phy_lp.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <mb@bu3sch.de>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; see the file COPYING. If not, write to
  15. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  16. Boston, MA 02110-1301, USA.
  17. */
  18. #include "b43.h"
  19. #include "main.h"
  20. #include "phy_lp.h"
  21. #include "phy_common.h"
  22. #include "tables_lpphy.h"
  23. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  24. {
  25. struct b43_phy_lp *lpphy;
  26. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  27. if (!lpphy)
  28. return -ENOMEM;
  29. dev->phy.lp = lpphy;
  30. return 0;
  31. }
  32. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  33. {
  34. struct b43_phy *phy = &dev->phy;
  35. struct b43_phy_lp *lpphy = phy->lp;
  36. memset(lpphy, 0, sizeof(*lpphy));
  37. //TODO
  38. }
  39. static void b43_lpphy_op_free(struct b43_wldev *dev)
  40. {
  41. struct b43_phy_lp *lpphy = dev->phy.lp;
  42. kfree(lpphy);
  43. dev->phy.lp = NULL;
  44. }
  45. static void lpphy_read_band_sprom(struct b43_wldev *dev)
  46. {
  47. struct b43_phy_lp *lpphy = dev->phy.lp;
  48. struct ssb_bus *bus = dev->dev->bus;
  49. u16 cckpo, maxpwr;
  50. u32 ofdmpo;
  51. int i;
  52. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  53. lpphy->tx_isolation_med_band = bus->sprom.tri2g;
  54. lpphy->bx_arch = bus->sprom.bxa2g;
  55. lpphy->rx_pwr_offset = bus->sprom.rxpo2g;
  56. lpphy->rssi_vf = bus->sprom.rssismf2g;
  57. lpphy->rssi_vc = bus->sprom.rssismc2g;
  58. lpphy->rssi_gs = bus->sprom.rssisav2g;
  59. lpphy->txpa[0] = bus->sprom.pa0b0;
  60. lpphy->txpa[1] = bus->sprom.pa0b1;
  61. lpphy->txpa[2] = bus->sprom.pa0b2;
  62. maxpwr = bus->sprom.maxpwr_bg;
  63. lpphy->max_tx_pwr_med_band = maxpwr;
  64. cckpo = bus->sprom.cck2gpo;
  65. ofdmpo = bus->sprom.ofdm2gpo;
  66. if (cckpo) {
  67. for (i = 0; i < 4; i++) {
  68. lpphy->tx_max_rate[i] =
  69. maxpwr - (ofdmpo & 0xF) * 2;
  70. ofdmpo >>= 4;
  71. }
  72. ofdmpo = bus->sprom.ofdm2gpo;
  73. for (i = 4; i < 15; i++) {
  74. lpphy->tx_max_rate[i] =
  75. maxpwr - (ofdmpo & 0xF) * 2;
  76. ofdmpo >>= 4;
  77. }
  78. } else {
  79. ofdmpo &= 0xFF;
  80. for (i = 0; i < 4; i++)
  81. lpphy->tx_max_rate[i] = maxpwr;
  82. for (i = 4; i < 15; i++)
  83. lpphy->tx_max_rate[i] = maxpwr - ofdmpo;
  84. }
  85. } else { /* 5GHz */
  86. lpphy->tx_isolation_low_band = bus->sprom.tri5gl;
  87. lpphy->tx_isolation_med_band = bus->sprom.tri5g;
  88. lpphy->tx_isolation_hi_band = bus->sprom.tri5gh;
  89. lpphy->bx_arch = bus->sprom.bxa5g;
  90. lpphy->rx_pwr_offset = bus->sprom.rxpo5g;
  91. lpphy->rssi_vf = bus->sprom.rssismf5g;
  92. lpphy->rssi_vc = bus->sprom.rssismc5g;
  93. lpphy->rssi_gs = bus->sprom.rssisav5g;
  94. lpphy->txpa[0] = bus->sprom.pa1b0;
  95. lpphy->txpa[1] = bus->sprom.pa1b1;
  96. lpphy->txpa[2] = bus->sprom.pa1b2;
  97. lpphy->txpal[0] = bus->sprom.pa1lob0;
  98. lpphy->txpal[1] = bus->sprom.pa1lob1;
  99. lpphy->txpal[2] = bus->sprom.pa1lob2;
  100. lpphy->txpah[0] = bus->sprom.pa1hib0;
  101. lpphy->txpah[1] = bus->sprom.pa1hib1;
  102. lpphy->txpah[2] = bus->sprom.pa1hib2;
  103. maxpwr = bus->sprom.maxpwr_al;
  104. ofdmpo = bus->sprom.ofdm5glpo;
  105. lpphy->max_tx_pwr_low_band = maxpwr;
  106. for (i = 4; i < 12; i++) {
  107. lpphy->tx_max_ratel[i] = maxpwr - (ofdmpo & 0xF) * 2;
  108. ofdmpo >>= 4;
  109. }
  110. maxpwr = bus->sprom.maxpwr_a;
  111. ofdmpo = bus->sprom.ofdm5gpo;
  112. lpphy->max_tx_pwr_med_band = maxpwr;
  113. for (i = 4; i < 12; i++) {
  114. lpphy->tx_max_rate[i] = maxpwr - (ofdmpo & 0xF) * 2;
  115. ofdmpo >>= 4;
  116. }
  117. maxpwr = bus->sprom.maxpwr_ah;
  118. ofdmpo = bus->sprom.ofdm5ghpo;
  119. lpphy->max_tx_pwr_hi_band = maxpwr;
  120. for (i = 4; i < 12; i++) {
  121. lpphy->tx_max_rateh[i] = maxpwr - (ofdmpo & 0xF) * 2;
  122. ofdmpo >>= 4;
  123. }
  124. }
  125. }
  126. static void lpphy_adjust_gain_table(struct b43_wldev *dev)
  127. {
  128. struct b43_phy_lp *lpphy = dev->phy.lp;
  129. u32 freq = dev->wl->hw->conf.channel->center_freq;
  130. u16 temp[3];
  131. u16 isolation;
  132. B43_WARN_ON(dev->phy.rev >= 2);
  133. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  134. isolation = lpphy->tx_isolation_med_band;
  135. else if (freq <= 5320)
  136. isolation = lpphy->tx_isolation_low_band;
  137. else if (freq <= 5700)
  138. isolation = lpphy->tx_isolation_med_band;
  139. else
  140. isolation = lpphy->tx_isolation_hi_band;
