xmit.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. static u16 bits_per_symbol[][2] = {
  33. /* 20MHz 40MHz */
  34. { 26, 54 }, /* 0: BPSK */
  35. { 52, 108 }, /* 1: QPSK 1/2 */
  36. { 78, 162 }, /* 2: QPSK 3/4 */
  37. { 104, 216 }, /* 3: 16-QAM 1/2 */
  38. { 156, 324 }, /* 4: 16-QAM 3/4 */
  39. { 208, 432 }, /* 5: 64-QAM 2/3 */
  40. { 234, 486 }, /* 6: 64-QAM 3/4 */
  41. { 260, 540 }, /* 7: 64-QAM 5/6 */
  42. };
  43. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  44. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  45. struct ath_atx_tid *tid, struct sk_buff *skb);
  46. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  47. int tx_flags, struct ath_txq *txq);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head, bool internal);
  53. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  54. struct ath_tx_status *ts, int nframes, int nbad,
  55. int txok);
  56. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  57. int seqno);
  58. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  59. struct ath_txq *txq,
  60. struct ath_atx_tid *tid,
  61. struct sk_buff *skb);
  62. enum {
  63. MCS_HT20,
  64. MCS_HT20_SGI,
  65. MCS_HT40,
  66. MCS_HT40_SGI,
  67. };
  68. static int ath_max_4ms_framelen[4][32] = {
  69. [MCS_HT20] = {
  70. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  71. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  72. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  73. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  74. },
  75. [MCS_HT20_SGI] = {
  76. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  77. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  78. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  79. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  80. },
  81. [MCS_HT40] = {
  82. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  83. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  84. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  85. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  86. },
  87. [MCS_HT40_SGI] = {
  88. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  89. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  90. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  91. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  92. }
  93. };
  94. /*********************/
  95. /* Aggregation logic */
  96. /*********************/
  97. static void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  98. __acquires(&txq->axq_lock)
  99. {
  100. spin_lock_bh(&txq->axq_lock);
  101. }
  102. static void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  103. __releases(&txq->axq_lock)
  104. {
  105. spin_unlock_bh(&txq->axq_lock);
  106. }
  107. static void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  108. __releases(&txq->axq_lock)
  109. {
  110. struct sk_buff_head q;
  111. struct sk_buff *skb;
  112. __skb_queue_head_init(&q);
  113. skb_queue_splice_init(&txq->complete_q, &q);
  114. spin_unlock_bh(&txq->axq_lock);
  115. while ((skb = __skb_dequeue(&q)))
  116. ieee80211_tx_status(sc->hw, skb);
  117. }
  118. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  119. {
  120. struct ath_atx_ac *ac = tid->ac;
  121. if (tid->paused)
  122. return;
  123. if (tid->sched)
  124. return;
  125. tid->sched = true;
  126. list_add_tail(&tid->list, &ac->tid_q);
  127. if (ac->sched)
  128. return;
  129. ac->sched = true;
  130. list_add_tail(&ac->list, &txq->axq_acq);
  131. }
  132. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  133. {
  134. struct ath_txq *txq = tid->ac->txq;
  135. WARN_ON(!tid->paused);
  136. ath_txq_lock(sc, txq);
  137. tid->paused = false;
  138. if (skb_queue_empty(&tid->buf_q))
  139. goto unlock;
  140. ath_tx_queue_tid(txq, tid);
  141. ath_txq_schedule(sc, txq);
  142. unlock:
  143. ath_txq_unlock_complete(sc, txq);
  144. }
  145. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  146. {
  147. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  148. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  149. sizeof(tx_info->rate_driver_data));
  150. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  151. }
  152. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  153. {
  154. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  155. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  156. }
  157. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  158. {
  159. struct ath_txq *txq = tid->ac->txq;
  160. struct sk_buff *skb;
  161. struct ath_buf *bf;
  162. struct list_head bf_head;
  163. struct ath_tx_status ts;
  164. struct ath_frame_info *fi;
  165. bool sendbar = false;
  166. INIT_LIST_HEAD(&bf_head);
  167. memset(&ts, 0, sizeof(ts));
  168. while ((skb = __skb_dequeue(&tid->buf_q))) {
  169. fi = get_frame_info(skb);
  170. bf = fi->bf;
  171. if (bf && fi->retries) {
  172. list_add_tail(&bf->list, &bf_head);
  173. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  174. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  175. sendbar = true;
  176. } else {
  177. ath_tx_send_normal(sc, txq, NULL, skb);
  178. }
  179. }
  180. if (tid->baw_head == tid->baw_tail) {
  181. tid->state &= ~AGGR_ADDBA_COMPLETE;
  182. tid->state &= ~AGGR_CLEANUP;
  183. }
  184. if (sendbar) {
  185. ath_txq_unlock(sc, txq);
  186. ath_send_bar(tid, tid->seq_start);
  187. ath_txq_lock(sc, txq);
  188. }
  189. }
  190. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  191. int seqno)
  192. {
  193. int index, cindex;
  194. index = ATH_BA_INDEX(tid->seq_start, seqno);
  195. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  196. __clear_bit(cindex, tid->tx_buf);
  197. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  198. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  199. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  200. if (tid->bar_index >= 0)
  201. tid->bar_index--;
  202. }
  203. }
  204. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  205. u16 seqno)
  206. {
  207. int index, cindex;
  208. index = ATH_BA_INDEX(tid->seq_start, seqno);
  209. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  210. __set_bit(cindex, tid->tx_buf);
  211. if (index >= ((tid->baw_tail - tid->baw_head) &
  212. (ATH_TID_MAX_BUFS - 1))) {
  213. tid->baw_tail = cindex;
  214. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  215. }
  216. }
  217. /*
  218. * TODO: For frame(s) that are in the retry state, we will reuse the
  219. * sequence number(s) without setting the retry bit. The
  220. * alternative is to give up on these and BAR the receiver's window
  221. * forward.
  222. */
  223. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  224. struct ath_atx_tid *tid)
  225. {
  226. struct sk_buff *skb;
  227. struct ath_buf *bf;
  228. struct list_head bf_head;
  229. struct ath_tx_status ts;
  230. struct ath_frame_info *fi;
  231. memset(&ts, 0, sizeof(ts));
  232. INIT_LIST_HEAD(&bf_head);
  233. while ((skb = __skb_dequeue(&tid->buf_q))) {
  234. fi = get_frame_info(skb);
  235. bf = fi->bf;
  236. if (!bf) {
  237. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  238. continue;
  239. }
  240. list_add_tail(&bf->list, &bf_head);
  241. if (fi->retries)
  242. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  243. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  244. }
  245. tid->seq_next = tid->seq_start;
  246. tid->baw_tail = tid->baw_head;
  247. tid->bar_index = -1;
  248. }
  249. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  250. struct sk_buff *skb, int count)
  251. {
  252. struct ath_frame_info *fi = get_frame_info(skb);
  253. struct ath_buf *bf = fi->bf;
  254. struct ieee80211_hdr *hdr;
  255. int prev = fi->retries;
  256. TX_STAT_INC(txq->axq_qnum, a_retries);
  257. fi->retries += count;
  258. if (prev > 0)
  259. return;
  260. hdr = (struct ieee80211_hdr *)skb->data;
  261. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  262. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  263. sizeof(*hdr), DMA_TO_DEVICE);
  264. }
  265. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  266. {
  267. struct ath_buf *bf = NULL;
  268. spin_lock_bh(&sc->tx.txbuflock);
  269. if (unlikely(list_empty(&sc->tx.txbuf))) {
  270. spin_unlock_bh(&sc->tx.txbuflock);
  271. return NULL;
  272. }
  273. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  274. list_del(&bf->list);
  275. spin_unlock_bh(&sc->tx.txbuflock);
  276. return bf;
  277. }
  278. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  279. {
  280. spin_lock_bh(&sc->tx.txbuflock);
  281. list_add_tail(&bf->list, &sc->tx.txbuf);
  282. spin_unlock_bh(&sc->tx.txbuflock);
  283. }
