greth.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645
  1. /*
  2. * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC.
  3. *
  4. * 2005-2009 (c) Aeroflex Gaisler AB
  5. *
  6. * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs
  7. * available in the GRLIB VHDL IP core library.
  8. *
  9. * Full documentation of both cores can be found here:
  10. * http://www.gaisler.com/products/grlib/grip.pdf
  11. *
  12. * The Gigabit version supports scatter/gather DMA, any alignment of
  13. * buffers and checksum offloading.
  14. *
  15. * This program is free software; you can redistribute it and/or modify it
  16. * under the terms of the GNU General Public License as published by the
  17. * Free Software Foundation; either version 2 of the License, or (at your
  18. * option) any later version.
  19. *
  20. * Contributors: Kristoffer Glembo
  21. * Daniel Hellstrom
  22. * Marko Isomaki
  23. */
  24. #include <linux/module.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/init.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/io.h>
  32. #include <linux/crc32.h>
  33. #include <linux/mii.h>
  34. #include <linux/of_device.h>
  35. #include <linux/of_platform.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/byteorder.h>
  38. #ifdef CONFIG_SPARC
  39. #include <asm/idprom.h>
  40. #endif
  41. #include "greth.h"
  42. #define GRETH_DEF_MSG_ENABLE \
  43. (NETIF_MSG_DRV | \
  44. NETIF_MSG_PROBE | \
  45. NETIF_MSG_LINK | \
  46. NETIF_MSG_IFDOWN | \
  47. NETIF_MSG_IFUP | \
  48. NETIF_MSG_RX_ERR | \
  49. NETIF_MSG_TX_ERR)
  50. static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */
  51. module_param(greth_debug, int, 0);
  52. MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value");
  53. /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  54. static int macaddr[6];
  55. module_param_array(macaddr, int, NULL, 0);
  56. MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address");
  57. static int greth_edcl = 1;
  58. module_param(greth_edcl, int, 0);
  59. MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used.");
  60. static int greth_open(struct net_device *dev);
  61. static int greth_start_xmit(struct sk_buff *skb, struct net_device *dev);
  62. static int greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev);
  63. static int greth_rx(struct net_device *dev, int limit);
  64. static int greth_rx_gbit(struct net_device *dev, int limit);
  65. static void greth_clean_tx(struct net_device *dev);
  66. static void greth_clean_tx_gbit(struct net_device *dev);
  67. static irqreturn_t greth_interrupt(int irq, void *dev_id);
  68. static int greth_close(struct net_device *dev);
  69. static int greth_set_mac_add(struct net_device *dev, void *p);
  70. static void greth_set_multicast_list(struct net_device *dev);
  71. #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a))))
  72. #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a)))
  73. #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v))))
  74. #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v))))
  75. #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK)
  76. #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK)
  77. #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK)
  78. static void greth_print_rx_packet(void *addr, int len)
  79. {
  80. print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1,
  81. addr, len, true);
  82. }
  83. static void greth_print_tx_packet(struct sk_buff *skb)
  84. {
  85. int i;
  86. int length;
  87. if (skb_shinfo(skb)->nr_frags == 0)
  88. length = skb->len;
  89. else
  90. length = skb_headlen(skb);
  91. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  92. skb->data, length, true);
  93. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  94. print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1,
  95. phys_to_virt(page_to_phys(skb_shinfo(skb)->frags[i].page)) +
  96. skb_shinfo(skb)->frags[i].page_offset,
  97. length, true);
  98. }
  99. }
  100. static inline void greth_enable_tx(struct greth_private *greth)
  101. {
  102. wmb();
  103. GRETH_REGORIN(greth->regs->control, GRETH_TXEN);
  104. }
  105. static inline void greth_disable_tx(struct greth_private *greth)
  106. {
  107. GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN);
  108. }
  109. static inline void greth_enable_rx(struct greth_private *greth)
  110. {
  111. wmb();
  112. GRETH_REGORIN(greth->regs->control, GRETH_RXEN);
  113. }
  114. static inline void greth_disable_rx(struct greth_private *greth)
  115. {
  116. GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN);
  117. }
  118. static inline void greth_enable_irqs(struct greth_private *greth)
  119. {
  120. GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI);
  121. }
  122. static inline void greth_disable_irqs(struct greth_private *greth)
  123. {
  124. GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI));
  125. }
  126. static inline void greth_write_bd(u32 *bd, u32 val)
  127. {
  128. __raw_writel(cpu_to_be32(val), bd);
  129. }
  130. static inline u32 greth_read_bd(u32 *bd)
  131. {
  132. return be32_to_cpu(__raw_readl(bd));
  133. }
  134. static void greth_clean_rings(struct greth_private *greth)
  135. {
  136. int i;
  137. struct greth_bd *rx_bdp = greth->rx_bd_base;
  138. struct greth_bd *tx_bdp = greth->tx_bd_base;
  139. if (greth->gbit_mac) {
  140. /* Free and unmap RX buffers */
  141. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  142. if (greth->rx_skbuff[i] != NULL) {
  143. dev_kfree_skb(greth->rx_skbuff[i]);
  144. dma_unmap_single(greth->dev,
  145. greth_read_bd(&rx_bdp->addr),