  141. temp[0] = ((isolation - 26) / 12) << 12;
  142. temp[1] = temp[0] + 0x1000;
  143. temp[2] = temp[0] + 0x2000;
  144. b43_lptab_write_bulk(dev, B43_LPTAB16(12, 0), 3, temp);
  145. b43_lptab_write_bulk(dev, B43_LPTAB16(13, 0), 3, temp);
  146. }
  147. static void lpphy_table_init(struct b43_wldev *dev)
  148. {
  149. if (dev->phy.rev < 2)
  150. lpphy_rev0_1_table_init(dev);
  151. else
  152. lpphy_rev2plus_table_init(dev);
  153. lpphy_init_tx_gain_table(dev);
  154. if (dev->phy.rev < 2)
  155. lpphy_adjust_gain_table(dev);
  156. }
  157. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  158. {
  159. struct ssb_bus *bus = dev->dev->bus;
  160. u16 tmp, tmp2;
  161. if (dev->phy.rev == 1 &&
  162. (bus->sprom.boardflags_hi & B43_BFH_FEM_BT)) {
  163. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  164. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0x3F00, 0x0900);
  165. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  166. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  167. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x000A);
  168. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0400);
  169. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x000A);
  170. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0B00);
  171. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xFFC0, 0x000A);
  172. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xC0FF, 0x0900);
  173. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xFFC0, 0x000A);
  174. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xC0FF, 0x0B00);
  175. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xFFC0, 0x000A);
  176. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xC0FF, 0x0900);
  177. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xFFC0, 0x000A);
  178. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xC0FF, 0x0B00);
  179. } else if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ ||
  180. (bus->boardinfo.type == 0x048A) || ((dev->phy.rev == 0) &&
  181. (bus->sprom.boardflags_lo & B43_BFL_FEM))) {
  182. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0001);
  183. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0400);
  184. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0001);
  185. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0500);
  186. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  187. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0800);
  188. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  189. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0A00);
  190. } else if (dev->phy.rev == 1 ||
  191. (bus->sprom.boardflags_lo & B43_BFL_FEM)) {
  192. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0004);
  193. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0800);
  194. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0004);
  195. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0C00);
  196. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  197. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0100);
  198. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  199. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0300);
  200. } else {
  201. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  202. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0900);
  203. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  204. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  205. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0006);
  206. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0500);
  207. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0006);
  208. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0700);
  209. }
  210. if (dev->phy.rev == 1) {
  211. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_5, B43_LPPHY_TR_LOOKUP_1);
  212. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_6, B43_LPPHY_TR_LOOKUP_2);
  213. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_7, B43_LPPHY_TR_LOOKUP_3);
  214. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_8, B43_LPPHY_TR_LOOKUP_4);
  215. }
  216. if ((bus->sprom.boardflags_hi & B43_BFH_FEM_BT) &&
  217. (bus->chip_id == 0x5354) &&
  218. (bus->chip_package == SSB_CHIPPACK_BCM4712S)) {
  219. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0006);
  220. b43_phy_write(dev, B43_LPPHY_GPIO_SELECT, 0x0005);
  221. b43_phy_write(dev, B43_LPPHY_GPIO_OUTEN, 0xFFFF);
