atmel-sha.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL SHA1/SHA256 HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-sham.c drivers.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/irq.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/delay.h>
  31. #include <linux/crypto.h>
  32. #include <linux/cryptohash.h>
  33. #include <crypto/scatterwalk.h>
  34. #include <crypto/algapi.h>
  35. #include <crypto/sha.h>
  36. #include <crypto/hash.h>
  37. #include <crypto/internal/hash.h>
  38. #include <linux/platform_data/crypto-atmel.h>
  39. #include "atmel-sha-regs.h"
  40. /* SHA flags */
  41. #define SHA_FLAGS_BUSY BIT(0)
  42. #define SHA_FLAGS_FINAL BIT(1)
  43. #define SHA_FLAGS_DMA_ACTIVE BIT(2)
  44. #define SHA_FLAGS_OUTPUT_READY BIT(3)
  45. #define SHA_FLAGS_INIT BIT(4)
  46. #define SHA_FLAGS_CPU BIT(5)
  47. #define SHA_FLAGS_DMA_READY BIT(6)
  48. #define SHA_FLAGS_FINUP BIT(16)
  49. #define SHA_FLAGS_SG BIT(17)
  50. #define SHA_FLAGS_SHA1 BIT(18)
  51. #define SHA_FLAGS_SHA224 BIT(19)
  52. #define SHA_FLAGS_SHA256 BIT(20)
  53. #define SHA_FLAGS_SHA384 BIT(21)
  54. #define SHA_FLAGS_SHA512 BIT(22)
  55. #define SHA_FLAGS_ERROR BIT(23)
  56. #define SHA_FLAGS_PAD BIT(24)
  57. #define SHA_OP_UPDATE 1
  58. #define SHA_OP_FINAL 2
  59. #define SHA_BUFFER_LEN PAGE_SIZE
  60. #define ATMEL_SHA_DMA_THRESHOLD 56
  61. struct atmel_sha_caps {
  62. bool has_dma;
  63. bool has_dualbuff;
  64. bool has_sha224;
  65. bool has_sha_384_512;
  66. };
  67. struct atmel_sha_dev;
  68. struct atmel_sha_reqctx {
  69. struct atmel_sha_dev *dd;
  70. unsigned long flags;
  71. unsigned long op;
  72. u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  73. u64 digcnt[2];
  74. size_t bufcnt;
  75. size_t buflen;
  76. dma_addr_t dma_addr;
  77. /* walk state */
  78. struct scatterlist *sg;
  79. unsigned int offset; /* offset in current sg */
  80. unsigned int total; /* total request */
  81. size_t block_size;
  82. u8 buffer[0] __aligned(sizeof(u32));
  83. };
  84. struct atmel_sha_ctx {
  85. struct atmel_sha_dev *dd;
  86. unsigned long flags;
  87. /* fallback stuff */
  88. struct crypto_shash *fallback;
  89. };
  90. #define ATMEL_SHA_QUEUE_LENGTH 50
  91. struct atmel_sha_dma {
  92. struct dma_chan *chan;
  93. struct dma_slave_config dma_conf;
  94. };
  95. struct atmel_sha_dev {
  96. struct list_head list;
  97. unsigned long phys_base;
  98. struct device *dev;
  99. struct clk *iclk;
  100. int irq;
  101. void __iomem *io_base;
  102. spinlock_t lock;
  103. int err;
  104. struct tasklet_struct done_task;
  105. unsigned long flags;
  106. struct crypto_queue queue;
  107. struct ahash_request *req;
  108. struct atmel_sha_dma dma_lch_in;
  109. struct atmel_sha_caps caps;
  110. u32 hw_version;
  111. };
  112. struct atmel_sha_drv {
  113. struct list_head dev_list;
  114. spinlock_t lock;
  115. };
  116. static struct atmel_sha_drv atmel_sha = {
  117. .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
  118. .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
  119. };
  120. static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
  121. {
  122. return readl_relaxed(dd->io_base + offset);
  123. }
  124. static inline void atmel_sha_write(struct atmel_sha_dev *dd,
  125. u32 offset, u32 value)
  126. {
  127. writel_relaxed(value, dd->io_base + offset);
  128. }
  129. static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
  130. {
  131. size_t count;
  132. while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
  133. count = min(ctx->sg->length - ctx->offset, ctx->total);
  134. count = min(count, ctx->buflen - ctx->bufcnt);
  135. if (count <= 0)
  136. break;
  137. scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
  138. ctx->offset, count, 0);
  139. ctx->bufcnt += count;
  140. ctx->offset += count;
  141. ctx->total -= count;
  142. if (ctx->offset == ctx->sg->length) {
  143. ctx->sg = sg_next(ctx->sg);
  144. if (ctx->sg)
  145. ctx->offset = 0;
  146. else
  147. ctx->total = 0;
  148. }
  149. }
  150. return 0;
  151. }
  152. /*
  153. * The purpose of this padding is to ensure that the padded message is a
  154. * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
  155. * The bit "1" is appended at the end of the message followed by
  156. * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
  157. * 128 bits block (SHA384/SHA512) equals to the message length in bits
  158. * is appended.