  146. MAX_FRAME_SIZE+NET_IP_ALIGN,
  147. DMA_FROM_DEVICE);
  148. }
  149. }
  150. /* TX buffers */
  151. while (greth->tx_free < GRETH_TXBD_NUM) {
  152. struct sk_buff *skb = greth->tx_skbuff[greth->tx_last];
  153. int nr_frags = skb_shinfo(skb)->nr_frags;
  154. tx_bdp = greth->tx_bd_base + greth->tx_last;
  155. greth->tx_last = NEXT_TX(greth->tx_last);
  156. dma_unmap_single(greth->dev,
  157. greth_read_bd(&tx_bdp->addr),
  158. skb_headlen(skb),
  159. DMA_TO_DEVICE);
  160. for (i = 0; i < nr_frags; i++) {
  161. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  162. tx_bdp = greth->tx_bd_base + greth->tx_last;
  163. dma_unmap_page(greth->dev,
  164. greth_read_bd(&tx_bdp->addr),
  165. frag->size,
  166. DMA_TO_DEVICE);
  167. greth->tx_last = NEXT_TX(greth->tx_last);
  168. }
  169. greth->tx_free += nr_frags+1;
  170. dev_kfree_skb(skb);
  171. }
  172. } else { /* 10/100 Mbps MAC */
  173. for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) {
  174. kfree(greth->rx_bufs[i]);
  175. dma_unmap_single(greth->dev,
  176. greth_read_bd(&rx_bdp->addr),
  177. MAX_FRAME_SIZE,
  178. DMA_FROM_DEVICE);
  179. }
  180. for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) {
  181. kfree(greth->tx_bufs[i]);
  182. dma_unmap_single(greth->dev,
  183. greth_read_bd(&tx_bdp->addr),
  184. MAX_FRAME_SIZE,
  185. DMA_TO_DEVICE);
  186. }
  187. }
  188. }
  189. static int greth_init_rings(struct greth_private *greth)
  190. {
  191. struct sk_buff *skb;
  192. struct greth_bd *rx_bd, *tx_bd;
  193. u32 dma_addr;
  194. int i;
  195. rx_bd = greth->rx_bd_base;
  196. tx_bd = greth->tx_bd_base;
  197. /* Initialize descriptor rings and buffers */
  198. if (greth->gbit_mac) {
  199. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  200. skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN);
  201. if (skb == NULL) {
  202. if (netif_msg_ifup(greth))
  203. dev_err(greth->dev, "Error allocating DMA ring.\n");
  204. goto cleanup;
  205. }
  206. skb_reserve(skb, NET_IP_ALIGN);
  207. dma_addr = dma_map_single(greth->dev,
  208. skb->data,
  209. MAX_FRAME_SIZE+NET_IP_ALIGN,
  210. DMA_FROM_DEVICE);
  211. if (dma_mapping_error(greth->dev, dma_addr)) {
  212. if (netif_msg_ifup(greth))
  213. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  214. goto cleanup;
  215. }
  216. greth->rx_skbuff[i] = skb;
  217. greth_write_bd(&rx_bd[i].addr, dma_addr);
  218. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  219. }
  220. } else {
  221. /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */
  222. for (i = 0; i < GRETH_RXBD_NUM; i++) {
  223. greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  224. if (greth->rx_bufs[i] == NULL) {
  225. if (netif_msg_ifup(greth))
  226. dev_err(greth->dev, "Error allocating DMA ring.\n");
  227. goto cleanup;
  228. }
  229. dma_addr = dma_map_single(greth->dev,
  230. greth->rx_bufs[i],
  231. MAX_FRAME_SIZE,
  232. DMA_FROM_DEVICE);
  233. if (dma_mapping_error(greth->dev, dma_addr)) {
  234. if (netif_msg_ifup(greth))
  235. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  236. goto cleanup;
  237. }
  238. greth_write_bd(&rx_bd[i].addr, dma_addr);
  239. greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE);
  240. }
  241. for (i = 0; i < GRETH_TXBD_NUM; i++) {
  242. greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL);
  243. if (greth->tx_bufs[i] == NULL) {
  244. if (netif_msg_ifup(greth))
  245. dev_err(greth->dev, "Error allocating DMA ring.\n");
  246. goto cleanup;
  247. }
  248. dma_addr = dma_map_single(greth->dev,
  249. greth->tx_bufs[i],
  250. MAX_FRAME_SIZE,
  251. DMA_TO_DEVICE);
  252. if (dma_mapping_error(greth->dev, dma_addr)) {
  253. if (netif_msg_ifup(greth))
  254. dev_err(greth->dev, "Could not create initial DMA mapping\n");
  255. goto cleanup;
  256. }
  257. greth_write_bd(&tx_bd[i].addr, dma_addr);
  258. greth_write_bd(&tx_bd[i].stat, 0);
  259. }
  260. }
  261. greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat,
  262. greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR);
  263. /* Initialize pointers. */
  264. greth->rx_cur = 0;
  265. greth->tx_next = 0;
  266. greth->tx_last = 0;
  267. greth->tx_free = GRETH_TXBD_NUM;
  268. /* Initialize descriptor base address */
  269. GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys);
  270. GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys);
  271. return 0;
  272. cleanup:
  273. greth_clean_rings(greth);
  274. return -ENOMEM;
  275. }
  276. static int greth_open(struct net_device *dev)
  277. {
  278. struct greth_private *greth = netdev_priv(dev);
  279. int err;
  280. err = greth_init_rings(greth);
  281. if (err) {
  282. if (netif_msg_ifup(greth))
  283. dev_err(&dev->dev, "Could not allocate memory for DMA rings\n");
  284. return err;
  285. }
  286. err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev);
  287. if (err) {
  288. if (netif_msg_ifup(greth))
  289. dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq);
  290. greth_clean_rings(greth);
  291. return err;
  292. }
  293. if (netif_msg_ifup(greth))
  294. dev_dbg(&dev->dev, " starting queue\n");
  295. netif_start_queue(dev);
  296. napi_enable(&greth->napi);
  297. greth_enable_irqs(greth);
  298. greth_enable_tx(greth);
  299. greth_enable_rx(greth);
  300. return 0;
  301. }
  302. static int greth_close(struct net_device *dev)
  303. {
  304. struct greth_private *greth = netdev_priv(dev);
  305. napi_disable(&greth->napi);
  306. greth_disable_tx(greth);
  307. netif_stop_queue(dev);
  308. free_irq(greth->irq, (void *) dev);
  309. greth_clean_rings(greth);