  222. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_PR45960W);
  223. }
  224. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  225. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x8000);
  226. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0040);
  227. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0xA400);
  228. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0x0B00);
  229. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x0007);
  230. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFF8, 0x0003);
  231. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFC7, 0x0020);
  232. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  233. } else { /* 5GHz */
  234. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0x7FFF);
  235. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFBF);
  236. }
  237. if (dev->phy.rev == 1) {
  238. tmp = b43_phy_read(dev, B43_LPPHY_CLIPCTRTHRESH);
  239. tmp2 = (tmp & 0x03E0) >> 5;
  240. tmp2 |= tmp << 5;
  241. b43_phy_write(dev, B43_LPPHY_4C3, tmp2);
  242. tmp = b43_phy_read(dev, B43_LPPHY_OFDMSYNCTHRESH0);
  243. tmp2 = (tmp & 0x1F00) >> 8;
  244. tmp2 |= tmp << 5;
  245. b43_phy_write(dev, B43_LPPHY_4C4, tmp2);
  246. tmp = b43_phy_read(dev, B43_LPPHY_VERYLOWGAINDB);
  247. tmp2 = tmp & 0x00FF;
  248. tmp2 |= tmp << 8;
  249. b43_phy_write(dev, B43_LPPHY_4C5, tmp2);
  250. }
  251. }
  252. static void lpphy_save_dig_flt_state(struct b43_wldev *dev)
  253. {
  254. static const u16 addr[] = {
  255. B43_PHY_OFDM(0xC1),
  256. B43_PHY_OFDM(0xC2),
  257. B43_PHY_OFDM(0xC3),
  258. B43_PHY_OFDM(0xC4),
  259. B43_PHY_OFDM(0xC5),
  260. B43_PHY_OFDM(0xC6),
  261. B43_PHY_OFDM(0xC7),
  262. B43_PHY_OFDM(0xC8),
  263. B43_PHY_OFDM(0xCF),
  264. };
  265. static const u16 coefs[] = {
  266. 0xDE5E, 0xE832, 0xE331, 0x4D26,
  267. 0x0026, 0x1420, 0x0020, 0xFE08,
  268. 0x0008,
  269. };
  270. struct b43_phy_lp *lpphy = dev->phy.lp;
  271. int i;
  272. for (i = 0; i < ARRAY_SIZE(addr); i++) {
  273. lpphy->dig_flt_state[i] = b43_phy_read(dev, addr[i]);
  274. b43_phy_write(dev, addr[i], coefs[i]);
  275. }
  276. }
  277. static void lpphy_restore_dig_flt_state(struct b43_wldev *dev)
  278. {
  279. static const u16 addr[] = {
  280. B43_PHY_OFDM(0xC1),
  281. B43_PHY_OFDM(0xC2),
  282. B43_PHY_OFDM(0xC3),
  283. B43_PHY_OFDM(0xC4),
  284. B43_PHY_OFDM(0xC5),
  285. B43_PHY_OFDM(0xC6),
  286. B43_PHY_OFDM(0xC7),
  287. B43_PHY_OFDM(0xC8),
  288. B43_PHY_OFDM(0xCF),
  289. };
  290. struct b43_phy_lp *lpphy = dev->phy.lp;
  291. int i;
  292. for (i = 0; i < ARRAY_SIZE(addr); i++)
  293. b43_phy_write(dev, addr[i], lpphy->dig_flt_state[i]);
  294. }
  295. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  296. {
  297. struct ssb_bus *bus = dev->dev->bus;
  298. struct b43_phy_lp *lpphy = dev->phy.lp;
  299. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  300. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  301. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  302. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  303. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  304. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  305. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  306. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  307. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  308. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0xB4);
  309. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  310. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  311. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  312. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  313. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  314. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  315. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  316. if (bus->boardinfo.rev >= 0x18) {
  317. b43_lptab_write(dev, B43_LPTAB32(17, 65), 0xEC);
  318. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x14);
  319. } else {
  320. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  321. }
  322. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  323. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  324. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  325. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  326. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  327. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  328. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  329. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  330. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xF81F, 0xA0);
