs)
  3949. {
  3950. struct hw_perf_event *hwc = &event->hw;
  3951. local64_add(nr, &event->count);
  3952. if (!regs)
  3953. return;
  3954. if (!is_sampling_event(event))
  3955. return;
  3956. if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
  3957. data->period = nr;
  3958. return perf_swevent_overflow(event, 1, data, regs);
  3959. } else
  3960. data->period = event->hw.last_period;
  3961. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  3962. return perf_swevent_overflow(event, 1, data, regs);
  3963. if (local64_add_negative(nr, &hwc->period_left))
  3964. return;
  3965. perf_swevent_overflow(event, 0, data, regs);
  3966. }
  3967. static int perf_exclude_event(struct perf_event *event,
  3968. struct pt_regs *regs)
  3969. {
  3970. if (event->hw.state & PERF_HES_STOPPED)
  3971. return 1;
  3972. if (regs) {
  3973. if (event->attr.exclude_user && user_mode(regs))
  3974. return 1;
  3975. if (event->attr.exclude_kernel && !user_mode(regs))
  3976. return 1;
  3977. }
  3978. return 0;
  3979. }
  3980. static int perf_swevent_match(struct perf_event *event,
  3981. enum perf_type_id type,
  3982. u32 event_id,
  3983. struct perf_sample_data *data,
  3984. struct pt_regs *regs)
  3985. {
  3986. if (event->attr.type != type)
  3987. return 0;
  3988. if (event->attr.config != event_id)
  3989. return 0;
  3990. if (perf_exclude_event(event, regs))
  3991. return 0;
  3992. return 1;
  3993. }
  3994. static inline u64 swevent_hash(u64 type, u32 event_id)
  3995. {
  3996. u64 val = event_id | (type << 32);
  3997. return hash_64(val, SWEVENT_HLIST_BITS);
  3998. }
  3999. static inline struct hlist_head *
  4000. __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
  4001. {
  4002. u64 hash = swevent_hash(type, event_id);
  4003. return &hlist->heads[hash];
  4004. }
  4005. /* For the read side: events when they trigger */
  4006. static inline struct hlist_head *
  4007. find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
  4008. {
  4009. struct swevent_hlist *hlist;
  4010. hlist = rcu_dereference(swhash->swevent_hlist);
  4011. if (!hlist)
  4012. return NULL;
  4013. return __find_swevent_head(hlist, type, event_id);
  4014. }
  4015. /* For the event head insertion and removal in the hlist */
  4016. static inline struct hlist_head *
  4017. find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
  4018. {
  4019. struct swevent_hlist *hlist;
  4020. u32 event_id = event->attr.config;
  4021. u64 type = event->attr.type;
  4022. /*
  4023. * Event scheduling is always serialized against hlist allocation
  4024. * and release. Which makes the protected version suitable here.
  4025. * The context lock guarantees that.
  4026. */
  4027. hlist = rcu_dereference_protected(swhash->swevent_hlist,
  4028. lockdep_is_held(&event->ctx->lock));
  4029. if (!hlist)
  4030. return NULL;
  4031. return __find_swevent_head(hlist, type, event_id);
  4032. }
  4033. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  4034. u64 nr,
  4035. struct perf_sample_data *data,
  4036. struct pt_regs *regs)
  4037. {
  4038. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4039. struct perf_event *event;
  4040. struct hlist_node *node;
  4041. struct hlist_head *head;
  4042. rcu_read_lock();
  4043. head = find_swevent_head_rcu(swhash, type, event_id);
  4044. if (!head)
  4045. goto end;
  4046. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  4047. if (perf_swevent_match(event, type, event_id, data, regs))
  4048. perf_swevent_event(event, nr, data, regs);
  4049. }
  4050. end:
  4051. rcu_read_unlock();
  4052. }
  4053. int perf_swevent_get_recursion_context(void)
  4054. {
  4055. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4056. return get_recursion_context(swhash->recursion);
  4057. }
  4058. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  4059. inline void perf_swevent_put_recursion_context(int rctx)
  4060. {
  4061. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4062. put_recursion_context(swhash->recursion, rctx);
  4063. }
  4064. void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
  4065. {
  4066. struct perf_sample_data data;
  4067. int rctx;
  4068. preempt_disable_notrace();
  4069. rctx = perf_swevent_get_recursion_context();
  4070. if (rctx < 0)
  4071. return;
  4072. perf_sample_data_init(&data, addr, 0);
  4073. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
  4074. perf_swevent_put_recursion_context(rctx);
  4075. preempt_enable_notrace();
  4076. }
  4077. static void perf_swevent_read(struct perf_event *event)
  4078. {
  4079. }
  4080. static int perf_swevent_add(struct perf_event *event, int flags)
  4081. {
  4082. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4083. struct hw_perf_event *hwc = &event->hw;
  4084. struct hlist_head *head;
  4085. if (is_sampling_event(event)) {
  4086. hwc->last_period = hwc->sample_period;
  4087. perf_swevent_set_period(event);
  4088. }
  4089. hwc->state = !(flags & PERF_EF_START);
  4090. head = find_swevent_head(swhash, event);
  4091. if (WARN_ON_ONCE(!head))
  4092. return -EINVAL;
  4093. hlist_add_head_rcu(&event->hlist_entry, head);
  4094. return 0;
  4095. }
  4096. static void perf_swevent_del(struct perf_event *event, int flags)
  4097. {
  4098. hlist_del_rcu(&event->hlist_entry);
  4099. }
  4100. static void perf_swevent_start(struct perf_event *event, int flags)
  4101. {
  4102. event->hw.state = 0;
  4103. }
  4104. static void perf_swevent_stop(struct perf_event *event, int flags)
  4105. {
  4106. event->hw.state = PERF_HES_STOPPED;
  4107. }
  4108. /* Deref the hlist from the update side */
  4109. static inline struct swevent_hlist *
  4110. swevent_hlist_deref(struct swevent_htable *swhash)
  4111. {
  4112. return rcu_dereference_protected(swhash->swevent_hlist,
  4113. lockdep_is_held(&swhash->hlist_mutex));
  4114. }
  4115. static void swevent_hlist_release(struct swevent_htable *swhash)
  4116. {
  4117. struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
  4118. if (!hlist)
  4119. return;
  4120. rcu_assign_pointer(swhash->swevent_hlist, NULL);
  4121. kfree_rcu(hlist, rcu_head);
  4122. }
  4123. static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
  4124. {
  4125. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4126. mutex_lock(&swhash->hlist_mutex);
  4127. if (!--swhash->hlist_refcount)
  4128. swevent_hlist_release(swhash);
  4129. mutex_unlock(&swhash->hlist_mutex);
  4130. }
  4131. static void swevent_hlist_put(struct perf_event *event)
  4132. {
  4133. int cpu;
  4134. if (event->cpu != -1) {
  4135. swevent_hlist_put_cpu(event, event->cpu);
  4136. return;
  4137. }
  4138. for_each_possible_cpu(cpu)
  4139. swevent_hlist_put_cpu(event, cpu);
  4140. }
  4141. static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
  4142. {
  4143. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4144. int err = 0;
  4145. mutex_lock(&swhash->hlist_mutex);
  4146. if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
  4147. struct swevent_hlist *hlist;
  4148. hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
  4149. if (!hlist) {
  4150. err = -ENOMEM;
  4151. goto exit;
  4152. }
  4153. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  4154. }
  4155. swhash->hlist_refcount++;
  4156. exit:
  4157. mutex_unlock(&swhash->hlist_mutex);
  4158. return err;
  4159. }
  4160. static int swevent_hlist_get(struct perf_event *event)
  4161. {
  4162. int err;
  4163. int cpu, failed_cpu;
  4164. if (event->cpu != -1)
  4165. return swevent_hlist_get_cpu(event, event->cpu);
  4166. get_online_cpus();
  4167. for_each_possible_cpu(cpu) {
  4168. err = swevent_hlist_get_cpu(event, cpu);
  4169. if (err) {
  4170. failed_cpu = cpu;
  4171. goto fail;
  4172. }
  4173. }
  4174. put_online_cpus();
  4175. return 0;
  4176. fail:
  4177. for_each_possible_cpu(cpu) {
  4178. if (cpu == failed_cpu)
  4179. break;
  4180. swevent_hlist_put_cpu(event, cpu);
  4181. }
  4182. put_online_cpus();
  4183. return err;
  4184. }
  4185. struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
  4186. static void sw_perf_event_destroy(struct perf_event *event)
  4187. {
  4188. u64 event_id = event->attr.config;
  4189. WARN_ON(event->parent);
  4190. static_key_slow_dec(&perf_swevent_enabled[event_id]);
  4191. swevent_hlist_put(event);
  4192. }
  4193. static int perf_swevent_init(struct perf_event *event)
  4194. {
  4195. int event_id = event->attr.config;
  4196. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4197. return -ENOENT;
  4198. /*
  4199. * no branch sampling for software events
  4200. */
  4201. if (has_branch_stack(event))
  4202. return -EOPNOTSUPP;
  4203. switch (event_id) {
  4204. case PERF_COUNT_SW_CPU_CLOCK:
  4205. case PERF_COUNT_SW_TASK_CLOCK:
  4206. return -ENOENT;
  4207. default:
  4208. break;
  4209. }
  4210. if (event_id >= PERF_COUNT_SW_MAX)
  4211. return -ENOENT;
  4212. if (!event->parent) {
  4213. int err;
  4214. err = swevent_hlist_get(event);
  4215. if (err)
  4216. return err;
  4217. static_key_slow_inc(&perf_swevent_enabled[event_id]);
  4218. event->destroy = sw_perf_event_destroy;
  4219. }
  4220. return 0;
  4221. }
  4222. static int perf_swevent_event_idx(struct perf_event *event)
  4223. {
  4224. return 0;
  4225. }
  4226. static struct pmu perf_swevent = {
  4227. .task_ctx_nr = perf_sw_context,
  4228. .event_init = perf_swevent_init,
  4229. .add = perf_swevent_add,
  4230. .del = perf_swevent_del,
  4231. .start = perf_swevent_start,
  4232. .stop = perf_swevent_stop,
  4233. .read = perf_swevent_read,
  4234. .event_idx = perf_swevent_event_idx,
  4235. };
  4236. #ifdef CONFIG_EVENT_TRACING
  4237. static int perf_tp_filter_match(struct perf_event *event,
  4238. struct perf_sample_data *data)
  4239. {
  4240. void *record = data->raw->data;
  4241. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  4242. return 1;
  4243. return 0;
  4244. }
  4245. static int perf_tp_event_match(struct perf_event *event,
  4246. struct perf_sample_data *data,
  4247. struct pt_regs *regs)
  4248. {
  4249. if (event->hw.state & PERF_HES_STOPPED)
  4250. return 0;
  4251. /*
  4252. * All tracepoints are from kernel-space.