  159. *
  160. * For SHA1/SHA224/SHA256, padlen is calculated as followed:
  161. * - if message length < 56 bytes then padlen = 56 - message length
  162. * - else padlen = 64 + 56 - message length
  163. *
  164. * For SHA384/SHA512, padlen is calculated as followed:
  165. * - if message length < 112 bytes then padlen = 112 - message length
  166. * - else padlen = 128 + 112 - message length
  167. */
  168. static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
  169. {
  170. unsigned int index, padlen;
  171. u64 bits[2];
  172. u64 size[2];
  173. size[0] = ctx->digcnt[0];
  174. size[1] = ctx->digcnt[1];
  175. size[0] += ctx->bufcnt;
  176. if (size[0] < ctx->bufcnt)
  177. size[1]++;
  178. size[0] += length;
  179. if (size[0] < length)
  180. size[1]++;
  181. bits[1] = cpu_to_be64(size[0] << 3);
  182. bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
  183. if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
  184. index = ctx->bufcnt & 0x7f;
  185. padlen = (index < 112) ? (112 - index) : ((128+112) - index);
  186. *(ctx->buffer + ctx->bufcnt) = 0x80;
  187. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  188. memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
  189. ctx->bufcnt += padlen + 16;
  190. ctx->flags |= SHA_FLAGS_PAD;
  191. } else {
  192. index = ctx->bufcnt & 0x3f;
  193. padlen = (index < 56) ? (56 - index) : ((64+56) - index);
  194. *(ctx->buffer + ctx->bufcnt) = 0x80;
  195. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  196. memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
  197. ctx->bufcnt += padlen + 8;
  198. ctx->flags |= SHA_FLAGS_PAD;
  199. }
  200. }
  201. static int atmel_sha_init(struct ahash_request *req)
  202. {
  203. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  204. struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  205. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  206. struct atmel_sha_dev *dd = NULL;
  207. struct atmel_sha_dev *tmp;
  208. spin_lock_bh(&atmel_sha.lock);
  209. if (!tctx->dd) {
  210. list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
  211. dd = tmp;
  212. break;
  213. }
  214. tctx->dd = dd;
  215. } else {
  216. dd = tctx->dd;
  217. }
  218. spin_unlock_bh(&atmel_sha.lock);
  219. ctx->dd = dd;
  220. ctx->flags = 0;
  221. dev_dbg(dd->dev, "init: digest size: %d\n",
  222. crypto_ahash_digestsize(tfm));
  223. switch (crypto_ahash_digestsize(tfm)) {
  224. case SHA1_DIGEST_SIZE:
  225. ctx->flags |= SHA_FLAGS_SHA1;
  226. ctx->block_size = SHA1_BLOCK_SIZE;
  227. break;
  228. case SHA224_DIGEST_SIZE:
  229. ctx->flags |= SHA_FLAGS_SHA224;
  230. ctx->block_size = SHA224_BLOCK_SIZE;
  231. break;
  232. case SHA256_DIGEST_SIZE:
  233. ctx->flags |= SHA_FLAGS_SHA256;
  234. ctx->block_size = SHA256_BLOCK_SIZE;
  235. break;
  236. case SHA384_DIGEST_SIZE:
  237. ctx->flags |= SHA_FLAGS_SHA384;
  238. ctx->block_size = SHA384_BLOCK_SIZE;
  239. break;
  240. case SHA512_DIGEST_SIZE:
  241. ctx->flags |= SHA_FLAGS_SHA512;
  242. ctx->block_size = SHA512_BLOCK_SIZE;
  243. break;
  244. default:
  245. return -EINVAL;
  246. break;
  247. }
  248. ctx->bufcnt = 0;
  249. ctx->digcnt[0] = 0;
  250. ctx->digcnt[1] = 0;
  251. ctx->buflen = SHA_BUFFER_LEN;
  252. return 0;
  253. }
  254. static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
  255. {
  256. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  257. u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
  258. if (likely(dma)) {
  259. if (!dd->caps.has_dma)
  260. atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
  261. valmr = SHA_MR_MODE_PDC;
  262. if (dd->caps.has_dualbuff)
  263. valmr |= SHA_MR_DUALBUFF;
  264. } else {
  265. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  266. }
  267. if (ctx->flags & SHA_FLAGS_SHA1)
  268. valmr |= SHA_MR_ALGO_SHA1;
  269. else if (ctx->flags & SHA_FLAGS_SHA224)
  270. valmr |= SHA_MR_ALGO_SHA224;
  271. else if (ctx->flags & SHA_FLAGS_SHA256)
  272. valmr |= SHA_MR_ALGO_SHA256;
  273. else if (ctx->flags & SHA_FLAGS_SHA384)
  274. valmr |= SHA_MR_ALGO_SHA384;
  275. else if (ctx->flags & SHA_FLAGS_SHA512)
  276. valmr |= SHA_MR_ALGO_SHA512;
  277. /* Setting CR_FIRST only for the first iteration */
  278. if (!(ctx->digcnt[0] || ctx->digcnt[1]))
  279. valcr = SHA_CR_FIRST;
  280. atmel_sha_write(dd, SHA_CR, valcr);
  281. atmel_sha_write(dd, SHA_MR, valmr);
  282. }
  283. static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
  284. size_t length, int final)
  285. {
  286. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  287. int count, len32;
  288. const u32 *buffer = (const u32 *)buf;
  289. dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  290. ctx->digcnt[1], ctx->digcnt[0], length, final);
  291. atmel_sha_write_ctrl(dd, 0);
  292. /* should be non-zero before next lines to disable clocks later */
  293. ctx->digcnt[0] += length;
  294. if (ctx->digcnt[0] < length)
  295. ctx->digcnt[1]++;
  296. if (final)
  297. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  298. len32 = DIV_ROUND_UP(length, sizeof(u32));
  299. dd->flags |= SHA_FLAGS_CPU;
  300. for (count = 0; count < len32; count++)
  301. atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
  302. return -EINPROGRESS;
  303. }
  304. static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  305. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  306. {