  310. return 0;
  311. }
  312. static int greth_start_xmit(struct sk_buff *skb, struct net_device *dev)
  313. {
  314. struct greth_private *greth = netdev_priv(dev);
  315. struct greth_bd *bdp;
  316. int err = NETDEV_TX_OK;
  317. u32 status, dma_addr;
  318. bdp = greth->tx_bd_base + greth->tx_next;
  319. if (unlikely(greth->tx_free <= 0)) {
  320. netif_stop_queue(dev);
  321. return NETDEV_TX_BUSY;
  322. }
  323. if (netif_msg_pktdata(greth))
  324. greth_print_tx_packet(skb);
  325. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  326. dev->stats.tx_errors++;
  327. goto out;
  328. }
  329. dma_addr = greth_read_bd(&bdp->addr);
  330. memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len);
  331. dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE);
  332. status = GRETH_BD_EN | (skb->len & GRETH_BD_LEN);
  333. /* Wrap around descriptor ring */
  334. if (greth->tx_next == GRETH_TXBD_NUM_MASK) {
  335. status |= GRETH_BD_WR;
  336. }
  337. greth->tx_next = NEXT_TX(greth->tx_next);
  338. greth->tx_free--;
  339. /* No more descriptors */
  340. if (unlikely(greth->tx_free == 0)) {
  341. /* Free transmitted descriptors */
  342. greth_clean_tx(dev);
  343. /* If nothing was cleaned, stop queue & wait for irq */
  344. if (unlikely(greth->tx_free == 0)) {
  345. status |= GRETH_BD_IE;
  346. netif_stop_queue(dev);
  347. }
  348. }
  349. /* Write descriptor control word and enable transmission */
  350. greth_write_bd(&bdp->stat, status);
  351. greth_enable_tx(greth);
  352. out:
  353. dev_kfree_skb(skb);
  354. return err;
  355. }
  356. static int greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev)
  357. {
  358. struct greth_private *greth = netdev_priv(dev);
  359. struct greth_bd *bdp;
  360. u32 status = 0, dma_addr;
  361. int curr_tx, nr_frags, i, err = NETDEV_TX_OK;
  362. nr_frags = skb_shinfo(skb)->nr_frags;
  363. if (greth->tx_free < nr_frags + 1) {
  364. netif_stop_queue(dev);
  365. err = NETDEV_TX_BUSY;
  366. goto out;
  367. }
  368. if (netif_msg_pktdata(greth))
  369. greth_print_tx_packet(skb);
  370. if (unlikely(skb->len > MAX_FRAME_SIZE)) {
  371. dev->stats.tx_errors++;
  372. goto out;
  373. }
  374. /* Save skb pointer. */
  375. greth->tx_skbuff[greth->tx_next] = skb;
  376. /* Linear buf */
  377. if (nr_frags != 0)
  378. status = GRETH_TXBD_MORE;
  379. status |= GRETH_TXBD_CSALL;
  380. status |= skb_headlen(skb) & GRETH_BD_LEN;
  381. if (greth->tx_next == GRETH_TXBD_NUM_MASK)
  382. status |= GRETH_BD_WR;
  383. bdp = greth->tx_bd_base + greth->tx_next;
  384. greth_write_bd(&bdp->stat, status);
  385. dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
  386. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  387. goto map_error;
  388. greth_write_bd(&bdp->addr, dma_addr);
  389. curr_tx = NEXT_TX(greth->tx_next);
  390. /* Frags */
  391. for (i = 0; i < nr_frags; i++) {
  392. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  393. greth->tx_skbuff[curr_tx] = NULL;
  394. bdp = greth->tx_bd_base + curr_tx;
  395. status = GRETH_TXBD_CSALL;
  396. status |= frag->size & GRETH_BD_LEN;
  397. /* Wrap around descriptor ring */
  398. if (curr_tx == GRETH_TXBD_NUM_MASK)
  399. status |= GRETH_BD_WR;
  400. /* More fragments left */
  401. if (i < nr_frags - 1)
  402. status |= GRETH_TXBD_MORE;
  403. /* ... last fragment, check if out of descriptors */
  404. else if (greth->tx_free - nr_frags - 1 < (MAX_SKB_FRAGS + 1)) {
  405. /* Enable interrupts and stop queue */
  406. status |= GRETH_BD_IE;
  407. netif_stop_queue(dev);
  408. }
  409. greth_write_bd(&bdp->stat, status);
  410. dma_addr = dma_map_page(greth->dev,
  411. frag->page,
  412. frag->page_offset,
  413. frag->size,
  414. DMA_TO_DEVICE);
  415. if (unlikely(dma_mapping_error(greth->dev, dma_addr)))
  416. goto frag_map_error;
  417. greth_write_bd(&bdp->addr, dma_addr);
  418. curr_tx = NEXT_TX(curr_tx);
  419. }
  420. wmb();
  421. /* Enable the descriptors that we configured ... */
  422. for (i = 0; i < nr_frags + 1; i++) {
  423. bdp = greth->tx_bd_base + greth->tx_next;
  424. greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN);
  425. greth->tx_next = NEXT_TX(greth->tx_next);
  426. greth->tx_free--;
  427. }
  428. greth_enable_tx(greth);
  429. return NETDEV_TX_OK;
  430. frag_map_error:
  431. /* Unmap SKB mappings that succeeded */
  432. for (i = 0; greth->tx_next + i != curr_tx; i++) {
  433. bdp = greth->tx_bd_base + greth->tx_next + i;
  434. dma_unmap_single(greth->dev,
  435. greth_read_bd(&bdp->addr),
  436. greth_read_bd(&bdp->stat) & GRETH_BD_LEN,
  437. DMA_TO_DEVICE);
  438. }
  439. map_error:
  440. if (net_ratelimit())
  441. dev_warn(greth->dev, "Could not create TX DMA mapping\n");
  442. dev_kfree_skb(skb);
  443. return NETDEV_TX_OK;
  444. out:
  445. return err;
  446. }
  447. static irqreturn_t greth_interrupt(int irq, void *dev_id)
  448. {
  449. struct net_device *dev = dev_id;
  450. struct greth_private *greth;
  451. u32 status;
  452. irqreturn_t retval = IRQ_NONE;
  453. greth = netdev_priv(dev);
  454. spin_lock(&greth->devlock);
  455. /* Get the interrupt events that caused us to be here. */
  456. status = GRETH_REGLOAD(greth->regs->status);
  457. /* Handle rx and tx interrupts through poll */
  458. if (status & (GRETH_INT_RX | GRETH_INT_TX)) {
  459. /* Clear interrupt status */
  460. GRETH_REGORIN(greth->regs->status,
  461. status & (GRETH_INT_RX | GRETH_INT_TX));
  462. retval = IRQ_HANDLED;
  463. /* Disable interrupts and schedule poll() */
  464. greth_disable_irqs(greth);
  465. napi_schedule(&greth->napi);
  466. }
  467. mmiowb();
