kvm_main.c 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/pgtable.h>
  54. #include "coalesced_mmio.h"
  55. #include "async_pf.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  64. */
  65. DEFINE_RAW_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. static int kvm_usage_count = 0;
  69. static atomic_t hardware_enable_failed;
  70. struct kmem_cache *kvm_vcpu_cache;
  71. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  72. static __read_mostly struct preempt_ops kvm_preempt_ops;
  73. struct dentry *kvm_debugfs_dir;
  74. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  75. unsigned long arg);
  76. #ifdef CONFIG_COMPAT
  77. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  78. unsigned long arg);
  79. #endif
  80. static int hardware_enable_all(void);
  81. static void hardware_disable_all(void);
  82. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  83. bool kvm_rebooting;
  84. EXPORT_SYMBOL_GPL(kvm_rebooting);
  85. static bool largepages_enabled = true;
  86. static struct page *hwpoison_page;
  87. static pfn_t hwpoison_pfn;
  88. struct page *fault_page;
  89. pfn_t fault_pfn;
  90. inline int kvm_is_mmio_pfn(pfn_t pfn)
  91. {
  92. if (pfn_valid(pfn)) {
  93. int reserved;
  94. struct page *tail = pfn_to_page(pfn);
  95. struct page *head = compound_trans_head(tail);
  96. reserved = PageReserved(head);
  97. if (head != tail) {
  98. /*
  99. * "head" is not a dangling pointer
  100. * (compound_trans_head takes care of that)
  101. * but the hugepage may have been splitted
  102. * from under us (and we may not hold a
  103. * reference count on the head page so it can
  104. * be reused before we run PageReferenced), so
  105. * we've to check PageTail before returning
  106. * what we just read.
  107. */
  108. smp_rmb();
  109. if (PageTail(tail))
  110. return reserved;
  111. }
  112. return PageReserved(tail);
  113. }
  114. return true;
  115. }
  116. /*
  117. * Switches to specified vcpu, until a matching vcpu_put()
  118. */
  119. void vcpu_load(struct kvm_vcpu *vcpu)
  120. {
  121. int cpu;
  122. mutex_lock(&vcpu->mutex);
  123. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  124. /* The thread running this VCPU changed. */
  125. struct pid *oldpid = vcpu->pid;
  126. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  127. rcu_assign_pointer(vcpu->pid, newpid);
  128. synchronize_rcu();
  129. put_pid(oldpid);
  130. }
  131. cpu = get_cpu();
  132. preempt_notifier_register(&vcpu->preempt_notifier);
  133. kvm_arch_vcpu_load(vcpu, cpu);
  134. put_cpu();
  135. }
  136. void vcpu_put(struct kvm_vcpu *vcpu)
  137. {
  138. preempt_disable();
  139. kvm_arch_vcpu_put(vcpu);
  140. preempt_notifier_unregister(&vcpu->preempt_notifier);
  141. preempt_enable();
  142. mutex_unlock(&vcpu->mutex);
  143. }
  144. static void ack_flush(void *_completed)
  145. {
  146. }
  147. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  148. {
  149. int i, cpu, me;
  150. cpumask_var_t cpus;
  151. bool called = true;
  152. struct kvm_vcpu *vcpu;
  153. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  154. me = get_cpu();
  155. kvm_for_each_vcpu(i, vcpu, kvm) {
  156. kvm_make_request(req, vcpu);
  157. cpu = vcpu->cpu;
  158. /* Set ->requests bit before we read ->mode */
  159. smp_mb();
  160. if (cpus != NULL && cpu != -1 && cpu != me &&
  161. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  162. cpumask_set_cpu(cpu, cpus);
  163. }
  164. if (unlikely(cpus == NULL))
  165. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  166. else if (!cpumask_empty(cpus))
  167. smp_call_function_many(cpus, ack_flush, NULL, 1);
  168. else
  169. called = false;
  170. put_cpu();
  171. free_cpumask_var(cpus);
  172. return called;
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. long dirty_count = kvm->tlbs_dirty;
  177. smp_mb();
  178. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  179. ++kvm->stat.remote_tlb_flush;
  180. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  181. }
  182. void kvm_reload_remote_mmus(struct kvm *kvm)
  183. {
  184. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  185. }
  186. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  187. {
  188. struct page *page;
  189. int r;
  190. mutex_init(&vcpu->mutex);
  191. vcpu->cpu = -1;
  192. vcpu->kvm = kvm;
  193. vcpu->vcpu_id = id;
  194. vcpu->pid = NULL;
  195. init_waitqueue_head(&vcpu->wq);
  196. kvm_async_pf_vcpu_init(vcpu);
  197. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  198. if (!page) {
  199. r = -ENOMEM;
  200. goto fail;
  201. }
  202. vcpu->run = page_address(page);
  203. r = kvm_arch_vcpu_init(vcpu);
  204. if (r < 0)
  205. goto fail_free_run;
  206. return 0;
  207. fail_free_run:
  208. free_page((unsigned long)vcpu->run);
  209. fail:
  210. return r;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  213. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  214. {
  215. put_pid(vcpu->pid);
  216. kvm_arch_vcpu_uninit(vcpu);
  217. free_page((unsigned long)vcpu->run);
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  220. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  221. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  222. {
  223. return container_of(mn, struct kvm, mmu_notifier);
  224. }
  225. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  226. struct mm_struct *mm,
  227. unsigned long address)
  228. {
  229. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  230. int need_tlb_flush, idx;
  231. /*
  232. * When ->invalidate_page runs, the linux pte has been zapped
  233. * already but the page is still allocated until
  234. * ->invalidate_page returns. So if we increase the sequence
  235. * here the kvm page fault will notice if the spte can't be
  236. * established because the page is going to be freed. If
  237. * instead the kvm page fault establishes the spte before
  238. * ->invalidate_page runs, kvm_unmap_hva will release it
  239. * before returning.
  240. *
  241. * The sequence increase only need to be seen at spin_unlock
  242. * time, and not at spin_lock time.
  243. *
  244. * Increasing the sequence after the spin_unlock would be
  245. * unsafe because the kvm page fault could then establish the
  246. * pte after kvm_unmap_hva returned, without noticing the page
  247. * is going to be freed.
  248. */
  249. idx = srcu_read_lock(&kvm->srcu);
  250. spin_lock(&kvm->mmu_lock);
  251. kvm->mmu_notifier_seq++;
  252. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  253. /* we've to flush the tlb before the pages can be freed */
  254. if (need_tlb_flush)
  255. kvm_flush_remote_tlbs(kvm);
  256. spin_unlock(&kvm->mmu_lock);
  257. srcu_read_unlock(&kvm->srcu, idx);
  258. }
  259. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  260. struct mm_struct *mm,
  261. unsigned long address,
  262. pte_t pte)
  263. {
  264. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  265. int idx;
  266. idx = srcu_read_lock(&kvm->srcu);
  267. spin_lock(&kvm->mmu_lock);
  268. kvm->mmu_notifier_seq++;
  269. kvm_set_spte_hva(kvm, address, pte);
  270. spin_unlock(&kvm->mmu_lock);
  271. srcu_read_unlock(&kvm->srcu, idx);
  272. }
  273. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  274. struct mm_struct *mm,
  275. unsigned long start,
  276. unsigned long end)
  277. {
  278. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  279. int need_tlb_flush = 0, idx;
  280. idx = srcu_read_lock(&kvm->srcu);
  281. spin_lock(&kvm->mmu_lock);
  282. /*
  283. * The count increase must become visible at unlock time as no
  284. * spte can be established without taking the mmu_lock and
  285. * count is also read inside the mmu_lock critical section.
  286. */
  287. kvm->mmu_notifier_count++;
  288. for (; start < end; start += PAGE_SIZE)
  289. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  290. need_tlb_flush |= kvm->tlbs_dirty;
  291. /* we've to flush the tlb before the pages can be freed */
  292. if (need_tlb_flush)
  293. kvm_flush_remote_tlbs(kvm);
  294. spin_unlock(&kvm->mmu_lock);
  295. srcu_read_unlock(&kvm->srcu, idx);
  296. }
  297. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  298. struct mm_struct *mm,
  299. unsigned long start,
  300. unsigned long end)
  301. {
  302. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  303. spin_lock(&kvm->mmu_lock);
  304. /*
  305. * This sequence increase will notify the kvm page fault that
  306. * the page that is going to be mapped in the spte could have
  307. * been freed.
  308. */
  309. kvm->mmu_notifier_seq++;
  310. smp_wmb();
  311. /*
  312. * The above sequence increase must be visible before the
  313. * below count decrease, which is ensured by the smp_wmb above
  314. * in conjunction with the smp_rmb in mmu_notifier_retry().