  331. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  332. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  333. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  334. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  335. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  336. } else {
  337. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  338. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  339. }
  340. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  341. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  342. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  343. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  344. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  345. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  346. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  347. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  348. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  349. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  350. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 1)) {
  351. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  352. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  353. }
  354. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  355. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  356. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  357. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  358. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  359. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  360. } else /* 5GHz */
  361. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  362. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  363. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  364. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  365. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  366. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  367. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  368. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  369. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  370. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  371. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  372. b43_phy_set(dev, B43_LPPHY_AFE_ADC_CTL_0, 0x1C);
  373. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL, 0x00FF, 0x8800);
  374. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_1, 0xFC3C, 0x0400);
  375. }
  376. lpphy_save_dig_flt_state(dev);
  377. }
  378. static void lpphy_baseband_init(struct b43_wldev *dev)
  379. {
  380. lpphy_table_init(dev);
  381. if (dev->phy.rev >= 2)
  382. lpphy_baseband_rev2plus_init(dev);
  383. else
  384. lpphy_baseband_rev0_1_init(dev);
  385. }
  386. struct b2062_freqdata {
  387. u16 freq;
  388. u8 data[6];
  389. };
  390. /* Initialize the 2062 radio. */
  391. static void lpphy_2062_init(struct b43_wldev *dev)
  392. {
  393. struct ssb_bus *bus = dev->dev->bus;
  394. u32 crystalfreq, pdiv, tmp, ref;
  395. unsigned int i;
  396. const struct b2062_freqdata *fd = NULL;
  397. static const struct b2062_freqdata freqdata_tab[] = {
  398. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  399. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  400. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  401. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  402. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  403. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  404. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  405. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  406. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  407. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  408. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  409. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  410. };
  411. b2062_upload_init_table(dev);
  412. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  413. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  414. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  415. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  416. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  417. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  418. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  419. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  420. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  421. else