  284. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  285. {
  286. struct ath_buf *tbf;
  287. tbf = ath_tx_get_buffer(sc);
  288. if (WARN_ON(!tbf))
  289. return NULL;
  290. ATH_TXBUF_RESET(tbf);
  291. tbf->bf_mpdu = bf->bf_mpdu;
  292. tbf->bf_buf_addr = bf->bf_buf_addr;
  293. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  294. tbf->bf_state = bf->bf_state;
  295. return tbf;
  296. }
  297. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  298. struct ath_tx_status *ts, int txok,
  299. int *nframes, int *nbad)
  300. {
  301. struct ath_frame_info *fi;
  302. u16 seq_st = 0;
  303. u32 ba[WME_BA_BMP_SIZE >> 5];
  304. int ba_index;
  305. int isaggr = 0;
  306. *nbad = 0;
  307. *nframes = 0;
  308. isaggr = bf_isaggr(bf);
  309. if (isaggr) {
  310. seq_st = ts->ts_seqnum;
  311. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  312. }
  313. while (bf) {
  314. fi = get_frame_info(bf->bf_mpdu);
  315. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  316. (*nframes)++;
  317. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  318. (*nbad)++;
  319. bf = bf->bf_next;
  320. }
  321. }
  322. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  323. struct ath_buf *bf, struct list_head *bf_q,
  324. struct ath_tx_status *ts, int txok, bool retry)
  325. {
  326. struct ath_node *an = NULL;
  327. struct sk_buff *skb;
  328. struct ieee80211_sta *sta;
  329. struct ieee80211_hw *hw = sc->hw;
  330. struct ieee80211_hdr *hdr;
  331. struct ieee80211_tx_info *tx_info;
  332. struct ath_atx_tid *tid = NULL;
  333. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  334. struct list_head bf_head;
  335. struct sk_buff_head bf_pending;
  336. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  337. u32 ba[WME_BA_BMP_SIZE >> 5];
  338. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  339. bool rc_update = true;
  340. struct ieee80211_tx_rate rates[4];
  341. struct ath_frame_info *fi;
  342. int nframes;
  343. u8 tidno;
  344. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  345. int i, retries;
  346. int bar_index = -1;
  347. skb = bf->bf_mpdu;
  348. hdr = (struct ieee80211_hdr *)skb->data;
  349. tx_info = IEEE80211_SKB_CB(skb);
  350. memcpy(rates, tx_info->control.rates, sizeof(rates));
  351. retries = ts->ts_longretry + 1;
  352. for (i = 0; i < ts->ts_rateindex; i++)
  353. retries += rates[i].count;
  354. rcu_read_lock();
  355. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  356. if (!sta) {
  357. rcu_read_unlock();
  358. INIT_LIST_HEAD(&bf_head);
  359. while (bf) {
  360. bf_next = bf->bf_next;
  361. if (!bf->bf_stale || bf_next != NULL)
  362. list_move_tail(&bf->list, &bf_head);
  363. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  364. bf = bf_next;
  365. }
  366. return;
  367. }
  368. an = (struct ath_node *)sta->drv_priv;
  369. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  370. tid = ATH_AN_2_TID(an, tidno);
  371. seq_first = tid->seq_start;
  372. /*
  373. * The hardware occasionally sends a tx status for the wrong TID.
  374. * In this case, the BA status cannot be considered valid and all
  375. * subframes need to be retransmitted
  376. */
  377. if (tidno != ts->tid)
  378. txok = false;
  379. isaggr = bf_isaggr(bf);
  380. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  381. if (isaggr && txok) {
  382. if (ts->ts_flags & ATH9K_TX_BA) {
  383. seq_st = ts->ts_seqnum;
  384. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  385. } else {
  386. /*
  387. * AR5416 can become deaf/mute when BA
  388. * issue happens. Chip needs to be reset.
  389. * But AP code may have sychronization issues
  390. * when perform internal reset in this routine.
  391. * Only enable reset in STA mode for now.
  392. */
  393. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  394. needreset = 1;
  395. }
  396. }
  397. __skb_queue_head_init(&bf_pending);
  398. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  399. while (bf) {
  400. u16 seqno = bf->bf_state.seqno;
  401. txfail = txpending = sendbar = 0;
  402. bf_next = bf->bf_next;
  403. skb = bf->bf_mpdu;
  404. tx_info = IEEE80211_SKB_CB(skb);
  405. fi = get_frame_info(skb);
  406. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  407. /* transmit completion, subframe is
  408. * acked by block ack */
  409. acked_cnt++;
  410. } else if (!isaggr && txok) {
  411. /* transmit completion */
  412. acked_cnt++;
  413. } else if ((tid->state & AGGR_CLEANUP) || !retry) {
  414. /*
  415. * cleanup in progress, just fail
  416. * the un-acked sub-frames
  417. */
  418. txfail = 1;
  419. } else if (flush) {
  420. txpending = 1;
  421. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  422. if (txok || !an->sleeping)
  423. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  424. retries);
  425. txpending = 1;
  426. } else {
  427. txfail = 1;
  428. txfail_cnt++;
  429. bar_index = max_t(int, bar_index,
  430. ATH_BA_INDEX(seq_first, seqno));
  431. }
  432. /*
  433. * Make sure the last desc is reclaimed if it
  434. * not a holding desc.
  435. */
  436. INIT_LIST_HEAD(&bf_head);
  437. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  438. bf_next != NULL || !bf_last->bf_stale)
  439. list_move_tail(&bf->list, &bf_head);
  440. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  441. /*
  442. * complete the acked-ones/xretried ones; update
  443. * block-ack window
  444. */
  445. ath_tx_update_baw(sc, tid, seqno);
  446. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  447. memcpy(tx_info->control.rates, rates, sizeof(rates));
  448. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  449. rc_update = false;
  450. }
  451. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  452. !txfail);
  453. } else {
  454. /* retry the un-acked ones */
  455. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  456. bf->bf_next == NULL && bf_last->bf_stale) {
  457. struct ath_buf *tbf;
  458. tbf = ath_clone_txbuf(sc, bf_last);
  459. /*
  460. * Update tx baw and complete the
  461. * frame with failed status if we
  462. * run out of tx buf.
  463. */
  464. if (!tbf) {
  465. ath_tx_update_baw(sc, tid, seqno);
  466. ath_tx_complete_buf(sc, bf, txq,
  467. &bf_head, ts, 0);
  468. bar_index = max_t(int, bar_index,
  469. ATH_BA_INDEX(seq_first, seqno));
  470. break;
  471. }
  472. fi->bf = tbf;
  473. }
  474. /*
  475. * Put this buffer to the temporary pending
  476. * queue to retain ordering
  477. */
  478. __skb_queue_tail(&bf_pending, skb);
  479. }
  480. bf = bf_next;
  481. }
  482. /* prepend un-acked frames to the beginning of the pending frame queue */
  483. if (!skb_queue_empty(&bf_pending)) {
  484. if (an->sleeping)
  485. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  486. skb_queue_splice(&bf_pending, &tid->buf_q);
  487. if (!an->sleeping) {
  488. ath_tx_queue_tid(txq, tid);
  489. if (ts->ts_status & ATH9K_TXERR_FILT)
  490. tid->ac->clear_ps_filter = true;
  491. }
  492. }
  493. if (bar_index >= 0) {
  494. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  495. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  496. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  497. ath_txq_unlock(sc, txq);
  498. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  499. ath_txq_lock(sc, txq);
  500. }
  501. if (tid->state & AGGR_CLEANUP)
  502. ath_tx_flush_tid(sc, tid);
  503. rcu_read_unlock();
  504. if (needreset) {
  505. RESET_STAT_INC(sc, RESET_TYPE_TX_ERROR);
  506. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  507. }
  508. }
  509. static bool ath_lookup_legacy(struct ath_buf *bf)
  510. {
  511. struct sk_buff *skb;
  512. struct ieee80211_tx_info *tx_info;
  513. struct ieee80211_tx_rate *rates;
  514. int i;
  515. skb = bf->bf_mpdu;
  516. tx_info = IEEE80211_SKB_CB(skb);
  517. rates = tx_info->control.rates;
  518. for (i = 0; i < 4; i++) {
  519. if (!rates[i].count || rates[i].idx < 0)
  520. break;
  521. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  522. return true;
  523. }
  524. return false;
  525. }
  526. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  527. struct ath_atx_tid *tid)
  528. {
  529. struct sk_buff *skb;
  530. struct ieee80211_tx_info *tx_info;
  531. struct ieee80211_tx_rate *rates;
  532. u32 max_4ms_framelen, frmlen;
  533. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  534. int i;
  535. skb = bf->bf_mpdu;
  536. tx_info = IEEE80211_SKB_CB(skb);
  537. rates = tx_info->control.rates;
  538. /*
  539. * Find the lowest frame length among the rate series that will have a
  540. * 4ms transmit duration.
  541. * TODO - TXOP limit needs to be considered.