  4253. */
  4254. if (event->attr.exclude_kernel)
  4255. return 0;
  4256. if (!perf_tp_filter_match(event, data))
  4257. return 0;
  4258. return 1;
  4259. }
  4260. void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
  4261. struct pt_regs *regs, struct hlist_head *head, int rctx)
  4262. {
  4263. struct perf_sample_data data;
  4264. struct perf_event *event;
  4265. struct hlist_node *node;
  4266. struct perf_raw_record raw = {
  4267. .size = entry_size,
  4268. .data = record,
  4269. };
  4270. perf_sample_data_init(&data, addr, 0);
  4271. data.raw = &raw;
  4272. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  4273. if (perf_tp_event_match(event, &data, regs))
  4274. perf_swevent_event(event, count, &data, regs);
  4275. }
  4276. perf_swevent_put_recursion_context(rctx);
  4277. }
  4278. EXPORT_SYMBOL_GPL(perf_tp_event);
  4279. static void tp_perf_event_destroy(struct perf_event *event)
  4280. {
  4281. perf_trace_destroy(event);
  4282. }
  4283. static int perf_tp_event_init(struct perf_event *event)
  4284. {
  4285. int err;
  4286. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4287. return -ENOENT;
  4288. /*
  4289. * no branch sampling for tracepoint events
  4290. */
  4291. if (has_branch_stack(event))
  4292. return -EOPNOTSUPP;
  4293. err = perf_trace_init(event);
  4294. if (err)
  4295. return err;
  4296. event->destroy = tp_perf_event_destroy;
  4297. return 0;
  4298. }
  4299. static struct pmu perf_tracepoint = {
  4300. .task_ctx_nr = perf_sw_context,
  4301. .event_init = perf_tp_event_init,
  4302. .add = perf_trace_add,
  4303. .del = perf_trace_del,
  4304. .start = perf_swevent_start,
  4305. .stop = perf_swevent_stop,
  4306. .read = perf_swevent_read,
  4307. .event_idx = perf_swevent_event_idx,
  4308. };
  4309. static inline void perf_tp_register(void)
  4310. {
  4311. perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
  4312. }
  4313. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4314. {
  4315. char *filter_str;
  4316. int ret;
  4317. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4318. return -EINVAL;
  4319. filter_str = strndup_user(arg, PAGE_SIZE);
  4320. if (IS_ERR(filter_str))
  4321. return PTR_ERR(filter_str);
  4322. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  4323. kfree(filter_str);
  4324. return ret;
  4325. }
  4326. static void perf_event_free_filter(struct perf_event *event)
  4327. {
  4328. ftrace_profile_free_filter(event);
  4329. }
  4330. #else
  4331. static inline void perf_tp_register(void)
  4332. {
  4333. }
  4334. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4335. {
  4336. return -ENOENT;
  4337. }
  4338. static void perf_event_free_filter(struct perf_event *event)
  4339. {
  4340. }
  4341. #endif /* CONFIG_EVENT_TRACING */
  4342. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  4343. void perf_bp_event(struct perf_event *bp, void *data)
  4344. {
  4345. struct perf_sample_data sample;
  4346. struct pt_regs *regs = data;
  4347. perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
  4348. if (!bp->hw.state && !perf_exclude_event(bp, regs))
  4349. perf_swevent_event(bp, 1, &sample, regs);
  4350. }
  4351. #endif
  4352. /*
  4353. * hrtimer based swevent callback
  4354. */
  4355. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  4356. {
  4357. enum hrtimer_restart ret = HRTIMER_RESTART;
  4358. struct perf_sample_data data;
  4359. struct pt_regs *regs;
  4360. struct perf_event *event;
  4361. u64 period;
  4362. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  4363. if (event->state != PERF_EVENT_STATE_ACTIVE)
  4364. return HRTIMER_NORESTART;
  4365. event->pmu->read(event);
  4366. perf_sample_data_init(&data, 0, event->hw.last_period);
  4367. regs = get_irq_regs();
  4368. if (regs && !perf_exclude_event(event, regs)) {
  4369. if (!(event->attr.exclude_idle && is_idle_task(current)))
  4370. if (__perf_event_overflow(event, 1, &data, regs))
  4371. ret = HRTIMER_NORESTART;
  4372. }
  4373. period = max_t(u64, 10000, event->hw.sample_period);
  4374. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  4375. return ret;
  4376. }
  4377. static void perf_swevent_start_hrtimer(struct perf_event *event)
  4378. {
  4379. struct hw_perf_event *hwc = &event->hw;
  4380. s64 period;
  4381. if (!is_sampling_event(event))
  4382. return;
  4383. period = local64_read(&hwc->period_left);
  4384. if (period) {
  4385. if (period < 0)
  4386. period = 10000;
  4387. local64_set(&hwc->period_left, 0);
  4388. } else {
  4389. period = max_t(u64, 10000, hwc->sample_period);
  4390. }
  4391. __hrtimer_start_range_ns(&hwc->hrtimer,
  4392. ns_to_ktime(period), 0,
  4393. HRTIMER_MODE_REL_PINNED, 0);
  4394. }
  4395. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  4396. {
  4397. struct hw_perf_event *hwc = &event->hw;
  4398. if (is_sampling_event(event)) {
  4399. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  4400. local64_set(&hwc->period_left, ktime_to_ns(remaining));
  4401. hrtimer_cancel(&hwc->hrtimer);
  4402. }
  4403. }
  4404. static void perf_swevent_init_hrtimer(struct perf_event *event)
  4405. {
  4406. struct hw_perf_event *hwc = &event->hw;
  4407. if (!is_sampling_event(event))
  4408. return;
  4409. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  4410. hwc->hrtimer.function = perf_swevent_hrtimer;
  4411. /*
  4412. * Since hrtimers have a fixed rate, we can do a static freq->period
  4413. * mapping and avoid the whole period adjust feedback stuff.
