sched_fair.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. /*
  26. * Targeted preemption latency for CPU-bound tasks:
  27. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  28. *
  29. * NOTE: this latency value is not the same as the concept of
  30. * 'timeslice length' - timeslices in CFS are of variable length
  31. * and have no persistent notion like in traditional, time-slice
  32. * based scheduling concepts.
  33. *
  34. * (to see the precise effective timeslice length of your workload,
  35. * run vmstat and monitor the context-switches (cs) field)
  36. */
  37. unsigned int sysctl_sched_latency = 6000000ULL;
  38. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  39. /*
  40. * The initial- and re-scaling of tunables is configurable
  41. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  42. *
  43. * Options are:
  44. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  45. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  46. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  47. */
  48. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  49. = SCHED_TUNABLESCALING_LOG;
  50. /*
  51. * Minimal preemption granularity for CPU-bound tasks:
  52. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  53. */
  54. unsigned int sysctl_sched_min_granularity = 750000ULL;
  55. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  56. /*
  57. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  58. */
  59. static unsigned int sched_nr_latency = 8;
  60. /*
  61. * After fork, child runs first. If set to 0 (default) then
  62. * parent will (try to) run first.
  63. */
  64. unsigned int sysctl_sched_child_runs_first __read_mostly;
  65. /*
  66. * SCHED_OTHER wake-up granularity.
  67. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68. *
  69. * This option delays the preemption effects of decoupled workloads
  70. * and reduces their over-scheduling. Synchronous workloads will still
  71. * have immediate wakeup/sleep latencies.
  72. */
  73. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  74. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  75. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  76. /*
  77. * The exponential sliding window over which load is averaged for shares
  78. * distribution.
  79. * (default: 10msec)
  80. */
  81. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  119. {
  120. if (!cfs_rq->on_list) {
  121. /*
  122. * Ensure we either appear before our parent (if already
  123. * enqueued) or force our parent to appear after us when it is
  124. * enqueued. The fact that we always enqueue bottom-up
  125. * reduces this to two cases.
  126. */
  127. if (cfs_rq->tg->parent &&
  128. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  129. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  130. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  131. } else {
  132. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  133. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  134. }
  135. cfs_rq->on_list = 1;
  136. }
  137. }
  138. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  139. {
  140. if (cfs_rq->on_list) {
  141. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  142. cfs_rq->on_list = 0;
  143. }
  144. }
  145. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  146. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  147. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  148. /* Do the two (enqueued) entities belong to the same group ? */
  149. static inline int
  150. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  151. {
  152. if (se->cfs_rq == pse->cfs_rq)
  153. return 1;
  154. return 0;
  155. }
  156. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  157. {
  158. return se->parent;
  159. }
  160. /* return depth at which a sched entity is present in the hierarchy */
  161. static inline int depth_se(struct sched_entity *se)
  162. {
  163. int depth = 0;
  164. for_each_sched_entity(se)
  165. depth++;
  166. return depth;
  167. }
  168. static void
  169. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  170. {
  171. int se_depth, pse_depth;
  172. /*
  173. * preemption test can be made between sibling entities who are in the
  174. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  175. * both tasks until we find their ancestors who are siblings of common
  176. * parent.
  177. */
  178. /* First walk up until both entities are at same depth */
  179. se_depth = depth_se(*se);
  180. pse_depth = depth_se(*pse);
  181. while (se_depth > pse_depth) {
  182. se_depth--;
  183. *se = parent_entity(*se);
  184. }
  185. while (pse_depth > se_depth) {
  186. pse_depth--;
  187. *pse = parent_entity(*pse);
  188. }
  189. while (!is_same_group(*se, *pse)) {
  190. *se = parent_entity(*se);
  191. *pse = parent_entity(*pse);
  192. }
  193. }
  194. #else /* !CONFIG_FAIR_GROUP_SCHED */
  195. static inline struct task_struct *task_of(struct sched_entity *se)
  196. {
  197. return container_of(se, struct task_struct, se);
  198. }
  199. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  200. {
  201. return container_of(cfs_rq, struct rq, cfs);
  202. }
  203. #define entity_is_task(se) 1
  204. #define for_each_sched_entity(se) \
  205. for (; se; se = NULL)
  206. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  207. {
  208. return &task_rq(p)->cfs;
  209. }
  210. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  211. {
  212. struct task_struct *p = task_of(se);
  213. struct rq *rq = task_rq(p);
  214. return &rq->cfs;
  215. }
  216. /* runqueue "owned" by this group */
  217. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  218. {
  219. return NULL;
  220. }
  221. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  222. {
  223. }
  224. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  225. {
  226. }
  227. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  228. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  229. static inline int
  230. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  231. {
  232. return 1;
  233. }
  234. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  235. {
  236. return NULL;
  237. }
  238. static inline void
  239. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  240. {
  241. }
  242. #endif /* CONFIG_FAIR_GROUP_SCHED */
  243. /**************************************************************
  244. * Scheduling class tree data structure manipulation methods:
  245. */
  246. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  247. {
  248. s64 delta = (s64)(vruntime - min_vruntime);
  249. if (delta > 0)
  250. min_vruntime = vruntime;
  251. return min_vruntime;
  252. }
  253. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  254. {
  255. s64 delta = (s64)(vruntime - min_vruntime);
  256. if (delta < 0)
  257. min_vruntime = vruntime;
  258. return min_vruntime;
  259. }
  260. static inline int entity_before(struct sched_entity *a,
  261. struct sched_entity *b)
  262. {
  263. return (s64)(a->vruntime - b->vruntime) < 0;
  264. }
  265. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  266. {
  267. u64 vruntime = cfs_rq->min_vruntime;
  268. if (cfs_rq->curr)
  269. vruntime = cfs_rq->curr->vruntime;
  270. if (cfs_rq->rb_leftmost) {
  271. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  272. struct sched_entity,
  273. run_node);
  274. if (!cfs_rq->curr)
  275. vruntime = se->vruntime;
  276. else
  277. vruntime = min_vruntime(vruntime, se->vruntime);
  278. }
  279. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  280. #ifndef CONFIG_64BIT
  281. smp_wmb();
  282. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  283. #endif
  284. }
  285. /*
  286. * Enqueue an entity into the rb-tree:
  287. */
  288. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  289. {
  290. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  291. struct rb_node *parent = NULL;
  292. struct sched_entity *entry;
  293. int leftmost = 1;
  294. /*
  295. * Find the right place in the rbtree:
  296. */
  297. while (*link) {
  298. parent = *link;
  299. entry = rb_entry(parent, struct sched_entity, run_node);
  300. /*
  301. * We dont care about collisions. Nodes with
  302. * the same key stay together.
  303. */
  304. if (entity_before(se, entry)) {
  305. link = &parent->rb_left;
  306. } else {
  307. link = &parent->rb_right;
  308. leftmost = 0;
  309. }
  310. }
  311. /*
  312. * Maintain a cache of leftmost tree entries (it is frequently
  313. * used):
  314. */
  315. if (leftmost)
  316. cfs_rq->rb_leftmost = &se->run_node;
  317. rb_link_node(&se->run_node, parent, link);
  318. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  319. }
  320. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  321. {
  322. if (cfs_rq->rb_leftmost == &se->run_node) {
  323. struct rb_node *next_node;
  324. next_node = rb_next(&se->run_node);
  325. cfs_rq->rb_leftmost = next_node;
  326. }
  327. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  328. }
  329. static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  330. {
  331. struct rb_node *left = cfs_rq->rb_leftmost;
  332. if (!left)
  333. return NULL;
  334. return rb_entry(left, struct sched_entity, run_node);
  335. }
  336. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  337. {
  338. struct rb_node *next = rb_next(&se->run_node);
  339. if (!next)
  340. return NULL;
  341. return rb_entry(next, struct sched_entity, run_node);
  342. }
  343. #ifdef CONFIG_SCHED_DEBUG
  344. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  345. {
  346. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  347. if (!last)
  348. return NULL;
  349. return rb_entry(last, struct sched_entity, run_node);
  350. }
  351. /**************************************************************
  352. * Scheduling class statistics methods:
  353. */
  354. int sched_proc_update_handler(struct ctl_table *table, int write,
  355. void __user *buffer, size_t *lenp,
  356. loff_t *ppos)
  357. {
  358. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  359. int factor = get_update_sysctl_factor();
  360. if (ret || !write)
  361. return ret;
  362. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  363. sysctl_sched_min_granularity);
  364. #define WRT_SYSCTL(name) \
  365. (normalized_sysctl_##name = sysctl_##name / (factor))
  366. WRT_SYSCTL(sched_min_granularity);
  367. WRT_SYSCTL(sched_latency);
  368. WRT_SYSCTL(sched_wakeup_granularity);
  369. #undef WRT_SYSCTL
  370. return 0;
  371. }
  372. #endif
  373. /*
  374. * delta /= w
  375. */
  376. static inline unsigned long
  377. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  378. {
  379. if (unlikely(se->load.weight != NICE_0_LOAD))
  380. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  381. return delta;
  382. }
  383. /*
  384. * The idea is to set a period in which each task runs once.
  385. *
  386. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  387. * this period because otherwise the slices get too small.
  388. *
  389. * p = (nr <= nl) ? l : l*nr/nl
  390. */
  391. static u64 __sched_period(unsigned long nr_running)
  392. {
  393. u64 period = sysctl_sched_latency;
  394. unsigned long nr_latency = sched_nr_latency;
  395. if (unlikely(nr_running > nr_latency)) {
  396. period = sysctl_sched_min_granularity;
  397. period *= nr_running;
  398. }
  399. return period;
  400. }
  401. /*
  402. * We calculate the wall-time slice from the period by taking a part
  403. * proportional to the weight.
  404. *
  405. * s = p*P[w/rw]
  406. */
  407. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  408. {
  409. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  410. for_each_sched_entity(se) {
  411. struct load_weight *load;
  412. struct load_weight lw;
  413. cfs_rq = cfs_rq_of(se);
  414. load = &cfs_rq->load;
  415. if (unlikely(!se->on_rq)) {
  416. lw = cfs_rq->load;
  417. update_load_add(&lw, se->load.weight);
  418. load = &lw;
  419. }
  420. slice = calc_delta_mine(slice, se->load.weight, load);
  421. }
  422. return slice;
  423. }
  424. /*
  425. * We calculate the vruntime slice of a to be inserted task
  426. *
  427. * vs = s/w
  428. */
  429. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  430. {
  431. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  432. }
  433. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  434. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  435. /*
  436. * Update the current task's runtime statistics. Skip current tasks that
  437. * are not in our scheduling class.
  438. */
  439. static inline void
  440. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  441. unsigned long delta_exec)
  442. {
  443. unsigned long delta_exec_weighted;
  444. schedstat_set(curr->statistics.exec_max,
  445. max((u64)delta_exec, curr->statistics.exec_max));
  446. curr->sum_exec_runtime += delta_exec;
  447. schedstat_add(cfs_rq, exec_clock, delta_exec);
  448. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  449. curr->vruntime += delta_exec_weighted;
  450. update_min_vruntime(cfs_rq);
  451. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  452. cfs_rq->load_unacc_exec_time += delta_exec;
  453. #endif
  454. }
  455. static void update_curr(struct cfs_rq *cfs_rq)
  456. {
  457. struct sched_entity *curr = cfs_rq->curr;
  458. u64 now = rq_of(cfs_rq)->clock_task;
  459. unsigned long delta_exec;
  460. if (unlikely(!curr))
  461. return;
  462. /*
  463. * Get the amount of time the current task was running
  464. * since the last time we changed load (this cannot
  465. * overflow on 32 bits):
  466. */
  467. delta_exec = (unsigned long)(now - curr->exec_start);
  468. if (!delta_exec)
  469. return;
  470. __update_curr(cfs_rq, curr, delta_exec);
  471. curr->exec_start = now;
  472. if (entity_is_task(curr)) {
  473. struct task_struct *curtask = task_of(curr);
  474. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  475. cpuacct_charge(curtask, delta_exec);
  476. account_group_exec_runtime(curtask, delta_exec);
  477. }
  478. }
  479. static inline void
  480. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  481. {
  482. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  483. }
  484. /*
  485. * Task is being enqueued - update stats:
  486. */
  487. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  488. {
  489. /*
  490. * Are we enqueueing a waiting task? (for current tasks
  491. * a dequeue/enqueue event is a NOP)
  492. */
  493. if (se != cfs_rq->curr)
  494. update_stats_wait_start(cfs_rq, se);
  495. }
  496. static void
  497. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  498. {
  499. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  500. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  501. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  502. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  503. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  504. #ifdef CONFIG_SCHEDSTATS
  505. if (entity_is_task(se)) {
  506. trace_sched_stat_wait(task_of(se),
  507. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  508. }
  509. #endif
  510. schedstat_set(se->statistics.wait_start, 0);
  511. }
  512. static inline void
  513. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  514. {
  515. /*
  516. * Mark the end of the wait period if dequeueing a
  517. * waiting task:
  518. */
  519. if (se != cfs_rq->curr)
  520. update_stats_wait_end(cfs_rq, se);
  521. }
  522. /*
  523. * We are picking a new current task - update its stats:
  524. */
  525. static inline void
  526. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  527. {
  528. /*
  529. * We are starting a new run period:
  530. */
  531. se->exec_start = rq_of(cfs_rq)->clock_task;
  532. }
  533. /**************************************************
  534. * Scheduling class queueing methods:
  535. */
  536. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  537. static void
  538. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  539. {
  540. cfs_rq->task_weight += weight;
  541. }
  542. #else
  543. static inline void
  544. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  545. {
  546. }
  547. #endif
  548. static void
  549. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  550. {
  551. update_load_add(&cfs_rq->load, se->load.weight);
  552. if (!parent_entity(se))
  553. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  554. if (entity_is_task(se)) {
  555. add_cfs_task_weight(cfs_rq, se->load.weight);
  556. list_add(&se->group_node, &cfs_rq->tasks);
  557. }
  558. cfs_rq->nr_running++;
  559. }
  560. static void
  561. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  562. {
  563. update_load_sub(&cfs_rq->load, se->load.weight);
  564. if (!parent_entity(se))
  565. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  566. if (entity_is_task(se)) {
  567. add_cfs_task_weight(cfs_rq, -se->load.weight);
  568. list_del_init(&se->group_node);
  569. }
  570. cfs_rq->nr_running--;
  571. }
  572. #ifdef CONFIG_FAIR_GROUP_SCHED
  573. # ifdef CONFIG_SMP
  574. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  575. int global_update)
  576. {
  577. struct task_group *tg = cfs_rq->tg;
  578. long load_avg;
  579. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  580. load_avg -= cfs_rq->load_contribution;
  581. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  582. atomic_add(load_avg, &tg->load_weight);
  583. cfs_rq->load_contribution += load_avg;
  584. }
  585. }
  586. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  587. {
  588. u64 period = sysctl_sched_shares_window;
  589. u64 now, delta;
  590. unsigned long load = cfs_rq->load.weight;
  591. if (cfs_rq->tg == &root_task_group)
  592. return;
  593. now = rq_of(cfs_rq)->clock_task;
  594. delta = now - cfs_rq->load_stamp;
  595. /* truncate load history at 4 idle periods */
  596. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  597. now - cfs_rq->load_last > 4 * period) {
  598. cfs_rq->load_period = 0;
  599. cfs_rq->load_avg = 0;
  600. delta = period - 1;
  601. }
  602. cfs_rq->load_stamp = now;
  603. cfs_rq->load_unacc_exec_time = 0;
  604. cfs_rq->load_period += delta;
  605. if (load) {
  606. cfs_rq->load_last = now;
  607. cfs_rq->load_avg += delta * load;
  608. }
  609. /* consider updating load contribution on each fold or truncate */
  610. if (global_update || cfs_rq->load_period > period
  611. || !cfs_rq->load_period)
  612. update_cfs_rq_load_contribution(cfs_rq, global_update);
  613. while (cfs_rq->load_period > period) {
  614. /*
  615. * Inline assembly required to prevent the compiler
  616. * optimising this loop into a divmod call.