  422. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  423. /* Get the crystal freq, in Hz. */
  424. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  425. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  426. B43_WARN_ON(crystalfreq == 0);
  427. if (crystalfreq >= 30000000) {
  428. pdiv = 1;
  429. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  430. } else {
  431. pdiv = 2;
  432. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  433. }
  434. tmp = (800000000 * pdiv + crystalfreq) / (32000000 * pdiv);
  435. tmp = (tmp - 1) & 0xFF;
  436. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  437. tmp = (2 * crystalfreq + 1000000 * pdiv) / (2000000 * pdiv);
  438. tmp = ((tmp & 0xFF) - 1) & 0xFFFF;
  439. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  440. ref = (1000 * pdiv + 2 * crystalfreq) / (2000 * pdiv);
  441. ref &= 0xFFFF;
  442. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  443. if (ref < freqdata_tab[i].freq) {
  444. fd = &freqdata_tab[i];
  445. break;
  446. }
  447. }
  448. if (!fd)
  449. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  450. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  451. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  452. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  453. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  454. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  455. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  456. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  457. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  458. }
  459. /* Initialize the 2063 radio. */
  460. static void lpphy_2063_init(struct b43_wldev *dev)
  461. {
  462. b2063_upload_init_table(dev);
  463. b43_radio_write(dev, B2063_LOGEN_SP5, 0);
  464. b43_radio_set(dev, B2063_COMM8, 0x38);
  465. b43_radio_write(dev, B2063_REG_SP1, 0x56);
  466. b43_radio_mask(dev, B2063_RX_BB_CTL2, ~0x2);
  467. b43_radio_write(dev, B2063_PA_SP7, 0);
  468. b43_radio_write(dev, B2063_TX_RF_SP6, 0x20);
  469. b43_radio_write(dev, B2063_TX_RF_SP9, 0x40);
  470. b43_radio_write(dev, B2063_PA_SP3, 0xa0);
  471. b43_radio_write(dev, B2063_PA_SP4, 0xa0);
  472. b43_radio_write(dev, B2063_PA_SP2, 0x18);
  473. }
  474. struct lpphy_stx_table_entry {
  475. u16 phy_offset;
  476. u16 phy_shift;
  477. u16 rf_addr;
  478. u16 rf_shift;
  479. u16 mask;
  480. };
  481. static const struct lpphy_stx_table_entry lpphy_stx_table[] = {
  482. { .phy_offset = 2, .phy_shift = 6, .rf_addr = 0x3d, .rf_shift = 3, .mask = 0x01, },
  483. { .phy_offset = 1, .phy_shift = 12, .rf_addr = 0x4c, .rf_shift = 1, .mask = 0x01, },
  484. { .phy_offset = 1, .phy_shift = 8, .rf_addr = 0x50, .rf_shift = 0, .mask = 0x7f, },
  485. { .phy_offset = 0, .phy_shift = 8, .rf_addr = 0x44, .rf_shift = 0, .mask = 0xff, },
  486. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4a, .rf_shift = 0, .mask = 0xff, },
  487. { .phy_offset = 0, .phy_shift = 4, .rf_addr = 0x4d, .rf_shift = 0, .mask = 0xff, },
  488. { .phy_offset = 1, .phy_shift = 4, .rf_addr = 0x4e, .rf_shift = 0, .mask = 0xff, },
  489. { .phy_offset = 0, .phy_shift = 12, .rf_addr = 0x4f, .rf_shift = 0, .mask = 0x0f, },
  490. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4f, .rf_shift = 4, .mask = 0x0f, },
  491. { .phy_offset = 3, .phy_shift = 0, .rf_addr = 0x49, .rf_shift = 0, .mask = 0x0f, },
  492. { .phy_offset = 4, .phy_shift = 3, .rf_addr = 0x46, .rf_shift = 4, .mask = 0x07, },
  493. { .phy_offset = 3, .phy_shift = 15, .rf_addr = 0x46, .rf_shift = 0, .mask = 0x01, },
  494. { .phy_offset = 4, .phy_shift = 0, .rf_addr = 0x46, .rf_shift = 1, .mask = 0x07, },
  495. { .phy_offset = 3, .phy_shift = 8, .rf_addr = 0x48, .rf_shift = 4, .mask = 0x07, },
  496. { .phy_offset = 3, .phy_shift = 11, .rf_addr = 0x48, .rf_shift = 0, .mask = 0x0f, },
  497. { .phy_offset = 3, .phy_shift = 4, .rf_addr = 0x49, .rf_shift = 4, .mask = 0x0f, },
  498. { .phy_offset = 2, .phy_shift = 15, .rf_addr = 0x45, .rf_shift = 0, .mask = 0x01, },
  499. { .phy_offset = 5, .phy_shift = 13, .rf_addr = 0x52, .rf_shift = 4, .mask = 0x07, },
  500. { .phy_offset = 6, .phy_shift = 0, .rf_addr = 0x52, .rf_shift = 7, .mask = 0x01, },
  501. { .phy_offset = 5, .phy_shift = 3, .rf_addr = 0x41, .rf_shift = 5, .mask = 0x07, },