  307. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  308. int len32;
  309. dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  310. ctx->digcnt[1], ctx->digcnt[0], length1, final);
  311. len32 = DIV_ROUND_UP(length1, sizeof(u32));
  312. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
  313. atmel_sha_write(dd, SHA_TPR, dma_addr1);
  314. atmel_sha_write(dd, SHA_TCR, len32);
  315. len32 = DIV_ROUND_UP(length2, sizeof(u32));
  316. atmel_sha_write(dd, SHA_TNPR, dma_addr2);
  317. atmel_sha_write(dd, SHA_TNCR, len32);
  318. atmel_sha_write_ctrl(dd, 1);
  319. /* should be non-zero before next lines to disable clocks later */
  320. ctx->digcnt[0] += length1;
  321. if (ctx->digcnt[0] < length1)
  322. ctx->digcnt[1]++;
  323. if (final)
  324. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  325. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  326. /* Start DMA transfer */
  327. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
  328. return -EINPROGRESS;
  329. }
  330. static void atmel_sha_dma_callback(void *data)
  331. {
  332. struct atmel_sha_dev *dd = data;
  333. /* dma_lch_in - completed - wait DATRDY */
  334. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  335. }
  336. static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  337. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  338. {
  339. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  340. struct dma_async_tx_descriptor *in_desc;
  341. struct scatterlist sg[2];
  342. dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  343. ctx->digcnt[1], ctx->digcnt[0], length1, final);
  344. if (ctx->flags & (SHA_FLAGS_SHA1 | SHA_FLAGS_SHA224 |
  345. SHA_FLAGS_SHA256)) {
  346. dd->dma_lch_in.dma_conf.src_maxburst = 16;
  347. dd->dma_lch_in.dma_conf.dst_maxburst = 16;
  348. } else {
  349. dd->dma_lch_in.dma_conf.src_maxburst = 32;
  350. dd->dma_lch_in.dma_conf.dst_maxburst = 32;
  351. }
  352. dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
  353. if (length2) {
  354. sg_init_table(sg, 2);
  355. sg_dma_address(&sg[0]) = dma_addr1;
  356. sg_dma_len(&sg[0]) = length1;
  357. sg_dma_address(&sg[1]) = dma_addr2;
  358. sg_dma_len(&sg[1]) = length2;
  359. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
  360. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  361. } else {
  362. sg_init_table(sg, 1);
  363. sg_dma_address(&sg[0]) = dma_addr1;
  364. sg_dma_len(&sg[0]) = length1;
  365. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
  366. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  367. }
  368. if (!in_desc)
  369. return -EINVAL;
  370. in_desc->callback = atmel_sha_dma_callback;
  371. in_desc->callback_param = dd;
  372. atmel_sha_write_ctrl(dd, 1);
  373. /* should be non-zero before next lines to disable clocks later */
  374. ctx->digcnt[0] += length1;
  375. if (ctx->digcnt[0] < length1)
  376. ctx->digcnt[1]++;
  377. if (final)
  378. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  379. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  380. /* Start DMA transfer */
  381. dmaengine_submit(in_desc);
  382. dma_async_issue_pending(dd->dma_lch_in.chan);
  383. return -EINPROGRESS;
  384. }
  385. static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  386. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  387. {
  388. if (dd->caps.has_dma)
  389. return atmel_sha_xmit_dma(dd, dma_addr1, length1,
  390. dma_addr2, length2, final);
  391. else
  392. return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
  393. dma_addr2, length2, final);
  394. }
  395. static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
  396. {
  397. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  398. int bufcnt;
  399. atmel_sha_append_sg(ctx);
  400. atmel_sha_fill_padding(ctx, 0);
  401. bufcnt = ctx->bufcnt;
  402. ctx->bufcnt = 0;
  403. return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
  404. }
  405. static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
  406. struct atmel_sha_reqctx *ctx,
  407. size_t length, int final)
  408. {
  409. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  410. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  411. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  412. dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
  413. ctx->block_size);
  414. return -EINVAL;
  415. }
  416. ctx->flags &= ~SHA_FLAGS_SG;
  417. /* next call does not fail... so no unmap in the case of error */
  418. return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
  419. }
  420. static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
  421. {
  422. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  423. unsigned int final;
  424. size_t count;
  425. atmel_sha_append_sg(ctx);
  426. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  427. dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
  428. ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
  429. if (final)
  430. atmel_sha_fill_padding(ctx, 0);
  431. if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
  432. count = ctx->bufcnt;
  433. ctx->bufcnt = 0;
  434. return atmel_sha_xmit_dma_map(dd, ctx, count, final);
  435. }
  436. return 0;
  437. }
  438. static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
  439. {
  440. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  441. unsigned int length, final, tail;