  617. * See __iter_div_u64_rem() for another example of this.
  618. */
  619. asm("" : "+rm" (cfs_rq->load_period));
  620. cfs_rq->load_period /= 2;
  621. cfs_rq->load_avg /= 2;
  622. }
  623. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  624. list_del_leaf_cfs_rq(cfs_rq);
  625. }
  626. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  627. {
  628. long load_weight, load, shares;
  629. load = cfs_rq->load.weight;
  630. load_weight = atomic_read(&tg->load_weight);
  631. load_weight += load;
  632. load_weight -= cfs_rq->load_contribution;
  633. shares = (tg->shares * load);
  634. if (load_weight)
  635. shares /= load_weight;
  636. if (shares < MIN_SHARES)
  637. shares = MIN_SHARES;
  638. if (shares > tg->shares)
  639. shares = tg->shares;
  640. return shares;
  641. }
  642. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  643. {
  644. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  645. update_cfs_load(cfs_rq, 0);
  646. update_cfs_shares(cfs_rq);
  647. }
  648. }
  649. # else /* CONFIG_SMP */
  650. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  651. {
  652. }
  653. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  654. {
  655. return tg->shares;
  656. }
  657. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  658. {
  659. }
  660. # endif /* CONFIG_SMP */
  661. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  662. unsigned long weight)
  663. {
  664. if (se->on_rq) {
  665. /* commit outstanding execution time */
  666. if (cfs_rq->curr == se)
  667. update_curr(cfs_rq);
  668. account_entity_dequeue(cfs_rq, se);
  669. }
  670. update_load_set(&se->load, weight);
  671. if (se->on_rq)
  672. account_entity_enqueue(cfs_rq, se);
  673. }
  674. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  675. {
  676. struct task_group *tg;
  677. struct sched_entity *se;
  678. long shares;
  679. tg = cfs_rq->tg;
  680. se = tg->se[cpu_of(rq_of(cfs_rq))];
  681. if (!se)
  682. return;
  683. #ifndef CONFIG_SMP
  684. if (likely(se->load.weight == tg->shares))
  685. return;
  686. #endif
  687. shares = calc_cfs_shares(cfs_rq, tg);
  688. reweight_entity(cfs_rq_of(se), se, shares);
  689. }
  690. #else /* CONFIG_FAIR_GROUP_SCHED */
  691. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  692. {
  693. }
  694. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  695. {
  696. }
  697. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  698. {
  699. }
  700. #endif /* CONFIG_FAIR_GROUP_SCHED */
  701. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  702. {
  703. #ifdef CONFIG_SCHEDSTATS
  704. struct task_struct *tsk = NULL;
  705. if (entity_is_task(se))
  706. tsk = task_of(se);
  707. if (se->statistics.sleep_start) {
  708. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  709. if ((s64)delta < 0)
  710. delta = 0;
  711. if (unlikely(delta > se->statistics.sleep_max))
  712. se->statistics.sleep_max = delta;
  713. se->statistics.sleep_start = 0;
  714. se->statistics.sum_sleep_runtime += delta;
  715. if (tsk) {
  716. account_scheduler_latency(tsk, delta >> 10, 1);
  717. trace_sched_stat_sleep(tsk, delta);
  718. }
  719. }
  720. if (se->statistics.block_start) {
  721. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  722. if ((s64)delta < 0)
  723. delta = 0;
  724. if (unlikely(delta > se->statistics.block_max))
  725. se->statistics.block_max = delta;
  726. se->statistics.block_start = 0;
  727. se->statistics.sum_sleep_runtime += delta;
  728. if (tsk) {
  729. if (tsk->in_iowait) {
  730. se->statistics.iowait_sum += delta;
  731. se->statistics.iowait_count++;
  732. trace_sched_stat_iowait(tsk, delta);
  733. }
  734. /*
  735. * Blocking time is in units of nanosecs, so shift by
  736. * 20 to get a milliseconds-range estimation of the
  737. * amount of time that the task spent sleeping:
  738. */
  739. if (unlikely(prof_on == SLEEP_PROFILING)) {
  740. profile_hits(SLEEP_PROFILING,
  741. (void *)get_wchan(tsk),
  742. delta >> 20);
  743. }
  744. account_scheduler_latency(tsk, delta >> 10, 0);
  745. }
  746. }
  747. #endif
  748. }
  749. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  750. {
  751. #ifdef CONFIG_SCHED_DEBUG
  752. s64 d = se->vruntime - cfs_rq->min_vruntime;
  753. if (d < 0)
  754. d = -d;
  755. if (d > 3*sysctl_sched_latency)
  756. schedstat_inc(cfs_rq, nr_spread_over);
  757. #endif
  758. }
  759. static void
  760. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  761. {
  762. u64 vruntime = cfs_rq->min_vruntime;
  763. /*
  764. * The 'current' period is already promised to the current tasks,
  765. * however the extra weight of the new task will slow them down a
  766. * little, place the new task so that it fits in the slot that
  767. * stays open at the end.
  768. */
  769. if (initial && sched_feat(START_DEBIT))
  770. vruntime += sched_vslice(cfs_rq, se);
  771. /* sleeps up to a single latency don't count. */
  772. if (!initial) {
  773. unsigned long thresh = sysctl_sched_latency;
  774. /*
  775. * Halve their sleep time's effect, to allow
  776. * for a gentler effect of sleepers:
  777. */
  778. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  779. thresh >>= 1;
  780. vruntime -= thresh;
  781. }
  782. /* ensure we never gain time by being placed backwards. */
  783. vruntime = max_vruntime(se->vruntime, vruntime);
  784. se->vruntime = vruntime;
  785. }
  786. static void
  787. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  788. {
  789. /*
  790. * Update the normalized vruntime before updating min_vruntime
  791. * through callig update_curr().
  792. */
  793. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  794. se->vruntime += cfs_rq->min_vruntime;
  795. /*
  796. * Update run-time statistics of the 'current'.
  797. */
  798. update_curr(cfs_rq);
  799. update_cfs_load(cfs_rq, 0);
  800. account_entity_enqueue(cfs_rq, se);
  801. update_cfs_shares(cfs_rq);
  802. if (flags & ENQUEUE_WAKEUP) {
  803. place_entity(cfs_rq, se, 0);
  804. enqueue_sleeper(cfs_rq, se);
  805. }
  806. update_stats_enqueue(cfs_rq, se);
  807. check_spread(cfs_rq, se);
  808. if (se != cfs_rq->curr)
  809. __enqueue_entity(cfs_rq, se);
  810. se->on_rq = 1;
  811. if (cfs_rq->nr_running == 1)
  812. list_add_leaf_cfs_rq(cfs_rq);
  813. }
  814. static void __clear_buddies_last(struct sched_entity *se)
  815. {
  816. for_each_sched_entity(se) {
  817. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  818. if (cfs_rq->last == se)
  819. cfs_rq->last = NULL;
  820. else
  821. break;
  822. }
  823. }
  824. static void __clear_buddies_next(struct sched_entity *se)
  825. {
  826. for_each_sched_entity(se) {
  827. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  828. if (cfs_rq->next == se)
  829. cfs_rq->next = NULL;
  830. else
  831. break;
  832. }
  833. }
  834. static void __clear_buddies_skip(struct sched_entity *se)
  835. {
  836. for_each_sched_entity(se) {
  837. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  838. if (cfs_rq->skip == se)
  839. cfs_rq->skip = NULL;
  840. else
  841. break;
  842. }
  843. }
  844. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  845. {
  846. if (cfs_rq->last == se)
  847. __clear_buddies_last(se);
  848. if (cfs_rq->next == se)
  849. __clear_buddies_next(se);
  850. if (cfs_rq->skip == se)
  851. __clear_buddies_skip(se);
  852. }
  853. static void
  854. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  855. {
  856. /*
  857. * Update run-time statistics of the 'current'.
  858. */
  859. update_curr(cfs_rq);
  860. update_stats_dequeue(cfs_rq, se);
  861. if (flags & DEQUEUE_SLEEP) {
  862. #ifdef CONFIG_SCHEDSTATS
  863. if (entity_is_task(se)) {
  864. struct task_struct *tsk = task_of(se);
  865. if (tsk->state & TASK_INTERRUPTIBLE)
  866. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  867. if (tsk->state & TASK_UNINTERRUPTIBLE)
  868. se->statistics.block_start = rq_of(cfs_rq)->clock;
  869. }
  870. #endif
  871. }
  872. clear_buddies(cfs_rq, se);
  873. if (se != cfs_rq->curr)
  874. __dequeue_entity(cfs_rq, se);
  875. se->on_rq = 0;
  876. update_cfs_load(cfs_rq, 0);
  877. account_entity_dequeue(cfs_rq, se);
  878. /*
  879. * Normalize the entity after updating the min_vruntime because the
  880. * update can refer to the ->curr item and we need to reflect this
  881. * movement in our normalized position.
  882. */
  883. if (!(flags & DEQUEUE_SLEEP))
  884. se->vruntime -= cfs_rq->min_vruntime;
  885. update_min_vruntime(cfs_rq);
  886. update_cfs_shares(cfs_rq);
  887. }
  888. /*
  889. * Preempt the current task with a newly woken task if needed:
  890. */
  891. static void
  892. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  893. {
  894. unsigned long ideal_runtime, delta_exec;
  895. ideal_runtime = sched_slice(cfs_rq, curr);
  896. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  897. if (delta_exec > ideal_runtime) {
  898. resched_task(rq_of(cfs_rq)->curr);
  899. /*
  900. * The current task ran long enough, ensure it doesn't get
  901. * re-elected due to buddy favours.
  902. */
  903. clear_buddies(cfs_rq, curr);
  904. return;
  905. }
  906. /*
  907. * Ensure that a task that missed wakeup preemption by a
  908. * narrow margin doesn't have to wait for a full slice.
  909. * This also mitigates buddy induced latencies under load.
  910. */
  911. if (delta_exec < sysctl_sched_min_granularity)
  912. return;
  913. if (cfs_rq->nr_running > 1) {
  914. struct sched_entity *se = __pick_first_entity(cfs_rq);
  915. s64 delta = curr->vruntime - se->vruntime;
  916. if (delta < 0)
  917. return;
  918. if (delta > ideal_runtime)
  919. resched_task(rq_of(cfs_rq)->curr);
  920. }
  921. }
  922. static void
  923. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  924. {
  925. /* 'current' is not kept within the tree. */
  926. if (se->on_rq) {
  927. /*
  928. * Any task has to be enqueued before it get to execute on
  929. * a CPU. So account for the time it spent waiting on the
  930. * runqueue.
  931. */
  932. update_stats_wait_end(cfs_rq, se);
  933. __dequeue_entity(cfs_rq, se);
  934. }
  935. update_stats_curr_start(cfs_rq, se);
  936. cfs_rq->curr = se;
  937. #ifdef CONFIG_SCHEDSTATS
  938. /*
  939. * Track our maximum slice length, if the CPU's load is at
  940. * least twice that of our own weight (i.e. dont track it
  941. * when there are only lesser-weight tasks around):
  942. */
  943. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  944. se->statistics.slice_max = max(se->statistics.slice_max,
  945. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  946. }
  947. #endif
  948. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  949. }
  950. static int
  951. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  952. /*
  953. * Pick the next process, keeping these things in mind, in this order:
  954. * 1) keep things fair between processes/task groups
  955. * 2) pick the "next" process, since someone really wants that to run
  956. * 3) pick the "last" process, for cache locality
  957. * 4) do not run the "skip" process, if something else is available
  958. */
  959. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  960. {
  961. struct sched_entity *se = __pick_first_entity(cfs_rq);
  962. struct sched_entity *left = se;
  963. /*
  964. * Avoid running the skip buddy, if running something else can
  965. * be done without getting too unfair.
  966. */
  967. if (cfs_rq->skip == se) {
  968. struct sched_entity *second = __pick_next_entity(se);
  969. if (second && wakeup_preempt_entity(second, left) < 1)
  970. se = second;
  971. }
  972. /*
  973. * Prefer last buddy, try to return the CPU to a preempted task.
  974. */
  975. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  976. se = cfs_rq->last;
  977. /*
  978. * Someone really wants this to run. If it's not unfair, run it.
  979. */
  980. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  981. se = cfs_rq->next;
  982. clear_buddies(cfs_rq, se);
  983. return se;
  984. }
  985. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  986. {
  987. /*
  988. * If still on the runqueue then deactivate_task()
  989. * was not called and update_curr() has to be done:
  990. */
  991. if (prev->on_rq)
  992. update_curr(cfs_rq);
  993. check_spread(cfs_rq, prev);
  994. if (prev->on_rq) {
  995. update_stats_wait_start(cfs_rq, prev);
  996. /* Put 'current' back into the tree. */
  997. __enqueue_entity(cfs_rq, prev);
  998. }
  999. cfs_rq->curr = NULL;
  1000. }
  1001. static void
  1002. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1003. {
  1004. /*
  1005. * Update run-time statistics of the 'current'.
  1006. */
  1007. update_curr(cfs_rq);
  1008. /*
  1009. * Update share accounting for long-running entities.
  1010. */
  1011. update_entity_shares_tick(cfs_rq);
  1012. #ifdef CONFIG_SCHED_HRTICK
  1013. /*
  1014. * queued ticks are scheduled to match the slice, so don't bother
  1015. * validating it and just reschedule.
  1016. */
  1017. if (queued) {
  1018. resched_task(rq_of(cfs_rq)->curr);
  1019. return;
  1020. }
  1021. /*
  1022. * don't let the period tick interfere with the hrtick preemption
  1023. */
  1024. if (!sched_feat(DOUBLE_TICK) &&
  1025. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1026. return;
  1027. #endif
  1028. if (cfs_rq->nr_running > 1)
  1029. check_preempt_tick(cfs_rq, curr);
  1030. }
  1031. /**************************************************
  1032. * CFS operations on tasks:
  1033. */
  1034. #ifdef CONFIG_SCHED_HRTICK
  1035. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1036. {
  1037. struct sched_entity *se = &p->se;
  1038. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1039. WARN_ON(task_rq(p) != rq);
  1040. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1041. u64 slice = sched_slice(cfs_rq, se);
  1042. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1043. s64 delta = slice - ran;
  1044. if (delta < 0) {
  1045. if (rq->curr == p)
  1046. resched_task(p);
  1047. return;
  1048. }
  1049. /*
  1050. * Don't schedule slices shorter than 10000ns, that just
  1051. * doesn't make sense. Rely on vruntime for fairness.