  315. */
  316. kvm->mmu_notifier_count--;
  317. spin_unlock(&kvm->mmu_lock);
  318. BUG_ON(kvm->mmu_notifier_count < 0);
  319. }
  320. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  321. struct mm_struct *mm,
  322. unsigned long address)
  323. {
  324. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  325. int young, idx;
  326. idx = srcu_read_lock(&kvm->srcu);
  327. spin_lock(&kvm->mmu_lock);
  328. young = kvm_age_hva(kvm, address);
  329. if (young)
  330. kvm_flush_remote_tlbs(kvm);
  331. spin_unlock(&kvm->mmu_lock);
  332. srcu_read_unlock(&kvm->srcu, idx);
  333. return young;
  334. }
  335. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  336. struct mm_struct *mm,
  337. unsigned long address)
  338. {
  339. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  340. int young, idx;
  341. idx = srcu_read_lock(&kvm->srcu);
  342. spin_lock(&kvm->mmu_lock);
  343. young = kvm_test_age_hva(kvm, address);
  344. spin_unlock(&kvm->mmu_lock);
  345. srcu_read_unlock(&kvm->srcu, idx);
  346. return young;
  347. }
  348. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  349. struct mm_struct *mm)
  350. {
  351. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  352. int idx;
  353. idx = srcu_read_lock(&kvm->srcu);
  354. kvm_arch_flush_shadow(kvm);
  355. srcu_read_unlock(&kvm->srcu, idx);
  356. }
  357. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  358. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  359. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  360. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  361. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  362. .test_young = kvm_mmu_notifier_test_young,
  363. .change_pte = kvm_mmu_notifier_change_pte,
  364. .release = kvm_mmu_notifier_release,
  365. };
  366. static int kvm_init_mmu_notifier(struct kvm *kvm)
  367. {
  368. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  369. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  370. }
  371. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  372. static int kvm_init_mmu_notifier(struct kvm *kvm)
  373. {
  374. return 0;
  375. }
  376. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  377. static void kvm_init_memslots_id(struct kvm *kvm)
  378. {
  379. int i;
  380. struct kvm_memslots *slots = kvm->memslots;
  381. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  382. slots->id_to_index[i] = slots->memslots[i].id = i;
  383. }
  384. static struct kvm *kvm_create_vm(unsigned long type)
  385. {
  386. int r, i;
  387. struct kvm *kvm = kvm_arch_alloc_vm();
  388. if (!kvm)
  389. return ERR_PTR(-ENOMEM);
  390. r = kvm_arch_init_vm(kvm, type);
  391. if (r)
  392. goto out_err_nodisable;
  393. r = hardware_enable_all();
  394. if (r)
  395. goto out_err_nodisable;
  396. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  397. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  398. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  399. #endif
  400. r = -ENOMEM;
  401. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  402. if (!kvm->memslots)
  403. goto out_err_nosrcu;
  404. kvm_init_memslots_id(kvm);
  405. if (init_srcu_struct(&kvm->srcu))
  406. goto out_err_nosrcu;
  407. for (i = 0; i < KVM_NR_BUSES; i++) {
  408. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  409. GFP_KERNEL);
  410. if (!kvm->buses[i])
  411. goto out_err;
  412. }
  413. spin_lock_init(&kvm->mmu_lock);
  414. kvm->mm = current->mm;
  415. atomic_inc(&kvm->mm->mm_count);
  416. kvm_eventfd_init(kvm);
  417. mutex_init(&kvm->lock);
  418. mutex_init(&kvm->irq_lock);
  419. mutex_init(&kvm->slots_lock);
  420. atomic_set(&kvm->users_count, 1);
  421. r = kvm_init_mmu_notifier(kvm);
  422. if (r)
  423. goto out_err;
  424. raw_spin_lock(&kvm_lock);
  425. list_add(&kvm->vm_list, &vm_list);
  426. raw_spin_unlock(&kvm_lock);
  427. return kvm;
  428. out_err:
  429. cleanup_srcu_struct(&kvm->srcu);
  430. out_err_nosrcu:
  431. hardware_disable_all();
  432. out_err_nodisable:
  433. for (i = 0; i < KVM_NR_BUSES; i++)
  434. kfree(kvm->buses[i]);
  435. kfree(kvm->memslots);
  436. kvm_arch_free_vm(kvm);
  437. return ERR_PTR(r);
  438. }
  439. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  440. {
  441. if (!memslot->dirty_bitmap)
  442. return;
  443. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  444. vfree(memslot->dirty_bitmap);
  445. else
  446. kfree(memslot->dirty_bitmap);
  447. memslot->dirty_bitmap = NULL;
  448. }
  449. /*
  450. * Free any memory in @free but not in @dont.
  451. */
  452. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  453. struct kvm_memory_slot *dont)
  454. {
  455. if (!dont || free->rmap != dont->rmap)
  456. vfree(free->rmap);
  457. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  458. kvm_destroy_dirty_bitmap(free);
  459. kvm_arch_free_memslot(free, dont);
  460. free->npages = 0;
  461. free->rmap = NULL;
  462. }
  463. void kvm_free_physmem(struct kvm *kvm)
  464. {
  465. struct kvm_memslots *slots = kvm->memslots;
  466. struct kvm_memory_slot *memslot;
  467. kvm_for_each_memslot(memslot, slots)
  468. kvm_free_physmem_slot(memslot, NULL);
  469. kfree(kvm->memslots);
  470. }
  471. static void kvm_destroy_vm(struct kvm *kvm)
  472. {
  473. int i;
  474. struct mm_struct *mm = kvm->mm;
  475. kvm_arch_sync_events(kvm);
  476. raw_spin_lock(&kvm_lock);
  477. list_del(&kvm->vm_list);
  478. raw_spin_unlock(&kvm_lock);
  479. kvm_free_irq_routing(kvm);
  480. for (i = 0; i < KVM_NR_BUSES; i++)
  481. kvm_io_bus_destroy(kvm->buses[i]);
  482. kvm_coalesced_mmio_free(kvm);
  483. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  484. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  485. #else
  486. kvm_arch_flush_shadow(kvm);
  487. #endif
  488. kvm_arch_destroy_vm(kvm);
  489. kvm_free_physmem(kvm);
  490. cleanup_srcu_struct(&kvm->srcu);
  491. kvm_arch_free_vm(kvm);
  492. hardware_disable_all();
  493. mmdrop(mm);
  494. }
  495. void kvm_get_kvm(struct kvm *kvm)
  496. {
  497. atomic_inc(&kvm->users_count);
  498. }
  499. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  500. void kvm_put_kvm(struct kvm *kvm)
  501. {
  502. if (atomic_dec_and_test(&kvm->users_count))
  503. kvm_destroy_vm(kvm);
  504. }
  505. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  506. static int kvm_vm_release(struct inode *inode, struct file *filp)
  507. {
  508. struct kvm *kvm = filp->private_data;
  509. kvm_irqfd_release(kvm);
  510. kvm_put_kvm(kvm);
  511. return 0;
  512. }
  513. /*
  514. * Allocation size is twice as large as the actual dirty bitmap size.
  515. * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
  516. */
  517. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  518. {
  519. #ifndef CONFIG_S390
  520. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  521. if (dirty_bytes > PAGE_SIZE)
  522. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  523. else
  524. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  525. if (!memslot->dirty_bitmap)
  526. return -ENOMEM;
  527. #endif /* !CONFIG_S390 */
  528. return 0;
  529. }
  530. static int cmp_memslot(const void *slot1, const void *slot2)
  531. {
  532. struct kvm_memory_slot *s1, *s2;
  533. s1 = (struct kvm_memory_slot *)slot1;
  534. s2 = (struct kvm_memory_slot *)slot2;
  535. if (s1->npages < s2->npages)
  536. return 1;
  537. if (s1->npages > s2->npages)
  538. return -1;
  539. return 0;
  540. }
  541. /*
  542. * Sort the memslots base on its size, so the larger slots
  543. * will get better fit.
  544. */
  545. static void sort_memslots(struct kvm_memslots *slots)
  546. {
  547. int i;
  548. sort(slots->memslots, KVM_MEM_SLOTS_NUM,
  549. sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
  550. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  551. slots->id_to_index[slots->memslots[i].id] = i;
  552. }
  553. void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
  554. {
  555. if (new) {
  556. int id = new->id;
  557. struct kvm_memory_slot *old = id_to_memslot(slots, id);
  558. unsigned long npages = old->npages;
  559. *old = *new;
  560. if (new->npages != npages)
  561. sort_memslots(slots);
  562. }
  563. slots->generation++;
  564. }
  565. /*
  566. * Allocate some memory and give it an address in the guest physical address
  567. * space.
  568. *
  569. * Discontiguous memory is allowed, mostly for framebuffers.
  570. *
  571. * Must be called holding mmap_sem for write.
  572. */
  573. int __kvm_set_memory_region(struct kvm *kvm,
  574. struct kvm_userspace_memory_region *mem,
  575. int user_alloc)
  576. {
  577. int r;
  578. gfn_t base_gfn;
  579. unsigned long npages;
  580. unsigned long i;
  581. struct kvm_memory_slot *memslot;
  582. struct kvm_memory_slot old, new;
  583. struct kvm_memslots *slots, *old_memslots;
  584. r = -EINVAL;
  585. /* General sanity checks */
  586. if (mem->memory_size & (PAGE_SIZE - 1))
  587. goto out;
  588. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  589. goto out;
  590. /* We can read the guest memory with __xxx_user() later on. */
  591. if (user_alloc &&
  592. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  593. !access_ok(VERIFY_WRITE,
  594. (void __user *)(unsigned long)mem->userspace_addr,
  595. mem->memory_size)))
  596. goto out;
  597. if (mem->slot >= KVM_MEM_SLOTS_NUM)
  598. goto out;
  599. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  600. goto out;
  601. memslot = id_to_memslot(kvm->memslots, mem->slot);
  602. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  603. npages = mem->memory_size >> PAGE_SHIFT;
  604. r = -EINVAL;
  605. if (npages > KVM_MEM_MAX_NR_PAGES)
  606. goto out;
  607. if (!npages)
  608. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  609. new = old = *memslot;
  610. new.id = mem->slot;
  611. new.base_gfn = base_gfn;
  612. new.npages = npages;
  613. new.flags = mem->flags;
  614. /* Disallow changing a memory slot's size. */
  615. r = -EINVAL;
  616. if (npages && old.npages && npages != old.npages)
  617. goto out_free;
  618. /* Check for overlaps */
  619. r = -EEXIST;
  620. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  621. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  622. if (s == memslot || !s->npages)
  623. continue;
  624. if (!((base_gfn + npages <= s->base_gfn) ||
  625. (base_gfn >= s->base_gfn + s->npages)))
  626. goto out_free;
  627. }
  628. /* Free page dirty bitmap if unneeded */
  629. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  630. new.dirty_bitmap = NULL;
  631. r = -ENOMEM;
  632. /* Allocate if a slot is being created */
  633. if (npages && !old.npages) {
  634. new.user_alloc = user_alloc;
  635. new.userspace_addr = mem->userspace_addr;
  636. #ifndef CONFIG_S390
  637. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  638. if (!new.rmap)
  639. goto out_free;
  640. #endif /* not defined CONFIG_S390 */
  641. if (kvm_arch_create_memslot(&new, npages))
  642. goto out_free;
  643. }
  644. /* Allocate page dirty bitmap if needed */
  645. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  646. if (kvm_create_dirty_bitmap(&new) < 0)
  647. goto out_free;
  648. /* destroy any largepage mappings for dirty tracking */
  649. }
  650. if (!npages) {
  651. struct kvm_memory_slot *slot;
  652. r = -ENOMEM;
  653. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  654. GFP_KERNEL);
  655. if (!slots)
  656. goto out_free;
  657. slot = id_to_memslot(slots, mem->slot);
  658. slot->flags |= KVM_MEMSLOT_INVALID;
  659. update_memslots(slots, NULL);
  660. old_memslots = kvm->memslots;
  661. rcu_assign_pointer(kvm->memslots, slots);
  662. synchronize_srcu_expedited(&kvm->srcu);
  663. /* From this point no new shadow pages pointing to a deleted
  664. * memslot will be created.