  542. */
  543. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  544. for (i = 0; i < 4; i++) {
  545. int modeidx;
  546. if (!rates[i].count)
  547. continue;
  548. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  549. legacy = 1;
  550. break;
  551. }
  552. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  553. modeidx = MCS_HT40;
  554. else
  555. modeidx = MCS_HT20;
  556. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  557. modeidx++;
  558. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  559. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  560. }
  561. /*
  562. * limit aggregate size by the minimum rate if rate selected is
  563. * not a probe rate, if rate selected is a probe rate then
  564. * avoid aggregation of this packet.
  565. */
  566. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  567. return 0;
  568. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  569. /*
  570. * Override the default aggregation limit for BTCOEX.
  571. */
  572. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  573. if (bt_aggr_limit)
  574. aggr_limit = bt_aggr_limit;
  575. /*
  576. * h/w can accept aggregates up to 16 bit lengths (65535).
  577. * The IE, however can hold up to 65536, which shows up here
  578. * as zero. Ignore 65536 since we are constrained by hw.
  579. */
  580. if (tid->an->maxampdu)
  581. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  582. return aggr_limit;
  583. }
  584. /*
  585. * Returns the number of delimiters to be added to
  586. * meet the minimum required mpdudensity.
  587. */
  588. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  589. struct ath_buf *bf, u16 frmlen,
  590. bool first_subfrm)
  591. {
  592. #define FIRST_DESC_NDELIMS 60
  593. struct sk_buff *skb = bf->bf_mpdu;
  594. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  595. u32 nsymbits, nsymbols;
  596. u16 minlen;
  597. u8 flags, rix;
  598. int width, streams, half_gi, ndelim, mindelim;
  599. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  600. /* Select standard number of delimiters based on frame length alone */
  601. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  602. /*
  603. * If encryption enabled, hardware requires some more padding between
  604. * subframes.
  605. * TODO - this could be improved to be dependent on the rate.
  606. * The hardware can keep up at lower rates, but not higher rates
  607. */
  608. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  609. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  610. ndelim += ATH_AGGR_ENCRYPTDELIM;
  611. /*
  612. * Add delimiter when using RTS/CTS with aggregation
  613. * and non enterprise AR9003 card
  614. */
  615. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  616. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  617. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  618. /*
  619. * Convert desired mpdu density from microeconds to bytes based
  620. * on highest rate in rate series (i.e. first rate) to determine
  621. * required minimum length for subframe. Take into account
  622. * whether high rate is 20 or 40Mhz and half or full GI.
  623. *
  624. * If there is no mpdu density restriction, no further calculation
  625. * is needed.
  626. */
  627. if (tid->an->mpdudensity == 0)
  628. return ndelim;
  629. rix = tx_info->control.rates[0].idx;
  630. flags = tx_info->control.rates[0].flags;
  631. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  632. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  633. if (half_gi)
  634. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  635. else
  636. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  637. if (nsymbols == 0)
  638. nsymbols = 1;
  639. streams = HT_RC_2_STREAMS(rix);
  640. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  641. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  642. if (frmlen < minlen) {
  643. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  644. ndelim = max(mindelim, ndelim);
  645. }
  646. return ndelim;
  647. }
  648. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  649. struct ath_txq *txq,
  650. struct ath_atx_tid *tid,
  651. struct list_head *bf_q,
  652. int *aggr_len)
  653. {
  654. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  655. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  656. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  657. u16 aggr_limit = 0, al = 0, bpad = 0,
  658. al_delta, h_baw = tid->baw_size / 2;
  659. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  660. struct ieee80211_tx_info *tx_info;
  661. struct ath_frame_info *fi;
  662. struct sk_buff *skb;
  663. u16 seqno;
  664. do {
  665. skb = skb_peek(&tid->buf_q);
  666. fi = get_frame_info(skb);
  667. bf = fi->bf;
  668. if (!fi->bf)
  669. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  670. if (!bf)
  671. continue;
  672. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  673. seqno = bf->bf_state.seqno;
  674. /* do not step over block-ack window */
  675. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  676. status = ATH_AGGR_BAW_CLOSED;
  677. break;
  678. }
  679. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  680. struct ath_tx_status ts = {};
  681. struct list_head bf_head;
  682. INIT_LIST_HEAD(&bf_head);
  683. list_add(&bf->list, &bf_head);
  684. __skb_unlink(skb, &tid->buf_q);
  685. ath_tx_update_baw(sc, tid, seqno);
  686. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  687. continue;
  688. }
  689. if (!bf_first)
  690. bf_first = bf;
  691. if (!rl) {
  692. aggr_limit = ath_lookup_rate(sc, bf, tid);
  693. rl = 1;
  694. }
  695. /* do not exceed aggregation limit */
  696. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  697. if (nframes &&
  698. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  699. ath_lookup_legacy(bf))) {
  700. status = ATH_AGGR_LIMITED;
  701. break;
  702. }
  703. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  704. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  705. break;
  706. /* do not exceed subframe limit */
  707. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  708. status = ATH_AGGR_LIMITED;
  709. break;
  710. }
  711. /* add padding for previous frame to aggregation length */
  712. al += bpad + al_delta;
  713. /*
  714. * Get the delimiters needed to meet the MPDU
  715. * density for this node.
  716. */
  717. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  718. !nframes);
  719. bpad = PADBYTES(al_delta) + (ndelim << 2);
  720. nframes++;
  721. bf->bf_next = NULL;
  722. /* link buffers of this frame to the aggregate */
  723. if (!fi->retries)
  724. ath_tx_addto_baw(sc, tid, seqno);
  725. bf->bf_state.ndelim = ndelim;
  726. __skb_unlink(skb, &tid->buf_q);
  727. list_add_tail(&bf->list, bf_q);
  728. if (bf_prev)
  729. bf_prev->bf_next = bf;
  730. bf_prev = bf;
  731. } while (!skb_queue_empty(&tid->buf_q));
  732. *aggr_len = al;
  733. return status;
  734. #undef PADBYTES
  735. }
  736. /*
  737. * rix - rate index
  738. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  739. * width - 0 for 20 MHz, 1 for 40 MHz
  740. * half_gi - to use 4us v/s 3.6 us for symbol time
  741. */
  742. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  743. int width, int half_gi, bool shortPreamble)
  744. {
  745. u32 nbits, nsymbits, duration, nsymbols;
  746. int streams;
  747. /* find number of symbols: PLCP + data */
  748. streams = HT_RC_2_STREAMS(rix);
  749. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  750. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  751. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  752. if (!half_gi)
  753. duration = SYMBOL_TIME(nsymbols);
  754. else
  755. duration = SYMBOL_TIME_HALFGI(nsymbols);
  756. /* addup duration for legacy/ht training and signal fields */
  757. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  758. return duration;
  759. }
  760. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  761. struct ath_tx_info *info, int len)
  762. {
  763. struct ath_hw *ah = sc->sc_ah;
  764. struct sk_buff *skb;
  765. struct ieee80211_tx_info *tx_info;
  766. struct ieee80211_tx_rate *rates;
  767. const struct ieee80211_rate *rate;
  768. struct ieee80211_hdr *hdr;
  769. int i;
  770. u8 rix = 0;
  771. skb = bf->bf_mpdu;
  772. tx_info = IEEE80211_SKB_CB(skb);
  773. rates = tx_info->control.rates;
  774. hdr = (struct ieee80211_hdr *)skb->data;
  775. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  776. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  777. /*
  778. * We check if Short Preamble is needed for the CTS rate by
  779. * checking the BSS's global flag.