  468. spin_unlock(&greth->devlock);
  469. return retval;
  470. }
  471. static void greth_clean_tx(struct net_device *dev)
  472. {
  473. struct greth_private *greth;
  474. struct greth_bd *bdp;
  475. u32 stat;
  476. greth = netdev_priv(dev);
  477. while (1) {
  478. bdp = greth->tx_bd_base + greth->tx_last;
  479. stat = greth_read_bd(&bdp->stat);
  480. if (unlikely(stat & GRETH_BD_EN))
  481. break;
  482. if (greth->tx_free == GRETH_TXBD_NUM)
  483. break;
  484. /* Check status for errors */
  485. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  486. dev->stats.tx_errors++;
  487. if (stat & GRETH_TXBD_ERR_AL)
  488. dev->stats.tx_aborted_errors++;
  489. if (stat & GRETH_TXBD_ERR_UE)
  490. dev->stats.tx_fifo_errors++;
  491. }
  492. dev->stats.tx_packets++;
  493. greth->tx_last = NEXT_TX(greth->tx_last);
  494. greth->tx_free++;
  495. }
  496. if (greth->tx_free > 0) {
  497. netif_wake_queue(dev);
  498. }
  499. }
  500. static inline void greth_update_tx_stats(struct net_device *dev, u32 stat)
  501. {
  502. /* Check status for errors */
  503. if (unlikely(stat & GRETH_TXBD_STATUS)) {
  504. dev->stats.tx_errors++;
  505. if (stat & GRETH_TXBD_ERR_AL)
  506. dev->stats.tx_aborted_errors++;
  507. if (stat & GRETH_TXBD_ERR_UE)
  508. dev->stats.tx_fifo_errors++;
  509. if (stat & GRETH_TXBD_ERR_LC)
  510. dev->stats.tx_aborted_errors++;
  511. }
  512. dev->stats.tx_packets++;
  513. }
  514. static void greth_clean_tx_gbit(struct net_device *dev)
  515. {
  516. struct greth_private *greth;
  517. struct greth_bd *bdp, *bdp_last_frag;
  518. struct sk_buff *skb;
  519. u32 stat;
  520. int nr_frags, i;
  521. greth = netdev_priv(dev);
  522. while (greth->tx_free < GRETH_TXBD_NUM) {
  523. skb = greth->tx_skbuff[greth->tx_last];
  524. nr_frags = skb_shinfo(skb)->nr_frags;
  525. /* We only clean fully completed SKBs */
  526. bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags);
  527. stat = bdp_last_frag->stat;
  528. if (stat & GRETH_BD_EN)
  529. break;
  530. greth->tx_skbuff[greth->tx_last] = NULL;
  531. greth_update_tx_stats(dev, stat);
  532. bdp = greth->tx_bd_base + greth->tx_last;
  533. greth->tx_last = NEXT_TX(greth->tx_last);
  534. dma_unmap_single(greth->dev,
  535. greth_read_bd(&bdp->addr),
  536. skb_headlen(skb),
  537. DMA_TO_DEVICE);
  538. for (i = 0; i < nr_frags; i++) {
  539. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  540. bdp = greth->tx_bd_base + greth->tx_last;
  541. dma_unmap_page(greth->dev,
  542. greth_read_bd(&bdp->addr),
  543. frag->size,
  544. DMA_TO_DEVICE);
  545. greth->tx_last = NEXT_TX(greth->tx_last);
  546. }
  547. greth->tx_free += nr_frags+1;
  548. dev_kfree_skb(skb);
  549. }
  550. if (greth->tx_free > (MAX_SKB_FRAGS + 1)) {
  551. netif_wake_queue(dev);
  552. }
  553. }
  554. static int greth_pending_packets(struct greth_private *greth)
  555. {
  556. struct greth_bd *bdp;
  557. u32 status;
  558. bdp = greth->rx_bd_base + greth->rx_cur;
  559. status = greth_read_bd(&bdp->stat);
  560. if (status & GRETH_BD_EN)
  561. return 0;
  562. else
  563. return 1;
  564. }
  565. static int greth_rx(struct net_device *dev, int limit)
  566. {
  567. struct greth_private *greth;
  568. struct greth_bd *bdp;
  569. struct sk_buff *skb;
  570. int pkt_len;
  571. int bad, count;
  572. u32 status, dma_addr;
  573. greth = netdev_priv(dev);
  574. for (count = 0; count < limit; ++count) {
  575. bdp = greth->rx_bd_base + greth->rx_cur;
  576. status = greth_read_bd(&bdp->stat);
  577. dma_addr = greth_read_bd(&bdp->addr);
  578. bad = 0;
  579. if (unlikely(status & GRETH_BD_EN)) {
  580. break;
  581. }
  582. /* Check status for errors. */
  583. if (unlikely(status & GRETH_RXBD_STATUS)) {
  584. if (status & GRETH_RXBD_ERR_FT) {
  585. dev->stats.rx_length_errors++;
  586. bad = 1;
  587. }
  588. if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) {
  589. dev->stats.rx_frame_errors++;
  590. bad = 1;
  591. }
  592. if (status & GRETH_RXBD_ERR_CRC) {
  593. dev->stats.rx_crc_errors++;
  594. bad = 1;
  595. }
  596. }
  597. if (unlikely(bad)) {
  598. dev->stats.rx_errors++;
  599. } else {
  600. pkt_len = status & GRETH_BD_LEN;
  601. skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN);
  602. if (unlikely(skb == NULL)) {
  603. if (net_ratelimit())
  604. dev_warn(&dev->dev, "low on memory - " "packet dropped\n");
  605. dev->stats.rx_dropped++;
  606. } else {
  607. skb_reserve(skb, NET_IP_ALIGN);
  608. skb->dev = dev;
  609. dma_sync_single_for_cpu(greth->dev,
  610. dma_addr,
  611. pkt_len,
  612. DMA_FROM_DEVICE);
  613. if (netif_msg_pktdata(greth))
  614. greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len);
  615. memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len);
  616. skb->protocol = eth_type_trans(skb, dev);
  617. dev->stats.rx_packets++;
  618. netif_receive_skb(skb);
  619. }
  620. }
  621. status = GRETH_BD_EN | GRETH_BD_IE;
  622. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  623. status |= GRETH_BD_WR;
  624. }
  625. wmb();
  626. greth_write_bd(&bdp->stat, status);
  627. dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE);
  628. greth_enable_rx(greth);
  629. greth->rx_cur = NEXT_RX(greth->rx_cur);
  630. }
  631. return count;
  632. }
  633. static inline int hw_checksummed(u32 status)
  634. {
  635. if (status & GRETH_RXBD_IP_FRAG)
  636. return 0;
  637. if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR)
  638. return 0;
  639. if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR)
  640. return 0;
  641. if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR)
  642. return 0;