  4414. */
  4415. if (event->attr.freq) {
  4416. long freq = event->attr.sample_freq;
  4417. event->attr.sample_period = NSEC_PER_SEC / freq;
  4418. hwc->sample_period = event->attr.sample_period;
  4419. local64_set(&hwc->period_left, hwc->sample_period);
  4420. event->attr.freq = 0;
  4421. }
  4422. }
  4423. /*
  4424. * Software event: cpu wall time clock
  4425. */
  4426. static void cpu_clock_event_update(struct perf_event *event)
  4427. {
  4428. s64 prev;
  4429. u64 now;
  4430. now = local_clock();
  4431. prev = local64_xchg(&event->hw.prev_count, now);
  4432. local64_add(now - prev, &event->count);
  4433. }
  4434. static void cpu_clock_event_start(struct perf_event *event, int flags)
  4435. {
  4436. local64_set(&event->hw.prev_count, local_clock());
  4437. perf_swevent_start_hrtimer(event);
  4438. }
  4439. static void cpu_clock_event_stop(struct perf_event *event, int flags)
  4440. {
  4441. perf_swevent_cancel_hrtimer(event);
  4442. cpu_clock_event_update(event);
  4443. }
  4444. static int cpu_clock_event_add(struct perf_event *event, int flags)
  4445. {
  4446. if (flags & PERF_EF_START)
  4447. cpu_clock_event_start(event, flags);
  4448. return 0;
  4449. }
  4450. static void cpu_clock_event_del(struct perf_event *event, int flags)
  4451. {
  4452. cpu_clock_event_stop(event, flags);
  4453. }
  4454. static void cpu_clock_event_read(struct perf_event *event)
  4455. {
  4456. cpu_clock_event_update(event);
  4457. }
  4458. static int cpu_clock_event_init(struct perf_event *event)
  4459. {
  4460. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4461. return -ENOENT;
  4462. if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
  4463. return -ENOENT;
  4464. /*
  4465. * no branch sampling for software events
  4466. */
  4467. if (has_branch_stack(event))
  4468. return -EOPNOTSUPP;
  4469. perf_swevent_init_hrtimer(event);
  4470. return 0;
  4471. }
  4472. static struct pmu perf_cpu_clock = {
  4473. .task_ctx_nr = perf_sw_context,
  4474. .event_init = cpu_clock_event_init,
  4475. .add = cpu_clock_event_add,
  4476. .del = cpu_clock_event_del,
  4477. .start = cpu_clock_event_start,
  4478. .stop = cpu_clock_event_stop,
  4479. .read = cpu_clock_event_read,
  4480. .event_idx = perf_swevent_event_idx,
  4481. };
  4482. /*
  4483. * Software event: task time clock
  4484. */
  4485. static void task_clock_event_update(struct perf_event *event, u64 now)
  4486. {
  4487. u64 prev;
  4488. s64 delta;
  4489. prev = local64_xchg(&event->hw.prev_count, now);
  4490. delta = now - prev;
  4491. local64_add(delta, &event->count);
  4492. }
  4493. static void task_clock_event_start(struct perf_event *event, int flags)
  4494. {
  4495. local64_set(&event->hw.prev_count, event->ctx->time);
  4496. perf_swevent_start_hrtimer(event);
  4497. }
  4498. static void task_clock_event_stop(struct perf_event *event, int flags)
  4499. {
  4500. perf_swevent_cancel_hrtimer(event);
  4501. task_clock_event_update(event, event->ctx->time);
  4502. }
  4503. static int task_clock_event_add(struct perf_event *event, int flags)
  4504. {
  4505. if (flags & PERF_EF_START)
  4506. task_clock_event_start(event, flags);
  4507. return 0;
  4508. }
  4509. static void task_clock_event_del(struct perf_event *event, int flags)
  4510. {
  4511. task_clock_event_stop(event, PERF_EF_UPDATE);
  4512. }
  4513. static void task_clock_event_read(struct perf_event *event)
  4514. {
  4515. u64 now = perf_clock();
  4516. u64 delta = now - event->ctx->timestamp;
  4517. u64 time = event->ctx->time + delta;
  4518. task_clock_event_update(event, time);
  4519. }
  4520. static int task_clock_event_init(struct perf_event *event)
  4521. {
  4522. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4523. return -ENOENT;
  4524. if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
  4525. return -ENOENT;
  4526. /*
  4527. * no branch sampling for software events
  4528. */
  4529. if (has_branch_stack(event))
  4530. return -EOPNOTSUPP;
  4531. perf_swevent_init_hrtimer(event);
  4532. return 0;
  4533. }
  4534. static struct pmu perf_task_clock = {
  4535. .task_ctx_nr = perf_sw_context,
  4536. .event_init = task_clock_event_init,
  4537. .add = task_clock_event_add,
  4538. .del = task_clock_event_del,
  4539. .start = task_clock_event_start,
  4540. .stop = task_clock_event_stop,
  4541. .read = task_clock_event_read,
  4542. .event_idx = perf_swevent_event_idx,
  4543. };
  4544. static void perf_pmu_nop_void(struct pmu *pmu)
  4545. {
  4546. }
  4547. static int perf_pmu_nop_int(struct pmu *pmu)
  4548. {
  4549. return 0;
  4550. }
  4551. static void perf_pmu_start_txn(struct pmu *pmu)
  4552. {
  4553. perf_pmu_disable(pmu);
  4554. }
  4555. static int perf_pmu_commit_txn(struct pmu *pmu)
  4556. {
  4557. perf_pmu_enable(pmu);
  4558. return 0;
  4559. }
  4560. static void perf_pmu_cancel_txn(struct pmu *pmu)
  4561. {
  4562. perf_pmu_enable(pmu);
  4563. }
  4564. static int perf_event_idx_default(struct perf_event *event)
  4565. {
  4566. return event->hw.idx + 1;
  4567. }
  4568. /*
  4569. * Ensures all contexts with the same task_ctx_nr have the same
  4570. * pmu_cpu_context too.
  4571. */
  4572. static void *find_pmu_context(int ctxn)
  4573. {
  4574. struct pmu *pmu;
  4575. if (ctxn < 0)
  4576. return NULL;
  4577. list_for_each_entry(pmu, &pmus, entry) {
  4578. if (pmu->task_ctx_nr == ctxn)
  4579. return pmu->pmu_cpu_context;
  4580. }
  4581. return NULL;
  4582. }
  4583. static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
  4584. {
  4585. int cpu;
  4586. for_each_possible_cpu(cpu) {
  4587. struct perf_cpu_context *cpuctx;
  4588. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4589. if (cpuctx->active_pmu == old_pmu)
  4590. cpuctx->active_pmu = pmu;
  4591. }
  4592. }
  4593. static void free_pmu_context(struct pmu *pmu)
  4594. {
  4595. struct pmu *i;
  4596. mutex_lock(&pmus_lock);
  4597. /*
  4598. * Like a real lame refcount.
  4599. */
  4600. list_for_each_entry(i, &pmus, entry) {
  4601. if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
  4602. update_pmu_context(i, pmu);
  4603. goto out;
  4604. }
  4605. }
  4606. free_percpu(pmu->pmu_cpu_context);
  4607. out:
  4608. mutex_unlock(&pmus_lock);
  4609. }
  4610. static struct idr pmu_idr;
  4611. static ssize_t
  4612. type_show(struct device *dev, struct device_attribute *attr, char *page)
  4613. {
  4614. struct pmu *pmu = dev_get_drvdata(dev);
  4615. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
  4616. }
  4617. static struct device_attribute pmu_dev_attrs[] = {
  4618. __ATTR_RO(type),
  4619. __ATTR_NULL,
  4620. };
  4621. static int pmu_bus_running;
  4622. static struct bus_type pmu_bus = {
  4623. .name = "event_source",
  4624. .dev_attrs = pmu_dev_attrs,
  4625. };
  4626. static void pmu_dev_release(struct device *dev)
  4627. {
  4628. kfree(dev);
  4629. }
  4630. static int pmu_dev_alloc(struct pmu *pmu)
  4631. {
  4632. int ret = -ENOMEM;
  4633. pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  4634. if (!pmu->dev)
  4635. goto out;
  4636. pmu->dev->groups = pmu->attr_groups;
  4637. device_initialize(pmu->dev);
  4638. ret = dev_set_name(pmu->dev, "%s", pmu->name);
  4639. if (ret)
  4640. goto free_dev;
  4641. dev_set_drvdata(pmu->dev, pmu);
  4642. pmu->dev->bus = &pmu_bus;
  4643. pmu->dev->release = pmu_dev_release;
  4644. ret = device_add(pmu->dev);
  4645. if (ret)
  4646. goto free_dev;
  4647. out:
  4648. return ret;
  4649. free_dev:
  4650. put_device(pmu->dev);
  4651. goto out;
  4652. }
  4653. static struct lock_class_key cpuctx_mutex;
  4654. static struct lock_class_key cpuctx_lock;
  4655. int perf_pmu_register(struct pmu *pmu, char *name, int type)
  4656. {
  4657. int cpu, ret;
  4658. mutex_lock(&pmus_lock);
  4659. ret = -ENOMEM;
  4660. pmu->pmu_disable_count = alloc_percpu(int);
  4661. if (!pmu->pmu_disable_count)
  4662. goto unlock;
  4663. pmu->type = -1;
  4664. if (!name)
  4665. goto skip_type;
  4666. pmu->name = name;
  4667. if (type < 0) {
  4668. int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
  4669. if (!err)
  4670. goto free_pdc;
  4671. err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
  4672. if (err) {
  4673. ret = err;
  4674. goto free_pdc;
  4675. }
  4676. }
  4677. pmu->type = type;
  4678. if (pmu_bus_running) {
  4679. ret = pmu_dev_alloc(pmu);
  4680. if (ret)
  4681. goto free_idr;
  4682. }
  4683. skip_type:
  4684. pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
  4685. if (pmu->pmu_cpu_context)
  4686. goto got_cpu_context;
  4687. pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
  4688. if (!pmu->pmu_cpu_context)
  4689. goto free_dev;
  4690. for_each_possible_cpu(cpu) {
  4691. struct perf_cpu_context *cpuctx;
  4692. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4693. __perf_event_init_context(&cpuctx->ctx);
  4694. lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
  4695. lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
  4696. cpuctx->ctx.type = cpu_context;
  4697. cpuctx->ctx.pmu = pmu;
  4698. cpuctx->jiffies_interval = 1;
  4699. INIT_LIST_HEAD(&cpuctx->rotation_list);
  4700. cpuctx->active_pmu = pmu;
  4701. }
  4702. got_cpu_context:
  4703. if (!pmu->start_txn) {
  4704. if (pmu->pmu_enable) {
  4705. /*
  4706. * If we have pmu_enable/pmu_disable calls, install
  4707. * transaction stubs that use that to try and batch
  4708. * hardware accesses.