  1052. */
  1053. if (rq->curr != p)
  1054. delta = max_t(s64, 10000LL, delta);
  1055. hrtick_start(rq, delta);
  1056. }
  1057. }
  1058. /*
  1059. * called from enqueue/dequeue and updates the hrtick when the
  1060. * current task is from our class and nr_running is low enough
  1061. * to matter.
  1062. */
  1063. static void hrtick_update(struct rq *rq)
  1064. {
  1065. struct task_struct *curr = rq->curr;
  1066. if (curr->sched_class != &fair_sched_class)
  1067. return;
  1068. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1069. hrtick_start_fair(rq, curr);
  1070. }
  1071. #else /* !CONFIG_SCHED_HRTICK */
  1072. static inline void
  1073. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1074. {
  1075. }
  1076. static inline void hrtick_update(struct rq *rq)
  1077. {
  1078. }
  1079. #endif
  1080. /*
  1081. * The enqueue_task method is called before nr_running is
  1082. * increased. Here we update the fair scheduling stats and
  1083. * then put the task into the rbtree:
  1084. */
  1085. static void
  1086. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1087. {
  1088. struct cfs_rq *cfs_rq;
  1089. struct sched_entity *se = &p->se;
  1090. for_each_sched_entity(se) {
  1091. if (se->on_rq)
  1092. break;
  1093. cfs_rq = cfs_rq_of(se);
  1094. enqueue_entity(cfs_rq, se, flags);
  1095. flags = ENQUEUE_WAKEUP;
  1096. }
  1097. for_each_sched_entity(se) {
  1098. cfs_rq = cfs_rq_of(se);
  1099. update_cfs_load(cfs_rq, 0);
  1100. update_cfs_shares(cfs_rq);
  1101. }
  1102. hrtick_update(rq);
  1103. }
  1104. static void set_next_buddy(struct sched_entity *se);
  1105. /*
  1106. * The dequeue_task method is called before nr_running is
  1107. * decreased. We remove the task from the rbtree and
  1108. * update the fair scheduling stats:
  1109. */
  1110. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1111. {
  1112. struct cfs_rq *cfs_rq;
  1113. struct sched_entity *se = &p->se;
  1114. int task_sleep = flags & DEQUEUE_SLEEP;
  1115. for_each_sched_entity(se) {
  1116. cfs_rq = cfs_rq_of(se);
  1117. dequeue_entity(cfs_rq, se, flags);
  1118. /* Don't dequeue parent if it has other entities besides us */
  1119. if (cfs_rq->load.weight) {
  1120. /*
  1121. * Bias pick_next to pick a task from this cfs_rq, as
  1122. * p is sleeping when it is within its sched_slice.
  1123. */
  1124. if (task_sleep && parent_entity(se))
  1125. set_next_buddy(parent_entity(se));
  1126. /* avoid re-evaluating load for this entity */
  1127. se = parent_entity(se);
  1128. break;
  1129. }
  1130. flags |= DEQUEUE_SLEEP;
  1131. }
  1132. for_each_sched_entity(se) {
  1133. cfs_rq = cfs_rq_of(se);
  1134. update_cfs_load(cfs_rq, 0);
  1135. update_cfs_shares(cfs_rq);
  1136. }
  1137. hrtick_update(rq);
  1138. }
  1139. #ifdef CONFIG_SMP
  1140. static void task_waking_fair(struct task_struct *p)
  1141. {
  1142. struct sched_entity *se = &p->se;
  1143. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1144. u64 min_vruntime;
  1145. #ifndef CONFIG_64BIT
  1146. u64 min_vruntime_copy;
  1147. do {
  1148. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1149. smp_rmb();
  1150. min_vruntime = cfs_rq->min_vruntime;
  1151. } while (min_vruntime != min_vruntime_copy);
  1152. #else
  1153. min_vruntime = cfs_rq->min_vruntime;
  1154. #endif
  1155. se->vruntime -= min_vruntime;
  1156. }
  1157. #ifdef CONFIG_FAIR_GROUP_SCHED
  1158. /*
  1159. * effective_load() calculates the load change as seen from the root_task_group
  1160. *
  1161. * Adding load to a group doesn't make a group heavier, but can cause movement
  1162. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1163. * can calculate the shift in shares.
  1164. */
  1165. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1166. {
  1167. struct sched_entity *se = tg->se[cpu];
  1168. if (!tg->parent)
  1169. return wl;
  1170. for_each_sched_entity(se) {
  1171. long lw, w;
  1172. tg = se->my_q->tg;
  1173. w = se->my_q->load.weight;
  1174. /* use this cpu's instantaneous contribution */
  1175. lw = atomic_read(&tg->load_weight);
  1176. lw -= se->my_q->load_contribution;
  1177. lw += w + wg;
  1178. wl += w;
  1179. if (lw > 0 && wl < lw)
  1180. wl = (wl * tg->shares) / lw;
  1181. else
  1182. wl = tg->shares;
  1183. /* zero point is MIN_SHARES */
  1184. if (wl < MIN_SHARES)
  1185. wl = MIN_SHARES;
  1186. wl -= se->load.weight;
  1187. wg = 0;
  1188. }
  1189. return wl;
  1190. }
  1191. #else
  1192. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1193. unsigned long wl, unsigned long wg)
  1194. {
  1195. return wl;
  1196. }
  1197. #endif
  1198. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1199. {
  1200. s64 this_load, load;
  1201. int idx, this_cpu, prev_cpu;
  1202. unsigned long tl_per_task;
  1203. struct task_group *tg;
  1204. unsigned long weight;
  1205. int balanced;
  1206. idx = sd->wake_idx;
  1207. this_cpu = smp_processor_id();
  1208. prev_cpu = task_cpu(p);
  1209. load = source_load(prev_cpu, idx);
  1210. this_load = target_load(this_cpu, idx);
  1211. /*
  1212. * If sync wakeup then subtract the (maximum possible)
  1213. * effect of the currently running task from the load
  1214. * of the current CPU:
  1215. */
  1216. if (sync) {
  1217. tg = task_group(current);
  1218. weight = current->se.load.weight;
  1219. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1220. load += effective_load(tg, prev_cpu, 0, -weight);
  1221. }
  1222. tg = task_group(p);
  1223. weight = p->se.load.weight;
  1224. /*
  1225. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1226. * due to the sync cause above having dropped this_load to 0, we'll
  1227. * always have an imbalance, but there's really nothing you can do
  1228. * about that, so that's good too.
  1229. *
  1230. * Otherwise check if either cpus are near enough in load to allow this
  1231. * task to be woken on this_cpu.
  1232. */
  1233. if (this_load > 0) {
  1234. s64 this_eff_load, prev_eff_load;
  1235. this_eff_load = 100;
  1236. this_eff_load *= power_of(prev_cpu);
  1237. this_eff_load *= this_load +
  1238. effective_load(tg, this_cpu, weight, weight);
  1239. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1240. prev_eff_load *= power_of(this_cpu);
  1241. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1242. balanced = this_eff_load <= prev_eff_load;
  1243. } else
  1244. balanced = true;
  1245. /*
  1246. * If the currently running task will sleep within
  1247. * a reasonable amount of time then attract this newly
  1248. * woken task:
  1249. */
  1250. if (sync && balanced)
  1251. return 1;
  1252. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1253. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1254. if (balanced ||
  1255. (this_load <= load &&
  1256. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1257. /*
  1258. * This domain has SD_WAKE_AFFINE and
  1259. * p is cache cold in this domain, and
  1260. * there is no bad imbalance.
  1261. */
  1262. schedstat_inc(sd, ttwu_move_affine);
  1263. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1264. return 1;
  1265. }
  1266. return 0;
  1267. }
  1268. /*
  1269. * find_idlest_group finds and returns the least busy CPU group within the
  1270. * domain.
  1271. */
  1272. static struct sched_group *
  1273. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1274. int this_cpu, int load_idx)
  1275. {
  1276. struct sched_group *idlest = NULL, *group = sd->groups;
  1277. unsigned long min_load = ULONG_MAX, this_load = 0;
  1278. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1279. do {
  1280. unsigned long load, avg_load;
  1281. int local_group;
  1282. int i;
  1283. /* Skip over this group if it has no CPUs allowed */
  1284. if (!cpumask_intersects(sched_group_cpus(group),
  1285. &p->cpus_allowed))
  1286. continue;
  1287. local_group = cpumask_test_cpu(this_cpu,
  1288. sched_group_cpus(group));
  1289. /* Tally up the load of all CPUs in the group */
  1290. avg_load = 0;
  1291. for_each_cpu(i, sched_group_cpus(group)) {
  1292. /* Bias balancing toward cpus of our domain */
  1293. if (local_group)
  1294. load = source_load(i, load_idx);
  1295. else
  1296. load = target_load(i, load_idx);
  1297. avg_load += load;
  1298. }
  1299. /* Adjust by relative CPU power of the group */
  1300. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  1301. if (local_group) {
  1302. this_load = avg_load;
  1303. } else if (avg_load < min_load) {
  1304. min_load = avg_load;
  1305. idlest = group;
  1306. }
  1307. } while (group = group->next, group != sd->groups);
  1308. if (!idlest || 100*this_load < imbalance*min_load)
  1309. return NULL;
  1310. return idlest;
  1311. }
  1312. /*
  1313. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1314. */
  1315. static int
  1316. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1317. {
  1318. unsigned long load, min_load = ULONG_MAX;
  1319. int idlest = -1;
  1320. int i;
  1321. /* Traverse only the allowed CPUs */
  1322. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1323. load = weighted_cpuload(i);
  1324. if (load < min_load || (load == min_load && i == this_cpu)) {
  1325. min_load = load;
  1326. idlest = i;
  1327. }
  1328. }
  1329. return idlest;
  1330. }
  1331. /*
  1332. * Try and locate an idle CPU in the sched_domain.
  1333. */
  1334. static int select_idle_sibling(struct task_struct *p, int target)
  1335. {
  1336. int cpu = smp_processor_id();
  1337. int prev_cpu = task_cpu(p);
  1338. struct sched_domain *sd;
  1339. int i;
  1340. /*
  1341. * If the task is going to be woken-up on this cpu and if it is
  1342. * already idle, then it is the right target.
  1343. */
  1344. if (target == cpu && idle_cpu(cpu))
  1345. return cpu;
  1346. /*
  1347. * If the task is going to be woken-up on the cpu where it previously
  1348. * ran and if it is currently idle, then it the right target.
  1349. */
  1350. if (target == prev_cpu && idle_cpu(prev_cpu))
  1351. return prev_cpu;
  1352. /*
  1353. * Otherwise, iterate the domains and find an elegible idle cpu.
  1354. */
  1355. rcu_read_lock();
  1356. for_each_domain(target, sd) {
  1357. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1358. break;
  1359. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1360. if (idle_cpu(i)) {
  1361. target = i;
  1362. break;
  1363. }
  1364. }
  1365. /*
  1366. * Lets stop looking for an idle sibling when we reached
  1367. * the domain that spans the current cpu and prev_cpu.
  1368. */
  1369. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1370. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1371. break;
  1372. }
  1373. rcu_read_unlock();
  1374. return target;
  1375. }
  1376. /*
  1377. * sched_balance_self: balance the current task (running on cpu) in domains
  1378. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1379. * SD_BALANCE_EXEC.
  1380. *
  1381. * Balance, ie. select the least loaded group.
  1382. *
  1383. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1384. *
  1385. * preempt must be disabled.
  1386. */
  1387. static int
  1388. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  1389. {
  1390. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1391. int cpu = smp_processor_id();
  1392. int prev_cpu = task_cpu(p);
  1393. int new_cpu = cpu;
  1394. int want_affine = 0;
  1395. int want_sd = 1;
  1396. int sync = wake_flags & WF_SYNC;
  1397. if (sd_flag & SD_BALANCE_WAKE) {
  1398. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1399. want_affine = 1;
  1400. new_cpu = prev_cpu;
  1401. }
  1402. rcu_read_lock();
  1403. for_each_domain(cpu, tmp) {
  1404. if (!(tmp->flags & SD_LOAD_BALANCE))
  1405. continue;
  1406. /*
  1407. * If power savings logic is enabled for a domain, see if we
  1408. * are not overloaded, if so, don't balance wider.
  1409. */
  1410. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1411. unsigned long power = 0;
  1412. unsigned long nr_running = 0;
  1413. unsigned long capacity;
  1414. int i;
  1415. for_each_cpu(i, sched_domain_span(tmp)) {
  1416. power += power_of(i);
  1417. nr_running += cpu_rq(i)->cfs.nr_running;
  1418. }
  1419. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  1420. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1421. nr_running /= 2;
  1422. if (nr_running < capacity)
  1423. want_sd = 0;
  1424. }
  1425. /*
  1426. * If both cpu and prev_cpu are part of this domain,
  1427. * cpu is a valid SD_WAKE_AFFINE target.
  1428. */
  1429. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1430. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1431. affine_sd = tmp;
  1432. want_affine = 0;
  1433. }
  1434. if (!want_sd && !want_affine)
  1435. break;
  1436. if (!(tmp->flags & sd_flag))
  1437. continue;
  1438. if (want_sd)
  1439. sd = tmp;
  1440. }
  1441. if (affine_sd) {
  1442. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1443. prev_cpu = cpu;
  1444. new_cpu = select_idle_sibling(p, prev_cpu);
  1445. goto unlock;
  1446. }
  1447. while (sd) {
  1448. int load_idx = sd->forkexec_idx;
  1449. struct sched_group *group;
  1450. int weight;
  1451. if (!(sd->flags & sd_flag)) {
  1452. sd = sd->child;
  1453. continue;
  1454. }
  1455. if (sd_flag & SD_BALANCE_WAKE)
  1456. load_idx = sd->wake_idx;
  1457. group = find_idlest_group(sd, p, cpu, load_idx);
  1458. if (!group) {
  1459. sd = sd->child;
  1460. continue;
  1461. }
  1462. new_cpu = find_idlest_cpu(group, p, cpu);
  1463. if (new_cpu == -1 || new_cpu == cpu) {
  1464. /* Now try balancing at a lower domain level of cpu */
  1465. sd = sd->child;
  1466. continue;
  1467. }
  1468. /* Now try balancing at a lower domain level of new_cpu */
  1469. cpu = new_cpu;
  1470. weight = sd->span_weight;
  1471. sd = NULL;
  1472. for_each_domain(cpu, tmp) {
  1473. if (weight <= tmp->span_weight)
  1474. break;
  1475. if (tmp->flags & sd_flag)
  1476. sd = tmp;
  1477. }
  1478. /* while loop will break here if sd == NULL */
  1479. }
  1480. unlock:
  1481. rcu_read_unlock();
  1482. return new_cpu;
  1483. }
  1484. #endif /* CONFIG_SMP */
  1485. static unsigned long
  1486. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1487. {
  1488. unsigned long gran = sysctl_sched_wakeup_granularity;
  1489. /*
  1490. * Since its curr running now, convert the gran from real-time
  1491. * to virtual-time in his units.
  1492. *
  1493. * By using 'se' instead of 'curr' we penalize light tasks, so
  1494. * they get preempted easier. That is, if 'se' < 'curr' then
  1495. * the resulting gran will be larger, therefore penalizing the
  1496. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1497. * be smaller, again penalizing the lighter task.