  643. return 1;
  644. }
  645. static int greth_rx_gbit(struct net_device *dev, int limit)
  646. {
  647. struct greth_private *greth;
  648. struct greth_bd *bdp;
  649. struct sk_buff *skb, *newskb;
  650. int pkt_len;
  651. int bad, count = 0;
  652. u32 status, dma_addr;
  653. greth = netdev_priv(dev);
  654. for (count = 0; count < limit; ++count) {
  655. bdp = greth->rx_bd_base + greth->rx_cur;
  656. skb = greth->rx_skbuff[greth->rx_cur];
  657. status = greth_read_bd(&bdp->stat);
  658. bad = 0;
  659. if (status & GRETH_BD_EN)
  660. break;
  661. /* Check status for errors. */
  662. if (unlikely(status & GRETH_RXBD_STATUS)) {
  663. if (status & GRETH_RXBD_ERR_FT) {
  664. dev->stats.rx_length_errors++;
  665. bad = 1;
  666. } else if (status &
  667. (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) {
  668. dev->stats.rx_frame_errors++;
  669. bad = 1;
  670. } else if (status & GRETH_RXBD_ERR_CRC) {
  671. dev->stats.rx_crc_errors++;
  672. bad = 1;
  673. }
  674. }
  675. /* Allocate new skb to replace current */
  676. newskb = netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN);
  677. if (!bad && newskb) {
  678. skb_reserve(newskb, NET_IP_ALIGN);
  679. dma_addr = dma_map_single(greth->dev,
  680. newskb->data,
  681. MAX_FRAME_SIZE + NET_IP_ALIGN,
  682. DMA_FROM_DEVICE);
  683. if (!dma_mapping_error(greth->dev, dma_addr)) {
  684. /* Process the incoming frame. */
  685. pkt_len = status & GRETH_BD_LEN;
  686. dma_unmap_single(greth->dev,
  687. greth_read_bd(&bdp->addr),
  688. MAX_FRAME_SIZE + NET_IP_ALIGN,
  689. DMA_FROM_DEVICE);
  690. if (netif_msg_pktdata(greth))
  691. greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len);
  692. skb_put(skb, pkt_len);
  693. if (greth->flags & GRETH_FLAG_RX_CSUM && hw_checksummed(status))
  694. skb->ip_summed = CHECKSUM_UNNECESSARY;
  695. else
  696. skb->ip_summed = CHECKSUM_NONE;
  697. skb->dev = dev;
  698. skb->protocol = eth_type_trans(skb, dev);
  699. dev->stats.rx_packets++;
  700. netif_receive_skb(skb);
  701. greth->rx_skbuff[greth->rx_cur] = newskb;
  702. greth_write_bd(&bdp->addr, dma_addr);
  703. } else {
  704. if (net_ratelimit())
  705. dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n");
  706. dev_kfree_skb(newskb);
  707. dev->stats.rx_dropped++;
  708. }
  709. } else {
  710. if (net_ratelimit())
  711. dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n");
  712. dev->stats.rx_dropped++;
  713. }
  714. status = GRETH_BD_EN | GRETH_BD_IE;
  715. if (greth->rx_cur == GRETH_RXBD_NUM_MASK) {
  716. status |= GRETH_BD_WR;
  717. }
  718. wmb();
  719. greth_write_bd(&bdp->stat, status);
  720. greth_enable_rx(greth);
  721. greth->rx_cur = NEXT_RX(greth->rx_cur);
  722. }
  723. return count;
  724. }
  725. static int greth_poll(struct napi_struct *napi, int budget)
  726. {
  727. struct greth_private *greth;
  728. int work_done = 0;
  729. greth = container_of(napi, struct greth_private, napi);
  730. if (greth->gbit_mac) {
  731. greth_clean_tx_gbit(greth->netdev);
  732. } else {
  733. greth_clean_tx(greth->netdev);
  734. }
  735. restart_poll:
  736. if (greth->gbit_mac) {
  737. work_done += greth_rx_gbit(greth->netdev, budget - work_done);
  738. } else {
  739. work_done += greth_rx(greth->netdev, budget - work_done);
  740. }
  741. if (work_done < budget) {
  742. napi_complete(napi);
  743. if (greth_pending_packets(greth)) {
  744. napi_reschedule(napi);
  745. goto restart_poll;
  746. }
  747. }
  748. greth_enable_irqs(greth);
  749. return work_done;
  750. }
  751. static int greth_set_mac_add(struct net_device *dev, void *p)
  752. {
  753. struct sockaddr *addr = p;
  754. struct greth_private *greth;
  755. struct greth_regs *regs;
  756. greth = (struct greth_private *) netdev_priv(dev);
  757. regs = (struct greth_regs *) greth->regs;
  758. if (!is_valid_ether_addr(addr->sa_data))
  759. return -EINVAL;
  760. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  761. GRETH_REGSAVE(regs->esa_msb, addr->sa_data[0] << 8 | addr->sa_data[1]);
  762. GRETH_REGSAVE(regs->esa_lsb,
  763. addr->sa_data[2] << 24 | addr->
  764. sa_data[3] << 16 | addr->sa_data[4] << 8 | addr->sa_data[5]);
  765. return 0;
  766. }
  767. static u32 greth_hash_get_index(__u8 *addr)
  768. {
  769. return (ether_crc(6, addr)) & 0x3F;
  770. }
  771. static void greth_set_hash_filter(struct net_device *dev)
  772. {
  773. struct dev_mc_list *curr;
  774. struct greth_private *greth = (struct greth_private *) netdev_priv(dev);
  775. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  776. u32 mc_filter[2];
  777. unsigned int i, bitnr;
  778. mc_filter[0] = mc_filter[1] = 0;
  779. curr = dev->mc_list;
  780. for (i = 0; i < dev->mc_count; i++, curr = curr->next) {
  781. if (!curr)
  782. break; /* unexpected end of list */
  783. bitnr = greth_hash_get_index(curr->dmi_addr);
  784. mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
  785. }
  786. GRETH_REGSAVE(regs->hash_msb, mc_filter[1]);
  787. GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]);
  788. }
  789. static void greth_set_multicast_list(struct net_device *dev)
  790. {
  791. int cfg;
  792. struct greth_private *greth = netdev_priv(dev);
  793. struct greth_regs *regs = (struct greth_regs *) greth->regs;
  794. cfg = GRETH_REGLOAD(regs->control);
  795. if (dev->flags & IFF_PROMISC)
  796. cfg |= GRETH_CTRL_PR;
  797. else
  798. cfg &= ~GRETH_CTRL_PR;
  799. if (greth->multicast) {
  800. if (dev->flags & IFF_ALLMULTI) {
  801. GRETH_REGSAVE(regs->hash_msb, -1);
  802. GRETH_REGSAVE(regs->hash_lsb, -1);
  803. cfg |= GRETH_CTRL_MCEN;
