init_64.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/proc_fs.h>
  23. #include <linux/pci.h>
  24. #include <linux/pfn.h>
  25. #include <linux/poison.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/module.h>
  28. #include <linux/memory_hotplug.h>
  29. #include <linux/nmi.h>
  30. #include <asm/processor.h>
  31. #include <asm/system.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/pgalloc.h>
  35. #include <asm/dma.h>
  36. #include <asm/fixmap.h>
  37. #include <asm/e820.h>
  38. #include <asm/apic.h>
  39. #include <asm/tlb.h>
  40. #include <asm/mmu_context.h>
  41. #include <asm/proto.h>
  42. #include <asm/smp.h>
  43. #include <asm/sections.h>
  44. #include <asm/kdebug.h>
  45. #include <asm/numa.h>
  46. #include <asm/cacheflush.h>
  47. static unsigned long dma_reserve __initdata;
  48. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  49. int direct_gbpages __meminitdata
  50. #ifdef CONFIG_DIRECT_GBPAGES
  51. = 1
  52. #endif
  53. ;
  54. static int __init parse_direct_gbpages_off(char *arg)
  55. {
  56. direct_gbpages = 0;
  57. return 0;
  58. }
  59. early_param("nogbpages", parse_direct_gbpages_off);
  60. static int __init parse_direct_gbpages_on(char *arg)
  61. {
  62. direct_gbpages = 1;
  63. return 0;
  64. }
  65. early_param("gbpages", parse_direct_gbpages_on);
  66. /*
  67. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  68. * physical space so we can cache the place of the first one and move
  69. * around without checking the pgd every time.
  70. */
  71. void show_mem(void)
  72. {
  73. long i, total = 0, reserved = 0;
  74. long shared = 0, cached = 0;
  75. struct page *page;
  76. pg_data_t *pgdat;
  77. printk(KERN_INFO "Mem-info:\n");
  78. show_free_areas();
  79. for_each_online_pgdat(pgdat) {
  80. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  81. /*
  82. * This loop can take a while with 256 GB and
  83. * 4k pages so defer the NMI watchdog:
  84. */
  85. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  86. touch_nmi_watchdog();
  87. if (!pfn_valid(pgdat->node_start_pfn + i))
  88. continue;
  89. page = pfn_to_page(pgdat->node_start_pfn + i);
  90. total++;
  91. if (PageReserved(page))
  92. reserved++;
  93. else if (PageSwapCache(page))
  94. cached++;
  95. else if (page_count(page))
  96. shared += page_count(page) - 1;
  97. }
  98. }
  99. printk(KERN_INFO "%lu pages of RAM\n", total);
  100. printk(KERN_INFO "%lu reserved pages\n", reserved);
  101. printk(KERN_INFO "%lu pages shared\n", shared);
  102. printk(KERN_INFO "%lu pages swap cached\n", cached);
  103. }
  104. int after_bootmem;
  105. static __init void *spp_getpage(void)
  106. {
  107. void *ptr;
  108. if (after_bootmem)
  109. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  110. else
  111. ptr = alloc_bootmem_pages(PAGE_SIZE);
  112. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  113. panic("set_pte_phys: cannot allocate page data %s\n",
  114. after_bootmem ? "after bootmem" : "");
  115. }
  116. pr_debug("spp_getpage %p\n", ptr);
  117. return ptr;
  118. }
  119. void
  120. set_pte_vaddr(unsigned long vaddr, pte_t new_pte)
  121. {
  122. pgd_t *pgd;
  123. pud_t *pud;
  124. pmd_t *pmd;
  125. pte_t *pte;
  126. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(new_pte));
  127. pgd = pgd_offset_k(vaddr);
  128. if (pgd_none(*pgd)) {
  129. printk(KERN_ERR
  130. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  131. return;
  132. }
  133. pud = pud_offset(pgd, vaddr);
  134. if (pud_none(*pud)) {
  135. pmd = (pmd_t *) spp_getpage();
  136. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
  137. if (pmd != pmd_offset(pud, 0)) {
  138. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  139. pmd, pmd_offset(pud, 0));
  140. return;
  141. }
  142. }
  143. pmd = pmd_offset(pud, vaddr);
  144. if (pmd_none(*pmd)) {
  145. pte = (pte_t *) spp_getpage();
  146. set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
  147. if (pte != pte_offset_kernel(pmd, 0)) {
  148. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  149. return;
  150. }
  151. }
  152. pte = pte_offset_kernel(pmd, vaddr);
  153. if (!pte_none(*pte) && pte_val(new_pte) &&
  154. pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
  155. pte_ERROR(*pte);
  156. set_pte(pte, new_pte);
  157. /*
  158. * It's enough to flush this one mapping.