  4709. */
  4710. pmu->start_txn = perf_pmu_start_txn;
  4711. pmu->commit_txn = perf_pmu_commit_txn;
  4712. pmu->cancel_txn = perf_pmu_cancel_txn;
  4713. } else {
  4714. pmu->start_txn = perf_pmu_nop_void;
  4715. pmu->commit_txn = perf_pmu_nop_int;
  4716. pmu->cancel_txn = perf_pmu_nop_void;
  4717. }
  4718. }
  4719. if (!pmu->pmu_enable) {
  4720. pmu->pmu_enable = perf_pmu_nop_void;
  4721. pmu->pmu_disable = perf_pmu_nop_void;
  4722. }
  4723. if (!pmu->event_idx)
  4724. pmu->event_idx = perf_event_idx_default;
  4725. list_add_rcu(&pmu->entry, &pmus);
  4726. ret = 0;
  4727. unlock:
  4728. mutex_unlock(&pmus_lock);
  4729. return ret;
  4730. free_dev:
  4731. device_del(pmu->dev);
  4732. put_device(pmu->dev);
  4733. free_idr:
  4734. if (pmu->type >= PERF_TYPE_MAX)
  4735. idr_remove(&pmu_idr, pmu->type);
  4736. free_pdc:
  4737. free_percpu(pmu->pmu_disable_count);
  4738. goto unlock;
  4739. }
  4740. void perf_pmu_unregister(struct pmu *pmu)
  4741. {
  4742. mutex_lock(&pmus_lock);
  4743. list_del_rcu(&pmu->entry);
  4744. mutex_unlock(&pmus_lock);
  4745. /*
  4746. * We dereference the pmu list under both SRCU and regular RCU, so
  4747. * synchronize against both of those.
  4748. */
  4749. synchronize_srcu(&pmus_srcu);
  4750. synchronize_rcu();
  4751. free_percpu(pmu->pmu_disable_count);
  4752. if (pmu->type >= PERF_TYPE_MAX)
  4753. idr_remove(&pmu_idr, pmu->type);
  4754. device_del(pmu->dev);
  4755. put_device(pmu->dev);
  4756. free_pmu_context(pmu);
  4757. }
  4758. struct pmu *perf_init_event(struct perf_event *event)
  4759. {
  4760. struct pmu *pmu = NULL;
  4761. int idx;
  4762. int ret;
  4763. idx = srcu_read_lock(&pmus_srcu);
  4764. rcu_read_lock();
  4765. pmu = idr_find(&pmu_idr, event->attr.type);
  4766. rcu_read_unlock();
  4767. if (pmu) {
  4768. event->pmu = pmu;
  4769. ret = pmu->event_init(event);
  4770. if (ret)
  4771. pmu = ERR_PTR(ret);
  4772. goto unlock;
  4773. }
  4774. list_for_each_entry_rcu(pmu, &pmus, entry) {
  4775. event->pmu = pmu;
  4776. ret = pmu->event_init(event);
  4777. if (!ret)
  4778. goto unlock;
  4779. if (ret != -ENOENT) {
  4780. pmu = ERR_PTR(ret);
  4781. goto unlock;
  4782. }
  4783. }
  4784. pmu = ERR_PTR(-ENOENT);
  4785. unlock:
  4786. srcu_read_unlock(&pmus_srcu, idx);
  4787. return pmu;
  4788. }
  4789. /*
  4790. * Allocate and initialize a event structure
  4791. */
  4792. static struct perf_event *
  4793. perf_event_alloc(struct perf_event_attr *attr, int cpu,
  4794. struct task_struct *task,
  4795. struct perf_event *group_leader,
  4796. struct perf_event *parent_event,
  4797. perf_overflow_handler_t overflow_handler,
  4798. void *context)
  4799. {
  4800. struct pmu *pmu;
  4801. struct perf_event *event;
  4802. struct hw_perf_event *hwc;
  4803. long err;
  4804. if ((unsigned)cpu >= nr_cpu_ids) {
  4805. if (!task || cpu != -1)
  4806. return ERR_PTR(-EINVAL);
  4807. }
  4808. event = kzalloc(sizeof(*event), GFP_KERNEL);
  4809. if (!event)
  4810. return ERR_PTR(-ENOMEM);
  4811. /*
  4812. * Single events are their own group leaders, with an
  4813. * empty sibling list:
  4814. */
  4815. if (!group_leader)
  4816. group_leader = event;
  4817. mutex_init(&event->child_mutex);
  4818. INIT_LIST_HEAD(&event->child_list);
  4819. INIT_LIST_HEAD(&event->group_entry);
  4820. INIT_LIST_HEAD(&event->event_entry);
  4821. INIT_LIST_HEAD(&event->sibling_list);
  4822. INIT_LIST_HEAD(&event->rb_entry);
  4823. init_waitqueue_head(&event->waitq);
  4824. init_irq_work(&event->pending, perf_pending_event);
  4825. mutex_init(&event->mmap_mutex);
  4826. event->cpu = cpu;
  4827. event->attr = *attr;
  4828. event->group_leader = group_leader;
  4829. event->pmu = NULL;
  4830. event->oncpu = -1;
  4831. event->parent = parent_event;
  4832. event->ns = get_pid_ns(current->nsproxy->pid_ns);
  4833. event->id = atomic64_inc_return(&perf_event_id);
  4834. event->state = PERF_EVENT_STATE_INACTIVE;
  4835. if (task) {
  4836. event->attach_state = PERF_ATTACH_TASK;
  4837. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  4838. /*
  4839. * hw_breakpoint is a bit difficult here..
  4840. */
  4841. if (attr->type == PERF_TYPE_BREAKPOINT)
  4842. event->hw.bp_target = task;
  4843. #endif
  4844. }
  4845. if (!overflow_handler && parent_event) {
  4846. overflow_handler = parent_event->overflow_handler;
  4847. context = parent_event->overflow_handler_context;
  4848. }
  4849. event->overflow_handler = overflow_handler;
  4850. event->overflow_handler_context = context;
  4851. if (attr->disabled)
  4852. event->state = PERF_EVENT_STATE_OFF;
  4853. pmu = NULL;
  4854. hwc = &event->hw;
  4855. hwc->sample_period = attr->sample_period;
  4856. if (attr->freq && attr->sample_freq)
  4857. hwc->sample_period = 1;
  4858. hwc->last_period = hwc->sample_period;
  4859. local64_set(&hwc->period_left, hwc->sample_period);
  4860. /*
  4861. * we currently do not support PERF_FORMAT_GROUP on inherited events
  4862. */
  4863. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  4864. goto done;
  4865. pmu = perf_init_event(event);
  4866. done:
  4867. err = 0;
  4868. if (!pmu)
  4869. err = -EINVAL;
  4870. else if (IS_ERR(pmu))
  4871. err = PTR_ERR(pmu);
  4872. if (err) {
  4873. if (event->ns)
  4874. put_pid_ns(event->ns);
  4875. kfree(event);
  4876. return ERR_PTR(err);
  4877. }
  4878. if (!event->parent) {
  4879. if (event->attach_state & PERF_ATTACH_TASK)
  4880. static_key_slow_inc(&perf_sched_events.key);
  4881. if (event->attr.mmap || event->attr.mmap_data)
  4882. atomic_inc(&nr_mmap_events);
  4883. if (event->attr.comm)
  4884. atomic_inc(&nr_comm_events);
  4885. if (event->attr.task)
  4886. atomic_inc(&nr_task_events);
  4887. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
  4888. err = get_callchain_buffers();
  4889. if (err) {
  4890. free_event(event);
  4891. return ERR_PTR(err);
  4892. }
  4893. }
  4894. if (has_branch_stack(event)) {
  4895. static_key_slow_inc(&perf_sched_events.key);
  4896. if (!(event->attach_state & PERF_ATTACH_TASK))
  4897. atomic_inc(&per_cpu(perf_branch_stack_events,
  4898. event->cpu));
  4899. }
  4900. }
  4901. return event;
  4902. }
  4903. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  4904. struct perf_event_attr *attr)
  4905. {
  4906. u32 size;
  4907. int ret;
  4908. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  4909. return -EFAULT;
  4910. /*
  4911. * zero the full structure, so that a short copy will be nice.
  4912. */
  4913. memset(attr, 0, sizeof(*attr));
  4914. ret = get_user(size, &uattr->size);
  4915. if (ret)
  4916. return ret;
  4917. if (size > PAGE_SIZE) /* silly large */
  4918. goto err_size;
  4919. if (!size) /* abi compat */
  4920. size = PERF_ATTR_SIZE_VER0;
  4921. if (size < PERF_ATTR_SIZE_VER0)
  4922. goto err_size;
  4923. /*
  4924. * If we're handed a bigger struct than we know of,
  4925. * ensure all the unknown bits are 0 - i.e. new
  4926. * user-space does not rely on any kernel feature
  4927. * extensions we dont know about yet.