  804. GRETH_REGSAVE(regs->control, cfg);
  805. return;
  806. }
  807. if (dev->mc_count == 0) {
  808. cfg &= ~GRETH_CTRL_MCEN;
  809. GRETH_REGSAVE(regs->control, cfg);
  810. return;
  811. }
  812. /* Setup multicast filter */
  813. greth_set_hash_filter(dev);
  814. cfg |= GRETH_CTRL_MCEN;
  815. }
  816. GRETH_REGSAVE(regs->control, cfg);
  817. }
  818. static u32 greth_get_msglevel(struct net_device *dev)
  819. {
  820. struct greth_private *greth = netdev_priv(dev);
  821. return greth->msg_enable;
  822. }
  823. static void greth_set_msglevel(struct net_device *dev, u32 value)
  824. {
  825. struct greth_private *greth = netdev_priv(dev);
  826. greth->msg_enable = value;
  827. }
  828. static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  829. {
  830. struct greth_private *greth = netdev_priv(dev);
  831. struct phy_device *phy = greth->phy;
  832. if (!phy)
  833. return -ENODEV;
  834. return phy_ethtool_gset(phy, cmd);
  835. }
  836. static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  837. {
  838. struct greth_private *greth = netdev_priv(dev);
  839. struct phy_device *phy = greth->phy;
  840. if (!phy)
  841. return -ENODEV;
  842. return phy_ethtool_sset(phy, cmd);
  843. }
  844. static int greth_get_regs_len(struct net_device *dev)
  845. {
  846. return sizeof(struct greth_regs);
  847. }
  848. static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  849. {
  850. struct greth_private *greth = netdev_priv(dev);
  851. strncpy(info->driver, dev_driver_string(greth->dev), 32);
  852. strncpy(info->version, "revision: 1.0", 32);
  853. strncpy(info->bus_info, greth->dev->bus->name, 32);
  854. strncpy(info->fw_version, "N/A", 32);
  855. info->eedump_len = 0;
  856. info->regdump_len = sizeof(struct greth_regs);
  857. }
  858. static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p)
  859. {
  860. int i;
  861. struct greth_private *greth = netdev_priv(dev);
  862. u32 __iomem *greth_regs = (u32 __iomem *) greth->regs;
  863. u32 *buff = p;
  864. for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++)
  865. buff[i] = greth_read_bd(&greth_regs[i]);
  866. }
  867. static u32 greth_get_rx_csum(struct net_device *dev)
  868. {
  869. struct greth_private *greth = netdev_priv(dev);
  870. return (greth->flags & GRETH_FLAG_RX_CSUM) != 0;
  871. }
  872. static int greth_set_rx_csum(struct net_device *dev, u32 data)
  873. {
  874. struct greth_private *greth = netdev_priv(dev);
  875. spin_lock_bh(&greth->devlock);
  876. if (data)
  877. greth->flags |= GRETH_FLAG_RX_CSUM;
  878. else
  879. greth->flags &= ~GRETH_FLAG_RX_CSUM;
  880. spin_unlock_bh(&greth->devlock);
  881. return 0;
  882. }
  883. static u32 greth_get_tx_csum(struct net_device *dev)
  884. {
  885. return (dev->features & NETIF_F_IP_CSUM) != 0;
  886. }
  887. static int greth_set_tx_csum(struct net_device *dev, u32 data)
  888. {
  889. netif_tx_lock_bh(dev);
  890. ethtool_op_set_tx_csum(dev, data);
  891. netif_tx_unlock_bh(dev);
  892. return 0;
  893. }
  894. static const struct ethtool_ops greth_ethtool_ops = {
  895. .get_msglevel = greth_get_msglevel,
  896. .set_msglevel = greth_set_msglevel,
  897. .get_settings = greth_get_settings,
  898. .set_settings = greth_set_settings,
  899. .get_drvinfo = greth_get_drvinfo,
  900. .get_regs_len = greth_get_regs_len,
  901. .get_regs = greth_get_regs,
  902. .get_rx_csum = greth_get_rx_csum,
  903. .set_rx_csum = greth_set_rx_csum,
  904. .get_tx_csum = greth_get_tx_csum,
  905. .set_tx_csum = greth_set_tx_csum,
  906. .get_link = ethtool_op_get_link,
  907. };
  908. static struct net_device_ops greth_netdev_ops = {
  909. .ndo_open = greth_open,
  910. .ndo_stop = greth_close,
  911. .ndo_start_xmit = greth_start_xmit,
  912. .ndo_set_mac_address = greth_set_mac_add,
  913. };
  914. static inline int wait_for_mdio(struct greth_private *greth)
  915. {
  916. unsigned long timeout = jiffies + 4*HZ/100;
  917. while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) {
  918. if (time_after(jiffies, timeout))
  919. return 0;
  920. }
  921. return 1;
  922. }
  923. static int greth_mdio_read(struct mii_bus *bus, int phy, int reg)
  924. {
  925. struct greth_private *greth = bus->priv;
  926. int data;
  927. if (!wait_for_mdio(greth))
  928. return -EBUSY;
  929. GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2);
  930. if (!wait_for_mdio(greth))
  931. return -EBUSY;
  932. if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) {
  933. data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF;
  934. return data;
  935. } else {
  936. return -1;
  937. }
  938. }
  939. static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
  940. {
  941. struct greth_private *greth = bus->priv;
  942. if (!wait_for_mdio(greth))
  943. return -EBUSY;
  944. GRETH_REGSAVE(greth->regs->mdio,
  945. ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1);
  946. if (!wait_for_mdio(greth))
  947. return -EBUSY;
  948. return 0;
  949. }
  950. static int greth_mdio_reset(struct mii_bus *bus)
  951. {
  952. return 0;
  953. }
  954. static void greth_link_change(struct net_device *dev)
  955. {
  956. struct greth_private *greth = netdev_priv(dev);
  957. struct phy_device *phydev = greth->phy;
  958. unsigned long flags;
  959. int status_change = 0;
  960. spin_lock_irqsave(&greth->devlock, flags);
  961. if (phydev->link) {
  962. if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) {
  963. GRETH_REGANDIN(greth->regs->control,
  964. ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB));
  965. if (phydev->duplex)
  966. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_FD);