  780. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  781. */
  782. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  783. info->rtscts_rate = rate->hw_value;
  784. if (tx_info->control.vif &&
  785. tx_info->control.vif->bss_conf.use_short_preamble)
  786. info->rtscts_rate |= rate->hw_value_short;
  787. for (i = 0; i < 4; i++) {
  788. bool is_40, is_sgi, is_sp;
  789. int phy;
  790. if (!rates[i].count || (rates[i].idx < 0))
  791. continue;
  792. rix = rates[i].idx;
  793. info->rates[i].Tries = rates[i].count;
  794. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  795. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  796. info->flags |= ATH9K_TXDESC_RTSENA;
  797. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  798. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  799. info->flags |= ATH9K_TXDESC_CTSENA;
  800. }
  801. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  802. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  803. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  804. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  805. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  806. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  807. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  808. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  809. /* MCS rates */
  810. info->rates[i].Rate = rix | 0x80;
  811. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  812. ah->txchainmask, info->rates[i].Rate);
  813. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  814. is_40, is_sgi, is_sp);
  815. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  816. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  817. continue;
  818. }
  819. /* legacy rates */
  820. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  821. !(rate->flags & IEEE80211_RATE_ERP_G))
  822. phy = WLAN_RC_PHY_CCK;
  823. else
  824. phy = WLAN_RC_PHY_OFDM;
  825. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  826. info->rates[i].Rate = rate->hw_value;
  827. if (rate->hw_value_short) {
  828. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  829. info->rates[i].Rate |= rate->hw_value_short;
  830. } else {
  831. is_sp = false;
  832. }
  833. if (bf->bf_state.bfs_paprd)
  834. info->rates[i].ChSel = ah->txchainmask;
  835. else
  836. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  837. ah->txchainmask, info->rates[i].Rate);
  838. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  839. phy, rate->bitrate * 100, len, rix, is_sp);
  840. }
  841. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  842. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  843. info->flags &= ~ATH9K_TXDESC_RTSENA;
  844. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  845. if (info->flags & ATH9K_TXDESC_RTSENA)
  846. info->flags &= ~ATH9K_TXDESC_CTSENA;
  847. }
  848. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  849. {
  850. struct ieee80211_hdr *hdr;
  851. enum ath9k_pkt_type htype;
  852. __le16 fc;
  853. hdr = (struct ieee80211_hdr *)skb->data;
  854. fc = hdr->frame_control;
  855. if (ieee80211_is_beacon(fc))
  856. htype = ATH9K_PKT_TYPE_BEACON;
  857. else if (ieee80211_is_probe_resp(fc))
  858. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  859. else if (ieee80211_is_atim(fc))
  860. htype = ATH9K_PKT_TYPE_ATIM;
  861. else if (ieee80211_is_pspoll(fc))
  862. htype = ATH9K_PKT_TYPE_PSPOLL;
  863. else
  864. htype = ATH9K_PKT_TYPE_NORMAL;
  865. return htype;
  866. }
  867. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  868. struct ath_txq *txq, int len)
  869. {
  870. struct ath_hw *ah = sc->sc_ah;
  871. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  872. struct ath_buf *bf_first = bf;
  873. struct ath_tx_info info;
  874. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  875. memset(&info, 0, sizeof(info));
  876. info.is_first = true;
  877. info.is_last = true;
  878. info.txpower = MAX_RATE_POWER;
  879. info.qcu = txq->axq_qnum;
  880. info.flags = ATH9K_TXDESC_INTREQ;
  881. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  882. info.flags |= ATH9K_TXDESC_NOACK;
  883. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  884. info.flags |= ATH9K_TXDESC_LDPC;
  885. ath_buf_set_rate(sc, bf, &info, len);
  886. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  887. info.flags |= ATH9K_TXDESC_CLRDMASK;
  888. if (bf->bf_state.bfs_paprd)
  889. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  890. while (bf) {
  891. struct sk_buff *skb = bf->bf_mpdu;
  892. struct ath_frame_info *fi = get_frame_info(skb);
  893. info.type = get_hw_packet_type(skb);
  894. if (bf->bf_next)
  895. info.link = bf->bf_next->bf_daddr;
  896. else
  897. info.link = 0;
  898. info.buf_addr[0] = bf->bf_buf_addr;
  899. info.buf_len[0] = skb->len;
  900. info.pkt_len = fi->framelen;
  901. info.keyix = fi->keyix;
  902. info.keytype = fi->keytype;
  903. if (aggr) {
  904. if (bf == bf_first)
  905. info.aggr = AGGR_BUF_FIRST;
  906. else if (!bf->bf_next)
  907. info.aggr = AGGR_BUF_LAST;
  908. else
  909. info.aggr = AGGR_BUF_MIDDLE;
  910. info.ndelim = bf->bf_state.ndelim;
  911. info.aggr_len = len;
  912. }
  913. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  914. bf = bf->bf_next;
  915. }
  916. }
  917. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  918. struct ath_atx_tid *tid)
  919. {
  920. struct ath_buf *bf;
  921. enum ATH_AGGR_STATUS status;
  922. struct ieee80211_tx_info *tx_info;
  923. struct list_head bf_q;
  924. int aggr_len;
  925. do {
  926. if (skb_queue_empty(&tid->buf_q))
  927. return;
  928. INIT_LIST_HEAD(&bf_q);
  929. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  930. /*
  931. * no frames picked up to be aggregated;
  932. * block-ack window is not open.
  933. */
  934. if (list_empty(&bf_q))
  935. break;
  936. bf = list_first_entry(&bf_q, struct ath_buf, list);
  937. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  938. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  939. if (tid->ac->clear_ps_filter) {
  940. tid->ac->clear_ps_filter = false;
  941. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  942. } else {
  943. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  944. }
  945. /* if only one frame, send as non-aggregate */
  946. if (bf == bf->bf_lastbf) {
  947. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  948. bf->bf_state.bf_type = BUF_AMPDU;
  949. } else {
  950. TX_STAT_INC(txq->axq_qnum, a_aggr);
  951. }
  952. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  953. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  954. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  955. status != ATH_AGGR_BAW_CLOSED);
  956. }
  957. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  958. u16 tid, u16 *ssn)
  959. {
  960. struct ath_atx_tid *txtid;
  961. struct ath_node *an;
  962. an = (struct ath_node *)sta->drv_priv;
  963. txtid = ATH_AN_2_TID(an, tid);
  964. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  965. return -EAGAIN;
  966. txtid->state |= AGGR_ADDBA_PROGRESS;
  967. txtid->paused = true;
  968. *ssn = txtid->seq_start = txtid->seq_next;
  969. txtid->bar_index = -1;
  970. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  971. txtid->baw_head = txtid->baw_tail = 0;
  972. return 0;
  973. }
  974. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  975. {
  976. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  977. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  978. struct ath_txq *txq = txtid->ac->txq;
  979. if (txtid->state & AGGR_CLEANUP)
  980. return;
  981. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  982. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  983. return;
  984. }
  985. ath_txq_lock(sc, txq);
  986. txtid->paused = true;
  987. /*
  988. * If frames are still being transmitted for this TID, they will be
  989. * cleaned up during tx completion. To prevent race conditions, this
  990. * TID can only be reused after all in-progress subframes have been
  991. * completed.
  992. */
  993. if (txtid->baw_head != txtid->baw_tail)
  994. txtid->state |= AGGR_CLEANUP;
  995. else
  996. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  997. ath_tx_flush_tid(sc, txtid);
  998. ath_txq_unlock_complete(sc, txq);
  999. }
  1000. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1001. struct ath_node *an)
  1002. {
  1003. struct ath_atx_tid *tid;
  1004. struct ath_atx_ac *ac;
  1005. struct ath_txq *txq;
  1006. bool buffered;
  1007. int tidno;
  1008. for (tidno = 0, tid = &an->tid[tidno];
  1009. tidno < WME_NUM_TID; tidno++, tid++) {
  1010. if (!tid->sched)
  1011. continue;
  1012. ac = tid->ac;
  1013. txq = ac->txq;
  1014. ath_txq_lock(sc, txq);
  1015. buffered = !skb_queue_empty(&tid->buf_q);
  1016. tid->sched = false;
  1017. list_del(&tid->list);
  1018. if (ac->sched) {
  1019. ac->sched = false;
  1020. list_del(&ac->list);
  1021. }
  1022. ath_txq_unlock(sc, txq);
  1023. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1024. }
  1025. }
  1026. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1027. {
  1028. struct ath_atx_tid *tid;
  1029. struct ath_atx_ac *ac;
  1030. struct ath_txq *txq;
  1031. int tidno;
  1032. for (tidno = 0, tid = &an->tid[tidno];
  1033. tidno < WME_NUM_TID; tidno++, tid++) {
  1034. ac = tid->ac;
  1035. txq = ac->txq;
  1036. ath_txq_lock(sc, txq);
  1037. ac->clear_ps_filter = true;
  1038. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1039. ath_tx_queue_tid(txq, tid);
  1040. ath_txq_schedule(sc, txq);
  1041. }
  1042. ath_txq_unlock_complete(sc, txq);
  1043. }
  1044. }
  1045. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1046. {
  1047. struct ath_atx_tid *txtid;
  1048. struct ath_node *an;
  1049. an = (struct ath_node *)sta->drv_priv;
  1050. txtid = ATH_AN_2_TID(an, tid);
  1051. txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1052. txtid->state |= AGGR_ADDBA_COMPLETE;
  1053. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1054. ath_tx_resume_tid(sc, txtid);
  1055. }
  1056. /********************/
  1057. /* Queue Management */
  1058. /********************/
  1059. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1060. struct ath_txq *txq)
  1061. {
  1062. struct ath_atx_ac *ac, *ac_tmp;
  1063. struct ath_atx_tid *tid, *tid_tmp;
  1064. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1065. list_del(&ac->list);
  1066. ac->sched = false;
  1067. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1068. list_del(&tid->list);
  1069. tid->sched = false;
  1070. ath_tid_drain(sc, txq, tid);
  1071. }
  1072. }
  1073. }
  1074. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1075. {
  1076. struct ath_hw *ah = sc->sc_ah;
  1077. struct ath9k_tx_queue_info qi;
  1078. static const int subtype_txq_to_hwq[] = {
  1079. [WME_AC_BE] = ATH_TXQ_AC_BE,
  1080. [WME_AC_BK] = ATH_TXQ_AC_BK,
  1081. [WME_AC_VI] = ATH_TXQ_AC_VI,
  1082. [WME_AC_VO] = ATH_TXQ_AC_VO,
  1083. };
  1084. int axq_qnum, i;
  1085. memset(&qi, 0, sizeof(qi));
  1086. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1087. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1088. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1089. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1090. qi.tqi_physCompBuf = 0;
  1091. /*
  1092. * Enable interrupts only for EOL and DESC conditions.