  442. struct scatterlist *sg;
  443. unsigned int count;
  444. if (!ctx->total)
  445. return 0;
  446. if (ctx->bufcnt || ctx->offset)
  447. return atmel_sha_update_dma_slow(dd);
  448. dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
  449. ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
  450. sg = ctx->sg;
  451. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  452. return atmel_sha_update_dma_slow(dd);
  453. if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
  454. /* size is not ctx->block_size aligned */
  455. return atmel_sha_update_dma_slow(dd);
  456. length = min(ctx->total, sg->length);
  457. if (sg_is_last(sg)) {
  458. if (!(ctx->flags & SHA_FLAGS_FINUP)) {
  459. /* not last sg must be ctx->block_size aligned */
  460. tail = length & (ctx->block_size - 1);
  461. length -= tail;
  462. }
  463. }
  464. ctx->total -= length;
  465. ctx->offset = length; /* offset where to start slow */
  466. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  467. /* Add padding */
  468. if (final) {
  469. tail = length & (ctx->block_size - 1);
  470. length -= tail;
  471. ctx->total += tail;
  472. ctx->offset = length; /* offset where to start slow */
  473. sg = ctx->sg;
  474. atmel_sha_append_sg(ctx);
  475. atmel_sha_fill_padding(ctx, length);
  476. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  477. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  478. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  479. dev_err(dd->dev, "dma %u bytes error\n",
  480. ctx->buflen + ctx->block_size);
  481. return -EINVAL;
  482. }
  483. if (length == 0) {
  484. ctx->flags &= ~SHA_FLAGS_SG;
  485. count = ctx->bufcnt;
  486. ctx->bufcnt = 0;
  487. return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
  488. 0, final);
  489. } else {
  490. ctx->sg = sg;
  491. if (!dma_map_sg(dd->dev, ctx->sg, 1,
  492. DMA_TO_DEVICE)) {
  493. dev_err(dd->dev, "dma_map_sg error\n");
  494. return -EINVAL;
  495. }
  496. ctx->flags |= SHA_FLAGS_SG;
  497. count = ctx->bufcnt;
  498. ctx->bufcnt = 0;
  499. return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
  500. length, ctx->dma_addr, count, final);
  501. }
  502. }
  503. if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  504. dev_err(dd->dev, "dma_map_sg error\n");
  505. return -EINVAL;
  506. }
  507. ctx->flags |= SHA_FLAGS_SG;
  508. /* next call does not fail... so no unmap in the case of error */
  509. return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
  510. 0, final);
  511. }
  512. static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
  513. {
  514. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  515. if (ctx->flags & SHA_FLAGS_SG) {
  516. dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
  517. if (ctx->sg->length == ctx->offset) {
  518. ctx->sg = sg_next(ctx->sg);
  519. if (ctx->sg)
  520. ctx->offset = 0;
  521. }
  522. if (ctx->flags & SHA_FLAGS_PAD) {
  523. dma_unmap_single(dd->dev, ctx->dma_addr,
  524. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  525. }
  526. } else {
  527. dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
  528. ctx->block_size, DMA_TO_DEVICE);
  529. }
  530. return 0;
  531. }
  532. static int atmel_sha_update_req(struct atmel_sha_dev *dd)
  533. {
  534. struct ahash_request *req = dd->req;
  535. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  536. int err;
  537. dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
  538. ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
  539. if (ctx->flags & SHA_FLAGS_CPU)
  540. err = atmel_sha_update_cpu(dd);
  541. else
  542. err = atmel_sha_update_dma_start(dd);
  543. /* wait for dma completion before can take more data */
  544. dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
  545. err, ctx->digcnt[1], ctx->digcnt[0]);
  546. return err;
  547. }
  548. static int atmel_sha_final_req(struct atmel_sha_dev *dd)
  549. {
  550. struct ahash_request *req = dd->req;
  551. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  552. int err = 0;
  553. int count;
  554. if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
  555. atmel_sha_fill_padding(ctx, 0);
  556. count = ctx->bufcnt;
  557. ctx->bufcnt = 0;
  558. err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
  559. }
  560. /* faster to handle last block with cpu */
  561. else {
  562. atmel_sha_fill_padding(ctx, 0);
  563. count = ctx->bufcnt;
  564. ctx->bufcnt = 0;
  565. err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
  566. }
  567. dev_dbg(dd->dev, "final_req: err: %d\n", err);
  568. return err;
  569. }
  570. static void atmel_sha_copy_hash(struct ahash_request *req)
  571. {
  572. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  573. u32 *hash = (u32 *)ctx->digest;
  574. int i;
  575. if (ctx->flags & SHA_FLAGS_SHA1)
  576. for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
  577. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  578. else if (ctx->flags & SHA_FLAGS_SHA224)
  579. for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
  580. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  581. else if (ctx->flags & SHA_FLAGS_SHA256)
  582. for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
  583. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  584. else if (ctx->flags & SHA_FLAGS_SHA384)