  159. * (PGE mappings get flushed as well)
  160. */
  161. __flush_tlb_one(vaddr);
  162. }
  163. /*
  164. * The head.S code sets up the kernel high mapping:
  165. *
  166. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  167. *
  168. * phys_addr holds the negative offset to the kernel, which is added
  169. * to the compile time generated pmds. This results in invalid pmds up
  170. * to the point where we hit the physaddr 0 mapping.
  171. *
  172. * We limit the mappings to the region from _text to _end. _end is
  173. * rounded up to the 2MB boundary. This catches the invalid pmds as
  174. * well, as they are located before _text:
  175. */
  176. void __init cleanup_highmap(void)
  177. {
  178. unsigned long vaddr = __START_KERNEL_map;
  179. unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
  180. pmd_t *pmd = level2_kernel_pgt;
  181. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  182. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  183. if (pmd_none(*pmd))
  184. continue;
  185. if (vaddr < (unsigned long) _text || vaddr > end)
  186. set_pmd(pmd, __pmd(0));
  187. }
  188. }
  189. static unsigned long __initdata table_start;
  190. static unsigned long __meminitdata table_end;
  191. static __meminit void *alloc_low_page(unsigned long *phys)
  192. {
  193. unsigned long pfn = table_end++;
  194. void *adr;
  195. if (after_bootmem) {
  196. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  197. *phys = __pa(adr);
  198. return adr;
  199. }
  200. if (pfn >= end_pfn)
  201. panic("alloc_low_page: ran out of memory");
  202. adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
  203. memset(adr, 0, PAGE_SIZE);
  204. *phys = pfn * PAGE_SIZE;
  205. return adr;
  206. }
  207. static __meminit void unmap_low_page(void *adr)
  208. {
  209. if (after_bootmem)
  210. return;
  211. early_iounmap(adr, PAGE_SIZE);
  212. }
  213. /* Must run before zap_low_mappings */
  214. __meminit void *early_ioremap(unsigned long addr, unsigned long size)
  215. {
  216. pmd_t *pmd, *last_pmd;
  217. unsigned long vaddr;
  218. int i, pmds;
  219. pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
  220. vaddr = __START_KERNEL_map;
  221. pmd = level2_kernel_pgt;
  222. last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
  223. for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
  224. for (i = 0; i < pmds; i++) {
  225. if (pmd_present(pmd[i]))
  226. goto continue_outer_loop;
  227. }
  228. vaddr += addr & ~PMD_MASK;
  229. addr &= PMD_MASK;
  230. for (i = 0; i < pmds; i++, addr += PMD_SIZE)
  231. set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
  232. __flush_tlb_all();
  233. return (void *)vaddr;
  234. continue_outer_loop:
  235. ;
  236. }
  237. printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
  238. return NULL;
  239. }
  240. /*
  241. * To avoid virtual aliases later:
  242. */
  243. __meminit void early_iounmap(void *addr, unsigned long size)
  244. {
  245. unsigned long vaddr;
  246. pmd_t *pmd;
  247. int i, pmds;
  248. vaddr = (unsigned long)addr;
  249. pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
  250. pmd = level2_kernel_pgt + pmd_index(vaddr);
  251. for (i = 0; i < pmds; i++)
  252. pmd_clear(pmd + i);
  253. __flush_tlb_all();
  254. }
  255. static unsigned long __meminit
  256. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
  257. {
  258. int i = pmd_index(address);
  259. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  260. pmd_t *pmd = pmd_page + pmd_index(address);
  261. if (address >= end) {
  262. if (!after_bootmem) {
  263. for (; i < PTRS_PER_PMD; i++, pmd++)
  264. set_pmd(pmd, __pmd(0));
  265. }
  266. break;
  267. }
  268. if (pmd_val(*pmd))
  269. continue;
  270. set_pte((pte_t *)pmd,
  271. pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  272. }
  273. return address;
  274. }
  275. static unsigned long __meminit
  276. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
  277. {
  278. pmd_t *pmd = pmd_offset(pud, 0);
  279. unsigned long last_map_addr;
  280. spin_lock(&init_mm.page_table_lock);
  281. last_map_addr = phys_pmd_init(pmd, address, end);
  282. spin_unlock(&init_mm.page_table_lock);
  283. __flush_tlb_all();
  284. return last_map_addr;
  285. }
  286. static unsigned long __meminit
  287. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
  288. {
  289. unsigned long last_map_addr = end;
  290. int i = pud_index(addr);
  291. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  292. unsigned long pmd_phys;
  293. pud_t *pud = pud_page + pud_index(addr);
  294. pmd_t *pmd;
  295. if (addr >= end)
  296. break;
  297. if (!after_bootmem &&
  298. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  299. set_pud(pud, __pud(0));
  300. continue;
  301. }
  302. if (pud_val(*pud)) {
  303. if (!pud_large(*pud))
  304. last_map_addr = phys_pmd_update(pud, addr, end);