  967. if (phydev->speed == SPEED_100) {
  968. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_SP);
  969. }
  970. else if (phydev->speed == SPEED_1000)
  971. GRETH_REGORIN(greth->regs->control, GRETH_CTRL_GB);
  972. greth->speed = phydev->speed;
  973. greth->duplex = phydev->duplex;
  974. status_change = 1;
  975. }
  976. }
  977. if (phydev->link != greth->link) {
  978. if (!phydev->link) {
  979. greth->speed = 0;
  980. greth->duplex = -1;
  981. }
  982. greth->link = phydev->link;
  983. status_change = 1;
  984. }
  985. spin_unlock_irqrestore(&greth->devlock, flags);
  986. if (status_change) {
  987. if (phydev->link)
  988. pr_debug("%s: link up (%d/%s)\n",
  989. dev->name, phydev->speed,
  990. DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
  991. else
  992. pr_debug("%s: link down\n", dev->name);
  993. }
  994. }
  995. static int greth_mdio_probe(struct net_device *dev)
  996. {
  997. struct greth_private *greth = netdev_priv(dev);
  998. struct phy_device *phy = NULL;
  999. u32 interface;
  1000. int i;
  1001. /* Find the first PHY */
  1002. for (i = 0; i < PHY_MAX_ADDR; i++) {
  1003. if (greth->mdio->phy_map[i]) {
  1004. phy = greth->mdio->phy_map[i];
  1005. break;
  1006. }
  1007. }
  1008. if (!phy) {
  1009. if (netif_msg_probe(greth))
  1010. dev_err(&dev->dev, "no PHY found\n");
  1011. return -ENXIO;
  1012. }
  1013. if (greth->gbit_mac)
  1014. interface = PHY_INTERFACE_MODE_GMII;
  1015. else
  1016. interface = PHY_INTERFACE_MODE_MII;
  1017. phy = phy_connect(dev, dev_name(&phy->dev), &greth_link_change, 0, interface);
  1018. if (greth->gbit_mac)
  1019. phy->supported &= PHY_GBIT_FEATURES;
  1020. else
  1021. phy->supported &= PHY_BASIC_FEATURES;
  1022. phy->advertising = phy->supported;
  1023. if (IS_ERR(phy)) {
  1024. if (netif_msg_ifup(greth))
  1025. dev_err(&dev->dev, "could not attach to PHY\n");
  1026. return PTR_ERR(phy);
  1027. }
  1028. greth->link = 0;
  1029. greth->speed = 0;
  1030. greth->duplex = -1;
  1031. greth->phy = phy;
  1032. return 0;
  1033. }
  1034. static inline int phy_aneg_done(struct phy_device *phydev)
  1035. {
  1036. int retval;
  1037. retval = phy_read(phydev, MII_BMSR);
  1038. return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
  1039. }
  1040. static int greth_mdio_init(struct greth_private *greth)
  1041. {
  1042. int ret, phy;
  1043. unsigned long timeout;
  1044. greth->mdio = mdiobus_alloc();
  1045. if (!greth->mdio) {
  1046. return -ENOMEM;
  1047. }
  1048. greth->mdio->name = "greth-mdio";
  1049. snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq);
  1050. greth->mdio->read = greth_mdio_read;
  1051. greth->mdio->write = greth_mdio_write;
  1052. greth->mdio->reset = greth_mdio_reset;
  1053. greth->mdio->priv = greth;
  1054. greth->mdio->irq = greth->mdio_irqs;
  1055. for (phy = 0; phy < PHY_MAX_ADDR; phy++)
  1056. greth->mdio->irq[phy] = PHY_POLL;
  1057. ret = mdiobus_register(greth->mdio);
  1058. if (ret) {
  1059. goto error;
  1060. }
  1061. ret = greth_mdio_probe(greth->netdev);
  1062. if (ret) {
  1063. if (netif_msg_probe(greth))
  1064. dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n");
  1065. goto unreg_mdio;
  1066. }
  1067. phy_start(greth->phy);
  1068. /* If Ethernet debug link is used make autoneg happen right away */
  1069. if (greth->edcl && greth_edcl == 1) {
  1070. phy_start_aneg(greth->phy);
  1071. timeout = jiffies + 6*HZ;
  1072. while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) {
  1073. }
  1074. genphy_read_status(greth->phy);
  1075. greth_link_change(greth->netdev);
  1076. }
  1077. return 0;
  1078. unreg_mdio:
  1079. mdiobus_unregister(greth->mdio);
  1080. error:
  1081. mdiobus_free(greth->mdio);
  1082. return ret;
  1083. }
  1084. /* Initialize the GRETH MAC */
  1085. static int __devinit greth_of_probe(struct of_device *ofdev, const struct of_device_id *match)
  1086. {
  1087. struct net_device *dev;
  1088. struct greth_private *greth;
  1089. struct greth_regs *regs;
  1090. int i;
  1091. int err;
  1092. int tmp;
  1093. unsigned long timeout;
  1094. dev = alloc_etherdev(sizeof(struct greth_private));
  1095. if (dev == NULL)
  1096. return -ENOMEM;
  1097. greth = netdev_priv(dev);
  1098. greth->netdev = dev;
  1099. greth->dev = &ofdev->dev;
  1100. if (greth_debug > 0)
  1101. greth->msg_enable = greth_debug;
  1102. else
  1103. greth->msg_enable = GRETH_DEF_MSG_ENABLE;
  1104. spin_lock_init(&greth->devlock);
  1105. greth->regs = of_ioremap(&ofdev->resource[0], 0,
  1106. resource_size(&ofdev->resource[0]),
  1107. "grlib-greth regs");
  1108. if (greth->regs == NULL) {
  1109. if (netif_msg_probe(greth))
  1110. dev_err(greth->dev, "ioremap failure.\n");
  1111. err = -EIO;
  1112. goto error1;
  1113. }
  1114. regs = (struct greth_regs *) greth->regs;
  1115. greth->irq = ofdev->irqs[0];
  1116. dev_set_drvdata(greth->dev, dev);
  1117. SET_NETDEV_DEV(dev, greth->dev);
  1118. if (netif_msg_probe(greth))
  1119. dev_dbg(greth->dev, "reseting controller.\n");
  1120. /* Reset the controller. */
  1121. GRETH_REGSAVE(regs->control, GRETH_RESET);
  1122. /* Wait for MAC to reset itself */
  1123. timeout = jiffies + HZ/100;
  1124. while (GRETH_REGLOAD(regs->control) & GRETH_RESET) {
  1125. if (time_after(jiffies, timeout)) {
  1126. err = -EIO;
  1127. if (netif_msg_probe(greth))
  1128. dev_err(greth->dev, "timeout when waiting for reset.\n");
  1129. goto error2;
  1130. }
  1131. }
  1132. /* Get default PHY address */
  1133. greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F;
  1134. /* Check if we have GBIT capable MAC */