  1093. * We mark tx descriptors to receive a DESC interrupt
  1094. * when a tx queue gets deep; otherwise waiting for the
  1095. * EOL to reap descriptors. Note that this is done to
  1096. * reduce interrupt load and this only defers reaping
  1097. * descriptors, never transmitting frames. Aside from
  1098. * reducing interrupts this also permits more concurrency.
  1099. * The only potential downside is if the tx queue backs
  1100. * up in which case the top half of the kernel may backup
  1101. * due to a lack of tx descriptors.
  1102. *
  1103. * The UAPSD queue is an exception, since we take a desc-
  1104. * based intr on the EOSP frames.
  1105. */
  1106. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1107. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  1108. TXQ_FLAG_TXERRINT_ENABLE;
  1109. } else {
  1110. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1111. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1112. else
  1113. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1114. TXQ_FLAG_TXDESCINT_ENABLE;
  1115. }
  1116. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1117. if (axq_qnum == -1) {
  1118. /*
  1119. * NB: don't print a message, this happens
  1120. * normally on parts with too few tx queues
  1121. */
  1122. return NULL;
  1123. }
  1124. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1125. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1126. txq->axq_qnum = axq_qnum;
  1127. txq->mac80211_qnum = -1;
  1128. txq->axq_link = NULL;
  1129. __skb_queue_head_init(&txq->complete_q);
  1130. INIT_LIST_HEAD(&txq->axq_q);
  1131. INIT_LIST_HEAD(&txq->axq_acq);
  1132. spin_lock_init(&txq->axq_lock);
  1133. txq->axq_depth = 0;
  1134. txq->axq_ampdu_depth = 0;
  1135. txq->axq_tx_inprogress = false;
  1136. sc->tx.txqsetup |= 1<<axq_qnum;
  1137. txq->txq_headidx = txq->txq_tailidx = 0;
  1138. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1139. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1140. }
  1141. return &sc->tx.txq[axq_qnum];
  1142. }
  1143. int ath_txq_update(struct ath_softc *sc, int qnum,
  1144. struct ath9k_tx_queue_info *qinfo)
  1145. {
  1146. struct ath_hw *ah = sc->sc_ah;
  1147. int error = 0;
  1148. struct ath9k_tx_queue_info qi;
  1149. if (qnum == sc->beacon.beaconq) {
  1150. /*
  1151. * XXX: for beacon queue, we just save the parameter.
  1152. * It will be picked up by ath_beaconq_config when
  1153. * it's necessary.
  1154. */
  1155. sc->beacon.beacon_qi = *qinfo;
  1156. return 0;
  1157. }
  1158. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1159. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1160. qi.tqi_aifs = qinfo->tqi_aifs;
  1161. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1162. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1163. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1164. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1165. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1166. ath_err(ath9k_hw_common(sc->sc_ah),
  1167. "Unable to update hardware queue %u!\n", qnum);
  1168. error = -EIO;
  1169. } else {
  1170. ath9k_hw_resettxqueue(ah, qnum);
  1171. }
  1172. return error;
  1173. }
  1174. int ath_cabq_update(struct ath_softc *sc)
  1175. {
  1176. struct ath9k_tx_queue_info qi;
  1177. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1178. int qnum = sc->beacon.cabq->axq_qnum;
  1179. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1180. /*
  1181. * Ensure the readytime % is within the bounds.
  1182. */
  1183. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1184. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1185. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1186. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1187. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1188. sc->config.cabqReadytime) / 100;
  1189. ath_txq_update(sc, qnum, &qi);
  1190. return 0;
  1191. }
  1192. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1193. {
  1194. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1195. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1196. }
  1197. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1198. struct list_head *list, bool retry_tx)
  1199. {
  1200. struct ath_buf *bf, *lastbf;
  1201. struct list_head bf_head;
  1202. struct ath_tx_status ts;
  1203. memset(&ts, 0, sizeof(ts));
  1204. ts.ts_status = ATH9K_TX_FLUSH;
  1205. INIT_LIST_HEAD(&bf_head);
  1206. while (!list_empty(list)) {
  1207. bf = list_first_entry(list, struct ath_buf, list);
  1208. if (bf->bf_stale) {
  1209. list_del(&bf->list);
  1210. ath_tx_return_buffer(sc, bf);
  1211. continue;
  1212. }
  1213. lastbf = bf->bf_lastbf;
  1214. list_cut_position(&bf_head, list, &lastbf->list);
  1215. txq->axq_depth--;
  1216. if (bf_is_ampdu_not_probing(bf))
  1217. txq->axq_ampdu_depth--;
  1218. if (bf_isampdu(bf))
  1219. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1220. retry_tx);
  1221. else
  1222. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  1223. }
  1224. }
  1225. /*
  1226. * Drain a given TX queue (could be Beacon or Data)
  1227. *
  1228. * This assumes output has been stopped and
  1229. * we do not need to block ath_tx_tasklet.
  1230. */
  1231. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1232. {
  1233. ath_txq_lock(sc, txq);
  1234. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1235. int idx = txq->txq_tailidx;
  1236. while (!list_empty(&txq->txq_fifo[idx])) {
  1237. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1238. retry_tx);
  1239. INCR(idx, ATH_TXFIFO_DEPTH);
  1240. }
  1241. txq->txq_tailidx = idx;
  1242. }
  1243. txq->axq_link = NULL;
  1244. txq->axq_tx_inprogress = false;
  1245. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1246. /* flush any pending frames if aggregation is enabled */
  1247. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
  1248. ath_txq_drain_pending_buffers(sc, txq);
  1249. ath_txq_unlock_complete(sc, txq);
  1250. }
  1251. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1252. {
  1253. struct ath_hw *ah = sc->sc_ah;
  1254. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1255. struct ath_txq *txq;
  1256. int i;
  1257. u32 npend = 0;
  1258. if (sc->sc_flags & SC_OP_INVALID)
  1259. return true;
  1260. ath9k_hw_abort_tx_dma(ah);
  1261. /* Check if any queue remains active */
  1262. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1263. if (!ATH_TXQ_SETUP(sc, i))
  1264. continue;
  1265. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1266. npend |= BIT(i);
  1267. }
  1268. if (npend)
  1269. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1270. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1271. if (!ATH_TXQ_SETUP(sc, i))
  1272. continue;
  1273. /*
  1274. * The caller will resume queues with ieee80211_wake_queues.
  1275. * Mark the queue as not stopped to prevent ath_tx_complete
  1276. * from waking the queue too early.
  1277. */
  1278. txq = &sc->tx.txq[i];
  1279. txq->stopped = false;
  1280. ath_draintxq(sc, txq, retry_tx);
  1281. }
  1282. return !npend;
  1283. }
  1284. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1285. {
  1286. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1287. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1288. }
  1289. /* For each axq_acq entry, for each tid, try to schedule packets
  1290. * for transmit until ampdu_depth has reached min Q depth.