  305. continue;
  306. }
  307. if (direct_gbpages) {
  308. set_pte((pte_t *)pud,
  309. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  310. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  311. continue;
  312. }
  313. pmd = alloc_low_page(&pmd_phys);
  314. spin_lock(&init_mm.page_table_lock);
  315. set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
  316. last_map_addr = phys_pmd_init(pmd, addr, end);
  317. spin_unlock(&init_mm.page_table_lock);
  318. unmap_low_page(pmd);
  319. }
  320. __flush_tlb_all();
  321. return last_map_addr >> PAGE_SHIFT;
  322. }
  323. static void __init find_early_table_space(unsigned long end)
  324. {
  325. unsigned long puds, pmds, tables, start;
  326. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  327. tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
  328. if (!direct_gbpages) {
  329. pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  330. tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
  331. }
  332. /*
  333. * RED-PEN putting page tables only on node 0 could
  334. * cause a hotspot and fill up ZONE_DMA. The page tables
  335. * need roughly 0.5KB per GB.
  336. */
  337. start = 0x8000;
  338. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  339. if (table_start == -1UL)
  340. panic("Cannot find space for the kernel page tables");
  341. table_start >>= PAGE_SHIFT;
  342. table_end = table_start;
  343. early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
  344. end, table_start << PAGE_SHIFT,
  345. (table_start << PAGE_SHIFT) + tables);
  346. }
  347. static void __init init_gbpages(void)
  348. {
  349. if (direct_gbpages && cpu_has_gbpages)
  350. printk(KERN_INFO "Using GB pages for direct mapping\n");
  351. else
  352. direct_gbpages = 0;
  353. }
  354. #ifdef CONFIG_MEMTEST_BOOTPARAM
  355. static void __init memtest(unsigned long start_phys, unsigned long size,
  356. unsigned pattern)
  357. {
  358. unsigned long i;
  359. unsigned long *start;
  360. unsigned long start_bad;
  361. unsigned long last_bad;
  362. unsigned long val;
  363. unsigned long start_phys_aligned;
  364. unsigned long count;
  365. unsigned long incr;
  366. switch (pattern) {
  367. case 0:
  368. val = 0UL;
  369. break;
  370. case 1:
  371. val = -1UL;
  372. break;
  373. case 2:
  374. val = 0x5555555555555555UL;
  375. break;
  376. case 3:
  377. val = 0xaaaaaaaaaaaaaaaaUL;
  378. break;
  379. default:
  380. return;
  381. }
  382. incr = sizeof(unsigned long);
  383. start_phys_aligned = ALIGN(start_phys, incr);
  384. count = (size - (start_phys_aligned - start_phys))/incr;
  385. start = __va(start_phys_aligned);
  386. start_bad = 0;
  387. last_bad = 0;
  388. for (i = 0; i < count; i++)
  389. start[i] = val;
  390. for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
  391. if (*start != val) {
  392. if (start_phys_aligned == last_bad + incr) {
  393. last_bad += incr;
  394. } else {
  395. if (start_bad) {
  396. printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
  397. val, start_bad, last_bad + incr);
  398. reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
  399. }
  400. start_bad = last_bad = start_phys_aligned;
  401. }
  402. }
  403. }
  404. if (start_bad) {
  405. printk(KERN_CONT "\n %016lx bad mem addr %016lx - %016lx reserved",
  406. val, start_bad, last_bad + incr);
  407. reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
  408. }
  409. }
  410. static int memtest_pattern __initdata = CONFIG_MEMTEST_BOOTPARAM_VALUE;
  411. static int __init parse_memtest(char *arg)
  412. {
  413. if (arg)
  414. memtest_pattern = simple_strtoul(arg, NULL, 0);
  415. return 0;
  416. }
  417. early_param("memtest", parse_memtest);
  418. static void __init early_memtest(unsigned long start, unsigned long end)
  419. {
  420. u64 t_start, t_size;
  421. unsigned pattern;
  422. if (!memtest_pattern)
  423. return;
  424. printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
  425. for (pattern = 0; pattern < memtest_pattern; pattern++) {
  426. t_start = start;
  427. t_size = 0;
  428. while (t_start < end) {
  429. t_start = find_e820_area_size(t_start, &t_size, 1);
  430. /* done ? */
  431. if (t_start >= end)
  432. break;
  433. if (t_start + t_size > end)
  434. t_size = end - t_start;
  435. printk(KERN_CONT "\n %016llx - %016llx pattern %d",
  436. t_start, t_start + t_size, pattern);
  437. memtest(t_start, t_size, pattern);
  438. t_start += t_size;
  439. }
  440. }
  441. printk(KERN_CONT "\n");
  442. }
  443. #else
  444. static void __init early_memtest(unsigned long start, unsigned long end)
  445. {
  446. }
  447. #endif
  448. /*
  449. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  450. * This runs before bootmem is initialized and gets pages directly from
  451. * the physical memory. To access them they are temporarily mapped.