  585. for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
  586. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  587. else
  588. for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
  589. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  590. }
  591. static void atmel_sha_copy_ready_hash(struct ahash_request *req)
  592. {
  593. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  594. if (!req->result)
  595. return;
  596. if (ctx->flags & SHA_FLAGS_SHA1)
  597. memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
  598. else if (ctx->flags & SHA_FLAGS_SHA224)
  599. memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
  600. else if (ctx->flags & SHA_FLAGS_SHA256)
  601. memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
  602. else if (ctx->flags & SHA_FLAGS_SHA384)
  603. memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
  604. else
  605. memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
  606. }
  607. static int atmel_sha_finish(struct ahash_request *req)
  608. {
  609. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  610. struct atmel_sha_dev *dd = ctx->dd;
  611. int err = 0;
  612. if (ctx->digcnt[0] || ctx->digcnt[1])
  613. atmel_sha_copy_ready_hash(req);
  614. dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
  615. ctx->digcnt[0], ctx->bufcnt);
  616. return err;
  617. }
  618. static void atmel_sha_finish_req(struct ahash_request *req, int err)
  619. {
  620. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  621. struct atmel_sha_dev *dd = ctx->dd;
  622. if (!err) {
  623. atmel_sha_copy_hash(req);
  624. if (SHA_FLAGS_FINAL & dd->flags)
  625. err = atmel_sha_finish(req);
  626. } else {
  627. ctx->flags |= SHA_FLAGS_ERROR;
  628. }
  629. /* atomic operation is not needed here */
  630. dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
  631. SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
  632. clk_disable_unprepare(dd->iclk);
  633. if (req->base.complete)
  634. req->base.complete(&req->base, err);
  635. /* handle new request */
  636. tasklet_schedule(&dd->done_task);
  637. }
  638. static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
  639. {
  640. clk_prepare_enable(dd->iclk);
  641. if (!(SHA_FLAGS_INIT & dd->flags)) {
  642. atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
  643. dd->flags |= SHA_FLAGS_INIT;
  644. dd->err = 0;
  645. }
  646. return 0;
  647. }
  648. static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
  649. {
  650. return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
  651. }
  652. static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
  653. {
  654. atmel_sha_hw_init(dd);
  655. dd->hw_version = atmel_sha_get_version(dd);
  656. dev_info(dd->dev,
  657. "version: 0x%x\n", dd->hw_version);
  658. clk_disable_unprepare(dd->iclk);
  659. }
  660. static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
  661. struct ahash_request *req)
  662. {
  663. struct crypto_async_request *async_req, *backlog;
  664. struct atmel_sha_reqctx *ctx;
  665. unsigned long flags;
  666. int err = 0, ret = 0;
  667. spin_lock_irqsave(&dd->lock, flags);
  668. if (req)
  669. ret = ahash_enqueue_request(&dd->queue, req);
  670. if (SHA_FLAGS_BUSY & dd->flags) {
  671. spin_unlock_irqrestore(&dd->lock, flags);
  672. return ret;
  673. }
  674. backlog = crypto_get_backlog(&dd->queue);
  675. async_req = crypto_dequeue_request(&dd->queue);
  676. if (async_req)
  677. dd->flags |= SHA_FLAGS_BUSY;
  678. spin_unlock_irqrestore(&dd->lock, flags);
  679. if (!async_req)
  680. return ret;
  681. if (backlog)
  682. backlog->complete(backlog, -EINPROGRESS);
  683. req = ahash_request_cast(async_req);
  684. dd->req = req;
  685. ctx = ahash_request_ctx(req);
  686. dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
  687. ctx->op, req->nbytes);
  688. err = atmel_sha_hw_init(dd);
  689. if (err)
  690. goto err1;
  691. if (ctx->op == SHA_OP_UPDATE) {
  692. err = atmel_sha_update_req(dd);
  693. if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
  694. /* no final() after finup() */
  695. err = atmel_sha_final_req(dd);
  696. } else if (ctx->op == SHA_OP_FINAL) {
  697. err = atmel_sha_final_req(dd);
  698. }
  699. err1:
  700. if (err != -EINPROGRESS)
  701. /* done_task will not finish it, so do it here */
  702. atmel_sha_finish_req(req, err);
  703. dev_dbg(dd->dev, "exit, err: %d\n", err);
  704. return ret;
  705. }
  706. static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
  707. {
  708. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  709. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  710. struct atmel_sha_dev *dd = tctx->dd;
  711. ctx->op = op;
  712. return atmel_sha_handle_queue(dd, req);
  713. }
  714. static int atmel_sha_update(struct ahash_request *req)
  715. {
  716. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  717. if (!req->nbytes)
  718. return 0;
  719. ctx->total = req->nbytes;
  720. ctx->sg = req->src;
  721. ctx->offset = 0;
  722. if (ctx->flags & SHA_FLAGS_FINUP) {
  723. if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
  724. /* faster to use CPU for short transfers */
  725. ctx->flags |= SHA_FLAGS_CPU;
  726. } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
  727. atmel_sha_append_sg(ctx);
  728. return 0;
  729. }
  730. return atmel_sha_enqueue(req, SHA_OP_UPDATE);
  731. }