  1498. *
  1499. * This is especially important for buddies when the leftmost
  1500. * task is higher priority than the buddy.
  1501. */
  1502. return calc_delta_fair(gran, se);
  1503. }
  1504. /*
  1505. * Should 'se' preempt 'curr'.
  1506. *
  1507. * |s1
  1508. * |s2
  1509. * |s3
  1510. * g
  1511. * |<--->|c
  1512. *
  1513. * w(c, s1) = -1
  1514. * w(c, s2) = 0
  1515. * w(c, s3) = 1
  1516. *
  1517. */
  1518. static int
  1519. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1520. {
  1521. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1522. if (vdiff <= 0)
  1523. return -1;
  1524. gran = wakeup_gran(curr, se);
  1525. if (vdiff > gran)
  1526. return 1;
  1527. return 0;
  1528. }
  1529. static void set_last_buddy(struct sched_entity *se)
  1530. {
  1531. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  1532. return;
  1533. for_each_sched_entity(se)
  1534. cfs_rq_of(se)->last = se;
  1535. }
  1536. static void set_next_buddy(struct sched_entity *se)
  1537. {
  1538. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  1539. return;
  1540. for_each_sched_entity(se)
  1541. cfs_rq_of(se)->next = se;
  1542. }
  1543. static void set_skip_buddy(struct sched_entity *se)
  1544. {
  1545. for_each_sched_entity(se)
  1546. cfs_rq_of(se)->skip = se;
  1547. }
  1548. /*
  1549. * Preempt the current task with a newly woken task if needed:
  1550. */
  1551. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1552. {
  1553. struct task_struct *curr = rq->curr;
  1554. struct sched_entity *se = &curr->se, *pse = &p->se;
  1555. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1556. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1557. int next_buddy_marked = 0;
  1558. if (unlikely(se == pse))
  1559. return;
  1560. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  1561. set_next_buddy(pse);
  1562. next_buddy_marked = 1;
  1563. }
  1564. /*
  1565. * We can come here with TIF_NEED_RESCHED already set from new task
  1566. * wake up path.
  1567. */
  1568. if (test_tsk_need_resched(curr))
  1569. return;
  1570. /* Idle tasks are by definition preempted by non-idle tasks. */
  1571. if (unlikely(curr->policy == SCHED_IDLE) &&
  1572. likely(p->policy != SCHED_IDLE))
  1573. goto preempt;
  1574. /*
  1575. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  1576. * is driven by the tick):
  1577. */
  1578. if (unlikely(p->policy != SCHED_NORMAL))
  1579. return;
  1580. find_matching_se(&se, &pse);
  1581. update_curr(cfs_rq_of(se));
  1582. BUG_ON(!pse);
  1583. if (wakeup_preempt_entity(se, pse) == 1) {
  1584. /*
  1585. * Bias pick_next to pick the sched entity that is
  1586. * triggering this preemption.
  1587. */
  1588. if (!next_buddy_marked)
  1589. set_next_buddy(pse);
  1590. goto preempt;
  1591. }
  1592. return;
  1593. preempt:
  1594. resched_task(curr);
  1595. /*
  1596. * Only set the backward buddy when the current task is still
  1597. * on the rq. This can happen when a wakeup gets interleaved
  1598. * with schedule on the ->pre_schedule() or idle_balance()
  1599. * point, either of which can * drop the rq lock.
  1600. *
  1601. * Also, during early boot the idle thread is in the fair class,
  1602. * for obvious reasons its a bad idea to schedule back to it.
  1603. */
  1604. if (unlikely(!se->on_rq || curr == rq->idle))
  1605. return;
  1606. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1607. set_last_buddy(se);
  1608. }
  1609. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1610. {
  1611. struct task_struct *p;
  1612. struct cfs_rq *cfs_rq = &rq->cfs;
  1613. struct sched_entity *se;
  1614. if (!cfs_rq->nr_running)
  1615. return NULL;
  1616. do {
  1617. se = pick_next_entity(cfs_rq);
  1618. set_next_entity(cfs_rq, se);
  1619. cfs_rq = group_cfs_rq(se);
  1620. } while (cfs_rq);
  1621. p = task_of(se);
  1622. hrtick_start_fair(rq, p);
  1623. return p;
  1624. }
  1625. /*
  1626. * Account for a descheduled task:
  1627. */
  1628. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1629. {
  1630. struct sched_entity *se = &prev->se;
  1631. struct cfs_rq *cfs_rq;
  1632. for_each_sched_entity(se) {
  1633. cfs_rq = cfs_rq_of(se);
  1634. put_prev_entity(cfs_rq, se);
  1635. }
  1636. }
  1637. /*
  1638. * sched_yield() is very simple
  1639. *
  1640. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  1641. */
  1642. static void yield_task_fair(struct rq *rq)
  1643. {
  1644. struct task_struct *curr = rq->curr;
  1645. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1646. struct sched_entity *se = &curr->se;
  1647. /*
  1648. * Are we the only task in the tree?
  1649. */
  1650. if (unlikely(rq->nr_running == 1))
  1651. return;
  1652. clear_buddies(cfs_rq, se);
  1653. if (curr->policy != SCHED_BATCH) {
  1654. update_rq_clock(rq);
  1655. /*
  1656. * Update run-time statistics of the 'current'.
  1657. */
  1658. update_curr(cfs_rq);
  1659. }
  1660. set_skip_buddy(se);
  1661. }
  1662. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  1663. {
  1664. struct sched_entity *se = &p->se;
  1665. if (!se->on_rq)
  1666. return false;
  1667. /* Tell the scheduler that we'd really like pse to run next. */
  1668. set_next_buddy(se);
  1669. yield_task_fair(rq);
  1670. return true;
  1671. }
  1672. #ifdef CONFIG_SMP
  1673. /**************************************************
  1674. * Fair scheduling class load-balancing methods:
  1675. */
  1676. /*
  1677. * pull_task - move a task from a remote runqueue to the local runqueue.
  1678. * Both runqueues must be locked.
  1679. */
  1680. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1681. struct rq *this_rq, int this_cpu)
  1682. {
  1683. deactivate_task(src_rq, p, 0);
  1684. set_task_cpu(p, this_cpu);
  1685. activate_task(this_rq, p, 0);
  1686. check_preempt_curr(this_rq, p, 0);
  1687. }
  1688. /*
  1689. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1690. */
  1691. static
  1692. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1693. struct sched_domain *sd, enum cpu_idle_type idle,
  1694. int *all_pinned)
  1695. {
  1696. int tsk_cache_hot = 0;
  1697. /*
  1698. * We do not migrate tasks that are:
  1699. * 1) running (obviously), or
  1700. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1701. * 3) are cache-hot on their current CPU.
  1702. */
  1703. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1704. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1705. return 0;
  1706. }
  1707. *all_pinned = 0;
  1708. if (task_running(rq, p)) {
  1709. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1710. return 0;
  1711. }
  1712. /*
  1713. * Aggressive migration if:
  1714. * 1) task is cache cold, or
  1715. * 2) too many balance attempts have failed.
  1716. */
  1717. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1718. if (!tsk_cache_hot ||
  1719. sd->nr_balance_failed > sd->cache_nice_tries) {
  1720. #ifdef CONFIG_SCHEDSTATS
  1721. if (tsk_cache_hot) {
  1722. schedstat_inc(sd, lb_hot_gained[idle]);
  1723. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1724. }
  1725. #endif
  1726. return 1;
  1727. }
  1728. if (tsk_cache_hot) {
  1729. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1730. return 0;
  1731. }
  1732. return 1;
  1733. }
  1734. /*
  1735. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1736. * part of active balancing operations within "domain".
  1737. * Returns 1 if successful and 0 otherwise.
  1738. *
  1739. * Called with both runqueues locked.
  1740. */
  1741. static int
  1742. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1743. struct sched_domain *sd, enum cpu_idle_type idle)
  1744. {
  1745. struct task_struct *p, *n;
  1746. struct cfs_rq *cfs_rq;
  1747. int pinned = 0;
  1748. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1749. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1750. if (!can_migrate_task(p, busiest, this_cpu,
  1751. sd, idle, &pinned))
  1752. continue;
  1753. pull_task(busiest, p, this_rq, this_cpu);
  1754. /*
  1755. * Right now, this is only the second place pull_task()
  1756. * is called, so we can safely collect pull_task()
  1757. * stats here rather than inside pull_task().
  1758. */
  1759. schedstat_inc(sd, lb_gained[idle]);
  1760. return 1;
  1761. }
  1762. }
  1763. return 0;
  1764. }
  1765. static unsigned long
  1766. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1767. unsigned long max_load_move, struct sched_domain *sd,
  1768. enum cpu_idle_type idle, int *all_pinned,
  1769. struct cfs_rq *busiest_cfs_rq)
  1770. {
  1771. int loops = 0, pulled = 0;
  1772. long rem_load_move = max_load_move;
  1773. struct task_struct *p, *n;
  1774. if (max_load_move == 0)
  1775. goto out;
  1776. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1777. if (loops++ > sysctl_sched_nr_migrate)
  1778. break;
  1779. if ((p->se.load.weight >> 1) > rem_load_move ||
  1780. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  1781. all_pinned))
  1782. continue;
  1783. pull_task(busiest, p, this_rq, this_cpu);
  1784. pulled++;
  1785. rem_load_move -= p->se.load.weight;
  1786. #ifdef CONFIG_PREEMPT
  1787. /*
  1788. * NEWIDLE balancing is a source of latency, so preemptible
  1789. * kernels will stop after the first task is pulled to minimize
  1790. * the critical section.
  1791. */
  1792. if (idle == CPU_NEWLY_IDLE)
  1793. break;
  1794. #endif
  1795. /*
  1796. * We only want to steal up to the prescribed amount of
  1797. * weighted load.
  1798. */
  1799. if (rem_load_move <= 0)
  1800. break;
  1801. }
  1802. out:
  1803. /*
  1804. * Right now, this is one of only two places pull_task() is called,
  1805. * so we can safely collect pull_task() stats here rather than
  1806. * inside pull_task().
  1807. */
  1808. schedstat_add(sd, lb_gained[idle], pulled);
  1809. return max_load_move - rem_load_move;
  1810. }
  1811. #ifdef CONFIG_FAIR_GROUP_SCHED
  1812. /*
  1813. * update tg->load_weight by folding this cpu's load_avg
  1814. */
  1815. static int update_shares_cpu(struct task_group *tg, int cpu)
  1816. {
  1817. struct cfs_rq *cfs_rq;
  1818. unsigned long flags;
  1819. struct rq *rq;
  1820. if (!tg->se[cpu])
  1821. return 0;
  1822. rq = cpu_rq(cpu);
  1823. cfs_rq = tg->cfs_rq[cpu];
  1824. raw_spin_lock_irqsave(&rq->lock, flags);
  1825. update_rq_clock(rq);
  1826. update_cfs_load(cfs_rq, 1);
  1827. /*
  1828. * We need to update shares after updating tg->load_weight in
  1829. * order to adjust the weight of groups with long running tasks.
  1830. */
  1831. update_cfs_shares(cfs_rq);
  1832. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1833. return 0;
  1834. }
  1835. static void update_shares(int cpu)
  1836. {
  1837. struct cfs_rq *cfs_rq;
  1838. struct rq *rq = cpu_rq(cpu);
  1839. rcu_read_lock();
  1840. /*
  1841. * Iterates the task_group tree in a bottom up fashion, see
  1842. * list_add_leaf_cfs_rq() for details.
  1843. */
  1844. for_each_leaf_cfs_rq(rq, cfs_rq)
  1845. update_shares_cpu(cfs_rq->tg, cpu);
  1846. rcu_read_unlock();
  1847. }
  1848. /*
  1849. * Compute the cpu's hierarchical load factor for each task group.
  1850. * This needs to be done in a top-down fashion because the load of a child
  1851. * group is a fraction of its parents load.
  1852. */
  1853. static int tg_load_down(struct task_group *tg, void *data)
  1854. {
  1855. unsigned long load;
  1856. long cpu = (long)data;
  1857. if (!tg->parent) {
  1858. load = cpu_rq(cpu)->load.weight;
  1859. } else {
  1860. load = tg->parent->cfs_rq[cpu]->h_load;
  1861. load *= tg->se[cpu]->load.weight;
  1862. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1863. }
  1864. tg->cfs_rq[cpu]->h_load = load;
  1865. return 0;
  1866. }
  1867. static void update_h_load(long cpu)
  1868. {
  1869. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1870. }
  1871. static unsigned long
  1872. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1873. unsigned long max_load_move,
  1874. struct sched_domain *sd, enum cpu_idle_type idle,
  1875. int *all_pinned)
  1876. {
  1877. long rem_load_move = max_load_move;
  1878. struct cfs_rq *busiest_cfs_rq;
  1879. rcu_read_lock();
  1880. update_h_load(cpu_of(busiest));
  1881. for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
  1882. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1883. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1884. u64 rem_load, moved_load;
  1885. /*
  1886. * empty group
  1887. */
  1888. if (!busiest_cfs_rq->task_weight)
  1889. continue;
  1890. rem_load = (u64)rem_load_move * busiest_weight;
  1891. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1892. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1893. rem_load, sd, idle, all_pinned,
  1894. busiest_cfs_rq);
  1895. if (!moved_load)
  1896. continue;
  1897. moved_load *= busiest_h_load;
  1898. moved_load = div_u64(moved_load, busiest_weight + 1);
  1899. rem_load_move -= moved_load;
  1900. if (rem_load_move < 0)
  1901. break;
  1902. }
  1903. rcu_read_unlock();
  1904. return max_load_move - rem_load_move;
  1905. }
  1906. #else
  1907. static inline void update_shares(int cpu)
  1908. {
  1909. }
  1910. static unsigned long
  1911. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1912. unsigned long max_load_move,
  1913. struct sched_domain *sd, enum cpu_idle_type idle,
  1914. int *all_pinned)
  1915. {
  1916. return balance_tasks(this_rq, this_cpu, busiest,
  1917. max_load_move, sd, idle, all_pinned,
  1918. &busiest->cfs);
  1919. }
  1920. #endif
  1921. /*
  1922. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1923. * this_rq, as part of a balancing operation within domain "sd".
  1924. * Returns 1 if successful and 0 otherwise.
  1925. *
  1926. * Called with both runqueues locked.
  1927. */
  1928. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1929. unsigned long max_load_move,
  1930. struct sched_domain *sd, enum cpu_idle_type idle,
  1931. int *all_pinned)
  1932. {
  1933. unsigned long total_load_moved = 0, load_moved;
  1934. do {
  1935. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1936. max_load_move - total_load_moved,
  1937. sd, idle, all_pinned);
  1938. total_load_moved += load_moved;
  1939. #ifdef CONFIG_PREEMPT
  1940. /*
  1941. * NEWIDLE balancing is a source of latency, so preemptible
  1942. * kernels will stop after the first task is pulled to minimize
  1943. * the critical section.
  1944. */
  1945. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1946. break;
  1947. if (raw_spin_is_contended(&this_rq->lock) ||
  1948. raw_spin_is_contended(&busiest->lock))
  1949. break;
  1950. #endif
  1951. } while (load_moved && max_load_move > total_load_moved);
  1952. return total_load_moved > 0;
  1953. }
  1954. /********** Helpers for find_busiest_group ************************/
  1955. /*
  1956. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1957. * during load balancing.