  452. */
  453. unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
  454. {
  455. unsigned long next, last_map_addr = end;
  456. unsigned long start_phys = start, end_phys = end;
  457. printk(KERN_INFO "init_memory_mapping\n");
  458. /*
  459. * Find space for the kernel direct mapping tables.
  460. *
  461. * Later we should allocate these tables in the local node of the
  462. * memory mapped. Unfortunately this is done currently before the
  463. * nodes are discovered.
  464. */
  465. if (!after_bootmem) {
  466. init_gbpages();
  467. find_early_table_space(end);
  468. }
  469. start = (unsigned long)__va(start);
  470. end = (unsigned long)__va(end);
  471. for (; start < end; start = next) {
  472. pgd_t *pgd = pgd_offset_k(start);
  473. unsigned long pud_phys;
  474. pud_t *pud;
  475. if (after_bootmem)
  476. pud = pud_offset(pgd, start & PGDIR_MASK);
  477. else
  478. pud = alloc_low_page(&pud_phys);
  479. next = start + PGDIR_SIZE;
  480. if (next > end)
  481. next = end;
  482. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
  483. if (!after_bootmem)
  484. set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
  485. unmap_low_page(pud);
  486. }
  487. if (!after_bootmem)
  488. mmu_cr4_features = read_cr4();
  489. __flush_tlb_all();
  490. if (!after_bootmem)
  491. reserve_early(table_start << PAGE_SHIFT,
  492. table_end << PAGE_SHIFT, "PGTABLE");
  493. if (!after_bootmem)
  494. early_memtest(start_phys, end_phys);
  495. return last_map_addr;
  496. }
  497. #ifndef CONFIG_NUMA
  498. void __init paging_init(void)
  499. {
  500. unsigned long max_zone_pfns[MAX_NR_ZONES];
  501. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  502. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  503. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  504. max_zone_pfns[ZONE_NORMAL] = end_pfn;
  505. memory_present(0, 0, end_pfn);
  506. sparse_init();
  507. free_area_init_nodes(max_zone_pfns);
  508. }
  509. #endif
  510. /*
  511. * Memory hotplug specific functions
  512. */
  513. #ifdef CONFIG_MEMORY_HOTPLUG
  514. /*
  515. * Memory is added always to NORMAL zone. This means you will never get
  516. * additional DMA/DMA32 memory.
  517. */
  518. int arch_add_memory(int nid, u64 start, u64 size)
  519. {
  520. struct pglist_data *pgdat = NODE_DATA(nid);
  521. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  522. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  523. unsigned long nr_pages = size >> PAGE_SHIFT;
  524. int ret;
  525. last_mapped_pfn = init_memory_mapping(start, start + size-1);
  526. if (last_mapped_pfn > max_pfn_mapped)
  527. max_pfn_mapped = last_mapped_pfn;
  528. ret = __add_pages(zone, start_pfn, nr_pages);
  529. WARN_ON(1);
  530. return ret;
  531. }
  532. EXPORT_SYMBOL_GPL(arch_add_memory);
  533. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  534. int memory_add_physaddr_to_nid(u64 start)
  535. {
  536. return 0;
  537. }
  538. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  539. #endif
  540. #endif /* CONFIG_MEMORY_HOTPLUG */
  541. /*
  542. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  543. * is valid. The argument is a physical page number.