  1135. tmp = GRETH_REGLOAD(regs->control);
  1136. greth->gbit_mac = (tmp >> 27) & 1;
  1137. /* Check for multicast capability */
  1138. greth->multicast = (tmp >> 25) & 1;
  1139. greth->edcl = (tmp >> 31) & 1;
  1140. /* If we have EDCL we disable the EDCL speed-duplex FSM so
  1141. * it doesn't interfere with the software */
  1142. if (greth->edcl != 0)
  1143. GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX);
  1144. /* Check if MAC can handle MDIO interrupts */
  1145. greth->mdio_int_en = (tmp >> 26) & 1;
  1146. err = greth_mdio_init(greth);
  1147. if (err) {
  1148. if (netif_msg_probe(greth))
  1149. dev_err(greth->dev, "failed to register MDIO bus\n");
  1150. goto error2;
  1151. }
  1152. /* Allocate TX descriptor ring in coherent memory */
  1153. greth->tx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1154. 1024,
  1155. &greth->tx_bd_base_phys,
  1156. GFP_KERNEL);
  1157. if (!greth->tx_bd_base) {
  1158. if (netif_msg_probe(greth))
  1159. dev_err(&dev->dev, "could not allocate descriptor memory.\n");
  1160. err = -ENOMEM;
  1161. goto error3;
  1162. }
  1163. memset(greth->tx_bd_base, 0, 1024);
  1164. /* Allocate RX descriptor ring in coherent memory */
  1165. greth->rx_bd_base = (struct greth_bd *) dma_alloc_coherent(greth->dev,
  1166. 1024,
  1167. &greth->rx_bd_base_phys,
  1168. GFP_KERNEL);
  1169. if (!greth->rx_bd_base) {
  1170. if (netif_msg_probe(greth))
  1171. dev_err(greth->dev, "could not allocate descriptor memory.\n");
  1172. err = -ENOMEM;
  1173. goto error4;
  1174. }
  1175. memset(greth->rx_bd_base, 0, 1024);
  1176. /* Get MAC address from: module param, OF property or ID prom */
  1177. for (i = 0; i < 6; i++) {
  1178. if (macaddr[i] != 0)
  1179. break;
  1180. }
  1181. if (i == 6) {
  1182. const unsigned char *addr;
  1183. int len;
  1184. addr = of_get_property(ofdev->node, "local-mac-address", &len);
  1185. if (addr != NULL && len == 6) {
  1186. for (i = 0; i < 6; i++)
  1187. macaddr[i] = (unsigned int) addr[i];
  1188. } else {
  1189. #ifdef CONFIG_SPARC
  1190. for (i = 0; i < 6; i++)
  1191. macaddr[i] = (unsigned int) idprom->id_ethaddr[i];
  1192. #endif
  1193. }
  1194. }
  1195. for (i = 0; i < 6; i++)
  1196. dev->dev_addr[i] = macaddr[i];
  1197. macaddr[5]++;
  1198. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  1199. if (netif_msg_probe(greth))
  1200. dev_err(greth->dev, "no valid ethernet address, aborting.\n");
  1201. err = -EINVAL;
  1202. goto error5;
  1203. }
  1204. GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  1205. GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 |
  1206. dev->dev_addr[4] << 8 | dev->dev_addr[5]);
  1207. /* Clear all pending interrupts except PHY irq */
  1208. GRETH_REGSAVE(regs->status, 0xFF);
  1209. if (greth->gbit_mac) {
  1210. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HIGHDMA;
  1211. greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit;
  1212. greth->flags = GRETH_FLAG_RX_CSUM;
  1213. }
  1214. if (greth->multicast) {
  1215. greth_netdev_ops.ndo_set_multicast_list = greth_set_multicast_list;
  1216. dev->flags |= IFF_MULTICAST;
  1217. } else {
  1218. dev->flags &= ~IFF_MULTICAST;
  1219. }
  1220. dev->netdev_ops = &greth_netdev_ops;
  1221. dev->ethtool_ops = &greth_ethtool_ops;
  1222. if (register_netdev(dev)) {
  1223. if (netif_msg_probe(greth))
  1224. dev_err(greth->dev, "netdevice registration failed.\n");
  1225. err = -ENOMEM;
  1226. goto error5;
  1227. }
  1228. /* setup NAPI */
  1229. memset(&greth->napi, 0, sizeof(greth->napi));
  1230. netif_napi_add(dev, &greth->napi, greth_poll, 64);
  1231. return 0;
  1232. error5:
  1233. dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1234. error4:
  1235. dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1236. error3:
  1237. mdiobus_unregister(greth->mdio);
  1238. error2:
  1239. of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0]));
  1240. error1:
  1241. free_netdev(dev);
  1242. return err;
  1243. }
  1244. static int __devexit greth_of_remove(struct of_device *of_dev)
  1245. {
  1246. struct net_device *ndev = dev_get_drvdata(&of_dev->dev);
  1247. struct greth_private *greth = netdev_priv(ndev);
  1248. /* Free descriptor areas */
  1249. dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys);
  1250. dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys);
  1251. dev_set_drvdata(&of_dev->dev, NULL);
  1252. if (greth->phy)
  1253. phy_stop(greth->phy);
  1254. mdiobus_unregister(greth->mdio);
  1255. unregister_netdev(ndev);
  1256. free_netdev(ndev);
  1257. of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0]));
  1258. return 0;
  1259. }
  1260. static struct of_device_id greth_of_match[] = {
  1261. {
  1262. .name = "GAISLER_ETHMAC",
  1263. },
  1264. {},
  1265. };
  1266. MODULE_DEVICE_TABLE(of, greth_of_match);
  1267. static struct of_platform_driver greth_of_driver = {
  1268. .name = "grlib-greth",
  1269. .match_table = greth_of_match,
  1270. .probe = greth_of_probe,
  1271. .remove = __devexit_p(greth_of_remove),
  1272. .driver = {
  1273. .owner = THIS_MODULE,
  1274. .name = "grlib-greth",
  1275. },
  1276. };
  1277. static int __init greth_init(void)
  1278. {
  1279. return of_register_platform_driver(&greth_of_driver);
  1280. }
  1281. static void __exit greth_cleanup(void)
  1282. {
  1283. of_unregister_platform_driver(&greth_of_driver);
  1284. }
  1285. module_init(greth_init);
  1286. module_exit(greth_cleanup);
  1287. MODULE_AUTHOR("Aeroflex Gaisler AB.");
  1288. MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver");
  1289. MODULE_LICENSE("GPL");