  4928. */
  4929. if (size > sizeof(*attr)) {
  4930. unsigned char __user *addr;
  4931. unsigned char __user *end;
  4932. unsigned char val;
  4933. addr = (void __user *)uattr + sizeof(*attr);
  4934. end = (void __user *)uattr + size;
  4935. for (; addr < end; addr++) {
  4936. ret = get_user(val, addr);
  4937. if (ret)
  4938. return ret;
  4939. if (val)
  4940. goto err_size;
  4941. }
  4942. size = sizeof(*attr);
  4943. }
  4944. ret = copy_from_user(attr, uattr, size);
  4945. if (ret)
  4946. return -EFAULT;
  4947. if (attr->__reserved_1)
  4948. return -EINVAL;
  4949. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  4950. return -EINVAL;
  4951. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  4952. return -EINVAL;
  4953. if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
  4954. u64 mask = attr->branch_sample_type;
  4955. /* only using defined bits */
  4956. if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
  4957. return -EINVAL;
  4958. /* at least one branch bit must be set */
  4959. if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
  4960. return -EINVAL;
  4961. /* kernel level capture: check permissions */
  4962. if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
  4963. && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  4964. return -EACCES;
  4965. /* propagate priv level, when not set for branch */
  4966. if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
  4967. /* exclude_kernel checked on syscall entry */
  4968. if (!attr->exclude_kernel)
  4969. mask |= PERF_SAMPLE_BRANCH_KERNEL;
  4970. if (!attr->exclude_user)
  4971. mask |= PERF_SAMPLE_BRANCH_USER;
  4972. if (!attr->exclude_hv)
  4973. mask |= PERF_SAMPLE_BRANCH_HV;
  4974. /*
  4975. * adjust user setting (for HW filter setup)
  4976. */
  4977. attr->branch_sample_type = mask;
  4978. }
  4979. }
  4980. out:
  4981. return ret;
  4982. err_size:
  4983. put_user(sizeof(*attr), &uattr->size);
  4984. ret = -E2BIG;
  4985. goto out;
  4986. }
  4987. static int
  4988. perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
  4989. {
  4990. struct ring_buffer *rb = NULL, *old_rb = NULL;
  4991. int ret = -EINVAL;
  4992. if (!output_event)
  4993. goto set;
  4994. /* don't allow circular references */
  4995. if (event == output_event)
  4996. goto out;
  4997. /*
  4998. * Don't allow cross-cpu buffers
  4999. */
  5000. if (output_event->cpu != event->cpu)
  5001. goto out;
  5002. /*
  5003. * If its not a per-cpu rb, it must be the same task.
  5004. */
  5005. if (output_event->cpu == -1 && output_event->ctx != event->ctx)
  5006. goto out;
  5007. set:
  5008. mutex_lock(&event->mmap_mutex);
  5009. /* Can't redirect output if we've got an active mmap() */
  5010. if (atomic_read(&event->mmap_count))
  5011. goto unlock;
  5012. if (output_event) {
  5013. /* get the rb we want to redirect to */
  5014. rb = ring_buffer_get(output_event);
  5015. if (!rb)
  5016. goto unlock;
  5017. }
  5018. old_rb = event->rb;
  5019. rcu_assign_pointer(event->rb, rb);
  5020. if (old_rb)
  5021. ring_buffer_detach(event, old_rb);
  5022. ret = 0;
  5023. unlock:
  5024. mutex_unlock(&event->mmap_mutex);
  5025. if (old_rb)
  5026. ring_buffer_put(old_rb);
  5027. out:
  5028. return ret;
  5029. }
  5030. /**
  5031. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  5032. *
  5033. * @attr_uptr: event_id type attributes for monitoring/sampling
  5034. * @pid: target pid
  5035. * @cpu: target cpu
  5036. * @group_fd: group leader event fd
  5037. */
  5038. SYSCALL_DEFINE5(perf_event_open,
  5039. struct perf_event_attr __user *, attr_uptr,
  5040. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  5041. {
  5042. struct perf_event *group_leader = NULL, *output_event = NULL;
  5043. struct perf_event *event, *sibling;
  5044. struct perf_event_attr attr;
  5045. struct perf_event_context *ctx;
  5046. struct file *event_file = NULL;
  5047. struct file *group_file = NULL;
  5048. struct task_struct *task = NULL;
  5049. struct pmu *pmu;
  5050. int event_fd;
  5051. int move_group = 0;
  5052. int fput_needed = 0;
  5053. int err;
  5054. /* for future expandability... */
  5055. if (flags & ~PERF_FLAG_ALL)
  5056. return -EINVAL;
  5057. err = perf_copy_attr(attr_uptr, &attr);
  5058. if (err)
  5059. return err;
  5060. if (!attr.exclude_kernel) {
  5061. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5062. return -EACCES;
  5063. }
  5064. if (attr.freq) {
  5065. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  5066. return -EINVAL;
  5067. }
  5068. /*
  5069. * In cgroup mode, the pid argument is used to pass the fd
  5070. * opened to the cgroup directory in cgroupfs. The cpu argument
  5071. * designates the cpu on which to monitor threads from that
  5072. * cgroup.
  5073. */
  5074. if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
  5075. return -EINVAL;
  5076. event_fd = get_unused_fd_flags(O_RDWR);
  5077. if (event_fd < 0)
  5078. return event_fd;
  5079. if (group_fd != -1) {
  5080. group_leader = perf_fget_light(group_fd, &fput_needed);
  5081. if (IS_ERR(group_leader)) {
  5082. err = PTR_ERR(group_leader);
  5083. goto err_fd;
  5084. }
  5085. group_file = group_leader->filp;
  5086. if (flags & PERF_FLAG_FD_OUTPUT)
  5087. output_event = group_leader;
  5088. if (flags & PERF_FLAG_FD_NO_GROUP)
  5089. group_leader = NULL;
  5090. }
  5091. if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
  5092. task = find_lively_task_by_vpid(pid);
  5093. if (IS_ERR(task)) {
  5094. err = PTR_ERR(task);
  5095. goto err_group_fd;
  5096. }
  5097. }
  5098. event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
  5099. NULL, NULL);
  5100. if (IS_ERR(event)) {
  5101. err = PTR_ERR(event);
  5102. goto err_task;
  5103. }
  5104. if (flags & PERF_FLAG_PID_CGROUP) {
  5105. err = perf_cgroup_connect(pid, event, &attr, group_leader);
  5106. if (err)
  5107. goto err_alloc;
  5108. /*
  5109. * one more event:
  5110. * - that has cgroup constraint on event->cpu
  5111. * - that may need work on context switch
  5112. */
  5113. atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
  5114. static_key_slow_inc(&perf_sched_events.key);
  5115. }
  5116. /*
  5117. * Special case software events and allow them to be part of
  5118. * any hardware group.
  5119. */
  5120. pmu = event->pmu;
  5121. if (group_leader &&
  5122. (is_software_event(event) != is_software_event(group_leader))) {
  5123. if (is_software_event(event)) {
  5124. /*
  5125. * If event and group_leader are not both a software
  5126. * event, and event is, then group leader is not.
  5127. *
  5128. * Allow the addition of software events to !software
  5129. * groups, this is safe because software events never
  5130. * fail to schedule.
  5131. */
  5132. pmu = group_leader->pmu;
  5133. } else if (is_software_event(group_leader) &&
  5134. (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
  5135. /*
  5136. * In case the group is a pure software group, and we
  5137. * try to add a hardware event, move the whole group to
  5138. * the hardware context.