  544. *
  545. *
  546. * On x86, access has to be given to the first megabyte of ram because that area
  547. * contains bios code and data regions used by X and dosemu and similar apps.
  548. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  549. * mmio resources as well as potential bios/acpi data regions.
  550. */
  551. int devmem_is_allowed(unsigned long pagenr)
  552. {
  553. if (pagenr <= 256)
  554. return 1;
  555. if (!page_is_ram(pagenr))
  556. return 1;
  557. return 0;
  558. }
  559. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  560. kcore_modules, kcore_vsyscall;
  561. void __init mem_init(void)
  562. {
  563. long codesize, reservedpages, datasize, initsize;
  564. pci_iommu_alloc();
  565. /* clear_bss() already clear the empty_zero_page */
  566. reservedpages = 0;
  567. /* this will put all low memory onto the freelists */
  568. #ifdef CONFIG_NUMA
  569. totalram_pages = numa_free_all_bootmem();
  570. #else
  571. totalram_pages = free_all_bootmem();
  572. #endif
  573. reservedpages = end_pfn - totalram_pages -
  574. absent_pages_in_range(0, end_pfn);
  575. after_bootmem = 1;
  576. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  577. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  578. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  579. /* Register memory areas for /proc/kcore */
  580. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  581. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  582. VMALLOC_END-VMALLOC_START);
  583. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  584. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  585. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  586. VSYSCALL_END - VSYSCALL_START);
  587. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  588. "%ldk reserved, %ldk data, %ldk init)\n",
  589. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  590. end_pfn << (PAGE_SHIFT-10),
  591. codesize >> 10,
  592. reservedpages << (PAGE_SHIFT-10),
  593. datasize >> 10,
  594. initsize >> 10);
  595. cpa_init();
  596. }
  597. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  598. {
  599. unsigned long addr = begin;
  600. if (addr >= end)
  601. return;
  602. /*
  603. * If debugging page accesses then do not free this memory but
  604. * mark them not present - any buggy init-section access will
  605. * create a kernel page fault:
  606. */
  607. #ifdef CONFIG_DEBUG_PAGEALLOC
  608. printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
  609. begin, PAGE_ALIGN(end));
  610. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  611. #else
  612. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  613. for (; addr < end; addr += PAGE_SIZE) {
  614. ClearPageReserved(virt_to_page(addr));
  615. init_page_count(virt_to_page(addr));
  616. memset((void *)(addr & ~(PAGE_SIZE-1)),
  617. POISON_FREE_INITMEM, PAGE_SIZE);
  618. free_page(addr);
  619. totalram_pages++;
  620. }
  621. #endif
  622. }
  623. void free_initmem(void)
  624. {
  625. free_init_pages("unused kernel memory",
  626. (unsigned long)(&__init_begin),
  627. (unsigned long)(&__init_end));
  628. }
  629. #ifdef CONFIG_DEBUG_RODATA
  630. const int rodata_test_data = 0xC3;
  631. EXPORT_SYMBOL_GPL(rodata_test_data);
  632. void mark_rodata_ro(void)
  633. {
  634. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  635. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  636. (end - start) >> 10);
  637. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  638. /*
  639. * The rodata section (but not the kernel text!) should also be
  640. * not-executable.
  641. */
  642. start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  643. set_memory_nx(start, (end - start) >> PAGE_SHIFT);
  644. rodata_test();
  645. #ifdef CONFIG_CPA_DEBUG
  646. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  647. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  648. printk(KERN_INFO "Testing CPA: again\n");
  649. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  650. #endif
  651. }
  652. #endif
  653. #ifdef CONFIG_BLK_DEV_INITRD
  654. void free_initrd_mem(unsigned long start, unsigned long end)
  655. {
  656. free_init_pages("initrd memory", start, end);
  657. }
  658. #endif
  659. void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
  660. {
  661. #ifdef CONFIG_NUMA
  662. int nid, next_nid;
  663. #endif
  664. unsigned long pfn = phys >> PAGE_SHIFT;
  665. if (pfn >= end_pfn) {
  666. /*
  667. * This can happen with kdump kernels when accessing
  668. * firmware tables:
  669. */
  670. if (pfn < max_pfn_mapped)
  671. return;
  672. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
  673. phys, len);