  1291. */
  1292. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1293. {
  1294. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1295. struct ath_atx_tid *tid, *last_tid;
  1296. if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
  1297. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1298. return;
  1299. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1300. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1301. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1302. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1303. list_del(&ac->list);
  1304. ac->sched = false;
  1305. while (!list_empty(&ac->tid_q)) {
  1306. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1307. list);
  1308. list_del(&tid->list);
  1309. tid->sched = false;
  1310. if (tid->paused)
  1311. continue;
  1312. ath_tx_sched_aggr(sc, txq, tid);
  1313. /*
  1314. * add tid to round-robin queue if more frames
  1315. * are pending for the tid
  1316. */
  1317. if (!skb_queue_empty(&tid->buf_q))
  1318. ath_tx_queue_tid(txq, tid);
  1319. if (tid == last_tid ||
  1320. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1321. break;
  1322. }
  1323. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1324. ac->sched = true;
  1325. list_add_tail(&ac->list, &txq->axq_acq);
  1326. }
  1327. if (ac == last_ac ||
  1328. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1329. return;
  1330. }
  1331. }
  1332. /***********/
  1333. /* TX, DMA */
  1334. /***********/
  1335. /*
  1336. * Insert a chain of ath_buf (descriptors) on a txq and
  1337. * assume the descriptors are already chained together by caller.
  1338. */
  1339. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1340. struct list_head *head, bool internal)
  1341. {
  1342. struct ath_hw *ah = sc->sc_ah;
  1343. struct ath_common *common = ath9k_hw_common(ah);
  1344. struct ath_buf *bf, *bf_last;
  1345. bool puttxbuf = false;
  1346. bool edma;
  1347. /*
  1348. * Insert the frame on the outbound list and
  1349. * pass it on to the hardware.
  1350. */
  1351. if (list_empty(head))
  1352. return;
  1353. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1354. bf = list_first_entry(head, struct ath_buf, list);
  1355. bf_last = list_entry(head->prev, struct ath_buf, list);
  1356. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1357. txq->axq_qnum, txq->axq_depth);
  1358. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1359. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1360. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1361. puttxbuf = true;
  1362. } else {
  1363. list_splice_tail_init(head, &txq->axq_q);
  1364. if (txq->axq_link) {
  1365. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1366. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1367. txq->axq_qnum, txq->axq_link,
  1368. ito64(bf->bf_daddr), bf->bf_desc);
  1369. } else if (!edma)
  1370. puttxbuf = true;
  1371. txq->axq_link = bf_last->bf_desc;
  1372. }
  1373. if (puttxbuf) {
  1374. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1375. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1376. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1377. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1378. }
  1379. if (!edma) {
  1380. TX_STAT_INC(txq->axq_qnum, txstart);
  1381. ath9k_hw_txstart(ah, txq->axq_qnum);
  1382. }
  1383. if (!internal) {
  1384. txq->axq_depth++;
  1385. if (bf_is_ampdu_not_probing(bf))
  1386. txq->axq_ampdu_depth++;
  1387. }
  1388. }
  1389. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1390. struct sk_buff *skb, struct ath_tx_control *txctl)
  1391. {
  1392. struct ath_frame_info *fi = get_frame_info(skb);
  1393. struct list_head bf_head;
  1394. struct ath_buf *bf;
  1395. /*
  1396. * Do not queue to h/w when any of the following conditions is true:
  1397. * - there are pending frames in software queue
  1398. * - the TID is currently paused for ADDBA/BAR request
  1399. * - seqno is not within block-ack window
  1400. * - h/w queue depth exceeds low water mark
  1401. */
  1402. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1403. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1404. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1405. /*
  1406. * Add this frame to software queue for scheduling later
  1407. * for aggregation.
  1408. */
  1409. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1410. __skb_queue_tail(&tid->buf_q, skb);
  1411. if (!txctl->an || !txctl->an->sleeping)
  1412. ath_tx_queue_tid(txctl->txq, tid);
  1413. return;
  1414. }
  1415. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1416. if (!bf)
  1417. return;
  1418. bf->bf_state.bf_type = BUF_AMPDU;
  1419. INIT_LIST_HEAD(&bf_head);
  1420. list_add(&bf->list, &bf_head);
  1421. /* Add sub-frame to BAW */
  1422. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1423. /* Queue to h/w without aggregation */
  1424. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1425. bf->bf_lastbf = bf;
  1426. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1427. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1428. }
  1429. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1430. struct ath_atx_tid *tid, struct sk_buff *skb)
  1431. {
  1432. struct ath_frame_info *fi = get_frame_info(skb);
  1433. struct list_head bf_head;
  1434. struct ath_buf *bf;
  1435. bf = fi->bf;
  1436. if (!bf)
  1437. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1438. if (!bf)
  1439. return;
  1440. INIT_LIST_HEAD(&bf_head);
  1441. list_add_tail(&bf->list, &bf_head);
  1442. bf->bf_state.bf_type = 0;
  1443. bf->bf_lastbf = bf;
  1444. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1445. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1446. TX_STAT_INC(txq->axq_qnum, queued);
  1447. }
  1448. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1449. int framelen)
  1450. {
  1451. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1452. struct ieee80211_sta *sta = tx_info->control.sta;
  1453. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1454. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1455. struct ath_frame_info *fi = get_frame_info(skb);
  1456. struct ath_node *an = NULL;
  1457. enum ath9k_key_type keytype;
  1458. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1459. if (sta)
  1460. an = (struct ath_node *) sta->drv_priv;
  1461. memset(fi, 0, sizeof(*fi));
  1462. if (hw_key)
  1463. fi->keyix = hw_key->hw_key_idx;
  1464. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1465. fi->keyix = an->ps_key;
  1466. else
  1467. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1468. fi->keytype = keytype;
  1469. fi->framelen = framelen;
  1470. }
  1471. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1472. {
  1473. struct ath_hw *ah = sc->sc_ah;
  1474. struct ath9k_channel *curchan = ah->curchan;
  1475. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1476. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1477. (chainmask == 0x7) && (rate < 0x90))
  1478. return 0x3;
  1479. else
  1480. return chainmask;
  1481. }
  1482. /*
  1483. * Assign a descriptor (and sequence number if necessary,
  1484. * and map buffer for DMA. Frees skb on error
  1485. */
  1486. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1487. struct ath_txq *txq,
  1488. struct ath_atx_tid *tid,
  1489. struct sk_buff *skb)
  1490. {
  1491. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1492. struct ath_frame_info *fi = get_frame_info(skb);
  1493. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1494. struct ath_buf *bf;
  1495. u16 seqno;
  1496. bf = ath_tx_get_buffer(sc);
  1497. if (!bf) {
  1498. ath_dbg(common, XMIT, "TX buffers are full\n");
  1499. goto error;
  1500. }
  1501. ATH_TXBUF_RESET(bf);
  1502. if (tid) {
  1503. seqno = tid->seq_next;
  1504. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1505. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1506. bf->bf_state.seqno = seqno;
  1507. }
  1508. bf->bf_mpdu = skb;
  1509. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1510. skb->len, DMA_TO_DEVICE);
  1511. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1512. bf->bf_mpdu = NULL;
  1513. bf->bf_buf_addr = 0;
  1514. ath_err(ath9k_hw_common(sc->sc_ah),
  1515. "dma_mapping_error() on TX\n");
  1516. ath_tx_return_buffer(sc, bf);
  1517. goto error;
  1518. }
  1519. fi->bf = bf;
  1520. return bf;
  1521. error:
  1522. dev_kfree_skb_any(skb);
  1523. return NULL;
  1524. }
  1525. /* FIXME: tx power */
  1526. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1527. struct ath_tx_control *txctl)
  1528. {
  1529. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1530. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1531. struct ath_atx_tid *tid = NULL;
  1532. struct ath_buf *bf;
  1533. u8 tidno;
  1534. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
  1535. ieee80211_is_data_qos(hdr->frame_control)) {
  1536. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1537. IEEE80211_QOS_CTL_TID_MASK;
  1538. tid = ATH_AN_2_TID(txctl->an, tidno);
  1539. WARN_ON(tid->ac->txq != txctl->txq);
  1540. }
  1541. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1542. /*
  1543. * Try aggregation if it's a unicast data frame
  1544. * and the destination is HT capable.