  665. *
  666. * validation of sp->gfn happens in:
  667. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  668. * - kvm_is_visible_gfn (mmu_check_roots)
  669. */
  670. kvm_arch_flush_shadow(kvm);
  671. kfree(old_memslots);
  672. }
  673. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  674. if (r)
  675. goto out_free;
  676. /* map/unmap the pages in iommu page table */
  677. if (npages) {
  678. r = kvm_iommu_map_pages(kvm, &new);
  679. if (r)
  680. goto out_free;
  681. } else
  682. kvm_iommu_unmap_pages(kvm, &old);
  683. r = -ENOMEM;
  684. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  685. GFP_KERNEL);
  686. if (!slots)
  687. goto out_free;
  688. /* actual memory is freed via old in kvm_free_physmem_slot below */
  689. if (!npages) {
  690. new.rmap = NULL;
  691. new.dirty_bitmap = NULL;
  692. memset(&new.arch, 0, sizeof(new.arch));
  693. }
  694. update_memslots(slots, &new);
  695. old_memslots = kvm->memslots;
  696. rcu_assign_pointer(kvm->memslots, slots);
  697. synchronize_srcu_expedited(&kvm->srcu);
  698. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  699. /*
  700. * If the new memory slot is created, we need to clear all
  701. * mmio sptes.
  702. */
  703. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  704. kvm_arch_flush_shadow(kvm);
  705. kvm_free_physmem_slot(&old, &new);
  706. kfree(old_memslots);
  707. return 0;
  708. out_free:
  709. kvm_free_physmem_slot(&new, &old);
  710. out:
  711. return r;
  712. }
  713. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  714. int kvm_set_memory_region(struct kvm *kvm,
  715. struct kvm_userspace_memory_region *mem,
  716. int user_alloc)
  717. {
  718. int r;
  719. mutex_lock(&kvm->slots_lock);
  720. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  721. mutex_unlock(&kvm->slots_lock);
  722. return r;
  723. }
  724. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  725. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  726. struct
  727. kvm_userspace_memory_region *mem,
  728. int user_alloc)
  729. {
  730. if (mem->slot >= KVM_MEMORY_SLOTS)
  731. return -EINVAL;
  732. return kvm_set_memory_region(kvm, mem, user_alloc);
  733. }
  734. int kvm_get_dirty_log(struct kvm *kvm,
  735. struct kvm_dirty_log *log, int *is_dirty)
  736. {
  737. struct kvm_memory_slot *memslot;
  738. int r, i;
  739. unsigned long n;
  740. unsigned long any = 0;
  741. r = -EINVAL;
  742. if (log->slot >= KVM_MEMORY_SLOTS)
  743. goto out;
  744. memslot = id_to_memslot(kvm->memslots, log->slot);
  745. r = -ENOENT;
  746. if (!memslot->dirty_bitmap)
  747. goto out;
  748. n = kvm_dirty_bitmap_bytes(memslot);
  749. for (i = 0; !any && i < n/sizeof(long); ++i)
  750. any = memslot->dirty_bitmap[i];
  751. r = -EFAULT;
  752. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  753. goto out;
  754. if (any)
  755. *is_dirty = 1;
  756. r = 0;
  757. out:
  758. return r;
  759. }
  760. bool kvm_largepages_enabled(void)
  761. {
  762. return largepages_enabled;
  763. }
  764. void kvm_disable_largepages(void)
  765. {
  766. largepages_enabled = false;
  767. }
  768. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  769. int is_error_page(struct page *page)
  770. {
  771. return page == bad_page || page == hwpoison_page || page == fault_page;
  772. }
  773. EXPORT_SYMBOL_GPL(is_error_page);
  774. int is_error_pfn(pfn_t pfn)
  775. {
  776. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  777. }
  778. EXPORT_SYMBOL_GPL(is_error_pfn);
  779. int is_hwpoison_pfn(pfn_t pfn)
  780. {
  781. return pfn == hwpoison_pfn;
  782. }
  783. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  784. int is_fault_pfn(pfn_t pfn)
  785. {
  786. return pfn == fault_pfn;
  787. }
  788. EXPORT_SYMBOL_GPL(is_fault_pfn);
  789. int is_noslot_pfn(pfn_t pfn)
  790. {
  791. return pfn == bad_pfn;
  792. }
  793. EXPORT_SYMBOL_GPL(is_noslot_pfn);
  794. int is_invalid_pfn(pfn_t pfn)
  795. {
  796. return pfn == hwpoison_pfn || pfn == fault_pfn;
  797. }
  798. EXPORT_SYMBOL_GPL(is_invalid_pfn);
  799. static inline unsigned long bad_hva(void)
  800. {
  801. return PAGE_OFFSET;
  802. }
  803. int kvm_is_error_hva(unsigned long addr)
  804. {
  805. return addr == bad_hva();
  806. }
  807. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  808. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  809. {
  810. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  811. }
  812. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  813. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  814. {
  815. struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
  816. if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
  817. memslot->flags & KVM_MEMSLOT_INVALID)
  818. return 0;
  819. return 1;
  820. }
  821. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  822. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  823. {
  824. struct vm_area_struct *vma;
  825. unsigned long addr, size;
  826. size = PAGE_SIZE;
  827. addr = gfn_to_hva(kvm, gfn);
  828. if (kvm_is_error_hva(addr))
  829. return PAGE_SIZE;
  830. down_read(&current->mm->mmap_sem);
  831. vma = find_vma(current->mm, addr);
  832. if (!vma)
  833. goto out;
  834. size = vma_kernel_pagesize(vma);
  835. out:
  836. up_read(&current->mm->mmap_sem);
  837. return size;
  838. }
  839. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  840. gfn_t *nr_pages)
  841. {
  842. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  843. return bad_hva();
  844. if (nr_pages)
  845. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  846. return gfn_to_hva_memslot(slot, gfn);
  847. }
  848. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  849. {
  850. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  851. }
  852. EXPORT_SYMBOL_GPL(gfn_to_hva);
  853. static pfn_t get_fault_pfn(void)
  854. {
  855. get_page(fault_page);
  856. return fault_pfn;
  857. }
  858. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  859. unsigned long start, int write, struct page **page)
  860. {
  861. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  862. if (write)
  863. flags |= FOLL_WRITE;
  864. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  865. }
  866. static inline int check_user_page_hwpoison(unsigned long addr)
  867. {
  868. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  869. rc = __get_user_pages(current, current->mm, addr, 1,
  870. flags, NULL, NULL, NULL);
  871. return rc == -EHWPOISON;
  872. }
  873. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  874. bool *async, bool write_fault, bool *writable)
  875. {
  876. struct page *page[1];
  877. int npages = 0;
  878. pfn_t pfn;
  879. /* we can do it either atomically or asynchronously, not both */
  880. BUG_ON(atomic && async);
  881. BUG_ON(!write_fault && !writable);
  882. if (writable)
  883. *writable = true;
  884. if (atomic || async)
  885. npages = __get_user_pages_fast(addr, 1, 1, page);
  886. if (unlikely(npages != 1) && !atomic) {
  887. might_sleep();
  888. if (writable)
  889. *writable = write_fault;
  890. if (async) {
  891. down_read(&current->mm->mmap_sem);
  892. npages = get_user_page_nowait(current, current->mm,
  893. addr, write_fault, page);
  894. up_read(&current->mm->mmap_sem);
  895. } else
  896. npages = get_user_pages_fast(addr, 1, write_fault,
  897. page);
  898. /* map read fault as writable if possible */
  899. if (unlikely(!write_fault) && npages == 1) {
  900. struct page *wpage[1];
  901. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  902. if (npages == 1) {
  903. *writable = true;
  904. put_page(page[0]);
  905. page[0] = wpage[0];
  906. }
  907. npages = 1;
  908. }
  909. }
  910. if (unlikely(npages != 1)) {
  911. struct vm_area_struct *vma;
  912. if (atomic)
  913. return get_fault_pfn();
  914. down_read(&current->mm->mmap_sem);
  915. if (npages == -EHWPOISON ||
  916. (!async && check_user_page_hwpoison(addr))) {
  917. up_read(&current->mm->mmap_sem);
  918. get_page(hwpoison_page);
  919. return page_to_pfn(hwpoison_page);
  920. }
  921. vma = find_vma_intersection(current->mm, addr, addr+1);
  922. if (vma == NULL)
  923. pfn = get_fault_pfn();
  924. else if ((vma->vm_flags & VM_PFNMAP)) {
  925. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  926. vma->vm_pgoff;
  927. BUG_ON(!kvm_is_mmio_pfn(pfn));
  928. } else {
  929. if (async && (vma->vm_flags & VM_WRITE))
  930. *async = true;
  931. pfn = get_fault_pfn();
  932. }
  933. up_read(&current->mm->mmap_sem);
  934. } else
  935. pfn = page_to_pfn(page[0]);
  936. return pfn;
  937. }
  938. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  939. {
  940. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  941. }
  942. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  943. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  944. bool write_fault, bool *writable)
  945. {
  946. unsigned long addr;
  947. if (async)
  948. *async = false;
  949. addr = gfn_to_hva(kvm, gfn);
  950. if (kvm_is_error_hva(addr)) {
  951. get_page(bad_page);
  952. return page_to_pfn(bad_page);
  953. }
  954. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  955. }
  956. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  957. {
  958. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  959. }
  960. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  961. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  962. bool write_fault, bool *writable)
  963. {
  964. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  965. }
  966. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  967. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  968. {
  969. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  970. }
  971. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  972. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  973. bool *writable)
  974. {
  975. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  976. }
  977. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  978. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  979. struct kvm_memory_slot *slot, gfn_t gfn)
  980. {
  981. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  982. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  983. }
  984. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  985. int nr_pages)
  986. {