  502. { .phy_offset = 5, .phy_shift = 6, .rf_addr = 0x41, .rf_shift = 0, .mask = 0x0f, },
  503. { .phy_offset = 5, .phy_shift = 10, .rf_addr = 0x42, .rf_shift = 5, .mask = 0x07, },
  504. { .phy_offset = 4, .phy_shift = 15, .rf_addr = 0x42, .rf_shift = 0, .mask = 0x01, },
  505. { .phy_offset = 5, .phy_shift = 0, .rf_addr = 0x42, .rf_shift = 1, .mask = 0x07, },
  506. { .phy_offset = 4, .phy_shift = 11, .rf_addr = 0x43, .rf_shift = 4, .mask = 0x0f, },
  507. { .phy_offset = 4, .phy_shift = 7, .rf_addr = 0x43, .rf_shift = 0, .mask = 0x0f, },
  508. { .phy_offset = 4, .phy_shift = 6, .rf_addr = 0x45, .rf_shift = 1, .mask = 0x01, },
  509. { .phy_offset = 2, .phy_shift = 7, .rf_addr = 0x40, .rf_shift = 4, .mask = 0x0f, },
  510. { .phy_offset = 2, .phy_shift = 11, .rf_addr = 0x40, .rf_shift = 0, .mask = 0x0f, },
  511. };
  512. static void lpphy_sync_stx(struct b43_wldev *dev)
  513. {
  514. const struct lpphy_stx_table_entry *e;
  515. unsigned int i;
  516. u16 tmp;
  517. for (i = 0; i < ARRAY_SIZE(lpphy_stx_table); i++) {
  518. e = &lpphy_stx_table[i];
  519. tmp = b43_radio_read(dev, e->rf_addr);
  520. tmp >>= e->rf_shift;
  521. tmp <<= e->phy_shift;
  522. b43_phy_maskset(dev, B43_PHY_OFDM(0xF2 + e->phy_offset),
  523. ~(e->mask << e->phy_shift), tmp);
  524. }
  525. }
  526. static void lpphy_radio_init(struct b43_wldev *dev)
  527. {
  528. /* The radio is attached through the 4wire bus. */
  529. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  530. udelay(1);
  531. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  532. udelay(1);
  533. if (dev->phy.rev < 2) {
  534. lpphy_2062_init(dev);
  535. } else {
  536. lpphy_2063_init(dev);
  537. lpphy_sync_stx(dev);
  538. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  539. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  540. if (dev->dev->bus->chip_id == 0x4325) {
  541. // TODO SSB PMU recalibration
  542. }
  543. }
  544. }
  545. static void lpphy_set_rc_cap(struct b43_wldev *dev)
  546. {
  547. u8 rc_cap = dev->phy.lp->rc_cap;
  548. b43_radio_write(dev, B2062_N_RXBB_CALIB2, max_t(u8, rc_cap-4, 0x80));
  549. b43_radio_write(dev, B2062_N_TX_CTL_A, ((rc_cap & 0x1F) >> 1) | 0x80);
  550. b43_radio_write(dev, B2062_S_RXG_CNT16, ((rc_cap & 0x1F) >> 2) | 0x80);
  551. }
  552. static void lpphy_rev0_1_rc_calib(struct b43_wldev *dev)
  553. {
  554. //TODO and SPEC FIXME
  555. }
  556. static void lpphy_rev2plus_rc_calib(struct b43_wldev *dev)
  557. {
  558. struct ssb_bus *bus = dev->dev->bus;
  559. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  560. u8 tmp = b43_radio_read(dev, B2063_RX_BB_SP8) & 0xFF;
  561. int i;
  562. b43_radio_write(dev, B2063_RX_BB_SP8, 0x0);
  563. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  564. b43_radio_mask(dev, B2063_PLL_SP1, 0xF7);
  565. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  566. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x15);
  567. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x70);
  568. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x52);
  569. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  570. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7D);
  571. for (i = 0; i < 10000; i++) {
  572. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  573. break;
  574. msleep(1);
  575. }
  576. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  577. b43_radio_write(dev, B2063_RX_BB_SP8, tmp);
  578. tmp = b43_radio_read(dev, B2063_TX_BB_SP3) & 0xFF;
  579. b43_radio_write(dev, B2063_TX_BB_SP3, 0x0);
  580. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  581. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  582. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x55);
  583. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x76);
  584. if (crystal_freq == 24000000) {
  585. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0xFC);
  586. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x0);
  587. } else {
  588. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x13);
  589. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  590. }
  591. b43_radio_write(dev, B2063_PA_SP7, 0x7D);
  592. for (i = 0; i < 10000; i++) {
  593. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  594. break;
  595. msleep(1);
  596. }
  597. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  598. b43_radio_write(dev, B2063_TX_BB_SP3, tmp);
  599. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  600. }