  5139. */
  5140. move_group = 1;
  5141. }
  5142. }
  5143. /*
  5144. * Get the target context (task or percpu):
  5145. */
  5146. ctx = find_get_context(pmu, task, cpu);
  5147. if (IS_ERR(ctx)) {
  5148. err = PTR_ERR(ctx);
  5149. goto err_alloc;
  5150. }
  5151. if (task) {
  5152. put_task_struct(task);
  5153. task = NULL;
  5154. }
  5155. /*
  5156. * Look up the group leader (we will attach this event to it):
  5157. */
  5158. if (group_leader) {
  5159. err = -EINVAL;
  5160. /*
  5161. * Do not allow a recursive hierarchy (this new sibling
  5162. * becoming part of another group-sibling):
  5163. */
  5164. if (group_leader->group_leader != group_leader)
  5165. goto err_context;
  5166. /*
  5167. * Do not allow to attach to a group in a different
  5168. * task or CPU context:
  5169. */
  5170. if (move_group) {
  5171. if (group_leader->ctx->type != ctx->type)
  5172. goto err_context;
  5173. } else {
  5174. if (group_leader->ctx != ctx)
  5175. goto err_context;
  5176. }
  5177. /*
  5178. * Only a group leader can be exclusive or pinned
  5179. */
  5180. if (attr.exclusive || attr.pinned)
  5181. goto err_context;
  5182. }
  5183. if (output_event) {
  5184. err = perf_event_set_output(event, output_event);
  5185. if (err)
  5186. goto err_context;
  5187. }
  5188. event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
  5189. if (IS_ERR(event_file)) {
  5190. err = PTR_ERR(event_file);
  5191. goto err_context;
  5192. }
  5193. if (move_group) {
  5194. struct perf_event_context *gctx = group_leader->ctx;
  5195. mutex_lock(&gctx->mutex);
  5196. perf_remove_from_context(group_leader);
  5197. list_for_each_entry(sibling, &group_leader->sibling_list,
  5198. group_entry) {
  5199. perf_remove_from_context(sibling);
  5200. put_ctx(gctx);
  5201. }
  5202. mutex_unlock(&gctx->mutex);
  5203. put_ctx(gctx);
  5204. }
  5205. event->filp = event_file;
  5206. WARN_ON_ONCE(ctx->parent_ctx);
  5207. mutex_lock(&ctx->mutex);
  5208. if (move_group) {
  5209. perf_install_in_context(ctx, group_leader, cpu);
  5210. get_ctx(ctx);
  5211. list_for_each_entry(sibling, &group_leader->sibling_list,
  5212. group_entry) {
  5213. perf_install_in_context(ctx, sibling, cpu);
  5214. get_ctx(ctx);
  5215. }
  5216. }
  5217. perf_install_in_context(ctx, event, cpu);
  5218. ++ctx->generation;
  5219. perf_unpin_context(ctx);
  5220. mutex_unlock(&ctx->mutex);
  5221. event->owner = current;
  5222. mutex_lock(&current->perf_event_mutex);
  5223. list_add_tail(&event->owner_entry, &current->perf_event_list);
  5224. mutex_unlock(&current->perf_event_mutex);
  5225. /*
  5226. * Precalculate sample_data sizes
  5227. */
  5228. perf_event__header_size(event);
  5229. perf_event__id_header_size(event);
  5230. /*
  5231. * Drop the reference on the group_event after placing the
  5232. * new event on the sibling_list. This ensures destruction
  5233. * of the group leader will find the pointer to itself in
  5234. * perf_group_detach().
  5235. */
  5236. fput_light(group_file, fput_needed);
  5237. fd_install(event_fd, event_file);
  5238. return event_fd;
  5239. err_context:
  5240. perf_unpin_context(ctx);
  5241. put_ctx(ctx);
  5242. err_alloc:
  5243. free_event(event);
  5244. err_task:
  5245. if (task)
  5246. put_task_struct(task);
  5247. err_group_fd:
  5248. fput_light(group_file, fput_needed);
  5249. err_fd:
  5250. put_unused_fd(event_fd);
  5251. return err;
  5252. }
  5253. /**
  5254. * perf_event_create_kernel_counter
  5255. *
  5256. * @attr: attributes of the counter to create
  5257. * @cpu: cpu in which the counter is bound
  5258. * @task: task to profile (NULL for percpu)
  5259. */
  5260. struct perf_event *
  5261. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  5262. struct task_struct *task,
  5263. perf_overflow_handler_t overflow_handler,
  5264. void *context)
  5265. {
  5266. struct perf_event_context *ctx;
  5267. struct perf_event *event;
  5268. int err;
  5269. /*
  5270. * Get the target context (task or percpu):
  5271. */
  5272. event = perf_event_alloc(attr, cpu, task, NULL, NULL,
  5273. overflow_handler, context);
  5274. if (IS_ERR(event)) {
  5275. err = PTR_ERR(event);
  5276. goto err;
  5277. }
  5278. ctx = find_get_context(event->pmu, task, cpu);
  5279. if (IS_ERR(ctx)) {
  5280. err = PTR_ERR(ctx);
  5281. goto err_free;
  5282. }
  5283. event->filp = NULL;
  5284. WARN_ON_ONCE(ctx->parent_ctx);
  5285. mutex_lock(&ctx->mutex);
  5286. perf_install_in_context(ctx, event, cpu);
  5287. ++ctx->generation;
  5288. perf_unpin_context(ctx);
  5289. mutex_unlock(&ctx->mutex);
  5290. return event;
  5291. err_free:
  5292. free_event(event);
  5293. err:
  5294. return ERR_PTR(err);
  5295. }
  5296. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  5297. static void sync_child_event(struct perf_event *child_event,
  5298. struct task_struct *child)
  5299. {
  5300. struct perf_event *parent_event = child_event->parent;
  5301. u64 child_val;
  5302. if (child_event->attr.inherit_stat)
  5303. perf_event_read_event(child_event, child);
  5304. child_val = perf_event_count(child_event);
  5305. /*
  5306. * Add back the child's count to the parent's count:
  5307. */
  5308. atomic64_add(child_val, &parent_event->child_count);
  5309. atomic64_add(child_event->total_time_enabled,
  5310. &parent_event->child_total_time_enabled);
  5311. atomic64_add(child_event->total_time_running,
  5312. &parent_event->child_total_time_running);
  5313. /*
  5314. * Remove this event from the parent's list
  5315. */
  5316. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5317. mutex_lock(&parent_event->child_mutex);
  5318. list_del_init(&child_event->child_list);
  5319. mutex_unlock(&parent_event->child_mutex);
  5320. /*
  5321. * Release the parent event, if this was the last
  5322. * reference to it.
  5323. */
  5324. fput(parent_event->filp);
  5325. }
  5326. static void
  5327. __perf_event_exit_task(struct perf_event *child_event,
  5328. struct perf_event_context *child_ctx,
  5329. struct task_struct *child)
  5330. {
  5331. if (child_event->parent) {
  5332. raw_spin_lock_irq(&child_ctx->lock);
  5333. perf_group_detach(child_event);
  5334. raw_spin_unlock_irq(&child_ctx->lock);
  5335. }
  5336. perf_remove_from_context(child_event);
  5337. /*
  5338. * It can happen that the parent exits first, and has events
  5339. * that are still around due to the child reference. These
  5340. * events need to be zapped.
  5341. */
  5342. if (child_event->parent) {
  5343. sync_child_event(child_event, child);
  5344. free_event(child_event);
  5345. }
  5346. }
  5347. static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
  5348. {
  5349. struct perf_event *child_event, *tmp;
  5350. struct perf_event_context *child_ctx;
  5351. unsigned long flags;
  5352. if (likely(!child->perf_event_ctxp[ctxn])) {
  5353. perf_event_task(child, NULL, 0);
  5354. return;
  5355. }
  5356. local_irq_save(flags);
  5357. /*
  5358. * We can't reschedule here because interrupts are disabled,
  5359. * and either child is current or it is a task that can't be
  5360. * scheduled, so we are now safe from rescheduling changing
  5361. * our context.
  5362. */
  5363. child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
  5364. /*
  5365. * Take the context lock here so that if find_get_context is
  5366. * reading child->perf_event_ctxp, we wait until it has
  5367. * incremented the context's refcount before we do put_ctx below.
  5368. */
  5369. raw_spin_lock(&child_ctx->lock);
  5370. task_ctx_sched_out(child_ctx);
  5371. child->perf_event_ctxp[ctxn] = NULL;
  5372. /*
  5373. * If this context is a clone; unclone it so it can't get
  5374. * swapped to another process while we're removing all
  5375. * the events from it.
  5376. */
  5377. unclone_ctx(child_ctx);
  5378. update_context_time(child_ctx);
  5379. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5380. /*
  5381. * Report the task dead after unscheduling the events so that we
  5382. * won't get any samples after PERF_RECORD_EXIT. We can however still
  5383. * get a few PERF_RECORD_READ events.
  5384. */
  5385. perf_event_task(child, child_ctx, 0);
  5386. /*
  5387. * We can recurse on the same lock type through:
  5388. *
  5389. * __perf_event_exit_task()
  5390. * sync_child_event()
  5391. * fput(parent_event->filp)
  5392. * perf_release()
  5393. * mutex_lock(&ctx->mutex)
  5394. *
  5395. * But since its the parent context it won't be the same instance.
  5396. */
  5397. mutex_lock(&child_ctx->mutex);
  5398. again:
  5399. list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
  5400. group_entry)
  5401. __perf_event_exit_task(child_event, child_ctx, child);
  5402. list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
  5403. group_entry)
  5404. __perf_event_exit_task(child_event, child_ctx, child);
  5405. /*
  5406. * If the last event was a group event, it will have appended all
  5407. * its siblings to the list, but we obtained 'tmp' before that which
  5408. * will still point to the list head terminating the iteration.
  5409. */
  5410. if (!list_empty(&child_ctx->pinned_groups) ||
  5411. !list_empty(&child_ctx->flexible_groups))
  5412. goto again;
  5413. mutex_unlock(&child_ctx->mutex);
  5414. put_ctx(child_ctx);
  5415. }
  5416. /*
  5417. * When a child task exits, feed back event values to parent events.
  5418. */
  5419. void perf_event_exit_task(struct task_struct *child)
  5420. {
  5421. struct perf_event *event, *tmp;
  5422. int ctxn;
  5423. mutex_lock(&child->perf_event_mutex);
  5424. list_for_each_entry_safe(event, tmp, &child->perf_event_list,
  5425. owner_entry) {
  5426. list_del_init(&event->owner_entry);
  5427. /*
  5428. * Ensure the list deletion is visible before we clear
  5429. * the owner, closes a race against perf_release() where
  5430. * we need to serialize on the owner->perf_event_mutex.