  732. static int atmel_sha_final(struct ahash_request *req)
  733. {
  734. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  735. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  736. struct atmel_sha_dev *dd = tctx->dd;
  737. int err = 0;
  738. ctx->flags |= SHA_FLAGS_FINUP;
  739. if (ctx->flags & SHA_FLAGS_ERROR)
  740. return 0; /* uncompleted hash is not needed */
  741. if (ctx->bufcnt) {
  742. return atmel_sha_enqueue(req, SHA_OP_FINAL);
  743. } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
  744. err = atmel_sha_hw_init(dd);
  745. if (err)
  746. goto err1;
  747. dd->flags |= SHA_FLAGS_BUSY;
  748. err = atmel_sha_final_req(dd);
  749. } else {
  750. /* copy ready hash (+ finalize hmac) */
  751. return atmel_sha_finish(req);
  752. }
  753. err1:
  754. if (err != -EINPROGRESS)
  755. /* done_task will not finish it, so do it here */
  756. atmel_sha_finish_req(req, err);
  757. return err;
  758. }
  759. static int atmel_sha_finup(struct ahash_request *req)
  760. {
  761. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  762. int err1, err2;
  763. ctx->flags |= SHA_FLAGS_FINUP;
  764. err1 = atmel_sha_update(req);
  765. if (err1 == -EINPROGRESS || err1 == -EBUSY)
  766. return err1;
  767. /*
  768. * final() has to be always called to cleanup resources
  769. * even if udpate() failed, except EINPROGRESS
  770. */
  771. err2 = atmel_sha_final(req);
  772. return err1 ?: err2;
  773. }
  774. static int atmel_sha_digest(struct ahash_request *req)
  775. {
  776. return atmel_sha_init(req) ?: atmel_sha_finup(req);
  777. }
  778. static int atmel_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
  779. {
  780. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
  781. const char *alg_name = crypto_tfm_alg_name(tfm);
  782. /* Allocate a fallback and abort if it failed. */
  783. tctx->fallback = crypto_alloc_shash(alg_name, 0,
  784. CRYPTO_ALG_NEED_FALLBACK);
  785. if (IS_ERR(tctx->fallback)) {
  786. pr_err("atmel-sha: fallback driver '%s' could not be loaded.\n",
  787. alg_name);
  788. return PTR_ERR(tctx->fallback);
  789. }
  790. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  791. sizeof(struct atmel_sha_reqctx) +
  792. SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
  793. return 0;
  794. }
  795. static int atmel_sha_cra_init(struct crypto_tfm *tfm)
  796. {
  797. return atmel_sha_cra_init_alg(tfm, NULL);
  798. }
  799. static void atmel_sha_cra_exit(struct crypto_tfm *tfm)
  800. {
  801. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
  802. crypto_free_shash(tctx->fallback);
  803. tctx->fallback = NULL;
  804. }
  805. static struct ahash_alg sha_1_256_algs[] = {
  806. {
  807. .init = atmel_sha_init,
  808. .update = atmel_sha_update,
  809. .final = atmel_sha_final,
  810. .finup = atmel_sha_finup,
  811. .digest = atmel_sha_digest,
  812. .halg = {
  813. .digestsize = SHA1_DIGEST_SIZE,
  814. .base = {
  815. .cra_name = "sha1",
  816. .cra_driver_name = "atmel-sha1",
  817. .cra_priority = 100,
  818. .cra_flags = CRYPTO_ALG_ASYNC |
  819. CRYPTO_ALG_NEED_FALLBACK,
  820. .cra_blocksize = SHA1_BLOCK_SIZE,
  821. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  822. .cra_alignmask = 0,
  823. .cra_module = THIS_MODULE,
  824. .cra_init = atmel_sha_cra_init,
  825. .cra_exit = atmel_sha_cra_exit,
  826. }
  827. }
  828. },
  829. {
  830. .init = atmel_sha_init,
  831. .update = atmel_sha_update,
  832. .final = atmel_sha_final,
  833. .finup = atmel_sha_finup,
  834. .digest = atmel_sha_digest,
  835. .halg = {
  836. .digestsize = SHA256_DIGEST_SIZE,
  837. .base = {
  838. .cra_name = "sha256",
  839. .cra_driver_name = "atmel-sha256",
  840. .cra_priority = 100,
  841. .cra_flags = CRYPTO_ALG_ASYNC |
  842. CRYPTO_ALG_NEED_FALLBACK,
  843. .cra_blocksize = SHA256_BLOCK_SIZE,
  844. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  845. .cra_alignmask = 0,
  846. .cra_module = THIS_MODULE,
  847. .cra_init = atmel_sha_cra_init,
  848. .cra_exit = atmel_sha_cra_exit,
  849. }
  850. }
  851. },
  852. };
  853. static struct ahash_alg sha_224_alg = {
  854. .init = atmel_sha_init,
  855. .update = atmel_sha_update,
  856. .final = atmel_sha_final,
  857. .finup = atmel_sha_finup,
  858. .digest = atmel_sha_digest,
  859. .halg = {
  860. .digestsize = SHA224_DIGEST_SIZE,
  861. .base = {
  862. .cra_name = "sha224",
  863. .cra_driver_name = "atmel-sha224",
  864. .cra_priority = 100,
  865. .cra_flags = CRYPTO_ALG_ASYNC |
  866. CRYPTO_ALG_NEED_FALLBACK,
  867. .cra_blocksize = SHA224_BLOCK_SIZE,
  868. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  869. .cra_alignmask = 0,
  870. .cra_module = THIS_MODULE,
  871. .cra_init = atmel_sha_cra_init,
  872. .cra_exit = atmel_sha_cra_exit,
  873. }
  874. }
  875. };
  876. static struct ahash_alg sha_384_512_algs[] = {
  877. {
  878. .init = atmel_sha_init,
  879. .update = atmel_sha_update,
  880. .final = atmel_sha_final,
  881. .finup = atmel_sha_finup,
  882. .digest = atmel_sha_digest,
  883. .halg = {
  884. .digestsize = SHA384_DIGEST_SIZE,
  885. .base = {
  886. .cra_name = "sha384",
  887. .cra_driver_name = "atmel-sha384",
  888. .cra_priority = 100,
  889. .cra_flags = CRYPTO_ALG_ASYNC |
  890. CRYPTO_ALG_NEED_FALLBACK,
  891. .cra_blocksize = SHA384_BLOCK_SIZE,
  892. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  893. .cra_alignmask = 0x3,