  1545. */
  1546. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1547. } else {
  1548. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1549. if (!bf)
  1550. return;
  1551. bf->bf_state.bfs_paprd = txctl->paprd;
  1552. if (txctl->paprd)
  1553. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1554. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1555. }
  1556. }
  1557. /* Upon failure caller should free skb */
  1558. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1559. struct ath_tx_control *txctl)
  1560. {
  1561. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1562. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1563. struct ieee80211_sta *sta = info->control.sta;
  1564. struct ieee80211_vif *vif = info->control.vif;
  1565. struct ath_softc *sc = hw->priv;
  1566. struct ath_txq *txq = txctl->txq;
  1567. int padpos, padsize;
  1568. int frmlen = skb->len + FCS_LEN;
  1569. int q;
  1570. /* NOTE: sta can be NULL according to net/mac80211.h */
  1571. if (sta)
  1572. txctl->an = (struct ath_node *)sta->drv_priv;
  1573. if (info->control.hw_key)
  1574. frmlen += info->control.hw_key->icv_len;
  1575. /*
  1576. * As a temporary workaround, assign seq# here; this will likely need
  1577. * to be cleaned up to work better with Beacon transmission and virtual
  1578. * BSSes.
  1579. */
  1580. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1581. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1582. sc->tx.seq_no += 0x10;
  1583. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1584. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1585. }
  1586. /* Add the padding after the header if this is not already done */
  1587. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1588. padsize = padpos & 3;
  1589. if (padsize && skb->len > padpos) {
  1590. if (skb_headroom(skb) < padsize)
  1591. return -ENOMEM;
  1592. skb_push(skb, padsize);
  1593. memmove(skb->data, skb->data + padsize, padpos);
  1594. hdr = (struct ieee80211_hdr *) skb->data;
  1595. }
  1596. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1597. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1598. !ieee80211_is_data(hdr->frame_control))
  1599. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1600. setup_frame_info(hw, skb, frmlen);
  1601. /*
  1602. * At this point, the vif, hw_key and sta pointers in the tx control
  1603. * info are no longer valid (overwritten by the ath_frame_info data.
  1604. */
  1605. q = skb_get_queue_mapping(skb);
  1606. ath_txq_lock(sc, txq);
  1607. if (txq == sc->tx.txq_map[q] &&
  1608. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1609. ieee80211_stop_queue(sc->hw, q);
  1610. txq->stopped = true;
  1611. }
  1612. ath_tx_start_dma(sc, skb, txctl);
  1613. ath_txq_unlock(sc, txq);
  1614. return 0;
  1615. }
  1616. /*****************/
  1617. /* TX Completion */
  1618. /*****************/
  1619. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1620. int tx_flags, struct ath_txq *txq)
  1621. {
  1622. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1623. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1624. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1625. int q, padpos, padsize;
  1626. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1627. if (!(tx_flags & ATH_TX_ERROR))
  1628. /* Frame was ACKed */
  1629. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1630. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1631. padsize = padpos & 3;
  1632. if (padsize && skb->len>padpos+padsize) {
  1633. /*
  1634. * Remove MAC header padding before giving the frame back to
  1635. * mac80211.
  1636. */
  1637. memmove(skb->data + padsize, skb->data, padpos);
  1638. skb_pull(skb, padsize);
  1639. }
  1640. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1641. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1642. ath_dbg(common, PS,
  1643. "Going back to sleep after having received TX status (0x%lx)\n",
  1644. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1645. PS_WAIT_FOR_CAB |
  1646. PS_WAIT_FOR_PSPOLL_DATA |
  1647. PS_WAIT_FOR_TX_ACK));
  1648. }
  1649. q = skb_get_queue_mapping(skb);
  1650. if (txq == sc->tx.txq_map[q]) {
  1651. if (WARN_ON(--txq->pending_frames < 0))
  1652. txq->pending_frames = 0;
  1653. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1654. ieee80211_wake_queue(sc->hw, q);
  1655. txq->stopped = false;
  1656. }
  1657. }
  1658. __skb_queue_tail(&txq->complete_q, skb);
  1659. }
  1660. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1661. struct ath_txq *txq, struct list_head *bf_q,
  1662. struct ath_tx_status *ts, int txok)
  1663. {
  1664. struct sk_buff *skb = bf->bf_mpdu;
  1665. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1666. unsigned long flags;
  1667. int tx_flags = 0;
  1668. if (!txok)
  1669. tx_flags |= ATH_TX_ERROR;
  1670. if (ts->ts_status & ATH9K_TXERR_FILT)
  1671. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1672. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1673. bf->bf_buf_addr = 0;
  1674. if (bf->bf_state.bfs_paprd) {
  1675. if (time_after(jiffies,
  1676. bf->bf_state.bfs_paprd_timestamp +
  1677. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1678. dev_kfree_skb_any(skb);
  1679. else
  1680. complete(&sc->paprd_complete);
  1681. } else {
  1682. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1683. ath_tx_complete(sc, skb, tx_flags, txq);
  1684. }
  1685. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1686. * accidentally reference it later.
  1687. */
  1688. bf->bf_mpdu = NULL;
  1689. /*
  1690. * Return the list of ath_buf of this mpdu to free queue
  1691. */
  1692. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1693. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1694. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1695. }
  1696. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1697. struct ath_tx_status *ts, int nframes, int nbad,
  1698. int txok)
  1699. {
  1700. struct sk_buff *skb = bf->bf_mpdu;
  1701. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1702. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1703. struct ieee80211_hw *hw = sc->hw;
  1704. struct ath_hw *ah = sc->sc_ah;
  1705. u8 i, tx_rateindex;
  1706. if (txok)
  1707. tx_info->status.ack_signal = ts->ts_rssi;
  1708. tx_rateindex = ts->ts_rateindex;
  1709. WARN_ON(tx_rateindex >= hw->max_rates);
  1710. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1711. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1712. BUG_ON(nbad > nframes);
  1713. }
  1714. tx_info->status.ampdu_len = nframes;
  1715. tx_info->status.ampdu_ack_len = nframes - nbad;
  1716. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1717. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1718. /*
  1719. * If an underrun error is seen assume it as an excessive
  1720. * retry only if max frame trigger level has been reached
  1721. * (2 KB for single stream, and 4 KB for dual stream).
  1722. * Adjust the long retry as if the frame was tried
  1723. * hw->max_rate_tries times to affect how rate control updates
  1724. * PER for the failed rate.
  1725. * In case of congestion on the bus penalizing this type of
  1726. * underruns should help hardware actually transmit new frames
  1727. * successfully by eventually preferring slower rates.
  1728. * This itself should also alleviate congestion on the bus.
  1729. */
  1730. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1731. ATH9K_TX_DELIM_UNDERRUN)) &&
  1732. ieee80211_is_data(hdr->frame_control) &&
  1733. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1734. tx_info->status.rates[tx_rateindex].count =
  1735. hw->max_rate_tries;
  1736. }
  1737. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1738. tx_info->status.rates[i].count = 0;
  1739. tx_info->status.rates[i].idx = -1;
  1740. }
  1741. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1742. }
  1743. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1744. struct ath_tx_status *ts, struct ath_buf *bf,
  1745. struct list_head *bf_head)
  1746. {
  1747. int txok;
  1748. txq->axq_depth--;
  1749. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1750. txq->axq_tx_inprogress = false;
  1751. if (bf_is_ampdu_not_probing(bf))
  1752. txq->axq_ampdu_depth--;
  1753. if (!bf_isampdu(bf)) {
  1754. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1755. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  1756. } else
  1757. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1758. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1759. ath_txq_schedule(sc, txq);
  1760. }
  1761. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1762. {
  1763. struct ath_hw *ah = sc->sc_ah;
  1764. struct ath_common *common = ath9k_hw_common(ah);
  1765. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1766. struct list_head bf_head;
  1767. struct ath_desc *ds;
  1768. struct ath_tx_status ts;
  1769. int status;
  1770. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1771. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1772. txq->axq_link);
  1773. ath_txq_lock(sc, txq);
  1774. for (;;) {
  1775. if (work_pending(&sc->hw_reset_work))
  1776. break;
  1777. if (list_empty(&txq->axq_q)) {
  1778. txq->axq_link = NULL;
  1779. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1780. ath_txq_schedule(sc, txq);
  1781. break;
  1782. }
  1783. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1784. /*
  1785. * There is a race condition that a BH gets scheduled
  1786. * after sw writes TxE and before hw re-load the last
  1787. * descriptor to get the newly chained one.
  1788. * Software must keep the last DONE descriptor as a
  1789. * holding descriptor - software does so by marking
  1790. * it with the STALE flag.