  5431. */
  5432. smp_wmb();
  5433. event->owner = NULL;
  5434. }
  5435. mutex_unlock(&child->perf_event_mutex);
  5436. for_each_task_context_nr(ctxn)
  5437. perf_event_exit_task_context(child, ctxn);
  5438. }
  5439. static void perf_free_event(struct perf_event *event,
  5440. struct perf_event_context *ctx)
  5441. {
  5442. struct perf_event *parent = event->parent;
  5443. if (WARN_ON_ONCE(!parent))
  5444. return;
  5445. mutex_lock(&parent->child_mutex);
  5446. list_del_init(&event->child_list);
  5447. mutex_unlock(&parent->child_mutex);
  5448. fput(parent->filp);
  5449. perf_group_detach(event);
  5450. list_del_event(event, ctx);
  5451. free_event(event);
  5452. }
  5453. /*
  5454. * free an unexposed, unused context as created by inheritance by
  5455. * perf_event_init_task below, used by fork() in case of fail.
  5456. */
  5457. void perf_event_free_task(struct task_struct *task)
  5458. {
  5459. struct perf_event_context *ctx;
  5460. struct perf_event *event, *tmp;
  5461. int ctxn;
  5462. for_each_task_context_nr(ctxn) {
  5463. ctx = task->perf_event_ctxp[ctxn];
  5464. if (!ctx)
  5465. continue;
  5466. mutex_lock(&ctx->mutex);
  5467. again:
  5468. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
  5469. group_entry)
  5470. perf_free_event(event, ctx);
  5471. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
  5472. group_entry)
  5473. perf_free_event(event, ctx);
  5474. if (!list_empty(&ctx->pinned_groups) ||
  5475. !list_empty(&ctx->flexible_groups))
  5476. goto again;
  5477. mutex_unlock(&ctx->mutex);
  5478. put_ctx(ctx);
  5479. }
  5480. }
  5481. void perf_event_delayed_put(struct task_struct *task)
  5482. {
  5483. int ctxn;
  5484. for_each_task_context_nr(ctxn)
  5485. WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
  5486. }
  5487. /*
  5488. * inherit a event from parent task to child task:
  5489. */
  5490. static struct perf_event *
  5491. inherit_event(struct perf_event *parent_event,
  5492. struct task_struct *parent,
  5493. struct perf_event_context *parent_ctx,
  5494. struct task_struct *child,
  5495. struct perf_event *group_leader,
  5496. struct perf_event_context *child_ctx)
  5497. {
  5498. struct perf_event *child_event;
  5499. unsigned long flags;
  5500. /*
  5501. * Instead of creating recursive hierarchies of events,
  5502. * we link inherited events back to the original parent,
  5503. * which has a filp for sure, which we use as the reference
  5504. * count:
  5505. */
  5506. if (parent_event->parent)
  5507. parent_event = parent_event->parent;
  5508. child_event = perf_event_alloc(&parent_event->attr,
  5509. parent_event->cpu,
  5510. child,
  5511. group_leader, parent_event,
  5512. NULL, NULL);
  5513. if (IS_ERR(child_event))
  5514. return child_event;
  5515. get_ctx(child_ctx);
  5516. /*
  5517. * Make the child state follow the state of the parent event,
  5518. * not its attr.disabled bit. We hold the parent's mutex,
  5519. * so we won't race with perf_event_{en, dis}able_family.
  5520. */
  5521. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  5522. child_event->state = PERF_EVENT_STATE_INACTIVE;
  5523. else
  5524. child_event->state = PERF_EVENT_STATE_OFF;
  5525. if (parent_event->attr.freq) {
  5526. u64 sample_period = parent_event->hw.sample_period;
  5527. struct hw_perf_event *hwc = &child_event->hw;
  5528. hwc->sample_period = sample_period;
  5529. hwc->last_period = sample_period;
  5530. local64_set(&hwc->period_left, sample_period);
  5531. }
  5532. child_event->ctx = child_ctx;
  5533. child_event->overflow_handler = parent_event->overflow_handler;
  5534. child_event->overflow_handler_context
  5535. = parent_event->overflow_handler_context;
  5536. /*
  5537. * Precalculate sample_data sizes
  5538. */
  5539. perf_event__header_size(child_event);
  5540. perf_event__id_header_size(child_event);
  5541. /*
  5542. * Link it up in the child's context:
  5543. */
  5544. raw_spin_lock_irqsave(&child_ctx->lock, flags);
  5545. add_event_to_ctx(child_event, child_ctx);
  5546. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5547. /*
  5548. * Get a reference to the parent filp - we will fput it
  5549. * when the child event exits. This is safe to do because
  5550. * we are in the parent and we know that the filp still
  5551. * exists and has a nonzero count:
  5552. */
  5553. atomic_long_inc(&parent_event->filp->f_count);
  5554. /*
  5555. * Link this into the parent event's child list
  5556. */
  5557. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5558. mutex_lock(&parent_event->child_mutex);
  5559. list_add_tail(&child_event->child_list, &parent_event->child_list);
  5560. mutex_unlock(&parent_event->child_mutex);
  5561. return child_event;
  5562. }
  5563. static int inherit_group(struct perf_event *parent_event,
  5564. struct task_struct *parent,
  5565. struct perf_event_context *parent_ctx,
  5566. struct task_struct *child,
  5567. struct perf_event_context *child_ctx)
  5568. {
  5569. struct perf_event *leader;
  5570. struct perf_event *sub;
  5571. struct perf_event *child_ctr;
  5572. leader = inherit_event(parent_event, parent, parent_ctx,
  5573. child, NULL, child_ctx);
  5574. if (IS_ERR(leader))
  5575. return PTR_ERR(leader);
  5576. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  5577. child_ctr = inherit_event(sub, parent, parent_ctx,
  5578. child, leader, child_ctx);
  5579. if (IS_ERR(child_ctr))
  5580. return PTR_ERR(child_ctr);
  5581. }
  5582. return 0;
  5583. }
  5584. static int
  5585. inherit_task_group(struct perf_event *event, struct task_struct *parent,
  5586. struct perf_event_context *parent_ctx,
  5587. struct task_struct *child, int ctxn,
  5588. int *inherited_all)
  5589. {
  5590. int ret;
  5591. struct perf_event_context *child_ctx;
  5592. if (!event->attr.inherit) {
  5593. *inherited_all = 0;
  5594. return 0;
  5595. }
  5596. child_ctx = child->perf_event_ctxp[ctxn];
  5597. if (!child_ctx) {
  5598. /*
  5599. * This is executed from the parent task context, so
  5600. * inherit events that have been marked for cloning.
  5601. * First allocate and initialize a context for the
  5602. * child.
  5603. */
  5604. child_ctx = alloc_perf_context(event->pmu, child);
  5605. if (!child_ctx)
  5606. return -ENOMEM;
  5607. child->perf_event_ctxp[ctxn] = child_ctx;
  5608. }
  5609. ret = inherit_group(event, parent, parent_ctx,
  5610. child, child_ctx);
  5611. if (ret)
  5612. *inherited_all = 0;
  5613. return ret;
  5614. }
  5615. /*
  5616. * Initialize the perf_event context in task_struct
  5617. */
  5618. int perf_event_init_context(struct task_struct *child, int ctxn)
  5619. {
  5620. struct perf_event_context *child_ctx, *parent_ctx;
  5621. struct perf_event_context *cloned_ctx;
  5622. struct perf_event *event;
  5623. struct task_struct *parent = current;
  5624. int inherited_all = 1;
  5625. unsigned long flags;
  5626. int ret = 0;
  5627. if (likely(!parent->perf_event_ctxp[ctxn]))
  5628. return 0;
  5629. /*
  5630. * If the parent's context is a clone, pin it so it won't get
  5631. * swapped under us.
  5632. */
  5633. parent_ctx = perf_pin_task_context(parent, ctxn);
  5634. /*
  5635. * No need to check if parent_ctx != NULL here; since we saw
  5636. * it non-NULL earlier, the only reason for it to become NULL
  5637. * is if we exit, and since we're currently in the middle of
  5638. * a fork we can't be exiting at the same time.
  5639. */
  5640. /*
  5641. * Lock the parent list. No need to lock the child - not PID
  5642. * hashed yet and not running, so nobody can access it.
  5643. */
  5644. mutex_lock(&parent_ctx->mutex);
  5645. /*
  5646. * We dont have to disable NMIs - we are only looking at
  5647. * the list, not manipulating it:
  5648. */
  5649. list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
  5650. ret = inherit_task_group(event, parent, parent_ctx,
  5651. child, ctxn, &inherited_all);
  5652. if (ret)
  5653. break;
  5654. }
  5655. /*
  5656. * We can't hold ctx->lock when iterating the ->flexible_group list due
  5657. * to allocations, but we need to prevent rotation because
  5658. * rotate_ctx() will change the list from interrupt context.