  1958. */
  1959. struct sd_lb_stats {
  1960. struct sched_group *busiest; /* Busiest group in this sd */
  1961. struct sched_group *this; /* Local group in this sd */
  1962. unsigned long total_load; /* Total load of all groups in sd */
  1963. unsigned long total_pwr; /* Total power of all groups in sd */
  1964. unsigned long avg_load; /* Average load across all groups in sd */
  1965. /** Statistics of this group */
  1966. unsigned long this_load;
  1967. unsigned long this_load_per_task;
  1968. unsigned long this_nr_running;
  1969. unsigned long this_has_capacity;
  1970. unsigned int this_idle_cpus;
  1971. /* Statistics of the busiest group */
  1972. unsigned int busiest_idle_cpus;
  1973. unsigned long max_load;
  1974. unsigned long busiest_load_per_task;
  1975. unsigned long busiest_nr_running;
  1976. unsigned long busiest_group_capacity;
  1977. unsigned long busiest_has_capacity;
  1978. unsigned int busiest_group_weight;
  1979. int group_imb; /* Is there imbalance in this sd */
  1980. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1981. int power_savings_balance; /* Is powersave balance needed for this sd */
  1982. struct sched_group *group_min; /* Least loaded group in sd */
  1983. struct sched_group *group_leader; /* Group which relieves group_min */
  1984. unsigned long min_load_per_task; /* load_per_task in group_min */
  1985. unsigned long leader_nr_running; /* Nr running of group_leader */
  1986. unsigned long min_nr_running; /* Nr running of group_min */
  1987. #endif
  1988. };
  1989. /*
  1990. * sg_lb_stats - stats of a sched_group required for load_balancing
  1991. */
  1992. struct sg_lb_stats {
  1993. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1994. unsigned long group_load; /* Total load over the CPUs of the group */
  1995. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1996. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1997. unsigned long group_capacity;
  1998. unsigned long idle_cpus;
  1999. unsigned long group_weight;
  2000. int group_imb; /* Is there an imbalance in the group ? */
  2001. int group_has_capacity; /* Is there extra capacity in the group? */
  2002. };
  2003. /**
  2004. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2005. * @group: The group whose first cpu is to be returned.
  2006. */
  2007. static inline unsigned int group_first_cpu(struct sched_group *group)
  2008. {
  2009. return cpumask_first(sched_group_cpus(group));
  2010. }
  2011. /**
  2012. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2013. * @sd: The sched_domain whose load_idx is to be obtained.
  2014. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2015. */
  2016. static inline int get_sd_load_idx(struct sched_domain *sd,
  2017. enum cpu_idle_type idle)
  2018. {
  2019. int load_idx;
  2020. switch (idle) {
  2021. case CPU_NOT_IDLE:
  2022. load_idx = sd->busy_idx;
  2023. break;
  2024. case CPU_NEWLY_IDLE:
  2025. load_idx = sd->newidle_idx;
  2026. break;
  2027. default:
  2028. load_idx = sd->idle_idx;
  2029. break;
  2030. }
  2031. return load_idx;
  2032. }
  2033. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2034. /**
  2035. * init_sd_power_savings_stats - Initialize power savings statistics for
  2036. * the given sched_domain, during load balancing.
  2037. *
  2038. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2039. * @sds: Variable containing the statistics for sd.
  2040. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2041. */
  2042. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2043. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2044. {
  2045. /*
  2046. * Busy processors will not participate in power savings
  2047. * balance.
  2048. */
  2049. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2050. sds->power_savings_balance = 0;
  2051. else {
  2052. sds->power_savings_balance = 1;
  2053. sds->min_nr_running = ULONG_MAX;
  2054. sds->leader_nr_running = 0;
  2055. }
  2056. }
  2057. /**
  2058. * update_sd_power_savings_stats - Update the power saving stats for a
  2059. * sched_domain while performing load balancing.
  2060. *
  2061. * @group: sched_group belonging to the sched_domain under consideration.
  2062. * @sds: Variable containing the statistics of the sched_domain
  2063. * @local_group: Does group contain the CPU for which we're performing
  2064. * load balancing ?
  2065. * @sgs: Variable containing the statistics of the group.
  2066. */
  2067. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2068. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2069. {
  2070. if (!sds->power_savings_balance)
  2071. return;
  2072. /*
  2073. * If the local group is idle or completely loaded
  2074. * no need to do power savings balance at this domain
  2075. */
  2076. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2077. !sds->this_nr_running))
  2078. sds->power_savings_balance = 0;
  2079. /*
  2080. * If a group is already running at full capacity or idle,
  2081. * don't include that group in power savings calculations
  2082. */
  2083. if (!sds->power_savings_balance ||
  2084. sgs->sum_nr_running >= sgs->group_capacity ||
  2085. !sgs->sum_nr_running)
  2086. return;
  2087. /*
  2088. * Calculate the group which has the least non-idle load.
  2089. * This is the group from where we need to pick up the load
  2090. * for saving power
  2091. */
  2092. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2093. (sgs->sum_nr_running == sds->min_nr_running &&
  2094. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2095. sds->group_min = group;
  2096. sds->min_nr_running = sgs->sum_nr_running;
  2097. sds->min_load_per_task = sgs->sum_weighted_load /
  2098. sgs->sum_nr_running;
  2099. }
  2100. /*
  2101. * Calculate the group which is almost near its
  2102. * capacity but still has some space to pick up some load
  2103. * from other group and save more power
  2104. */
  2105. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2106. return;
  2107. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2108. (sgs->sum_nr_running == sds->leader_nr_running &&
  2109. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2110. sds->group_leader = group;
  2111. sds->leader_nr_running = sgs->sum_nr_running;
  2112. }
  2113. }
  2114. /**
  2115. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2116. * @sds: Variable containing the statistics of the sched_domain
  2117. * under consideration.
  2118. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2119. * @imbalance: Variable to store the imbalance.
  2120. *
  2121. * Description:
  2122. * Check if we have potential to perform some power-savings balance.
  2123. * If yes, set the busiest group to be the least loaded group in the
  2124. * sched_domain, so that it's CPUs can be put to idle.
  2125. *
  2126. * Returns 1 if there is potential to perform power-savings balance.
  2127. * Else returns 0.
  2128. */
  2129. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2130. int this_cpu, unsigned long *imbalance)
  2131. {
  2132. if (!sds->power_savings_balance)
  2133. return 0;
  2134. if (sds->this != sds->group_leader ||
  2135. sds->group_leader == sds->group_min)
  2136. return 0;
  2137. *imbalance = sds->min_load_per_task;
  2138. sds->busiest = sds->group_min;
  2139. return 1;
  2140. }
  2141. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2142. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2143. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2144. {
  2145. return;
  2146. }
  2147. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2148. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2149. {
  2150. return;
  2151. }
  2152. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2153. int this_cpu, unsigned long *imbalance)
  2154. {
  2155. return 0;
  2156. }
  2157. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2158. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2159. {
  2160. return SCHED_POWER_SCALE;
  2161. }
  2162. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2163. {
  2164. return default_scale_freq_power(sd, cpu);
  2165. }
  2166. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2167. {
  2168. unsigned long weight = sd->span_weight;
  2169. unsigned long smt_gain = sd->smt_gain;
  2170. smt_gain /= weight;
  2171. return smt_gain;
  2172. }
  2173. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2174. {
  2175. return default_scale_smt_power(sd, cpu);
  2176. }
  2177. unsigned long scale_rt_power(int cpu)
  2178. {
  2179. struct rq *rq = cpu_rq(cpu);
  2180. u64 total, available;
  2181. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2182. if (unlikely(total < rq->rt_avg)) {
  2183. /* Ensures that power won't end up being negative */
  2184. available = 0;
  2185. } else {
  2186. available = total - rq->rt_avg;
  2187. }
  2188. if (unlikely((s64)total < SCHED_POWER_SCALE))
  2189. total = SCHED_POWER_SCALE;
  2190. total >>= SCHED_POWER_SHIFT;
  2191. return div_u64(available, total);
  2192. }
  2193. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2194. {
  2195. unsigned long weight = sd->span_weight;
  2196. unsigned long power = SCHED_POWER_SCALE;
  2197. struct sched_group *sdg = sd->groups;
  2198. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2199. if (sched_feat(ARCH_POWER))
  2200. power *= arch_scale_smt_power(sd, cpu);
  2201. else
  2202. power *= default_scale_smt_power(sd, cpu);
  2203. power >>= SCHED_POWER_SHIFT;
  2204. }
  2205. sdg->sgp->power_orig = power;
  2206. if (sched_feat(ARCH_POWER))
  2207. power *= arch_scale_freq_power(sd, cpu);
  2208. else
  2209. power *= default_scale_freq_power(sd, cpu);
  2210. power >>= SCHED_POWER_SHIFT;
  2211. power *= scale_rt_power(cpu);
  2212. power >>= SCHED_POWER_SHIFT;
  2213. if (!power)
  2214. power = 1;
  2215. cpu_rq(cpu)->cpu_power = power;
  2216. sdg->sgp->power = power;
  2217. }
  2218. static void update_group_power(struct sched_domain *sd, int cpu)
  2219. {
  2220. struct sched_domain *child = sd->child;
  2221. struct sched_group *group, *sdg = sd->groups;
  2222. unsigned long power;
  2223. if (!child) {
  2224. update_cpu_power(sd, cpu);
  2225. return;
  2226. }
  2227. power = 0;
  2228. group = child->groups;
  2229. do {
  2230. power += group->sgp->power;
  2231. group = group->next;
  2232. } while (group != child->groups);
  2233. sdg->sgp->power = power;
  2234. }
  2235. /*
  2236. * Try and fix up capacity for tiny siblings, this is needed when
  2237. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2238. * which on its own isn't powerful enough.
  2239. *
  2240. * See update_sd_pick_busiest() and check_asym_packing().
  2241. */
  2242. static inline int
  2243. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2244. {
  2245. /*
  2246. * Only siblings can have significantly less than SCHED_POWER_SCALE
  2247. */
  2248. if (!(sd->flags & SD_SHARE_CPUPOWER))
  2249. return 0;
  2250. /*
  2251. * If ~90% of the cpu_power is still there, we're good.
  2252. */
  2253. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  2254. return 1;
  2255. return 0;
  2256. }
  2257. /**
  2258. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2259. * @sd: The sched_domain whose statistics are to be updated.
  2260. * @group: sched_group whose statistics are to be updated.
  2261. * @this_cpu: Cpu for which load balance is currently performed.
  2262. * @idle: Idle status of this_cpu
  2263. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2264. * @local_group: Does group contain this_cpu.
  2265. * @cpus: Set of cpus considered for load balancing.
  2266. * @balance: Should we balance.
  2267. * @sgs: variable to hold the statistics for this group.
  2268. */
  2269. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2270. struct sched_group *group, int this_cpu,
  2271. enum cpu_idle_type idle, int load_idx,
  2272. int local_group, const struct cpumask *cpus,
  2273. int *balance, struct sg_lb_stats *sgs)
  2274. {
  2275. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2276. int i;
  2277. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2278. unsigned long avg_load_per_task = 0;
  2279. if (local_group)
  2280. balance_cpu = group_first_cpu(group);
  2281. /* Tally up the load of all CPUs in the group */
  2282. max_cpu_load = 0;
  2283. min_cpu_load = ~0UL;
  2284. max_nr_running = 0;
  2285. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2286. struct rq *rq = cpu_rq(i);
  2287. /* Bias balancing toward cpus of our domain */
  2288. if (local_group) {
  2289. if (idle_cpu(i) && !first_idle_cpu) {
  2290. first_idle_cpu = 1;
  2291. balance_cpu = i;
  2292. }
  2293. load = target_load(i, load_idx);
  2294. } else {
  2295. load = source_load(i, load_idx);
  2296. if (load > max_cpu_load) {
  2297. max_cpu_load = load;
  2298. max_nr_running = rq->nr_running;
  2299. }
  2300. if (min_cpu_load > load)
  2301. min_cpu_load = load;
  2302. }
  2303. sgs->group_load += load;
  2304. sgs->sum_nr_running += rq->nr_running;
  2305. sgs->sum_weighted_load += weighted_cpuload(i);
  2306. if (idle_cpu(i))
  2307. sgs->idle_cpus++;
  2308. }
  2309. /*
  2310. * First idle cpu or the first cpu(busiest) in this sched group
  2311. * is eligible for doing load balancing at this and above
  2312. * domains. In the newly idle case, we will allow all the cpu's
  2313. * to do the newly idle load balance.
  2314. */
  2315. if (idle != CPU_NEWLY_IDLE && local_group) {
  2316. if (balance_cpu != this_cpu) {
  2317. *balance = 0;
  2318. return;
  2319. }
  2320. update_group_power(sd, this_cpu);
  2321. }
  2322. /* Adjust by relative CPU power of the group */
  2323. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  2324. /*
  2325. * Consider the group unbalanced when the imbalance is larger
  2326. * than the average weight of a task.
  2327. *
  2328. * APZ: with cgroup the avg task weight can vary wildly and
  2329. * might not be a suitable number - should we keep a
  2330. * normalized nr_running number somewhere that negates
  2331. * the hierarchy?
  2332. */
  2333. if (sgs->sum_nr_running)
  2334. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2335. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  2336. sgs->group_imb = 1;
  2337. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  2338. SCHED_POWER_SCALE);
  2339. if (!sgs->group_capacity)
  2340. sgs->group_capacity = fix_small_capacity(sd, group);
  2341. sgs->group_weight = group->group_weight;
  2342. if (sgs->group_capacity > sgs->sum_nr_running)
  2343. sgs->group_has_capacity = 1;
  2344. }
  2345. /**
  2346. * update_sd_pick_busiest - return 1 on busiest group
  2347. * @sd: sched_domain whose statistics are to be checked
  2348. * @sds: sched_domain statistics
  2349. * @sg: sched_group candidate to be checked for being the busiest
  2350. * @sgs: sched_group statistics
  2351. * @this_cpu: the current cpu
  2352. *
  2353. * Determine if @sg is a busier group than the previously selected
  2354. * busiest group.
  2355. */
  2356. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2357. struct sd_lb_stats *sds,
  2358. struct sched_group *sg,
  2359. struct sg_lb_stats *sgs,
  2360. int this_cpu)
  2361. {
  2362. if (sgs->avg_load <= sds->max_load)
  2363. return false;
  2364. if (sgs->sum_nr_running > sgs->group_capacity)
  2365. return true;
  2366. if (sgs->group_imb)
  2367. return true;
  2368. /*
  2369. * ASYM_PACKING needs to move all the work to the lowest
  2370. * numbered CPUs in the group, therefore mark all groups
  2371. * higher than ourself as busy.
  2372. */
  2373. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2374. this_cpu < group_first_cpu(sg)) {
  2375. if (!sds->busiest)
  2376. return true;
  2377. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2378. return true;
  2379. }
  2380. return false;
  2381. }
  2382. /**
  2383. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2384. * @sd: sched_domain whose statistics are to be updated.
  2385. * @this_cpu: Cpu for which load balance is currently performed.