  601. static void lpphy_calibrate_rc(struct b43_wldev *dev)
  602. {
  603. struct b43_phy_lp *lpphy = dev->phy.lp;
  604. if (dev->phy.rev >= 2) {
  605. lpphy_rev2plus_rc_calib(dev);
  606. } else if (!lpphy->rc_cap) {
  607. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  608. lpphy_rev0_1_rc_calib(dev);
  609. } else {
  610. lpphy_set_rc_cap(dev);
  611. }
  612. }
  613. /* Read the TX power control mode from hardware. */
  614. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  615. {
  616. struct b43_phy_lp *lpphy = dev->phy.lp;
  617. u16 ctl;
  618. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  619. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  620. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  621. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  622. break;
  623. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  624. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  625. break;
  626. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  627. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  628. break;
  629. default:
  630. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  631. B43_WARN_ON(1);
  632. break;
  633. }
  634. }
  635. /* Set the TX power control mode in hardware. */
  636. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  637. {
  638. struct b43_phy_lp *lpphy = dev->phy.lp;
  639. u16 ctl;
  640. switch (lpphy->txpctl_mode) {
  641. case B43_LPPHY_TXPCTL_OFF:
  642. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  643. break;
  644. case B43_LPPHY_TXPCTL_HW:
  645. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  646. break;
  647. case B43_LPPHY_TXPCTL_SW:
  648. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  649. break;
  650. default:
  651. ctl = 0;
  652. B43_WARN_ON(1);
  653. }
  654. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  655. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE, ctl);
  656. }
  657. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  658. enum b43_lpphy_txpctl_mode mode)
  659. {
  660. struct b43_phy_lp *lpphy = dev->phy.lp;
  661. enum b43_lpphy_txpctl_mode oldmode;
  662. oldmode = lpphy->txpctl_mode;
  663. lpphy_read_tx_pctl_mode_from_hardware(dev);
  664. if (lpphy->txpctl_mode == mode)
  665. return;
  666. lpphy->txpctl_mode = mode;
  667. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  668. //TODO Update TX Power NPT
  669. //TODO Clear all TX Power offsets
  670. } else {
  671. if (mode == B43_LPPHY_TXPCTL_HW) {
  672. //TODO Recalculate target TX power
  673. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  674. 0xFF80, lpphy->tssi_idx);
  675. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  676. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  677. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  678. //TODO Disable TX gain override
  679. lpphy->tx_pwr_idx_over = -1;
  680. }
  681. }
  682. if (dev->phy.rev >= 2) {
  683. if (mode == B43_LPPHY_TXPCTL_HW)
  684. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0x2);
  685. else
  686. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0);
  687. }
  688. lpphy_write_tx_pctl_mode_to_hardware(dev);
  689. }
  690. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  691. {
  692. struct b43_phy_lp *lpphy = dev->phy.lp;
  693. lpphy->tx_pwr_idx_over = index;
  694. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  695. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  696. //TODO
  697. }
  698. static void lpphy_btcoex_override(struct b43_wldev *dev)
  699. {
  700. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  701. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  702. }
  703. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  704. {
  705. struct b43_phy_lp *lpphy = dev->phy.lp;
  706. u32 *saved_tab;
  707. const unsigned int saved_tab_size = 256;
  708. enum b43_lpphy_txpctl_mode txpctl_mode;
  709. s8 tx_pwr_idx_over;
  710. u16 tssi_npt, tssi_idx;
  711. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  712. if (!saved_tab) {
  713. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  714. return;
  715. }
  716. lpphy_read_tx_pctl_mode_from_hardware(dev);
  717. txpctl_mode = lpphy->txpctl_mode;
  718. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  719. tssi_npt = lpphy->tssi_npt;
  720. tssi_idx = lpphy->tssi_idx;
  721. if (dev->phy.rev < 2) {
  722. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  723. saved_tab_size, saved_tab);