  5659. */
  5660. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5661. parent_ctx->rotate_disable = 1;
  5662. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5663. list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
  5664. ret = inherit_task_group(event, parent, parent_ctx,
  5665. child, ctxn, &inherited_all);
  5666. if (ret)
  5667. break;
  5668. }
  5669. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5670. parent_ctx->rotate_disable = 0;
  5671. child_ctx = child->perf_event_ctxp[ctxn];
  5672. if (child_ctx && inherited_all) {
  5673. /*
  5674. * Mark the child context as a clone of the parent
  5675. * context, or of whatever the parent is a clone of.
  5676. *
  5677. * Note that if the parent is a clone, the holding of
  5678. * parent_ctx->lock avoids it from being uncloned.
  5679. */
  5680. cloned_ctx = parent_ctx->parent_ctx;
  5681. if (cloned_ctx) {
  5682. child_ctx->parent_ctx = cloned_ctx;
  5683. child_ctx->parent_gen = parent_ctx->parent_gen;
  5684. } else {
  5685. child_ctx->parent_ctx = parent_ctx;
  5686. child_ctx->parent_gen = parent_ctx->generation;
  5687. }
  5688. get_ctx(child_ctx->parent_ctx);
  5689. }
  5690. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5691. mutex_unlock(&parent_ctx->mutex);
  5692. perf_unpin_context(parent_ctx);
  5693. put_ctx(parent_ctx);
  5694. return ret;
  5695. }
  5696. /*
  5697. * Initialize the perf_event context in task_struct
  5698. */
  5699. int perf_event_init_task(struct task_struct *child)
  5700. {
  5701. int ctxn, ret;
  5702. memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
  5703. mutex_init(&child->perf_event_mutex);
  5704. INIT_LIST_HEAD(&child->perf_event_list);
  5705. for_each_task_context_nr(ctxn) {
  5706. ret = perf_event_init_context(child, ctxn);
  5707. if (ret)
  5708. return ret;
  5709. }
  5710. return 0;
  5711. }
  5712. static void __init perf_event_init_all_cpus(void)
  5713. {
  5714. struct swevent_htable *swhash;
  5715. int cpu;
  5716. for_each_possible_cpu(cpu) {
  5717. swhash = &per_cpu(swevent_htable, cpu);
  5718. mutex_init(&swhash->hlist_mutex);
  5719. INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
  5720. }
  5721. }
  5722. static void __cpuinit perf_event_init_cpu(int cpu)
  5723. {
  5724. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5725. mutex_lock(&swhash->hlist_mutex);
  5726. if (swhash->hlist_refcount > 0) {
  5727. struct swevent_hlist *hlist;
  5728. hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
  5729. WARN_ON(!hlist);
  5730. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  5731. }
  5732. mutex_unlock(&swhash->hlist_mutex);
  5733. }
  5734. #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
  5735. static void perf_pmu_rotate_stop(struct pmu *pmu)
  5736. {
  5737. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  5738. WARN_ON(!irqs_disabled());
  5739. list_del_init(&cpuctx->rotation_list);
  5740. }
  5741. static void __perf_event_exit_context(void *__info)
  5742. {
  5743. struct perf_event_context *ctx = __info;
  5744. struct perf_event *event, *tmp;
  5745. perf_pmu_rotate_stop(ctx->pmu);
  5746. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
  5747. __perf_remove_from_context(event);
  5748. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
  5749. __perf_remove_from_context(event);
  5750. }
  5751. static void perf_event_exit_cpu_context(int cpu)
  5752. {
  5753. struct perf_event_context *ctx;
  5754. struct pmu *pmu;
  5755. int idx;
  5756. idx = srcu_read_lock(&pmus_srcu);
  5757. list_for_each_entry_rcu(pmu, &pmus, entry) {
  5758. ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
  5759. mutex_lock(&ctx->mutex);
  5760. smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
  5761. mutex_unlock(&ctx->mutex);
  5762. }
  5763. srcu_read_unlock(&pmus_srcu, idx);
  5764. }
  5765. static void perf_event_exit_cpu(int cpu)
  5766. {
  5767. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5768. mutex_lock(&swhash->hlist_mutex);
  5769. swevent_hlist_release(swhash);
  5770. mutex_unlock(&swhash->hlist_mutex);
  5771. perf_event_exit_cpu_context(cpu);
  5772. }
  5773. #else
  5774. static inline void perf_event_exit_cpu(int cpu) { }
  5775. #endif
  5776. static int
  5777. perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
  5778. {
  5779. int cpu;
  5780. for_each_online_cpu(cpu)
  5781. perf_event_exit_cpu(cpu);
  5782. return NOTIFY_OK;
  5783. }
  5784. /*
  5785. * Run the perf reboot notifier at the very last possible moment so that
  5786. * the generic watchdog code runs as long as possible.
  5787. */
  5788. static struct notifier_block perf_reboot_notifier = {
  5789. .notifier_call = perf_reboot,
  5790. .priority = INT_MIN,
  5791. };
  5792. static int __cpuinit
  5793. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  5794. {
  5795. unsigned int cpu = (long)hcpu;
  5796. switch (action & ~CPU_TASKS_FROZEN) {
  5797. case CPU_UP_PREPARE:
  5798. case CPU_DOWN_FAILED:
  5799. perf_event_init_cpu(cpu);
  5800. break;
  5801. case CPU_UP_CANCELED:
  5802. case CPU_DOWN_PREPARE:
  5803. perf_event_exit_cpu(cpu);
  5804. break;
  5805. default:
  5806. break;
  5807. }
  5808. return NOTIFY_OK;
  5809. }
  5810. void __init perf_event_init(void)
  5811. {
  5812. int ret;
  5813. idr_init(&pmu_idr);
  5814. perf_event_init_all_cpus();
  5815. init_srcu_struct(&pmus_srcu);
  5816. perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
  5817. perf_pmu_register(&perf_cpu_clock, NULL, -1);
  5818. perf_pmu_register(&perf_task_clock, NULL, -1);
  5819. perf_tp_register();
  5820. perf_cpu_notifier(perf_cpu_notify);
  5821. register_reboot_notifier(&perf_reboot_notifier);
  5822. ret = init_hw_breakpoint();
  5823. WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
  5824. /* do not patch jump label more than once per second */
  5825. jump_label_rate_limit(&perf_sched_events, HZ);
  5826. /*
  5827. * Build time assertion that we keep the data_head at the intended
  5828. * location. IOW, validation we got the __reserved[] size right.
  5829. */
  5830. BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
  5831. != 1024);
  5832. }
  5833. static int __init perf_event_sysfs_init(void)
  5834. {
  5835. struct pmu *pmu;
  5836. int ret;
  5837. mutex_lock(&pmus_lock);
  5838. ret = bus_register(&pmu_bus);
  5839. if (ret)
  5840. goto unlock;
  5841. list_for_each_entry(pmu, &pmus, entry) {
  5842. if (!pmu->name || pmu->type < 0)
  5843. continue;
  5844. ret = pmu_dev_alloc(pmu);
  5845. WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
  5846. }
  5847. pmu_bus_running = 1;
  5848. ret = 0;
  5849. unlock:
  5850. mutex_unlock(&pmus_lock);
  5851. return ret;
  5852. }
  5853. device_initcall(perf_event_sysfs_init);
  5854. #ifdef CONFIG_CGROUP_PERF
  5855. static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
  5856. {
  5857. struct perf_cgroup *jc;
  5858. jc = kzalloc(sizeof(*jc), GFP_KERNEL);
  5859. if (!jc)
  5860. return ERR_PTR(-ENOMEM);
  5861. jc->info = alloc_percpu(struct perf_cgroup_info);
  5862. if (!jc->info) {
  5863. kfree(jc);
  5864. return ERR_PTR(-ENOMEM);
  5865. }
  5866. return &jc->css;
  5867. }
  5868. static void perf_cgroup_destroy(struct cgroup *cont)
  5869. {
  5870. struct perf_cgroup *jc;
  5871. jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
  5872. struct perf_cgroup, css);
  5873. free_percpu(jc->info);
  5874. kfree(jc);
  5875. }
  5876. static int __perf_cgroup_move(void *info)
  5877. {
  5878. struct task_struct *task = info;
  5879. perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
  5880. return 0;
  5881. }
  5882. static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  5883. {
  5884. struct task_struct *task;
  5885. cgroup_taskset_for_each(task, cgrp, tset)
  5886. task_function_call(task, __perf_cgroup_move, task);
  5887. }
  5888. static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  5889. struct task_struct *task)
  5890. {
  5891. /*
  5892. * cgroup_exit() is called in the copy_process() failure path.
  5893. * Ignore this case since the task hasn't ran yet, this avoids
  5894. * trying to poke a half freed task state from generic code.
  5895. */
  5896. if (!(task->flags & PF_EXITING))
  5897. return;
  5898. task_function_call(task, __perf_cgroup_move, task);
  5899. }
  5900. struct cgroup_subsys perf_subsys = {
  5901. .name = "perf_event",
  5902. .subsys_id = perf_subsys_id,
  5903. .create = perf_cgroup_create,
  5904. .destroy = perf_cgroup_destroy,
  5905. .exit = perf_cgroup_exit,
  5906. .attach = perf_cgroup_attach,
  5907. };
  5908. #endif /* CONFIG_CGROUP_PERF */