  2386. * @idle: Idle status of this_cpu
  2387. * @cpus: Set of cpus considered for load balancing.
  2388. * @balance: Should we balance.
  2389. * @sds: variable to hold the statistics for this sched_domain.
  2390. */
  2391. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2392. enum cpu_idle_type idle, const struct cpumask *cpus,
  2393. int *balance, struct sd_lb_stats *sds)
  2394. {
  2395. struct sched_domain *child = sd->child;
  2396. struct sched_group *sg = sd->groups;
  2397. struct sg_lb_stats sgs;
  2398. int load_idx, prefer_sibling = 0;
  2399. if (child && child->flags & SD_PREFER_SIBLING)
  2400. prefer_sibling = 1;
  2401. init_sd_power_savings_stats(sd, sds, idle);
  2402. load_idx = get_sd_load_idx(sd, idle);
  2403. do {
  2404. int local_group;
  2405. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2406. memset(&sgs, 0, sizeof(sgs));
  2407. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  2408. local_group, cpus, balance, &sgs);
  2409. if (local_group && !(*balance))
  2410. return;
  2411. sds->total_load += sgs.group_load;
  2412. sds->total_pwr += sg->sgp->power;
  2413. /*
  2414. * In case the child domain prefers tasks go to siblings
  2415. * first, lower the sg capacity to one so that we'll try
  2416. * and move all the excess tasks away. We lower the capacity
  2417. * of a group only if the local group has the capacity to fit
  2418. * these excess tasks, i.e. nr_running < group_capacity. The
  2419. * extra check prevents the case where you always pull from the
  2420. * heaviest group when it is already under-utilized (possible
  2421. * with a large weight task outweighs the tasks on the system).
  2422. */
  2423. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2424. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2425. if (local_group) {
  2426. sds->this_load = sgs.avg_load;
  2427. sds->this = sg;
  2428. sds->this_nr_running = sgs.sum_nr_running;
  2429. sds->this_load_per_task = sgs.sum_weighted_load;
  2430. sds->this_has_capacity = sgs.group_has_capacity;
  2431. sds->this_idle_cpus = sgs.idle_cpus;
  2432. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2433. sds->max_load = sgs.avg_load;
  2434. sds->busiest = sg;
  2435. sds->busiest_nr_running = sgs.sum_nr_running;
  2436. sds->busiest_idle_cpus = sgs.idle_cpus;
  2437. sds->busiest_group_capacity = sgs.group_capacity;
  2438. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2439. sds->busiest_has_capacity = sgs.group_has_capacity;
  2440. sds->busiest_group_weight = sgs.group_weight;
  2441. sds->group_imb = sgs.group_imb;
  2442. }
  2443. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2444. sg = sg->next;
  2445. } while (sg != sd->groups);
  2446. }
  2447. int __weak arch_sd_sibling_asym_packing(void)
  2448. {
  2449. return 0*SD_ASYM_PACKING;
  2450. }
  2451. /**
  2452. * check_asym_packing - Check to see if the group is packed into the
  2453. * sched doman.
  2454. *
  2455. * This is primarily intended to used at the sibling level. Some
  2456. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2457. * case of POWER7, it can move to lower SMT modes only when higher
  2458. * threads are idle. When in lower SMT modes, the threads will
  2459. * perform better since they share less core resources. Hence when we
  2460. * have idle threads, we want them to be the higher ones.
  2461. *
  2462. * This packing function is run on idle threads. It checks to see if
  2463. * the busiest CPU in this domain (core in the P7 case) has a higher
  2464. * CPU number than the packing function is being run on. Here we are
  2465. * assuming lower CPU number will be equivalent to lower a SMT thread
  2466. * number.
  2467. *
  2468. * Returns 1 when packing is required and a task should be moved to
  2469. * this CPU. The amount of the imbalance is returned in *imbalance.
  2470. *
  2471. * @sd: The sched_domain whose packing is to be checked.
  2472. * @sds: Statistics of the sched_domain which is to be packed
  2473. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2474. * @imbalance: returns amount of imbalanced due to packing.
  2475. */
  2476. static int check_asym_packing(struct sched_domain *sd,
  2477. struct sd_lb_stats *sds,
  2478. int this_cpu, unsigned long *imbalance)
  2479. {
  2480. int busiest_cpu;
  2481. if (!(sd->flags & SD_ASYM_PACKING))
  2482. return 0;
  2483. if (!sds->busiest)
  2484. return 0;
  2485. busiest_cpu = group_first_cpu(sds->busiest);
  2486. if (this_cpu > busiest_cpu)
  2487. return 0;
  2488. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  2489. SCHED_POWER_SCALE);
  2490. return 1;
  2491. }
  2492. /**
  2493. * fix_small_imbalance - Calculate the minor imbalance that exists
  2494. * amongst the groups of a sched_domain, during
  2495. * load balancing.
  2496. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2497. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2498. * @imbalance: Variable to store the imbalance.
  2499. */
  2500. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2501. int this_cpu, unsigned long *imbalance)
  2502. {
  2503. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2504. unsigned int imbn = 2;
  2505. unsigned long scaled_busy_load_per_task;
  2506. if (sds->this_nr_running) {
  2507. sds->this_load_per_task /= sds->this_nr_running;
  2508. if (sds->busiest_load_per_task >
  2509. sds->this_load_per_task)
  2510. imbn = 1;
  2511. } else
  2512. sds->this_load_per_task =
  2513. cpu_avg_load_per_task(this_cpu);
  2514. scaled_busy_load_per_task = sds->busiest_load_per_task
  2515. * SCHED_POWER_SCALE;
  2516. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  2517. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2518. (scaled_busy_load_per_task * imbn)) {
  2519. *imbalance = sds->busiest_load_per_task;
  2520. return;
  2521. }
  2522. /*
  2523. * OK, we don't have enough imbalance to justify moving tasks,
  2524. * however we may be able to increase total CPU power used by
  2525. * moving them.
  2526. */
  2527. pwr_now += sds->busiest->sgp->power *
  2528. min(sds->busiest_load_per_task, sds->max_load);
  2529. pwr_now += sds->this->sgp->power *
  2530. min(sds->this_load_per_task, sds->this_load);
  2531. pwr_now /= SCHED_POWER_SCALE;
  2532. /* Amount of load we'd subtract */
  2533. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  2534. sds->busiest->sgp->power;
  2535. if (sds->max_load > tmp)
  2536. pwr_move += sds->busiest->sgp->power *
  2537. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2538. /* Amount of load we'd add */
  2539. if (sds->max_load * sds->busiest->sgp->power <
  2540. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  2541. tmp = (sds->max_load * sds->busiest->sgp->power) /
  2542. sds->this->sgp->power;
  2543. else
  2544. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  2545. sds->this->sgp->power;
  2546. pwr_move += sds->this->sgp->power *
  2547. min(sds->this_load_per_task, sds->this_load + tmp);
  2548. pwr_move /= SCHED_POWER_SCALE;
  2549. /* Move if we gain throughput */
  2550. if (pwr_move > pwr_now)
  2551. *imbalance = sds->busiest_load_per_task;
  2552. }
  2553. /**
  2554. * calculate_imbalance - Calculate the amount of imbalance present within the
  2555. * groups of a given sched_domain during load balance.
  2556. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2557. * @this_cpu: Cpu for which currently load balance is being performed.
  2558. * @imbalance: The variable to store the imbalance.
  2559. */
  2560. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2561. unsigned long *imbalance)
  2562. {
  2563. unsigned long max_pull, load_above_capacity = ~0UL;
  2564. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2565. if (sds->group_imb) {
  2566. sds->busiest_load_per_task =
  2567. min(sds->busiest_load_per_task, sds->avg_load);
  2568. }
  2569. /*
  2570. * In the presence of smp nice balancing, certain scenarios can have
  2571. * max load less than avg load(as we skip the groups at or below
  2572. * its cpu_power, while calculating max_load..)
  2573. */
  2574. if (sds->max_load < sds->avg_load) {
  2575. *imbalance = 0;
  2576. return fix_small_imbalance(sds, this_cpu, imbalance);
  2577. }
  2578. if (!sds->group_imb) {
  2579. /*
  2580. * Don't want to pull so many tasks that a group would go idle.
  2581. */
  2582. load_above_capacity = (sds->busiest_nr_running -
  2583. sds->busiest_group_capacity);
  2584. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  2585. load_above_capacity /= sds->busiest->sgp->power;
  2586. }
  2587. /*
  2588. * We're trying to get all the cpus to the average_load, so we don't
  2589. * want to push ourselves above the average load, nor do we wish to
  2590. * reduce the max loaded cpu below the average load. At the same time,
  2591. * we also don't want to reduce the group load below the group capacity
  2592. * (so that we can implement power-savings policies etc). Thus we look
  2593. * for the minimum possible imbalance.
  2594. * Be careful of negative numbers as they'll appear as very large values
  2595. * with unsigned longs.
  2596. */
  2597. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2598. /* How much load to actually move to equalise the imbalance */
  2599. *imbalance = min(max_pull * sds->busiest->sgp->power,
  2600. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  2601. / SCHED_POWER_SCALE;
  2602. /*
  2603. * if *imbalance is less than the average load per runnable task
  2604. * there is no guarantee that any tasks will be moved so we'll have
  2605. * a think about bumping its value to force at least one task to be
  2606. * moved
  2607. */
  2608. if (*imbalance < sds->busiest_load_per_task)
  2609. return fix_small_imbalance(sds, this_cpu, imbalance);
  2610. }
  2611. /******* find_busiest_group() helpers end here *********************/
  2612. /**
  2613. * find_busiest_group - Returns the busiest group within the sched_domain
  2614. * if there is an imbalance. If there isn't an imbalance, and
  2615. * the user has opted for power-savings, it returns a group whose
  2616. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2617. * such a group exists.
  2618. *
  2619. * Also calculates the amount of weighted load which should be moved
  2620. * to restore balance.
  2621. *
  2622. * @sd: The sched_domain whose busiest group is to be returned.
  2623. * @this_cpu: The cpu for which load balancing is currently being performed.
  2624. * @imbalance: Variable which stores amount of weighted load which should
  2625. * be moved to restore balance/put a group to idle.
  2626. * @idle: The idle status of this_cpu.
  2627. * @cpus: The set of CPUs under consideration for load-balancing.
  2628. * @balance: Pointer to a variable indicating if this_cpu
  2629. * is the appropriate cpu to perform load balancing at this_level.
  2630. *
  2631. * Returns: - the busiest group if imbalance exists.
  2632. * - If no imbalance and user has opted for power-savings balance,
  2633. * return the least loaded group whose CPUs can be
  2634. * put to idle by rebalancing its tasks onto our group.
  2635. */
  2636. static struct sched_group *
  2637. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2638. unsigned long *imbalance, enum cpu_idle_type idle,
  2639. const struct cpumask *cpus, int *balance)
  2640. {
  2641. struct sd_lb_stats sds;
  2642. memset(&sds, 0, sizeof(sds));
  2643. /*
  2644. * Compute the various statistics relavent for load balancing at
  2645. * this level.
  2646. */
  2647. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  2648. /*
  2649. * this_cpu is not the appropriate cpu to perform load balancing at
  2650. * this level.
  2651. */
  2652. if (!(*balance))
  2653. goto ret;
  2654. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2655. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2656. return sds.busiest;
  2657. /* There is no busy sibling group to pull tasks from */
  2658. if (!sds.busiest || sds.busiest_nr_running == 0)
  2659. goto out_balanced;
  2660. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  2661. /*
  2662. * If the busiest group is imbalanced the below checks don't
  2663. * work because they assumes all things are equal, which typically
  2664. * isn't true due to cpus_allowed constraints and the like.
  2665. */
  2666. if (sds.group_imb)
  2667. goto force_balance;
  2668. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2669. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2670. !sds.busiest_has_capacity)
  2671. goto force_balance;
  2672. /*
  2673. * If the local group is more busy than the selected busiest group
  2674. * don't try and pull any tasks.
  2675. */
  2676. if (sds.this_load >= sds.max_load)
  2677. goto out_balanced;
  2678. /*
  2679. * Don't pull any tasks if this group is already above the domain
  2680. * average load.
  2681. */
  2682. if (sds.this_load >= sds.avg_load)
  2683. goto out_balanced;
  2684. if (idle == CPU_IDLE) {
  2685. /*
  2686. * This cpu is idle. If the busiest group load doesn't
  2687. * have more tasks than the number of available cpu's and
  2688. * there is no imbalance between this and busiest group
  2689. * wrt to idle cpu's, it is balanced.
  2690. */
  2691. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2692. sds.busiest_nr_running <= sds.busiest_group_weight)
  2693. goto out_balanced;
  2694. } else {
  2695. /*
  2696. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  2697. * imbalance_pct to be conservative.
  2698. */
  2699. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2700. goto out_balanced;
  2701. }
  2702. force_balance:
  2703. /* Looks like there is an imbalance. Compute it */
  2704. calculate_imbalance(&sds, this_cpu, imbalance);
  2705. return sds.busiest;
  2706. out_balanced:
  2707. /*
  2708. * There is no obvious imbalance. But check if we can do some balancing
  2709. * to save power.
  2710. */
  2711. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2712. return sds.busiest;
  2713. ret:
  2714. *imbalance = 0;
  2715. return NULL;
  2716. }
  2717. /*
  2718. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2719. */
  2720. static struct rq *
  2721. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2722. enum cpu_idle_type idle, unsigned long imbalance,
  2723. const struct cpumask *cpus)
  2724. {
  2725. struct rq *busiest = NULL, *rq;
  2726. unsigned long max_load = 0;
  2727. int i;
  2728. for_each_cpu(i, sched_group_cpus(group)) {
  2729. unsigned long power = power_of(i);
  2730. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  2731. SCHED_POWER_SCALE);
  2732. unsigned long wl;
  2733. if (!capacity)
  2734. capacity = fix_small_capacity(sd, group);
  2735. if (!cpumask_test_cpu(i, cpus))
  2736. continue;
  2737. rq = cpu_rq(i);
  2738. wl = weighted_cpuload(i);
  2739. /*
  2740. * When comparing with imbalance, use weighted_cpuload()
  2741. * which is not scaled with the cpu power.
  2742. */
  2743. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2744. continue;
  2745. /*
  2746. * For the load comparisons with the other cpu's, consider
  2747. * the weighted_cpuload() scaled with the cpu power, so that
  2748. * the load can be moved away from the cpu that is potentially
  2749. * running at a lower capacity.
  2750. */
  2751. wl = (wl * SCHED_POWER_SCALE) / power;
  2752. if (wl > max_load) {
  2753. max_load = wl;
  2754. busiest = rq;
  2755. }
  2756. }
  2757. return busiest;
  2758. }
  2759. /*
  2760. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2761. * so long as it is large enough.
  2762. */
  2763. #define MAX_PINNED_INTERVAL 512
  2764. /* Working cpumask for load_balance and load_balance_newidle. */
  2765. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2766. static int need_active_balance(struct sched_domain *sd, int idle,
  2767. int busiest_cpu, int this_cpu)
  2768. {
  2769. if (idle == CPU_NEWLY_IDLE) {
  2770. /*
  2771. * ASYM_PACKING needs to force migrate tasks from busy but
  2772. * higher numbered CPUs in order to pack all tasks in the
  2773. * lowest numbered CPUs.