  674. return;
  675. }
  676. /* Should check here against the e820 map to avoid double free */
  677. #ifdef CONFIG_NUMA
  678. nid = phys_to_nid(phys);
  679. next_nid = phys_to_nid(phys + len - 1);
  680. if (nid == next_nid)
  681. reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
  682. else
  683. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  684. #else
  685. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  686. #endif
  687. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  688. dma_reserve += len / PAGE_SIZE;
  689. set_dma_reserve(dma_reserve);
  690. }
  691. }
  692. int kern_addr_valid(unsigned long addr)
  693. {
  694. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  695. pgd_t *pgd;
  696. pud_t *pud;
  697. pmd_t *pmd;
  698. pte_t *pte;
  699. if (above != 0 && above != -1UL)
  700. return 0;
  701. pgd = pgd_offset_k(addr);
  702. if (pgd_none(*pgd))
  703. return 0;
  704. pud = pud_offset(pgd, addr);
  705. if (pud_none(*pud))
  706. return 0;
  707. pmd = pmd_offset(pud, addr);
  708. if (pmd_none(*pmd))
  709. return 0;
  710. if (pmd_large(*pmd))
  711. return pfn_valid(pmd_pfn(*pmd));
  712. pte = pte_offset_kernel(pmd, addr);
  713. if (pte_none(*pte))
  714. return 0;
  715. return pfn_valid(pte_pfn(*pte));
  716. }
  717. /*
  718. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  719. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  720. * not need special handling anymore:
  721. */
  722. static struct vm_area_struct gate_vma = {
  723. .vm_start = VSYSCALL_START,
  724. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  725. .vm_page_prot = PAGE_READONLY_EXEC,
  726. .vm_flags = VM_READ | VM_EXEC
  727. };
  728. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  729. {
  730. #ifdef CONFIG_IA32_EMULATION
  731. if (test_tsk_thread_flag(tsk, TIF_IA32))
  732. return NULL;
  733. #endif
  734. return &gate_vma;
  735. }
  736. int in_gate_area(struct task_struct *task, unsigned long addr)
  737. {
  738. struct vm_area_struct *vma = get_gate_vma(task);
  739. if (!vma)
  740. return 0;
  741. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  742. }
  743. /*
  744. * Use this when you have no reliable task/vma, typically from interrupt
  745. * context. It is less reliable than using the task's vma and may give
  746. * false positives:
  747. */
  748. int in_gate_area_no_task(unsigned long addr)
  749. {
  750. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  751. }
  752. const char *arch_vma_name(struct vm_area_struct *vma)
  753. {
  754. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  755. return "[vdso]";
  756. if (vma == &gate_vma)
  757. return "[vsyscall]";
  758. return NULL;
  759. }
  760. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  761. /*
  762. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  763. */
  764. static long __meminitdata addr_start, addr_end;
  765. static void __meminitdata *p_start, *p_end;
  766. static int __meminitdata node_start;
  767. int __meminit
  768. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  769. {
  770. unsigned long addr = (unsigned long)start_page;
  771. unsigned long end = (unsigned long)(start_page + size);
  772. unsigned long next;
  773. pgd_t *pgd;
  774. pud_t *pud;
  775. pmd_t *pmd;
  776. for (; addr < end; addr = next) {
  777. next = pmd_addr_end(addr, end);
  778. pgd = vmemmap_pgd_populate(addr, node);
  779. if (!pgd)
  780. return -ENOMEM;
  781. pud = vmemmap_pud_populate(pgd, addr, node);
  782. if (!pud)
  783. return -ENOMEM;
  784. pmd = pmd_offset(pud, addr);
  785. if (pmd_none(*pmd)) {
  786. pte_t entry;
  787. void *p;
  788. p = vmemmap_alloc_block(PMD_SIZE, node);
  789. if (!p)
  790. return -ENOMEM;
  791. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  792. PAGE_KERNEL_LARGE);
  793. set_pmd(pmd, __pmd(pte_val(entry)));
  794. /* check to see if we have contiguous blocks */
  795. if (p_end != p || node_start != node) {
  796. if (p_start)
  797. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  798. addr_start, addr_end-1, p_start, p_end-1, node_start);
  799. addr_start = addr;
  800. node_start = node;
  801. p_start = p;
  802. }
  803. addr_end = addr + PMD_SIZE;
  804. p_end = p + PMD_SIZE;
  805. } else {
  806. vmemmap_verify((pte_t *)pmd, node, addr, next);
  807. }
  808. }
  809. return 0;
  810. }
  811. void __meminit vmemmap_populate_print_last(void)
  812. {
  813. if (p_start) {
  814. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  815. addr_start, addr_end-1, p_start, p_end-1, node_start);
  816. p_start = NULL;
  817. p_end = NULL;
  818. node_start = 0;
  819. }
  820. }
  821. #endif