  724. } else {
  725. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  726. saved_tab_size, saved_tab);
  727. }
  728. //TODO
  729. kfree(saved_tab);
  730. }
  731. static void lpphy_calibration(struct b43_wldev *dev)
  732. {
  733. struct b43_phy_lp *lpphy = dev->phy.lp;
  734. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  735. b43_mac_suspend(dev);
  736. lpphy_btcoex_override(dev);
  737. lpphy_read_tx_pctl_mode_from_hardware(dev);
  738. saved_pctl_mode = lpphy->txpctl_mode;
  739. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  740. //TODO Perform transmit power table I/Q LO calibration
  741. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  742. lpphy_pr41573_workaround(dev);
  743. //TODO If a full calibration has not been performed on this channel yet, perform PAPD TX-power calibration
  744. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  745. //TODO Perform I/Q calibration with a single control value set
  746. b43_mac_enable(dev);
  747. }
  748. /* Initialize TX power control */
  749. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  750. {
  751. if (0/*FIXME HWPCTL capable */) {
  752. //TODO
  753. } else { /* This device is only software TX power control capable. */
  754. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  755. //TODO
  756. } else {
  757. //TODO
  758. }
  759. //TODO set BB multiplier to 0x0096
  760. }
  761. }
  762. static int b43_lpphy_op_init(struct b43_wldev *dev)
  763. {
  764. lpphy_read_band_sprom(dev); //FIXME should this be in prepare_structs?
  765. lpphy_baseband_init(dev);
  766. lpphy_radio_init(dev);
  767. lpphy_calibrate_rc(dev);
  768. //TODO set channel
  769. lpphy_tx_pctl_init(dev);
  770. lpphy_calibration(dev);
  771. //TODO ACI init
  772. return 0;
  773. }
  774. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  775. {
  776. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  777. return b43_read16(dev, B43_MMIO_PHY_DATA);
  778. }
  779. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  780. {
  781. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  782. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  783. }
  784. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  785. {
  786. /* Register 1 is a 32-bit register. */
  787. B43_WARN_ON(reg == 1);
  788. /* LP-PHY needs a special bit set for read access */
  789. if (dev->phy.rev < 2) {
  790. if (reg != 0x4001)
  791. reg |= 0x100;
  792. } else
  793. reg |= 0x200;
  794. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  795. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  796. }
  797. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  798. {
  799. /* Register 1 is a 32-bit register. */
  800. B43_WARN_ON(reg == 1);
  801. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  802. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  803. }
  804. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  805. bool blocked)
  806. {
  807. //TODO
  808. }
  809. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  810. unsigned int new_channel)
  811. {
  812. //TODO
  813. return 0;
  814. }
  815. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  816. {
  817. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  818. return 1;
  819. return 36;
  820. }
  821. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  822. {
  823. //TODO
  824. }
  825. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  826. {
  827. //TODO
  828. }
  829. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  830. bool ignore_tssi)
  831. {
  832. //TODO
  833. return B43_TXPWR_RES_DONE;
  834. }
  835. const struct b43_phy_operations b43_phyops_lp = {
  836. .allocate = b43_lpphy_op_allocate,
  837. .free = b43_lpphy_op_free,
  838. .prepare_structs = b43_lpphy_op_prepare_structs,
  839. .init = b43_lpphy_op_init,
  840. .phy_read = b43_lpphy_op_read,
  841. .phy_write = b43_lpphy_op_write,
  842. .radio_read = b43_lpphy_op_radio_read,
  843. .radio_write = b43_lpphy_op_radio_write,
  844. .software_rfkill = b43_lpphy_op_software_rfkill,
  845. .switch_analog = b43_phyop_switch_analog_generic,
  846. .switch_channel = b43_lpphy_op_switch_channel,
  847. .get_default_chan = b43_lpphy_op_get_default_chan,
  848. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  849. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  850. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  851. };