  2774. */
  2775. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2776. return 1;
  2777. /*
  2778. * The only task running in a non-idle cpu can be moved to this
  2779. * cpu in an attempt to completely freeup the other CPU
  2780. * package.
  2781. *
  2782. * The package power saving logic comes from
  2783. * find_busiest_group(). If there are no imbalance, then
  2784. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2785. * f_b_g() will select a group from which a running task may be
  2786. * pulled to this cpu in order to make the other package idle.
  2787. * If there is no opportunity to make a package idle and if
  2788. * there are no imbalance, then f_b_g() will return NULL and no
  2789. * action will be taken in load_balance_newidle().
  2790. *
  2791. * Under normal task pull operation due to imbalance, there
  2792. * will be more than one task in the source run queue and
  2793. * move_tasks() will succeed. ld_moved will be true and this
  2794. * active balance code will not be triggered.
  2795. */
  2796. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2797. return 0;
  2798. }
  2799. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2800. }
  2801. static int active_load_balance_cpu_stop(void *data);
  2802. /*
  2803. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2804. * tasks if there is an imbalance.
  2805. */
  2806. static int load_balance(int this_cpu, struct rq *this_rq,
  2807. struct sched_domain *sd, enum cpu_idle_type idle,
  2808. int *balance)
  2809. {
  2810. int ld_moved, all_pinned = 0, active_balance = 0;
  2811. struct sched_group *group;
  2812. unsigned long imbalance;
  2813. struct rq *busiest;
  2814. unsigned long flags;
  2815. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2816. cpumask_copy(cpus, cpu_active_mask);
  2817. schedstat_inc(sd, lb_count[idle]);
  2818. redo:
  2819. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  2820. cpus, balance);
  2821. if (*balance == 0)
  2822. goto out_balanced;
  2823. if (!group) {
  2824. schedstat_inc(sd, lb_nobusyg[idle]);
  2825. goto out_balanced;
  2826. }
  2827. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2828. if (!busiest) {
  2829. schedstat_inc(sd, lb_nobusyq[idle]);
  2830. goto out_balanced;
  2831. }
  2832. BUG_ON(busiest == this_rq);
  2833. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2834. ld_moved = 0;
  2835. if (busiest->nr_running > 1) {
  2836. /*
  2837. * Attempt to move tasks. If find_busiest_group has found
  2838. * an imbalance but busiest->nr_running <= 1, the group is
  2839. * still unbalanced. ld_moved simply stays zero, so it is
  2840. * correctly treated as an imbalance.
  2841. */
  2842. all_pinned = 1;
  2843. local_irq_save(flags);
  2844. double_rq_lock(this_rq, busiest);
  2845. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2846. imbalance, sd, idle, &all_pinned);
  2847. double_rq_unlock(this_rq, busiest);
  2848. local_irq_restore(flags);
  2849. /*
  2850. * some other cpu did the load balance for us.
  2851. */
  2852. if (ld_moved && this_cpu != smp_processor_id())
  2853. resched_cpu(this_cpu);
  2854. /* All tasks on this runqueue were pinned by CPU affinity */
  2855. if (unlikely(all_pinned)) {
  2856. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2857. if (!cpumask_empty(cpus))
  2858. goto redo;
  2859. goto out_balanced;
  2860. }
  2861. }
  2862. if (!ld_moved) {
  2863. schedstat_inc(sd, lb_failed[idle]);
  2864. /*
  2865. * Increment the failure counter only on periodic balance.
  2866. * We do not want newidle balance, which can be very
  2867. * frequent, pollute the failure counter causing
  2868. * excessive cache_hot migrations and active balances.
  2869. */
  2870. if (idle != CPU_NEWLY_IDLE)
  2871. sd->nr_balance_failed++;
  2872. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  2873. raw_spin_lock_irqsave(&busiest->lock, flags);
  2874. /* don't kick the active_load_balance_cpu_stop,
  2875. * if the curr task on busiest cpu can't be
  2876. * moved to this_cpu
  2877. */
  2878. if (!cpumask_test_cpu(this_cpu,
  2879. &busiest->curr->cpus_allowed)) {
  2880. raw_spin_unlock_irqrestore(&busiest->lock,
  2881. flags);
  2882. all_pinned = 1;
  2883. goto out_one_pinned;
  2884. }
  2885. /*
  2886. * ->active_balance synchronizes accesses to
  2887. * ->active_balance_work. Once set, it's cleared
  2888. * only after active load balance is finished.
  2889. */
  2890. if (!busiest->active_balance) {
  2891. busiest->active_balance = 1;
  2892. busiest->push_cpu = this_cpu;
  2893. active_balance = 1;
  2894. }
  2895. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2896. if (active_balance)
  2897. stop_one_cpu_nowait(cpu_of(busiest),
  2898. active_load_balance_cpu_stop, busiest,
  2899. &busiest->active_balance_work);
  2900. /*
  2901. * We've kicked active balancing, reset the failure
  2902. * counter.
  2903. */
  2904. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2905. }
  2906. } else
  2907. sd->nr_balance_failed = 0;
  2908. if (likely(!active_balance)) {
  2909. /* We were unbalanced, so reset the balancing interval */
  2910. sd->balance_interval = sd->min_interval;
  2911. } else {
  2912. /*
  2913. * If we've begun active balancing, start to back off. This
  2914. * case may not be covered by the all_pinned logic if there
  2915. * is only 1 task on the busy runqueue (because we don't call
  2916. * move_tasks).
  2917. */
  2918. if (sd->balance_interval < sd->max_interval)
  2919. sd->balance_interval *= 2;
  2920. }
  2921. goto out;
  2922. out_balanced:
  2923. schedstat_inc(sd, lb_balanced[idle]);
  2924. sd->nr_balance_failed = 0;
  2925. out_one_pinned:
  2926. /* tune up the balancing interval */
  2927. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2928. (sd->balance_interval < sd->max_interval))
  2929. sd->balance_interval *= 2;
  2930. ld_moved = 0;
  2931. out:
  2932. return ld_moved;
  2933. }
  2934. /*
  2935. * idle_balance is called by schedule() if this_cpu is about to become
  2936. * idle. Attempts to pull tasks from other CPUs.
  2937. */
  2938. static void idle_balance(int this_cpu, struct rq *this_rq)
  2939. {
  2940. struct sched_domain *sd;
  2941. int pulled_task = 0;
  2942. unsigned long next_balance = jiffies + HZ;
  2943. this_rq->idle_stamp = this_rq->clock;
  2944. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2945. return;
  2946. /*
  2947. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2948. */
  2949. raw_spin_unlock(&this_rq->lock);
  2950. update_shares(this_cpu);
  2951. rcu_read_lock();
  2952. for_each_domain(this_cpu, sd) {
  2953. unsigned long interval;
  2954. int balance = 1;
  2955. if (!(sd->flags & SD_LOAD_BALANCE))
  2956. continue;
  2957. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2958. /* If we've pulled tasks over stop searching: */
  2959. pulled_task = load_balance(this_cpu, this_rq,
  2960. sd, CPU_NEWLY_IDLE, &balance);
  2961. }
  2962. interval = msecs_to_jiffies(sd->balance_interval);
  2963. if (time_after(next_balance, sd->last_balance + interval))
  2964. next_balance = sd->last_balance + interval;
  2965. if (pulled_task) {
  2966. this_rq->idle_stamp = 0;
  2967. break;
  2968. }
  2969. }
  2970. rcu_read_unlock();
  2971. raw_spin_lock(&this_rq->lock);
  2972. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2973. /*
  2974. * We are going idle. next_balance may be set based on
  2975. * a busy processor. So reset next_balance.
  2976. */
  2977. this_rq->next_balance = next_balance;
  2978. }
  2979. }
  2980. /*
  2981. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2982. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2983. * least 1 task to be running on each physical CPU where possible, and
  2984. * avoids physical / logical imbalances.
  2985. */
  2986. static int active_load_balance_cpu_stop(void *data)
  2987. {
  2988. struct rq *busiest_rq = data;
  2989. int busiest_cpu = cpu_of(busiest_rq);
  2990. int target_cpu = busiest_rq->push_cpu;
  2991. struct rq *target_rq = cpu_rq(target_cpu);
  2992. struct sched_domain *sd;
  2993. raw_spin_lock_irq(&busiest_rq->lock);
  2994. /* make sure the requested cpu hasn't gone down in the meantime */
  2995. if (unlikely(busiest_cpu != smp_processor_id() ||
  2996. !busiest_rq->active_balance))
  2997. goto out_unlock;
  2998. /* Is there any task to move? */
  2999. if (busiest_rq->nr_running <= 1)
  3000. goto out_unlock;
  3001. /*
  3002. * This condition is "impossible", if it occurs
  3003. * we need to fix it. Originally reported by
  3004. * Bjorn Helgaas on a 128-cpu setup.
  3005. */
  3006. BUG_ON(busiest_rq == target_rq);
  3007. /* move a task from busiest_rq to target_rq */
  3008. double_lock_balance(busiest_rq, target_rq);
  3009. /* Search for an sd spanning us and the target CPU. */
  3010. rcu_read_lock();
  3011. for_each_domain(target_cpu, sd) {
  3012. if ((sd->flags & SD_LOAD_BALANCE) &&
  3013. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3014. break;
  3015. }
  3016. if (likely(sd)) {
  3017. schedstat_inc(sd, alb_count);
  3018. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3019. sd, CPU_IDLE))
  3020. schedstat_inc(sd, alb_pushed);
  3021. else
  3022. schedstat_inc(sd, alb_failed);
  3023. }
  3024. rcu_read_unlock();
  3025. double_unlock_balance(busiest_rq, target_rq);
  3026. out_unlock:
  3027. busiest_rq->active_balance = 0;
  3028. raw_spin_unlock_irq(&busiest_rq->lock);
  3029. return 0;
  3030. }
  3031. #ifdef CONFIG_NO_HZ
  3032. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  3033. static void trigger_sched_softirq(void *data)
  3034. {
  3035. raise_softirq_irqoff(SCHED_SOFTIRQ);
  3036. }
  3037. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  3038. {
  3039. csd->func = trigger_sched_softirq;
  3040. csd->info = NULL;
  3041. csd->flags = 0;
  3042. csd->priv = 0;
  3043. }
  3044. /*
  3045. * idle load balancing details
  3046. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3047. * entering idle.
  3048. * - This idle load balancer CPU will also go into tickless mode when
  3049. * it is idle, just like all other idle CPUs
  3050. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3051. * needed, they will kick the idle load balancer, which then does idle
  3052. * load balancing for all the idle CPUs.
  3053. */
  3054. static struct {
  3055. atomic_t load_balancer;
  3056. atomic_t first_pick_cpu;
  3057. atomic_t second_pick_cpu;
  3058. cpumask_var_t idle_cpus_mask;
  3059. cpumask_var_t grp_idle_mask;
  3060. unsigned long next_balance; /* in jiffy units */
  3061. } nohz ____cacheline_aligned;
  3062. int get_nohz_load_balancer(void)
  3063. {
  3064. return atomic_read(&nohz.load_balancer);
  3065. }
  3066. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3067. /**
  3068. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3069. * @cpu: The cpu whose lowest level of sched domain is to
  3070. * be returned.
  3071. * @flag: The flag to check for the lowest sched_domain
  3072. * for the given cpu.
  3073. *
  3074. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3075. */
  3076. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3077. {
  3078. struct sched_domain *sd;
  3079. for_each_domain(cpu, sd)
  3080. if (sd->flags & flag)
  3081. break;
  3082. return sd;
  3083. }
  3084. /**
  3085. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3086. * @cpu: The cpu whose domains we're iterating over.
  3087. * @sd: variable holding the value of the power_savings_sd
  3088. * for cpu.
  3089. * @flag: The flag to filter the sched_domains to be iterated.
  3090. *
  3091. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3092. * set, starting from the lowest sched_domain to the highest.
  3093. */
  3094. #define for_each_flag_domain(cpu, sd, flag) \
  3095. for (sd = lowest_flag_domain(cpu, flag); \
  3096. (sd && (sd->flags & flag)); sd = sd->parent)
  3097. /**
  3098. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3099. * @ilb_group: group to be checked for semi-idleness
  3100. *
  3101. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3102. *
  3103. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3104. * and atleast one non-idle CPU. This helper function checks if the given
  3105. * sched_group is semi-idle or not.
  3106. */
  3107. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3108. {
  3109. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3110. sched_group_cpus(ilb_group));
  3111. /*
  3112. * A sched_group is semi-idle when it has atleast one busy cpu
  3113. * and atleast one idle cpu.
  3114. */
  3115. if (cpumask_empty(nohz.grp_idle_mask))
  3116. return 0;
  3117. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3118. return 0;
  3119. return 1;
  3120. }
  3121. /**
  3122. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3123. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3124. *
  3125. * Returns: Returns the id of the idle load balancer if it exists,
  3126. * Else, returns >= nr_cpu_ids.
  3127. *
  3128. * This algorithm picks the idle load balancer such that it belongs to a
  3129. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3130. * completely idle packages/cores just for the purpose of idle load balancing
  3131. * when there are other idle cpu's which are better suited for that job.
  3132. */
  3133. static int find_new_ilb(int cpu)
  3134. {
  3135. struct sched_domain *sd;
  3136. struct sched_group *ilb_group;
  3137. int ilb = nr_cpu_ids;
  3138. /*
  3139. * Have idle load balancer selection from semi-idle packages only
  3140. * when power-aware load balancing is enabled
  3141. */
  3142. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3143. goto out_done;
  3144. /*
  3145. * Optimize for the case when we have no idle CPUs or only one
  3146. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3147. */
  3148. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3149. goto out_done;
  3150. rcu_read_lock();
  3151. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3152. ilb_group = sd->groups;
  3153. do {
  3154. if (is_semi_idle_group(ilb_group)) {
  3155. ilb = cpumask_first(nohz.grp_idle_mask);
  3156. goto unlock;
  3157. }
  3158. ilb_group = ilb_group->next;
  3159. } while (ilb_group != sd->groups);
  3160. }
  3161. unlock:
  3162. rcu_read_unlock();
  3163. out_done:
  3164. return ilb;
  3165. }
  3166. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3167. static inline int find_new_ilb(int call_cpu)
  3168. {
  3169. return nr_cpu_ids;
  3170. }
  3171. #endif
  3172. /*
  3173. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3174. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3175. * CPU (if there is one).
  3176. */
  3177. static void nohz_balancer_kick(int cpu)
  3178. {
  3179. int ilb_cpu;
  3180. nohz.next_balance++;
  3181. ilb_cpu = get_nohz_load_balancer();
  3182. if (ilb_cpu >= nr_cpu_ids) {
  3183. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3184. if (ilb_cpu >= nr_cpu_ids)
  3185. return;
  3186. }
  3187. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3188. struct call_single_data *cp;
  3189. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3190. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3191. __smp_call_function_single(ilb_cpu, cp, 0);
  3192. }
  3193. return;
  3194. }
  3195. /*
  3196. * This routine will try to nominate the ilb (idle load balancing)
  3197. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3198. * load balancing on behalf of all those cpus.
  3199. *
  3200. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3201. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3202. * idle load balancing by kicking one of the idle CPUs.