  894. .cra_module = THIS_MODULE,
  895. .cra_init = atmel_sha_cra_init,
  896. .cra_exit = atmel_sha_cra_exit,
  897. }
  898. }
  899. },
  900. {
  901. .init = atmel_sha_init,
  902. .update = atmel_sha_update,
  903. .final = atmel_sha_final,
  904. .finup = atmel_sha_finup,
  905. .digest = atmel_sha_digest,
  906. .halg = {
  907. .digestsize = SHA512_DIGEST_SIZE,
  908. .base = {
  909. .cra_name = "sha512",
  910. .cra_driver_name = "atmel-sha512",
  911. .cra_priority = 100,
  912. .cra_flags = CRYPTO_ALG_ASYNC |
  913. CRYPTO_ALG_NEED_FALLBACK,
  914. .cra_blocksize = SHA512_BLOCK_SIZE,
  915. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  916. .cra_alignmask = 0x3,
  917. .cra_module = THIS_MODULE,
  918. .cra_init = atmel_sha_cra_init,
  919. .cra_exit = atmel_sha_cra_exit,
  920. }
  921. }
  922. },
  923. };
  924. static void atmel_sha_done_task(unsigned long data)
  925. {
  926. struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
  927. int err = 0;
  928. if (!(SHA_FLAGS_BUSY & dd->flags)) {
  929. atmel_sha_handle_queue(dd, NULL);
  930. return;
  931. }
  932. if (SHA_FLAGS_CPU & dd->flags) {
  933. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  934. dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
  935. goto finish;
  936. }
  937. } else if (SHA_FLAGS_DMA_READY & dd->flags) {
  938. if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
  939. dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
  940. atmel_sha_update_dma_stop(dd);
  941. if (dd->err) {
  942. err = dd->err;
  943. goto finish;
  944. }
  945. }
  946. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  947. /* hash or semi-hash ready */
  948. dd->flags &= ~(SHA_FLAGS_DMA_READY |
  949. SHA_FLAGS_OUTPUT_READY);
  950. err = atmel_sha_update_dma_start(dd);
  951. if (err != -EINPROGRESS)
  952. goto finish;
  953. }
  954. }
  955. return;
  956. finish:
  957. /* finish curent request */
  958. atmel_sha_finish_req(dd->req, err);
  959. }
  960. static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
  961. {
  962. struct atmel_sha_dev *sha_dd = dev_id;
  963. u32 reg;
  964. reg = atmel_sha_read(sha_dd, SHA_ISR);
  965. if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
  966. atmel_sha_write(sha_dd, SHA_IDR, reg);
  967. if (SHA_FLAGS_BUSY & sha_dd->flags) {
  968. sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
  969. if (!(SHA_FLAGS_CPU & sha_dd->flags))
  970. sha_dd->flags |= SHA_FLAGS_DMA_READY;
  971. tasklet_schedule(&sha_dd->done_task);
  972. } else {
  973. dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
  974. }
  975. return IRQ_HANDLED;
  976. }
  977. return IRQ_NONE;
  978. }
  979. static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
  980. {
  981. int i;
  982. for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
  983. crypto_unregister_ahash(&sha_1_256_algs[i]);
  984. if (dd->caps.has_sha224)
  985. crypto_unregister_ahash(&sha_224_alg);
  986. if (dd->caps.has_sha_384_512) {
  987. for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
  988. crypto_unregister_ahash(&sha_384_512_algs[i]);
  989. }
  990. }
  991. static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
  992. {
  993. int err, i, j;
  994. for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
  995. err = crypto_register_ahash(&sha_1_256_algs[i]);
  996. if (err)
  997. goto err_sha_1_256_algs;
  998. }
  999. if (dd->caps.has_sha224) {
  1000. err = crypto_register_ahash(&sha_224_alg);
  1001. if (err)
  1002. goto err_sha_224_algs;
  1003. }
  1004. if (dd->caps.has_sha_384_512) {
  1005. for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
  1006. err = crypto_register_ahash(&sha_384_512_algs[i]);
  1007. if (err)
  1008. goto err_sha_384_512_algs;
  1009. }
  1010. }
  1011. return 0;
  1012. err_sha_384_512_algs:
  1013. for (j = 0; j < i; j++)
  1014. crypto_unregister_ahash(&sha_384_512_algs[j]);
  1015. crypto_unregister_ahash(&sha_224_alg);
  1016. err_sha_224_algs:
  1017. i = ARRAY_SIZE(sha_1_256_algs);
  1018. err_sha_1_256_algs:
  1019. for (j = 0; j < i; j++)
  1020. crypto_unregister_ahash(&sha_1_256_algs[j]);
  1021. return err;
  1022. }
  1023. static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
  1024. {
  1025. struct at_dma_slave *sl = slave;
  1026. if (sl && sl->dma_dev == chan->device->dev) {
  1027. chan->private = sl;
  1028. return true;
  1029. } else {
  1030. return false;
  1031. }
  1032. }
  1033. static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
  1034. struct crypto_platform_data *pdata)
  1035. {
  1036. int err = -ENOMEM;
  1037. dma_cap_mask_t mask_in;
  1038. if (pdata && pdata->dma_slave->rxdata.dma_dev) {
  1039. /* Try to grab DMA channel */
  1040. dma_cap_zero(mask_in);
  1041. dma_cap_set(DMA_SLAVE, mask_in);
  1042. dd->dma_lch_in.chan = dma_request_channel(mask_in,
  1043. atmel_sha_filter, &pdata->dma_slave->rxdata);
  1044. if (!dd->dma_lch_in.chan)
  1045. return err;
  1046. dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
  1047. dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
  1048. SHA_REG_DIN(0);
  1049. dd->dma_lch_in.dma_conf.src_maxburst = 1;
  1050. dd->dma_lch_in.dma_conf.src_addr_width =
  1051. DMA_SLAVE_BUSWIDTH_4_BYTES;
  1052. dd->dma_lch_in.dma_conf.dst_maxburst = 1;
  1053. dd->dma_lch_in.dma_conf.dst_addr_width =