  1791. */
  1792. bf_held = NULL;
  1793. if (bf->bf_stale) {
  1794. bf_held = bf;
  1795. if (list_is_last(&bf_held->list, &txq->axq_q))
  1796. break;
  1797. bf = list_entry(bf_held->list.next, struct ath_buf,
  1798. list);
  1799. }
  1800. lastbf = bf->bf_lastbf;
  1801. ds = lastbf->bf_desc;
  1802. memset(&ts, 0, sizeof(ts));
  1803. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1804. if (status == -EINPROGRESS)
  1805. break;
  1806. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1807. /*
  1808. * Remove ath_buf's of the same transmit unit from txq,
  1809. * however leave the last descriptor back as the holding
  1810. * descriptor for hw.
  1811. */
  1812. lastbf->bf_stale = true;
  1813. INIT_LIST_HEAD(&bf_head);
  1814. if (!list_is_singular(&lastbf->list))
  1815. list_cut_position(&bf_head,
  1816. &txq->axq_q, lastbf->list.prev);
  1817. if (bf_held) {
  1818. list_del(&bf_held->list);
  1819. ath_tx_return_buffer(sc, bf_held);
  1820. }
  1821. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1822. }
  1823. ath_txq_unlock_complete(sc, txq);
  1824. }
  1825. static void ath_tx_complete_poll_work(struct work_struct *work)
  1826. {
  1827. struct ath_softc *sc = container_of(work, struct ath_softc,
  1828. tx_complete_work.work);
  1829. struct ath_txq *txq;
  1830. int i;
  1831. bool needreset = false;
  1832. #ifdef CONFIG_ATH9K_DEBUGFS
  1833. sc->tx_complete_poll_work_seen++;
  1834. #endif
  1835. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1836. if (ATH_TXQ_SETUP(sc, i)) {
  1837. txq = &sc->tx.txq[i];
  1838. ath_txq_lock(sc, txq);
  1839. if (txq->axq_depth) {
  1840. if (txq->axq_tx_inprogress) {
  1841. needreset = true;
  1842. ath_txq_unlock(sc, txq);
  1843. break;
  1844. } else {
  1845. txq->axq_tx_inprogress = true;
  1846. }
  1847. }
  1848. ath_txq_unlock_complete(sc, txq);
  1849. }
  1850. if (needreset) {
  1851. ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
  1852. "tx hung, resetting the chip\n");
  1853. RESET_STAT_INC(sc, RESET_TYPE_TX_HANG);
  1854. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  1855. }
  1856. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1857. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1858. }
  1859. void ath_tx_tasklet(struct ath_softc *sc)
  1860. {
  1861. int i;
  1862. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1863. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1864. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1865. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1866. ath_tx_processq(sc, &sc->tx.txq[i]);
  1867. }
  1868. }
  1869. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1870. {
  1871. struct ath_tx_status ts;
  1872. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1873. struct ath_hw *ah = sc->sc_ah;
  1874. struct ath_txq *txq;
  1875. struct ath_buf *bf, *lastbf;
  1876. struct list_head bf_head;
  1877. int status;
  1878. for (;;) {
  1879. if (work_pending(&sc->hw_reset_work))
  1880. break;
  1881. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1882. if (status == -EINPROGRESS)
  1883. break;
  1884. if (status == -EIO) {
  1885. ath_dbg(common, XMIT, "Error processing tx status\n");
  1886. break;
  1887. }
  1888. /* Process beacon completions separately */
  1889. if (ts.qid == sc->beacon.beaconq) {
  1890. sc->beacon.tx_processed = true;
  1891. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  1892. continue;
  1893. }
  1894. txq = &sc->tx.txq[ts.qid];
  1895. ath_txq_lock(sc, txq);
  1896. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1897. ath_txq_unlock(sc, txq);
  1898. return;
  1899. }
  1900. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1901. struct ath_buf, list);
  1902. lastbf = bf->bf_lastbf;
  1903. INIT_LIST_HEAD(&bf_head);
  1904. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1905. &lastbf->list);
  1906. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1907. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1908. if (!list_empty(&txq->axq_q)) {
  1909. struct list_head bf_q;
  1910. INIT_LIST_HEAD(&bf_q);
  1911. txq->axq_link = NULL;
  1912. list_splice_tail_init(&txq->axq_q, &bf_q);
  1913. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1914. }
  1915. }
  1916. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1917. ath_txq_unlock_complete(sc, txq);
  1918. }
  1919. }
  1920. /*****************/
  1921. /* Init, Cleanup */
  1922. /*****************/
  1923. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1924. {
  1925. struct ath_descdma *dd = &sc->txsdma;
  1926. u8 txs_len = sc->sc_ah->caps.txs_len;
  1927. dd->dd_desc_len = size * txs_len;
  1928. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1929. &dd->dd_desc_paddr, GFP_KERNEL);
  1930. if (!dd->dd_desc)
  1931. return -ENOMEM;
  1932. return 0;
  1933. }
  1934. static int ath_tx_edma_init(struct ath_softc *sc)
  1935. {
  1936. int err;
  1937. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1938. if (!err)
  1939. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1940. sc->txsdma.dd_desc_paddr,
  1941. ATH_TXSTATUS_RING_SIZE);
  1942. return err;
  1943. }
  1944. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1945. {
  1946. struct ath_descdma *dd = &sc->txsdma;
  1947. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1948. dd->dd_desc_paddr);
  1949. }
  1950. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1951. {
  1952. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1953. int error = 0;
  1954. spin_lock_init(&sc->tx.txbuflock);
  1955. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1956. "tx", nbufs, 1, 1);
  1957. if (error != 0) {
  1958. ath_err(common,
  1959. "Failed to allocate tx descriptors: %d\n", error);
  1960. goto err;
  1961. }
  1962. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1963. "beacon", ATH_BCBUF, 1, 1);
  1964. if (error != 0) {
  1965. ath_err(common,
  1966. "Failed to allocate beacon descriptors: %d\n", error);
  1967. goto err;
  1968. }
  1969. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1970. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1971. error = ath_tx_edma_init(sc);
  1972. if (error)
  1973. goto err;
  1974. }
  1975. err:
  1976. if (error != 0)
  1977. ath_tx_cleanup(sc);
  1978. return error;
  1979. }
  1980. void ath_tx_cleanup(struct ath_softc *sc)
  1981. {
  1982. if (sc->beacon.bdma.dd_desc_len != 0)
  1983. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1984. if (sc->tx.txdma.dd_desc_len != 0)
  1985. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1986. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1987. ath_tx_edma_cleanup(sc);
  1988. }
  1989. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1990. {
  1991. struct ath_atx_tid *tid;
  1992. struct ath_atx_ac *ac;
  1993. int tidno, acno;
  1994. for (tidno = 0, tid = &an->tid[tidno];
  1995. tidno < WME_NUM_TID;
  1996. tidno++, tid++) {
  1997. tid->an = an;
  1998. tid->tidno = tidno;
  1999. tid->seq_start = tid->seq_next = 0;
  2000. tid->baw_size = WME_MAX_BA;
  2001. tid->baw_head = tid->baw_tail = 0;
  2002. tid->sched = false;
  2003. tid->paused = false;
  2004. tid->state &= ~AGGR_CLEANUP;
  2005. __skb_queue_head_init(&tid->buf_q);
  2006. acno = TID_TO_WME_AC(tidno);
  2007. tid->ac = &an->ac[acno];
  2008. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2009. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2010. }
  2011. for (acno = 0, ac = &an->ac[acno];
  2012. acno < WME_NUM_AC; acno++, ac++) {
  2013. ac->sched = false;
  2014. ac->txq = sc->tx.txq_map[acno];
  2015. INIT_LIST_HEAD(&ac->tid_q);
  2016. }
  2017. }
  2018. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2019. {
  2020. struct ath_atx_ac *ac;
  2021. struct ath_atx_tid *tid;
  2022. struct ath_txq *txq;
  2023. int tidno;
  2024. for (tidno = 0, tid = &an->tid[tidno];
  2025. tidno < WME_NUM_TID; tidno++, tid++) {
  2026. ac = tid->ac;
  2027. txq = ac->txq;
  2028. ath_txq_lock(sc, txq);
  2029. if (tid->sched) {
  2030. list_del(&tid->list);
  2031. tid->sched = false;
  2032. }
  2033. if (ac->sched) {
  2034. list_del(&ac->list);
  2035. tid->ac->sched = false;
  2036. }
  2037. ath_tid_drain(sc, txq, tid);
  2038. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2039. tid->state &= ~AGGR_CLEANUP;
  2040. ath_txq_unlock(sc, txq);
  2041. }
  2042. }