  987. unsigned long addr;
  988. gfn_t entry;
  989. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  990. if (kvm_is_error_hva(addr))
  991. return -1;
  992. if (entry < nr_pages)
  993. return 0;
  994. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  995. }
  996. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  997. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  998. {
  999. pfn_t pfn;
  1000. pfn = gfn_to_pfn(kvm, gfn);
  1001. if (!kvm_is_mmio_pfn(pfn))
  1002. return pfn_to_page(pfn);
  1003. WARN_ON(kvm_is_mmio_pfn(pfn));
  1004. get_page(bad_page);
  1005. return bad_page;
  1006. }
  1007. EXPORT_SYMBOL_GPL(gfn_to_page);
  1008. void kvm_release_page_clean(struct page *page)
  1009. {
  1010. kvm_release_pfn_clean(page_to_pfn(page));
  1011. }
  1012. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1013. void kvm_release_pfn_clean(pfn_t pfn)
  1014. {
  1015. if (!kvm_is_mmio_pfn(pfn))
  1016. put_page(pfn_to_page(pfn));
  1017. }
  1018. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1019. void kvm_release_page_dirty(struct page *page)
  1020. {
  1021. kvm_release_pfn_dirty(page_to_pfn(page));
  1022. }
  1023. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1024. void kvm_release_pfn_dirty(pfn_t pfn)
  1025. {
  1026. kvm_set_pfn_dirty(pfn);
  1027. kvm_release_pfn_clean(pfn);
  1028. }
  1029. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1030. void kvm_set_page_dirty(struct page *page)
  1031. {
  1032. kvm_set_pfn_dirty(page_to_pfn(page));
  1033. }
  1034. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1035. void kvm_set_pfn_dirty(pfn_t pfn)
  1036. {
  1037. if (!kvm_is_mmio_pfn(pfn)) {
  1038. struct page *page = pfn_to_page(pfn);
  1039. if (!PageReserved(page))
  1040. SetPageDirty(page);
  1041. }
  1042. }
  1043. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1044. void kvm_set_pfn_accessed(pfn_t pfn)
  1045. {
  1046. if (!kvm_is_mmio_pfn(pfn))
  1047. mark_page_accessed(pfn_to_page(pfn));
  1048. }
  1049. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1050. void kvm_get_pfn(pfn_t pfn)
  1051. {
  1052. if (!kvm_is_mmio_pfn(pfn))
  1053. get_page(pfn_to_page(pfn));
  1054. }
  1055. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1056. static int next_segment(unsigned long len, int offset)
  1057. {
  1058. if (len > PAGE_SIZE - offset)
  1059. return PAGE_SIZE - offset;
  1060. else
  1061. return len;
  1062. }
  1063. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1064. int len)
  1065. {
  1066. int r;
  1067. unsigned long addr;
  1068. addr = gfn_to_hva(kvm, gfn);
  1069. if (kvm_is_error_hva(addr))
  1070. return -EFAULT;
  1071. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1072. if (r)
  1073. return -EFAULT;
  1074. return 0;
  1075. }
  1076. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1077. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1078. {
  1079. gfn_t gfn = gpa >> PAGE_SHIFT;
  1080. int seg;
  1081. int offset = offset_in_page(gpa);
  1082. int ret;
  1083. while ((seg = next_segment(len, offset)) != 0) {
  1084. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1085. if (ret < 0)
  1086. return ret;
  1087. offset = 0;
  1088. len -= seg;
  1089. data += seg;
  1090. ++gfn;
  1091. }
  1092. return 0;
  1093. }
  1094. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1095. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1096. unsigned long len)
  1097. {
  1098. int r;
  1099. unsigned long addr;
  1100. gfn_t gfn = gpa >> PAGE_SHIFT;
  1101. int offset = offset_in_page(gpa);
  1102. addr = gfn_to_hva(kvm, gfn);
  1103. if (kvm_is_error_hva(addr))
  1104. return -EFAULT;
  1105. pagefault_disable();
  1106. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1107. pagefault_enable();
  1108. if (r)
  1109. return -EFAULT;
  1110. return 0;
  1111. }
  1112. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1113. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1114. int offset, int len)
  1115. {
  1116. int r;
  1117. unsigned long addr;
  1118. addr = gfn_to_hva(kvm, gfn);
  1119. if (kvm_is_error_hva(addr))
  1120. return -EFAULT;
  1121. r = __copy_to_user((void __user *)addr + offset, data, len);
  1122. if (r)
  1123. return -EFAULT;
  1124. mark_page_dirty(kvm, gfn);
  1125. return 0;
  1126. }
  1127. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1128. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1129. unsigned long len)
  1130. {
  1131. gfn_t gfn = gpa >> PAGE_SHIFT;
  1132. int seg;
  1133. int offset = offset_in_page(gpa);
  1134. int ret;
  1135. while ((seg = next_segment(len, offset)) != 0) {
  1136. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1137. if (ret < 0)
  1138. return ret;
  1139. offset = 0;
  1140. len -= seg;
  1141. data += seg;
  1142. ++gfn;
  1143. }
  1144. return 0;
  1145. }
  1146. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1147. gpa_t gpa)
  1148. {
  1149. struct kvm_memslots *slots = kvm_memslots(kvm);
  1150. int offset = offset_in_page(gpa);
  1151. gfn_t gfn = gpa >> PAGE_SHIFT;
  1152. ghc->gpa = gpa;
  1153. ghc->generation = slots->generation;
  1154. ghc->memslot = gfn_to_memslot(kvm, gfn);
  1155. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1156. if (!kvm_is_error_hva(ghc->hva))
  1157. ghc->hva += offset;
  1158. else
  1159. return -EFAULT;
  1160. return 0;
  1161. }
  1162. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1163. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1164. void *data, unsigned long len)
  1165. {
  1166. struct kvm_memslots *slots = kvm_memslots(kvm);
  1167. int r;
  1168. if (slots->generation != ghc->generation)
  1169. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1170. if (kvm_is_error_hva(ghc->hva))
  1171. return -EFAULT;
  1172. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1173. if (r)
  1174. return -EFAULT;
  1175. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1176. return 0;
  1177. }
  1178. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1179. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1180. void *data, unsigned long len)
  1181. {
  1182. struct kvm_memslots *slots = kvm_memslots(kvm);
  1183. int r;
  1184. if (slots->generation != ghc->generation)
  1185. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1186. if (kvm_is_error_hva(ghc->hva))
  1187. return -EFAULT;
  1188. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1189. if (r)
  1190. return -EFAULT;
  1191. return 0;
  1192. }
  1193. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1194. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1195. {
  1196. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1197. offset, len);
  1198. }
  1199. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1200. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1201. {
  1202. gfn_t gfn = gpa >> PAGE_SHIFT;
  1203. int seg;
  1204. int offset = offset_in_page(gpa);
  1205. int ret;
  1206. while ((seg = next_segment(len, offset)) != 0) {
  1207. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1208. if (ret < 0)
  1209. return ret;
  1210. offset = 0;
  1211. len -= seg;
  1212. ++gfn;
  1213. }
  1214. return 0;
  1215. }
  1216. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1217. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1218. gfn_t gfn)
  1219. {
  1220. if (memslot && memslot->dirty_bitmap) {
  1221. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1222. /* TODO: introduce set_bit_le() and use it */
  1223. test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1224. }
  1225. }
  1226. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1227. {
  1228. struct kvm_memory_slot *memslot;
  1229. memslot = gfn_to_memslot(kvm, gfn);
  1230. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1231. }
  1232. /*
  1233. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1234. */
  1235. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1236. {
  1237. DEFINE_WAIT(wait);
  1238. for (;;) {
  1239. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1240. if (kvm_arch_vcpu_runnable(vcpu)) {
  1241. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1242. break;
  1243. }
  1244. if (kvm_cpu_has_pending_timer(vcpu))
  1245. break;
  1246. if (signal_pending(current))
  1247. break;
  1248. schedule();
  1249. }
  1250. finish_wait(&vcpu->wq, &wait);
  1251. }
  1252. #ifndef CONFIG_S390
  1253. /*
  1254. * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
  1255. */
  1256. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1257. {
  1258. int me;
  1259. int cpu = vcpu->cpu;
  1260. wait_queue_head_t *wqp;
  1261. wqp = kvm_arch_vcpu_wq(vcpu);
  1262. if (waitqueue_active(wqp)) {
  1263. wake_up_interruptible(wqp);
  1264. ++vcpu->stat.halt_wakeup;
  1265. }
  1266. me = get_cpu();
  1267. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  1268. if (kvm_arch_vcpu_should_kick(vcpu))
  1269. smp_send_reschedule(cpu);
  1270. put_cpu();
  1271. }
  1272. #endif /* !CONFIG_S390 */
  1273. void kvm_resched(struct kvm_vcpu *vcpu)
  1274. {
  1275. if (!need_resched())
  1276. return;
  1277. cond_resched();
  1278. }
  1279. EXPORT_SYMBOL_GPL(kvm_resched);
  1280. bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
  1281. {
  1282. struct pid *pid;
  1283. struct task_struct *task = NULL;
  1284. rcu_read_lock();
  1285. pid = rcu_dereference(target->pid);
  1286. if (pid)
  1287. task = get_pid_task(target->pid, PIDTYPE_PID);
  1288. rcu_read_unlock();
  1289. if (!task)
  1290. return false;
  1291. if (task->flags & PF_VCPU) {
  1292. put_task_struct(task);
  1293. return false;
  1294. }
  1295. if (yield_to(task, 1)) {
  1296. put_task_struct(task);
  1297. return true;
  1298. }
  1299. put_task_struct(task);
  1300. return false;
  1301. }
  1302. EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
  1303. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1304. {
  1305. struct kvm *kvm = me->kvm;
  1306. struct kvm_vcpu *vcpu;
  1307. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1308. int yielded = 0;
  1309. int pass;
  1310. int i;
  1311. /*
  1312. * We boost the priority of a VCPU that is runnable but not
  1313. * currently running, because it got preempted by something
  1314. * else and called schedule in __vcpu_run. Hopefully that
  1315. * VCPU is holding the lock that we need and will release it.