  1054. DMA_SLAVE_BUSWIDTH_4_BYTES;
  1055. dd->dma_lch_in.dma_conf.device_fc = false;
  1056. return 0;
  1057. }
  1058. return -ENODEV;
  1059. }
  1060. static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
  1061. {
  1062. dma_release_channel(dd->dma_lch_in.chan);
  1063. }
  1064. static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
  1065. {
  1066. dd->caps.has_dma = 0;
  1067. dd->caps.has_dualbuff = 0;
  1068. dd->caps.has_sha224 = 0;
  1069. dd->caps.has_sha_384_512 = 0;
  1070. /* keep only major version number */
  1071. switch (dd->hw_version & 0xff0) {
  1072. case 0x410:
  1073. dd->caps.has_dma = 1;
  1074. dd->caps.has_dualbuff = 1;
  1075. dd->caps.has_sha224 = 1;
  1076. dd->caps.has_sha_384_512 = 1;
  1077. break;
  1078. case 0x400:
  1079. dd->caps.has_dma = 1;
  1080. dd->caps.has_dualbuff = 1;
  1081. dd->caps.has_sha224 = 1;
  1082. break;
  1083. case 0x320:
  1084. break;
  1085. default:
  1086. dev_warn(dd->dev,
  1087. "Unmanaged sha version, set minimum capabilities\n");
  1088. break;
  1089. }
  1090. }
  1091. static int atmel_sha_probe(struct platform_device *pdev)
  1092. {
  1093. struct atmel_sha_dev *sha_dd;
  1094. struct crypto_platform_data *pdata;
  1095. struct device *dev = &pdev->dev;
  1096. struct resource *sha_res;
  1097. unsigned long sha_phys_size;
  1098. int err;
  1099. sha_dd = kzalloc(sizeof(struct atmel_sha_dev), GFP_KERNEL);
  1100. if (sha_dd == NULL) {
  1101. dev_err(dev, "unable to alloc data struct.\n");
  1102. err = -ENOMEM;
  1103. goto sha_dd_err;
  1104. }
  1105. sha_dd->dev = dev;
  1106. platform_set_drvdata(pdev, sha_dd);
  1107. INIT_LIST_HEAD(&sha_dd->list);
  1108. tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
  1109. (unsigned long)sha_dd);
  1110. crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
  1111. sha_dd->irq = -1;
  1112. /* Get the base address */
  1113. sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1114. if (!sha_res) {
  1115. dev_err(dev, "no MEM resource info\n");
  1116. err = -ENODEV;
  1117. goto res_err;
  1118. }
  1119. sha_dd->phys_base = sha_res->start;
  1120. sha_phys_size = resource_size(sha_res);
  1121. /* Get the IRQ */
  1122. sha_dd->irq = platform_get_irq(pdev, 0);
  1123. if (sha_dd->irq < 0) {
  1124. dev_err(dev, "no IRQ resource info\n");
  1125. err = sha_dd->irq;
  1126. goto res_err;
  1127. }
  1128. err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
  1129. sha_dd);
  1130. if (err) {
  1131. dev_err(dev, "unable to request sha irq.\n");
  1132. goto res_err;
  1133. }
  1134. /* Initializing the clock */
  1135. sha_dd->iclk = clk_get(&pdev->dev, "sha_clk");
  1136. if (IS_ERR(sha_dd->iclk)) {
  1137. dev_err(dev, "clock intialization failed.\n");
  1138. err = PTR_ERR(sha_dd->iclk);
  1139. goto clk_err;
  1140. }
  1141. sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
  1142. if (!sha_dd->io_base) {
  1143. dev_err(dev, "can't ioremap\n");
  1144. err = -ENOMEM;
  1145. goto sha_io_err;
  1146. }
  1147. atmel_sha_hw_version_init(sha_dd);
  1148. atmel_sha_get_cap(sha_dd);
  1149. if (sha_dd->caps.has_dma) {
  1150. pdata = pdev->dev.platform_data;
  1151. if (!pdata) {
  1152. dev_err(&pdev->dev, "platform data not available\n");
  1153. err = -ENXIO;
  1154. goto err_pdata;
  1155. }
  1156. err = atmel_sha_dma_init(sha_dd, pdata);
  1157. if (err)
  1158. goto err_sha_dma;
  1159. }
  1160. spin_lock(&atmel_sha.lock);
  1161. list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
  1162. spin_unlock(&atmel_sha.lock);
  1163. err = atmel_sha_register_algs(sha_dd);
  1164. if (err)
  1165. goto err_algs;
  1166. dev_info(dev, "Atmel SHA1/SHA256\n");
  1167. return 0;
  1168. err_algs:
  1169. spin_lock(&atmel_sha.lock);
  1170. list_del(&sha_dd->list);
  1171. spin_unlock(&atmel_sha.lock);
  1172. if (sha_dd->caps.has_dma)
  1173. atmel_sha_dma_cleanup(sha_dd);
  1174. err_sha_dma:
  1175. err_pdata:
  1176. iounmap(sha_dd->io_base);
  1177. sha_io_err:
  1178. clk_put(sha_dd->iclk);
  1179. clk_err:
  1180. free_irq(sha_dd->irq, sha_dd);
  1181. res_err:
  1182. tasklet_kill(&sha_dd->done_task);
  1183. kfree(sha_dd);
  1184. sha_dd = NULL;
  1185. sha_dd_err:
  1186. dev_err(dev, "initialization failed.\n");
  1187. return err;
  1188. }
  1189. static int atmel_sha_remove(struct platform_device *pdev)
  1190. {
  1191. static struct atmel_sha_dev *sha_dd;
  1192. sha_dd = platform_get_drvdata(pdev);
  1193. if (!sha_dd)
  1194. return -ENODEV;
  1195. spin_lock(&atmel_sha.lock);
  1196. list_del(&sha_dd->list);
  1197. spin_unlock(&atmel_sha.lock);
  1198. atmel_sha_unregister_algs(sha_dd);
  1199. tasklet_kill(&sha_dd->done_task);
  1200. if (sha_dd->caps.has_dma)
  1201. atmel_sha_dma_cleanup(sha_dd);
  1202. iounmap(sha_dd->io_base);
  1203. clk_put(sha_dd->iclk);
  1204. if (sha_dd->irq >= 0)
  1205. free_irq(sha_dd->irq, sha_dd);
  1206. kfree(sha_dd);
  1207. sha_dd = NULL;
  1208. return 0;
  1209. }
  1210. static struct platform_driver atmel_sha_driver = {
  1211. .probe = atmel_sha_probe,
  1212. .remove = atmel_sha_remove,
  1213. .driver = {
  1214. .name = "atmel_sha",
  1215. .owner = THIS_MODULE,
  1216. },
  1217. };
  1218. module_platform_driver(atmel_sha_driver);
  1219. MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
  1220. MODULE_LICENSE("GPL v2");
  1221. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");