  3203. *
  3204. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3205. * ilb owner CPU in future (when there is a need for idle load balancing on
  3206. * behalf of all idle CPUs).
  3207. */
  3208. void select_nohz_load_balancer(int stop_tick)
  3209. {
  3210. int cpu = smp_processor_id();
  3211. if (stop_tick) {
  3212. if (!cpu_active(cpu)) {
  3213. if (atomic_read(&nohz.load_balancer) != cpu)
  3214. return;
  3215. /*
  3216. * If we are going offline and still the leader,
  3217. * give up!
  3218. */
  3219. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3220. nr_cpu_ids) != cpu)
  3221. BUG();
  3222. return;
  3223. }
  3224. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3225. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3226. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3227. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3228. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3229. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3230. int new_ilb;
  3231. /* make me the ilb owner */
  3232. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3233. cpu) != nr_cpu_ids)
  3234. return;
  3235. /*
  3236. * Check to see if there is a more power-efficient
  3237. * ilb.
  3238. */
  3239. new_ilb = find_new_ilb(cpu);
  3240. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3241. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3242. resched_cpu(new_ilb);
  3243. return;
  3244. }
  3245. return;
  3246. }
  3247. } else {
  3248. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3249. return;
  3250. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3251. if (atomic_read(&nohz.load_balancer) == cpu)
  3252. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3253. nr_cpu_ids) != cpu)
  3254. BUG();
  3255. }
  3256. return;
  3257. }
  3258. #endif
  3259. static DEFINE_SPINLOCK(balancing);
  3260. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3261. /*
  3262. * Scale the max load_balance interval with the number of CPUs in the system.
  3263. * This trades load-balance latency on larger machines for less cross talk.
  3264. */
  3265. static void update_max_interval(void)
  3266. {
  3267. max_load_balance_interval = HZ*num_online_cpus()/10;
  3268. }
  3269. /*
  3270. * It checks each scheduling domain to see if it is due to be balanced,
  3271. * and initiates a balancing operation if so.
  3272. *
  3273. * Balancing parameters are set up in arch_init_sched_domains.
  3274. */
  3275. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3276. {
  3277. int balance = 1;
  3278. struct rq *rq = cpu_rq(cpu);
  3279. unsigned long interval;
  3280. struct sched_domain *sd;
  3281. /* Earliest time when we have to do rebalance again */
  3282. unsigned long next_balance = jiffies + 60*HZ;
  3283. int update_next_balance = 0;
  3284. int need_serialize;
  3285. update_shares(cpu);
  3286. rcu_read_lock();
  3287. for_each_domain(cpu, sd) {
  3288. if (!(sd->flags & SD_LOAD_BALANCE))
  3289. continue;
  3290. interval = sd->balance_interval;
  3291. if (idle != CPU_IDLE)
  3292. interval *= sd->busy_factor;
  3293. /* scale ms to jiffies */
  3294. interval = msecs_to_jiffies(interval);
  3295. interval = clamp(interval, 1UL, max_load_balance_interval);
  3296. need_serialize = sd->flags & SD_SERIALIZE;
  3297. if (need_serialize) {
  3298. if (!spin_trylock(&balancing))
  3299. goto out;
  3300. }
  3301. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3302. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3303. /*
  3304. * We've pulled tasks over so either we're no
  3305. * longer idle.
  3306. */
  3307. idle = CPU_NOT_IDLE;
  3308. }
  3309. sd->last_balance = jiffies;
  3310. }
  3311. if (need_serialize)
  3312. spin_unlock(&balancing);
  3313. out:
  3314. if (time_after(next_balance, sd->last_balance + interval)) {
  3315. next_balance = sd->last_balance + interval;
  3316. update_next_balance = 1;
  3317. }
  3318. /*
  3319. * Stop the load balance at this level. There is another
  3320. * CPU in our sched group which is doing load balancing more
  3321. * actively.
  3322. */
  3323. if (!balance)
  3324. break;
  3325. }
  3326. rcu_read_unlock();
  3327. /*
  3328. * next_balance will be updated only when there is a need.
  3329. * When the cpu is attached to null domain for ex, it will not be
  3330. * updated.
  3331. */
  3332. if (likely(update_next_balance))
  3333. rq->next_balance = next_balance;
  3334. }
  3335. #ifdef CONFIG_NO_HZ
  3336. /*
  3337. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3338. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3339. */
  3340. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3341. {
  3342. struct rq *this_rq = cpu_rq(this_cpu);
  3343. struct rq *rq;
  3344. int balance_cpu;
  3345. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3346. return;
  3347. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3348. if (balance_cpu == this_cpu)
  3349. continue;
  3350. /*
  3351. * If this cpu gets work to do, stop the load balancing
  3352. * work being done for other cpus. Next load
  3353. * balancing owner will pick it up.
  3354. */
  3355. if (need_resched()) {
  3356. this_rq->nohz_balance_kick = 0;
  3357. break;
  3358. }
  3359. raw_spin_lock_irq(&this_rq->lock);
  3360. update_rq_clock(this_rq);
  3361. update_cpu_load(this_rq);
  3362. raw_spin_unlock_irq(&this_rq->lock);
  3363. rebalance_domains(balance_cpu, CPU_IDLE);
  3364. rq = cpu_rq(balance_cpu);
  3365. if (time_after(this_rq->next_balance, rq->next_balance))
  3366. this_rq->next_balance = rq->next_balance;
  3367. }
  3368. nohz.next_balance = this_rq->next_balance;
  3369. this_rq->nohz_balance_kick = 0;
  3370. }
  3371. /*
  3372. * Current heuristic for kicking the idle load balancer
  3373. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3374. * idle load balancer when it has more than one process active. This
  3375. * eliminates the need for idle load balancing altogether when we have
  3376. * only one running process in the system (common case).
  3377. * - If there are more than one busy CPU, idle load balancer may have
  3378. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3379. * SMT or core siblings and can run better if they move to different
  3380. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3381. * which will kick idle load balancer as soon as it has any load.
  3382. */
  3383. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3384. {
  3385. unsigned long now = jiffies;
  3386. int ret;
  3387. int first_pick_cpu, second_pick_cpu;
  3388. if (time_before(now, nohz.next_balance))
  3389. return 0;
  3390. if (rq->idle_at_tick)
  3391. return 0;
  3392. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3393. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3394. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3395. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3396. return 0;
  3397. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3398. if (ret == nr_cpu_ids || ret == cpu) {
  3399. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3400. if (rq->nr_running > 1)
  3401. return 1;
  3402. } else {
  3403. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3404. if (ret == nr_cpu_ids || ret == cpu) {
  3405. if (rq->nr_running)
  3406. return 1;
  3407. }
  3408. }
  3409. return 0;
  3410. }
  3411. #else
  3412. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3413. #endif
  3414. /*
  3415. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3416. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3417. */
  3418. static void run_rebalance_domains(struct softirq_action *h)
  3419. {
  3420. int this_cpu = smp_processor_id();
  3421. struct rq *this_rq = cpu_rq(this_cpu);
  3422. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3423. CPU_IDLE : CPU_NOT_IDLE;
  3424. rebalance_domains(this_cpu, idle);
  3425. /*
  3426. * If this cpu has a pending nohz_balance_kick, then do the
  3427. * balancing on behalf of the other idle cpus whose ticks are
  3428. * stopped.
  3429. */
  3430. nohz_idle_balance(this_cpu, idle);
  3431. }
  3432. static inline int on_null_domain(int cpu)
  3433. {
  3434. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3435. }
  3436. /*
  3437. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3438. */
  3439. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3440. {
  3441. /* Don't need to rebalance while attached to NULL domain */
  3442. if (time_after_eq(jiffies, rq->next_balance) &&
  3443. likely(!on_null_domain(cpu)))
  3444. raise_softirq(SCHED_SOFTIRQ);
  3445. #ifdef CONFIG_NO_HZ
  3446. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3447. nohz_balancer_kick(cpu);
  3448. #endif
  3449. }
  3450. static void rq_online_fair(struct rq *rq)
  3451. {
  3452. update_sysctl();
  3453. }
  3454. static void rq_offline_fair(struct rq *rq)
  3455. {
  3456. update_sysctl();
  3457. }
  3458. #else /* CONFIG_SMP */
  3459. /*
  3460. * on UP we do not need to balance between CPUs:
  3461. */
  3462. static inline void idle_balance(int cpu, struct rq *rq)
  3463. {
  3464. }
  3465. #endif /* CONFIG_SMP */
  3466. /*
  3467. * scheduler tick hitting a task of our scheduling class:
  3468. */
  3469. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3470. {
  3471. struct cfs_rq *cfs_rq;
  3472. struct sched_entity *se = &curr->se;
  3473. for_each_sched_entity(se) {
  3474. cfs_rq = cfs_rq_of(se);
  3475. entity_tick(cfs_rq, se, queued);
  3476. }
  3477. }
  3478. /*
  3479. * called on fork with the child task as argument from the parent's context
  3480. * - child not yet on the tasklist
  3481. * - preemption disabled
  3482. */
  3483. static void task_fork_fair(struct task_struct *p)
  3484. {
  3485. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3486. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3487. int this_cpu = smp_processor_id();
  3488. struct rq *rq = this_rq();
  3489. unsigned long flags;
  3490. raw_spin_lock_irqsave(&rq->lock, flags);
  3491. update_rq_clock(rq);
  3492. if (unlikely(task_cpu(p) != this_cpu)) {
  3493. rcu_read_lock();
  3494. __set_task_cpu(p, this_cpu);
  3495. rcu_read_unlock();
  3496. }
  3497. update_curr(cfs_rq);
  3498. if (curr)
  3499. se->vruntime = curr->vruntime;
  3500. place_entity(cfs_rq, se, 1);
  3501. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3502. /*
  3503. * Upon rescheduling, sched_class::put_prev_task() will place
  3504. * 'current' within the tree based on its new key value.
  3505. */
  3506. swap(curr->vruntime, se->vruntime);
  3507. resched_task(rq->curr);
  3508. }
  3509. se->vruntime -= cfs_rq->min_vruntime;
  3510. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3511. }
  3512. /*
  3513. * Priority of the task has changed. Check to see if we preempt
  3514. * the current task.
  3515. */
  3516. static void
  3517. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  3518. {
  3519. if (!p->se.on_rq)
  3520. return;
  3521. /*
  3522. * Reschedule if we are currently running on this runqueue and
  3523. * our priority decreased, or if we are not currently running on
  3524. * this runqueue and our priority is higher than the current's
  3525. */
  3526. if (rq->curr == p) {
  3527. if (p->prio > oldprio)
  3528. resched_task(rq->curr);
  3529. } else
  3530. check_preempt_curr(rq, p, 0);
  3531. }
  3532. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  3533. {
  3534. struct sched_entity *se = &p->se;
  3535. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3536. /*
  3537. * Ensure the task's vruntime is normalized, so that when its
  3538. * switched back to the fair class the enqueue_entity(.flags=0) will
  3539. * do the right thing.
  3540. *
  3541. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  3542. * have normalized the vruntime, if it was !on_rq, then only when
  3543. * the task is sleeping will it still have non-normalized vruntime.
  3544. */
  3545. if (!se->on_rq && p->state != TASK_RUNNING) {
  3546. /*
  3547. * Fix up our vruntime so that the current sleep doesn't
  3548. * cause 'unlimited' sleep bonus.
  3549. */
  3550. place_entity(cfs_rq, se, 0);
  3551. se->vruntime -= cfs_rq->min_vruntime;
  3552. }
  3553. }
  3554. /*
  3555. * We switched to the sched_fair class.
  3556. */
  3557. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  3558. {
  3559. if (!p->se.on_rq)
  3560. return;
  3561. /*
  3562. * We were most likely switched from sched_rt, so
  3563. * kick off the schedule if running, otherwise just see
  3564. * if we can still preempt the current task.
  3565. */
  3566. if (rq->curr == p)
  3567. resched_task(rq->curr);
  3568. else
  3569. check_preempt_curr(rq, p, 0);
  3570. }
  3571. /* Account for a task changing its policy or group.
  3572. *
  3573. * This routine is mostly called to set cfs_rq->curr field when a task
  3574. * migrates between groups/classes.
  3575. */
  3576. static void set_curr_task_fair(struct rq *rq)
  3577. {
  3578. struct sched_entity *se = &rq->curr->se;
  3579. for_each_sched_entity(se)
  3580. set_next_entity(cfs_rq_of(se), se);
  3581. }
  3582. #ifdef CONFIG_FAIR_GROUP_SCHED
  3583. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3584. {
  3585. /*
  3586. * If the task was not on the rq at the time of this cgroup movement
  3587. * it must have been asleep, sleeping tasks keep their ->vruntime
  3588. * absolute on their old rq until wakeup (needed for the fair sleeper
  3589. * bonus in place_entity()).
  3590. *
  3591. * If it was on the rq, we've just 'preempted' it, which does convert
  3592. * ->vruntime to a relative base.
  3593. *
  3594. * Make sure both cases convert their relative position when migrating
  3595. * to another cgroup's rq. This does somewhat interfere with the
  3596. * fair sleeper stuff for the first placement, but who cares.
  3597. */
  3598. if (!on_rq)
  3599. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3600. set_task_rq(p, task_cpu(p));
  3601. if (!on_rq)
  3602. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3603. }
  3604. #endif
  3605. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3606. {
  3607. struct sched_entity *se = &task->se;
  3608. unsigned int rr_interval = 0;
  3609. /*
  3610. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3611. * idle runqueue:
  3612. */
  3613. if (rq->cfs.load.weight)
  3614. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3615. return rr_interval;
  3616. }
  3617. /*
  3618. * All the scheduling class methods:
  3619. */
  3620. static const struct sched_class fair_sched_class = {
  3621. .next = &idle_sched_class,
  3622. .enqueue_task = enqueue_task_fair,
  3623. .dequeue_task = dequeue_task_fair,
  3624. .yield_task = yield_task_fair,
  3625. .yield_to_task = yield_to_task_fair,
  3626. .check_preempt_curr = check_preempt_wakeup,
  3627. .pick_next_task = pick_next_task_fair,
  3628. .put_prev_task = put_prev_task_fair,
  3629. #ifdef CONFIG_SMP
  3630. .select_task_rq = select_task_rq_fair,
  3631. .rq_online = rq_online_fair,
  3632. .rq_offline = rq_offline_fair,
  3633. .task_waking = task_waking_fair,
  3634. #endif
  3635. .set_curr_task = set_curr_task_fair,
  3636. .task_tick = task_tick_fair,
  3637. .task_fork = task_fork_fair,
  3638. .prio_changed = prio_changed_fair,
  3639. .switched_from = switched_from_fair,
  3640. .switched_to = switched_to_fair,
  3641. .get_rr_interval = get_rr_interval_fair,
  3642. #ifdef CONFIG_FAIR_GROUP_SCHED
  3643. .task_move_group = task_move_group_fair,
  3644. #endif
  3645. };
  3646. #ifdef CONFIG_SCHED_DEBUG
  3647. static void print_cfs_stats(struct seq_file *m, int cpu)
  3648. {
  3649. struct cfs_rq *cfs_rq;
  3650. rcu_read_lock();
  3651. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3652. print_cfs_rq(m, cpu, cfs_rq);
  3653. rcu_read_unlock();
  3654. }
  3655. #endif