  1316. * We approximate round-robin by starting at the last boosted VCPU.
  1317. */
  1318. for (pass = 0; pass < 2 && !yielded; pass++) {
  1319. kvm_for_each_vcpu(i, vcpu, kvm) {
  1320. if (!pass && i < last_boosted_vcpu) {
  1321. i = last_boosted_vcpu;
  1322. continue;
  1323. } else if (pass && i > last_boosted_vcpu)
  1324. break;
  1325. if (vcpu == me)
  1326. continue;
  1327. if (waitqueue_active(&vcpu->wq))
  1328. continue;
  1329. if (kvm_vcpu_yield_to(vcpu)) {
  1330. kvm->last_boosted_vcpu = i;
  1331. yielded = 1;
  1332. break;
  1333. }
  1334. }
  1335. }
  1336. }
  1337. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1338. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1339. {
  1340. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1341. struct page *page;
  1342. if (vmf->pgoff == 0)
  1343. page = virt_to_page(vcpu->run);
  1344. #ifdef CONFIG_X86
  1345. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1346. page = virt_to_page(vcpu->arch.pio_data);
  1347. #endif
  1348. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1349. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1350. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1351. #endif
  1352. else
  1353. return kvm_arch_vcpu_fault(vcpu, vmf);
  1354. get_page(page);
  1355. vmf->page = page;
  1356. return 0;
  1357. }
  1358. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1359. .fault = kvm_vcpu_fault,
  1360. };
  1361. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1362. {
  1363. vma->vm_ops = &kvm_vcpu_vm_ops;
  1364. return 0;
  1365. }
  1366. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1367. {
  1368. struct kvm_vcpu *vcpu = filp->private_data;
  1369. kvm_put_kvm(vcpu->kvm);
  1370. return 0;
  1371. }
  1372. static struct file_operations kvm_vcpu_fops = {
  1373. .release = kvm_vcpu_release,
  1374. .unlocked_ioctl = kvm_vcpu_ioctl,
  1375. #ifdef CONFIG_COMPAT
  1376. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1377. #endif
  1378. .mmap = kvm_vcpu_mmap,
  1379. .llseek = noop_llseek,
  1380. };
  1381. /*
  1382. * Allocates an inode for the vcpu.
  1383. */
  1384. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1385. {
  1386. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1387. }
  1388. /*
  1389. * Creates some virtual cpus. Good luck creating more than one.
  1390. */
  1391. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1392. {
  1393. int r;
  1394. struct kvm_vcpu *vcpu, *v;
  1395. vcpu = kvm_arch_vcpu_create(kvm, id);
  1396. if (IS_ERR(vcpu))
  1397. return PTR_ERR(vcpu);
  1398. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1399. r = kvm_arch_vcpu_setup(vcpu);
  1400. if (r)
  1401. goto vcpu_destroy;
  1402. mutex_lock(&kvm->lock);
  1403. if (!kvm_vcpu_compatible(vcpu)) {
  1404. r = -EINVAL;
  1405. goto unlock_vcpu_destroy;
  1406. }
  1407. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1408. r = -EINVAL;
  1409. goto unlock_vcpu_destroy;
  1410. }
  1411. kvm_for_each_vcpu(r, v, kvm)
  1412. if (v->vcpu_id == id) {
  1413. r = -EEXIST;
  1414. goto unlock_vcpu_destroy;
  1415. }
  1416. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1417. /* Now it's all set up, let userspace reach it */
  1418. kvm_get_kvm(kvm);
  1419. r = create_vcpu_fd(vcpu);
  1420. if (r < 0) {
  1421. kvm_put_kvm(kvm);
  1422. goto unlock_vcpu_destroy;
  1423. }
  1424. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1425. smp_wmb();
  1426. atomic_inc(&kvm->online_vcpus);
  1427. mutex_unlock(&kvm->lock);
  1428. return r;
  1429. unlock_vcpu_destroy:
  1430. mutex_unlock(&kvm->lock);
  1431. vcpu_destroy:
  1432. kvm_arch_vcpu_destroy(vcpu);
  1433. return r;
  1434. }
  1435. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1436. {
  1437. if (sigset) {
  1438. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1439. vcpu->sigset_active = 1;
  1440. vcpu->sigset = *sigset;
  1441. } else
  1442. vcpu->sigset_active = 0;
  1443. return 0;
  1444. }
  1445. static long kvm_vcpu_ioctl(struct file *filp,
  1446. unsigned int ioctl, unsigned long arg)
  1447. {
  1448. struct kvm_vcpu *vcpu = filp->private_data;
  1449. void __user *argp = (void __user *)arg;
  1450. int r;
  1451. struct kvm_fpu *fpu = NULL;
  1452. struct kvm_sregs *kvm_sregs = NULL;
  1453. if (vcpu->kvm->mm != current->mm)
  1454. return -EIO;
  1455. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1456. /*
  1457. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1458. * so vcpu_load() would break it.
  1459. */
  1460. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1461. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1462. #endif
  1463. vcpu_load(vcpu);
  1464. switch (ioctl) {
  1465. case KVM_RUN:
  1466. r = -EINVAL;
  1467. if (arg)
  1468. goto out;
  1469. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1470. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1471. break;
  1472. case KVM_GET_REGS: {
  1473. struct kvm_regs *kvm_regs;
  1474. r = -ENOMEM;
  1475. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1476. if (!kvm_regs)
  1477. goto out;
  1478. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1479. if (r)
  1480. goto out_free1;
  1481. r = -EFAULT;
  1482. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1483. goto out_free1;
  1484. r = 0;
  1485. out_free1:
  1486. kfree(kvm_regs);
  1487. break;
  1488. }
  1489. case KVM_SET_REGS: {
  1490. struct kvm_regs *kvm_regs;
  1491. r = -ENOMEM;
  1492. kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
  1493. if (IS_ERR(kvm_regs)) {
  1494. r = PTR_ERR(kvm_regs);
  1495. goto out;
  1496. }
  1497. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1498. if (r)
  1499. goto out_free2;
  1500. r = 0;
  1501. out_free2:
  1502. kfree(kvm_regs);
  1503. break;
  1504. }
  1505. case KVM_GET_SREGS: {
  1506. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1507. r = -ENOMEM;
  1508. if (!kvm_sregs)
  1509. goto out;
  1510. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1511. if (r)
  1512. goto out;
  1513. r = -EFAULT;
  1514. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1515. goto out;
  1516. r = 0;
  1517. break;
  1518. }
  1519. case KVM_SET_SREGS: {
  1520. kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
  1521. if (IS_ERR(kvm_sregs)) {
  1522. r = PTR_ERR(kvm_sregs);
  1523. goto out;
  1524. }
  1525. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1526. if (r)
  1527. goto out;
  1528. r = 0;
  1529. break;
  1530. }
  1531. case KVM_GET_MP_STATE: {
  1532. struct kvm_mp_state mp_state;
  1533. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1534. if (r)
  1535. goto out;
  1536. r = -EFAULT;
  1537. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1538. goto out;
  1539. r = 0;
  1540. break;
  1541. }
  1542. case KVM_SET_MP_STATE: {
  1543. struct kvm_mp_state mp_state;
  1544. r = -EFAULT;
  1545. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1546. goto out;
  1547. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1548. if (r)
  1549. goto out;
  1550. r = 0;
  1551. break;
  1552. }
  1553. case KVM_TRANSLATE: {
  1554. struct kvm_translation tr;
  1555. r = -EFAULT;
  1556. if (copy_from_user(&tr, argp, sizeof tr))
  1557. goto out;
  1558. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1559. if (r)
  1560. goto out;
  1561. r = -EFAULT;
  1562. if (copy_to_user(argp, &tr, sizeof tr))
  1563. goto out;
  1564. r = 0;
  1565. break;
  1566. }
  1567. case KVM_SET_GUEST_DEBUG: {
  1568. struct kvm_guest_debug dbg;
  1569. r = -EFAULT;
  1570. if (copy_from_user(&dbg, argp, sizeof dbg))
  1571. goto out;
  1572. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1573. if (r)
  1574. goto out;
  1575. r = 0;
  1576. break;
  1577. }
  1578. case KVM_SET_SIGNAL_MASK: {
  1579. struct kvm_signal_mask __user *sigmask_arg = argp;
  1580. struct kvm_signal_mask kvm_sigmask;
  1581. sigset_t sigset, *p;
  1582. p = NULL;
  1583. if (argp) {
  1584. r = -EFAULT;
  1585. if (copy_from_user(&kvm_sigmask, argp,
  1586. sizeof kvm_sigmask))
  1587. goto out;
  1588. r = -EINVAL;
  1589. if (kvm_sigmask.len != sizeof sigset)
  1590. goto out;
  1591. r = -EFAULT;
  1592. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1593. sizeof sigset))
  1594. goto out;
  1595. p = &sigset;
  1596. }
  1597. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1598. break;
  1599. }
  1600. case KVM_GET_FPU: {
  1601. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1602. r = -ENOMEM;
  1603. if (!fpu)
  1604. goto out;
  1605. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1606. if (r)
  1607. goto out;
  1608. r = -EFAULT;
  1609. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1610. goto out;
  1611. r = 0;
  1612. break;
  1613. }
  1614. case KVM_SET_FPU: {
  1615. fpu = memdup_user(argp, sizeof(*fpu));
  1616. if (IS_ERR(fpu)) {
  1617. r = PTR_ERR(fpu);
  1618. goto out;
  1619. }
  1620. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1621. if (r)
  1622. goto out;
  1623. r = 0;
  1624. break;
  1625. }
  1626. default:
  1627. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1628. }
  1629. out:
  1630. vcpu_put(vcpu);
  1631. kfree(fpu);
  1632. kfree(kvm_sregs);
  1633. return r;
  1634. }
  1635. #ifdef CONFIG_COMPAT
  1636. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1637. unsigned int ioctl, unsigned long arg)
  1638. {
  1639. struct kvm_vcpu *vcpu = filp->private_data;
  1640. void __user *argp = compat_ptr(arg);
  1641. int r;
  1642. if (vcpu->kvm->mm != current->mm)
  1643. return -EIO;
  1644. switch (ioctl) {
  1645. case KVM_SET_SIGNAL_MASK: {
  1646. struct kvm_signal_mask __user *sigmask_arg = argp;
  1647. struct kvm_signal_mask kvm_sigmask;
  1648. compat_sigset_t csigset;
  1649. sigset_t sigset;
  1650. if (argp) {
  1651. r = -EFAULT;
  1652. if (copy_from_user(&kvm_sigmask, argp,
  1653. sizeof kvm_sigmask))
  1654. goto out;
  1655. r = -EINVAL;
  1656. if (kvm_sigmask.len != sizeof csigset)
  1657. goto out;
  1658. r = -EFAULT;
  1659. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1660. sizeof csigset))
  1661. goto out;
  1662. }
  1663. sigset_from_compat(&sigset, &csigset);
  1664. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1665. break;
  1666. }
  1667. default:
  1668. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1669. }
  1670. out:
  1671. return r;
  1672. }
  1673. #endif
  1674. static long kvm_vm_ioctl(struct file *filp,
  1675. unsigned int ioctl, unsigned long arg)
  1676. {
  1677. struct kvm *kvm = filp->private_data;
  1678. void __user *argp = (void __user *)arg;
  1679. int r;
  1680. if (kvm->mm != current->mm)
  1681. return -EIO;
  1682. switch (ioctl) {
  1683. case KVM_CREATE_VCPU:
  1684. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1685. if (r < 0)
  1686. goto out;
  1687. break;
  1688. case KVM_SET_USER_MEMORY_REGION: {
  1689. struct kvm_userspace_memory_region kvm_userspace_mem;
  1690. r = -EFAULT;
  1691. if (copy_from_user(&kvm_userspace_mem, argp,
  1692. sizeof kvm_userspace_mem))
  1693. goto out;
  1694. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1695. if (r)
  1696. goto out;
  1697. break;
  1698. }
  1699. case KVM_GET_DIRTY_LOG: {
  1700. struct kvm_dirty_log log;
  1701. r = -EFAULT;
  1702. if (copy_from_user(&log, argp, sizeof log))
  1703. goto out;
  1704. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1705. if (r)
  1706. goto out;
  1707. break;
  1708. }
  1709. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1710. case KVM_REGISTER_COALESCED_MMIO: {
  1711. struct kvm_coalesced_mmio_zone zone;
  1712. r = -EFAULT;
  1713. if (copy_from_user(&zone, argp, sizeof zone))
  1714. goto out;
  1715. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1716. if (r)
  1717. goto out;
  1718. r = 0;
  1719. break;
  1720. }
  1721. case KVM_UNREGISTER_COALESCED_MMIO: {
  1722. struct kvm_coalesced_mmio_zone zone;
  1723. r = -EFAULT;
  1724. if (copy_from_user(&zone, argp, sizeof zone))
  1725. goto out;
  1726. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1727. if (r)
  1728. goto out;
  1729. r = 0;
  1730. break;
  1731. }
  1732. #endif
  1733. case KVM_IRQFD: {
  1734. struct kvm_irqfd data;
  1735. r = -EFAULT;
  1736. if (copy_from_user(&data, argp, sizeof data))
  1737. goto out;
  1738. r = kvm_irqfd(kvm, &data);
  1739. break;
  1740. }
  1741. case KVM_IOEVENTFD: {
  1742. struct kvm_ioeventfd data;
  1743. r = -EFAULT;
  1744. if (copy_from_user(&data, argp, sizeof data))
  1745. goto out;
  1746. r = kvm_ioeventfd(kvm, &data);
  1747. break;
  1748. }
  1749. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1750. case KVM_SET_BOOT_CPU_ID:
  1751. r = 0;
  1752. mutex_lock(&kvm->lock);
  1753. if (atomic_read(&kvm->online_vcpus) != 0)
  1754. r = -EBUSY;
  1755. else
  1756. kvm->bsp_vcpu_id = arg;
  1757. mutex_unlock(&kvm->lock);
  1758. break;
  1759. #endif
  1760. #ifdef CONFIG_HAVE_KVM_MSI
  1761. case KVM_SIGNAL_MSI: {
  1762. struct kvm_msi msi;
  1763. r = -EFAULT;
  1764. if (copy_from_user(&msi, argp, sizeof msi))
  1765. goto out;
  1766. r = kvm_send_userspace_msi(kvm, &msi);
  1767. break;
  1768. }
  1769. #endif
  1770. default:
  1771. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1772. if (r == -ENOTTY)
  1773. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1774. }
  1775. out:
  1776. return r;
  1777. }
  1778. #ifdef CONFIG_COMPAT
  1779. struct compat_kvm_dirty_log {
  1780. __u32 slot;
  1781. __u32 padding1;
  1782. union {
  1783. compat_uptr_t dirty_bitmap; /* one bit per page */
  1784. __u64 padding2;
  1785. };
  1786. };
  1787. static long kvm_vm_compat_ioctl(struct file *filp,
  1788. unsigned int ioctl, unsigned long arg)
  1789. {
  1790. struct kvm *kvm = filp->private_data;
  1791. int r;
  1792. if (kvm->mm != current->mm)
  1793. return -EIO;
  1794. switch (ioctl) {
  1795. case KVM_GET_DIRTY_LOG: {
  1796. struct compat_kvm_dirty_log compat_log;
  1797. struct kvm_dirty_log log;
  1798. r = -EFAULT;
  1799. if (copy_from_user(&compat_log, (void __user *)arg,
  1800. sizeof(compat_log)))
  1801. goto out;
  1802. log.slot = compat_log.slot;
  1803. log.padding1 = compat_log.padding1;
  1804. log.padding2 = compat_log.padding2;
  1805. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1806. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1807. if (r)
  1808. goto out;
  1809. break;
  1810. }
  1811. default:
  1812. r = kvm_vm_ioctl(filp, ioctl, arg);
  1813. }
  1814. out:
  1815. return r;
  1816. }
  1817. #endif
  1818. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1819. {
  1820. struct page *page[1];
  1821. unsigned long addr;
  1822. int npages;
  1823. gfn_t gfn = vmf->pgoff;
  1824. struct kvm *kvm = vma->vm_file->private_data;
  1825. addr = gfn_to_hva(kvm, gfn);
  1826. if (kvm_is_error_hva(addr))
  1827. return VM_FAULT_SIGBUS;
  1828. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1829. NULL);
  1830. if (unlikely(npages != 1))
  1831. return VM_FAULT_SIGBUS;
  1832. vmf->page = page[0];
  1833. return 0;
  1834. }
  1835. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1836. .fault = kvm_vm_fault,
  1837. };
  1838. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1839. {
  1840. vma->vm_ops = &kvm_vm_vm_ops;
  1841. return 0;
  1842. }
  1843. static struct file_operations kvm_vm_fops = {
  1844. .release = kvm_vm_release,
  1845. .unlocked_ioctl = kvm_vm_ioctl,
  1846. #ifdef CONFIG_COMPAT
  1847. .compat_ioctl = kvm_vm_compat_ioctl,
  1848. #endif
  1849. .mmap = kvm_vm_mmap,
  1850. .llseek = noop_llseek,
  1851. };
  1852. static int kvm_dev_ioctl_create_vm(unsigned long type)
  1853. {
  1854. int r;
  1855. struct kvm *kvm;
  1856. kvm = kvm_create_vm(type);
  1857. if (IS_ERR(kvm))
  1858. return PTR_ERR(kvm);
  1859. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1860. r = kvm_coalesced_mmio_init(kvm);
  1861. if (r < 0) {
  1862. kvm_put_kvm(kvm);
  1863. return r;
  1864. }
  1865. #endif
  1866. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1867. if (r < 0)
  1868. kvm_put_kvm(kvm);
  1869. return r;
  1870. }
  1871. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1872. {
  1873. switch (arg) {
  1874. case KVM_CAP_USER_MEMORY:
  1875. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1876. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1877. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1878. case KVM_CAP_SET_BOOT_CPU_ID:
  1879. #endif
  1880. case KVM_CAP_INTERNAL_ERROR_DATA:
  1881. #ifdef CONFIG_HAVE_KVM_MSI
  1882. case KVM_CAP_SIGNAL_MSI:
  1883. #endif
  1884. return 1;
  1885. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1886. case KVM_CAP_IRQ_ROUTING:
  1887. return KVM_MAX_IRQ_ROUTES;
  1888. #endif
  1889. default:
  1890. break;
  1891. }
  1892. return kvm_dev_ioctl_check_extension(arg);
  1893. }
  1894. static long kvm_dev_ioctl(struct file *filp,
  1895. unsigned int ioctl, unsigned long arg)
  1896. {
  1897. long r = -EINVAL;
  1898. switch (ioctl) {
  1899. case KVM_GET_API_VERSION:
  1900. r = -EINVAL;
  1901. if (arg)
  1902. goto out;
  1903. r = KVM_API_VERSION;
  1904. break;
  1905. case KVM_CREATE_VM:
  1906. r = kvm_dev_ioctl_create_vm(arg);
  1907. break;
  1908. case KVM_CHECK_EXTENSION:
  1909. r = kvm_dev_ioctl_check_extension_generic(arg);
  1910. break;
  1911. case KVM_GET_VCPU_MMAP_SIZE:
  1912. r = -EINVAL;
  1913. if (arg)
  1914. goto out;
  1915. r = PAGE_SIZE; /* struct kvm_run */
  1916. #ifdef CONFIG_X86
  1917. r += PAGE_SIZE; /* pio data page */
  1918. #endif
  1919. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1920. r += PAGE_SIZE; /* coalesced mmio ring page */
  1921. #endif
  1922. break;
  1923. case KVM_TRACE_ENABLE:
  1924. case KVM_TRACE_PAUSE:
  1925. case KVM_TRACE_DISABLE:
  1926. r = -EOPNOTSUPP;
  1927. break;
  1928. default:
  1929. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1930. }
  1931. out:
  1932. return r;
  1933. }
  1934. static struct file_operations kvm_chardev_ops = {
  1935. .unlocked_ioctl = kvm_dev_ioctl,
  1936. .compat_ioctl = kvm_dev_ioctl,
  1937. .llseek = noop_llseek,
  1938. };
  1939. static struct miscdevice kvm_dev = {
  1940. KVM_MINOR,
  1941. "kvm",
  1942. &kvm_chardev_ops,
  1943. };
  1944. static void hardware_enable_nolock(void *junk)
  1945. {
  1946. int cpu = raw_smp_processor_id();
  1947. int r;
  1948. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1949. return;
  1950. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1951. r = kvm_arch_hardware_enable(NULL);
  1952. if (r) {
  1953. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1954. atomic_inc(&hardware_enable_failed);
  1955. printk(KERN_INFO "kvm: enabling virtualization on "
  1956. "CPU%d failed\n", cpu);
  1957. }
  1958. }
  1959. static void hardware_enable(void *junk)
  1960. {
  1961. raw_spin_lock(&kvm_lock);
  1962. hardware_enable_nolock(junk);
  1963. raw_spin_unlock(&kvm_lock);
  1964. }
  1965. static void hardware_disable_nolock(void *junk)
  1966. {
  1967. int cpu = raw_smp_processor_id();
  1968. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1969. return;
  1970. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1971. kvm_arch_hardware_disable(NULL);
  1972. }
  1973. static void hardware_disable(void *junk)
  1974. {
  1975. raw_spin_lock(&kvm_lock);
  1976. hardware_disable_nolock(junk);
  1977. raw_spin_unlock(&kvm_lock);
  1978. }
  1979. static void hardware_disable_all_nolock(void)
  1980. {
  1981. BUG_ON(!kvm_usage_count);
  1982. kvm_usage_count--;
  1983. if (!kvm_usage_count)
  1984. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1985. }
  1986. static void hardware_disable_all(void)
  1987. {
  1988. raw_spin_lock(&kvm_lock);
  1989. hardware_disable_all_nolock();
  1990. raw_spin_unlock(&kvm_lock);
  1991. }
  1992. static int hardware_enable_all(void)
  1993. {
  1994. int r = 0;
  1995. raw_spin_lock(&kvm_lock);
  1996. kvm_usage_count++;
  1997. if (kvm_usage_count == 1) {
  1998. atomic_set(&hardware_enable_failed, 0);
  1999. on_each_cpu(hardware_enable_nolock, NULL, 1);
  2000. if (atomic_read(&hardware_enable_failed)) {
  2001. hardware_disable_all_nolock();
  2002. r = -EBUSY;
  2003. }
  2004. }
  2005. raw_spin_unlock(&kvm_lock);
  2006. return r;
  2007. }
  2008. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2009. void *v)
  2010. {
  2011. int cpu = (long)v;
  2012. if (!kvm_usage_count)
  2013. return NOTIFY_OK;
  2014. val &= ~CPU_TASKS_FROZEN;
  2015. switch (val) {
  2016. case CPU_DYING:
  2017. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2018. cpu);
  2019. hardware_disable(NULL);
  2020. break;
  2021. case CPU_STARTING:
  2022. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2023. cpu);
  2024. hardware_enable(NULL);
  2025. break;
  2026. }
  2027. return NOTIFY_OK;
  2028. }
  2029. asmlinkage void kvm_spurious_fault(void)
  2030. {
  2031. /* Fault while not rebooting. We want the trace. */
  2032. BUG();
  2033. }
  2034. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2035. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2036. void *v)
  2037. {
  2038. /*
  2039. * Some (well, at least mine) BIOSes hang on reboot if
  2040. * in vmx root mode.
  2041. *
  2042. * And Intel TXT required VMX off for all cpu when system shutdown.
  2043. */
  2044. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2045. kvm_rebooting = true;
  2046. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2047. return NOTIFY_OK;
  2048. }
  2049. static struct notifier_block kvm_reboot_notifier = {
  2050. .notifier_call = kvm_reboot,
  2051. .priority = 0,
  2052. };
  2053. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2054. {
  2055. int i;
  2056. for (i = 0; i < bus->dev_count; i++) {
  2057. struct kvm_io_device *pos = bus->range[i].dev;
  2058. kvm_iodevice_destructor(pos);
  2059. }
  2060. kfree(bus);
  2061. }
  2062. int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2063. {
  2064. const struct kvm_io_range *r1 = p1;
  2065. const struct kvm_io_range *r2 = p2;
  2066. if (r1->addr < r2->addr)
  2067. return -1;
  2068. if (r1->addr + r1->len > r2->addr + r2->len)
  2069. return 1;
  2070. return 0;
  2071. }
  2072. int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2073. gpa_t addr, int len)
  2074. {
  2075. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2076. .addr = addr,
  2077. .len = len,
  2078. .dev = dev,
  2079. };
  2080. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2081. kvm_io_bus_sort_cmp, NULL);
  2082. return 0;
  2083. }
  2084. int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2085. gpa_t addr, int len)
  2086. {
  2087. struct kvm_io_range *range, key;
  2088. int off;
  2089. key = (struct kvm_io_range) {
  2090. .addr = addr,
  2091. .len = len,
  2092. };
  2093. range = bsearch(&key, bus->range, bus->dev_count,
  2094. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2095. if (range == NULL)
  2096. return -ENOENT;
  2097. off = range - bus->range;
  2098. while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
  2099. off--;
  2100. return off;
  2101. }
  2102. /* kvm_io_bus_write - called under kvm->slots_lock */
  2103. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2104. int len, const void *val)
  2105. {
  2106. int idx;
  2107. struct kvm_io_bus *bus;
  2108. struct kvm_io_range range;
  2109. range = (struct kvm_io_range) {
  2110. .addr = addr,
  2111. .len = len,
  2112. };
  2113. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2114. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2115. if (idx < 0)
  2116. return -EOPNOTSUPP;
  2117. while (idx < bus->dev_count &&
  2118. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2119. if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
  2120. return 0;
  2121. idx++;
  2122. }
  2123. return -EOPNOTSUPP;
  2124. }
  2125. /* kvm_io_bus_read - called under kvm->slots_lock */
  2126. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2127. int len, void *val)
  2128. {
  2129. int idx;
  2130. struct kvm_io_bus *bus;
  2131. struct kvm_io_range range;
  2132. range = (struct kvm_io_range) {
  2133. .addr = addr,
  2134. .len = len,
  2135. };
  2136. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2137. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2138. if (idx < 0)
  2139. return -EOPNOTSUPP;
  2140. while (idx < bus->dev_count &&
  2141. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2142. if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
  2143. return 0;
  2144. idx++;
  2145. }
  2146. return -EOPNOTSUPP;
  2147. }
  2148. /* Caller must hold slots_lock. */
  2149. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2150. int len, struct kvm_io_device *dev)
  2151. {
  2152. struct kvm_io_bus *new_bus, *bus;
  2153. bus = kvm->buses[bus_idx];
  2154. if (bus->dev_count > NR_IOBUS_DEVS - 1)
  2155. return -ENOSPC;
  2156. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
  2157. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2158. if (!new_bus)
  2159. return -ENOMEM;
  2160. memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
  2161. sizeof(struct kvm_io_range)));
  2162. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2163. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2164. synchronize_srcu_expedited(&kvm->srcu);
  2165. kfree(bus);
  2166. return 0;
  2167. }
  2168. /* Caller must hold slots_lock. */
  2169. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2170. struct kvm_io_device *dev)
  2171. {
  2172. int i, r;
  2173. struct kvm_io_bus *new_bus, *bus;
  2174. bus = kvm->buses[bus_idx];
  2175. r = -ENOENT;
  2176. for (i = 0; i < bus->dev_count; i++)
  2177. if (bus->range[i].dev == dev) {
  2178. r = 0;
  2179. break;
  2180. }
  2181. if (r)
  2182. return r;
  2183. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
  2184. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2185. if (!new_bus)
  2186. return -ENOMEM;
  2187. memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
  2188. new_bus->dev_count--;
  2189. memcpy(new_bus->range + i, bus->range + i + 1,
  2190. (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
  2191. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2192. synchronize_srcu_expedited(&kvm->srcu);
  2193. kfree(bus);
  2194. return r;
  2195. }
  2196. static struct notifier_block kvm_cpu_notifier = {
  2197. .notifier_call = kvm_cpu_hotplug,
  2198. };
  2199. static int vm_stat_get(void *_offset, u64 *val)
  2200. {
  2201. unsigned offset = (long)_offset;
  2202. struct kvm *kvm;
  2203. *val = 0;
  2204. raw_spin_lock(&kvm_lock);
  2205. list_for_each_entry(kvm, &vm_list, vm_list)
  2206. *val += *(u32 *)((void *)kvm + offset);
  2207. raw_spin_unlock(&kvm_lock);
  2208. return 0;
  2209. }
  2210. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2211. static int vcpu_stat_get(void *_offset, u64 *val)
  2212. {
  2213. unsigned offset = (long)_offset;
  2214. struct kvm *kvm;
  2215. struct kvm_vcpu *vcpu;
  2216. int i;
  2217. *val = 0;
  2218. raw_spin_lock(&kvm_lock);
  2219. list_for_each_entry(kvm, &vm_list, vm_list)
  2220. kvm_for_each_vcpu(i, vcpu, kvm)
  2221. *val += *(u32 *)((void *)vcpu + offset);
  2222. raw_spin_unlock(&kvm_lock);
  2223. return 0;
  2224. }
  2225. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2226. static const struct file_operations *stat_fops[] = {
  2227. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2228. [KVM_STAT_VM] = &vm_stat_fops,
  2229. };
  2230. static int kvm_init_debug(void)
  2231. {
  2232. int r = -EFAULT;
  2233. struct kvm_stats_debugfs_item *p;
  2234. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2235. if (kvm_debugfs_dir == NULL)
  2236. goto out;
  2237. for (p = debugfs_entries; p->name; ++p) {
  2238. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2239. (void *)(long)p->offset,
  2240. stat_fops[p->kind]);
  2241. if (p->dentry == NULL)
  2242. goto out_dir;
  2243. }
  2244. return 0;
  2245. out_dir:
  2246. debugfs_remove_recursive(kvm_debugfs_dir);
  2247. out:
  2248. return r;
  2249. }
  2250. static void kvm_exit_debug(void)
  2251. {
  2252. struct kvm_stats_debugfs_item *p;
  2253. for (p = debugfs_entries; p->name; ++p)
  2254. debugfs_remove(p->dentry);
  2255. debugfs_remove(kvm_debugfs_dir);
  2256. }
  2257. static int kvm_suspend(void)
  2258. {
  2259. if (kvm_usage_count)
  2260. hardware_disable_nolock(NULL);
  2261. return 0;
  2262. }
  2263. static void kvm_resume(void)
  2264. {
  2265. if (kvm_usage_count) {
  2266. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2267. hardware_enable_nolock(NULL);
  2268. }
  2269. }
  2270. static struct syscore_ops kvm_syscore_ops = {
  2271. .suspend = kvm_suspend,
  2272. .resume = kvm_resume,
  2273. };
  2274. struct page *bad_page;
  2275. pfn_t bad_pfn;
  2276. static inline
  2277. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2278. {
  2279. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2280. }
  2281. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2282. {
  2283. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2284. kvm_arch_vcpu_load(vcpu, cpu);
  2285. }
  2286. static void kvm_sched_out(struct preempt_notifier *pn,
  2287. struct task_struct *next)
  2288. {
  2289. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2290. kvm_arch_vcpu_put(vcpu);
  2291. }
  2292. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2293. struct module *module)
  2294. {
  2295. int r;
  2296. int cpu;
  2297. r = kvm_arch_init(opaque);
  2298. if (r)
  2299. goto out_fail;
  2300. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2301. if (bad_page == NULL) {
  2302. r = -ENOMEM;
  2303. goto out;
  2304. }
  2305. bad_pfn = page_to_pfn(bad_page);
  2306. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2307. if (hwpoison_page == NULL) {
  2308. r = -ENOMEM;
  2309. goto out_free_0;
  2310. }
  2311. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2312. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2313. if (fault_page == NULL) {
  2314. r = -ENOMEM;
  2315. goto out_free_0;
  2316. }
  2317. fault_pfn = page_to_pfn(fault_page);
  2318. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2319. r = -ENOMEM;
  2320. goto out_free_0;
  2321. }
  2322. r = kvm_arch_hardware_setup();
  2323. if (r < 0)
  2324. goto out_free_0a;
  2325. for_each_online_cpu(cpu) {
  2326. smp_call_function_single(cpu,
  2327. kvm_arch_check_processor_compat,
  2328. &r, 1);
  2329. if (r < 0)
  2330. goto out_free_1;
  2331. }
  2332. r = register_cpu_notifier(&kvm_cpu_notifier);
  2333. if (r)
  2334. goto out_free_2;
  2335. register_reboot_notifier(&kvm_reboot_notifier);
  2336. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2337. if (!vcpu_align)
  2338. vcpu_align = __alignof__(struct kvm_vcpu);
  2339. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2340. 0, NULL);
  2341. if (!kvm_vcpu_cache) {
  2342. r = -ENOMEM;
  2343. goto out_free_3;
  2344. }
  2345. r = kvm_async_pf_init();
  2346. if (r)
  2347. goto out_free;
  2348. kvm_chardev_ops.owner = module;
  2349. kvm_vm_fops.owner = module;
  2350. kvm_vcpu_fops.owner = module;
  2351. r = misc_register(&kvm_dev);
  2352. if (r) {
  2353. printk(KERN_ERR "kvm: misc device register failed\n");
  2354. goto out_unreg;
  2355. }
  2356. register_syscore_ops(&kvm_syscore_ops);
  2357. kvm_preempt_ops.sched_in = kvm_sched_in;
  2358. kvm_preempt_ops.sched_out = kvm_sched_out;
  2359. r = kvm_init_debug();
  2360. if (r) {
  2361. printk(KERN_ERR "kvm: create debugfs files failed\n");
  2362. goto out_undebugfs;
  2363. }
  2364. return 0;
  2365. out_undebugfs:
  2366. unregister_syscore_ops(&kvm_syscore_ops);
  2367. out_unreg:
  2368. kvm_async_pf_deinit();
  2369. out_free:
  2370. kmem_cache_destroy(kvm_vcpu_cache);
  2371. out_free_3:
  2372. unregister_reboot_notifier(&kvm_reboot_notifier);
  2373. unregister_cpu_notifier(&kvm_cpu_notifier);
  2374. out_free_2:
  2375. out_free_1:
  2376. kvm_arch_hardware_unsetup();
  2377. out_free_0a:
  2378. free_cpumask_var(cpus_hardware_enabled);
  2379. out_free_0:
  2380. if (fault_page)
  2381. __free_page(fault_page);
  2382. if (hwpoison_page)
  2383. __free_page(hwpoison_page);
  2384. __free_page(bad_page);
  2385. out:
  2386. kvm_arch_exit();
  2387. out_fail:
  2388. return r;
  2389. }
  2390. EXPORT_SYMBOL_GPL(kvm_init);
  2391. void kvm_exit(void)
  2392. {
  2393. kvm_exit_debug();
  2394. misc_deregister(&kvm_dev);
  2395. kmem_cache_destroy(kvm_vcpu_cache);
  2396. kvm_async_pf_deinit();
  2397. unregister_syscore_ops(&kvm_syscore_ops);
  2398. unregister_reboot_notifier(&kvm_reboot_notifier);
  2399. unregister_cpu_notifier(&kvm_cpu_notifier);
  2400. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2401. kvm_arch_hardware_unsetup();
  2402. kvm_arch_exit();
  2403. free_cpumask_var(cpus_hardware_enabled);
  2404. __free_page(hwpoison_page);
  2405. __free_page(bad_page);
  2406. }
  2407. EXPORT_SYMBOL_GPL(kvm_exit);