kvm_main.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/processor.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/pgtable.h>
  48. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  49. #include "coalesced_mmio.h"
  50. #endif
  51. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  52. #include <linux/pci.h>
  53. #include <linux/interrupt.h>
  54. #include "irq.h"
  55. #endif
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
  64. */
  65. DEFINE_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. static bool kvm_rebooting;
  75. static bool largepages_enabled = true;
  76. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  77. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  78. int assigned_dev_id)
  79. {
  80. struct list_head *ptr;
  81. struct kvm_assigned_dev_kernel *match;
  82. list_for_each(ptr, head) {
  83. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  84. if (match->assigned_dev_id == assigned_dev_id)
  85. return match;
  86. }
  87. return NULL;
  88. }
  89. static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
  90. *assigned_dev, int irq)
  91. {
  92. int i, index;
  93. struct msix_entry *host_msix_entries;
  94. host_msix_entries = assigned_dev->host_msix_entries;
  95. index = -1;
  96. for (i = 0; i < assigned_dev->entries_nr; i++)
  97. if (irq == host_msix_entries[i].vector) {
  98. index = i;
  99. break;
  100. }
  101. if (index < 0) {
  102. printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
  103. return 0;
  104. }
  105. return index;
  106. }
  107. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  108. {
  109. struct kvm_assigned_dev_kernel *assigned_dev;
  110. struct kvm *kvm;
  111. int i;
  112. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  113. interrupt_work);
  114. kvm = assigned_dev->kvm;
  115. mutex_lock(&kvm->irq_lock);
  116. spin_lock_irq(&assigned_dev->assigned_dev_lock);
  117. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  118. struct kvm_guest_msix_entry *guest_entries =
  119. assigned_dev->guest_msix_entries;
  120. for (i = 0; i < assigned_dev->entries_nr; i++) {
  121. if (!(guest_entries[i].flags &
  122. KVM_ASSIGNED_MSIX_PENDING))
  123. continue;
  124. guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
  125. kvm_set_irq(assigned_dev->kvm,
  126. assigned_dev->irq_source_id,
  127. guest_entries[i].vector, 1);
  128. }
  129. } else
  130. kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
  131. assigned_dev->guest_irq, 1);
  132. spin_unlock_irq(&assigned_dev->assigned_dev_lock);
  133. mutex_unlock(&assigned_dev->kvm->irq_lock);
  134. }
  135. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  136. {
  137. unsigned long flags;
  138. struct kvm_assigned_dev_kernel *assigned_dev =
  139. (struct kvm_assigned_dev_kernel *) dev_id;
  140. spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
  141. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  142. int index = find_index_from_host_irq(assigned_dev, irq);
  143. if (index < 0)
  144. goto out;
  145. assigned_dev->guest_msix_entries[index].flags |=
  146. KVM_ASSIGNED_MSIX_PENDING;
  147. }
  148. schedule_work(&assigned_dev->interrupt_work);
  149. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
  150. disable_irq_nosync(irq);
  151. assigned_dev->host_irq_disabled = true;
  152. }
  153. out:
  154. spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
  155. return IRQ_HANDLED;
  156. }
  157. /* Ack the irq line for an assigned device */
  158. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  159. {
  160. struct kvm_assigned_dev_kernel *dev;
  161. unsigned long flags;
  162. if (kian->gsi == -1)
  163. return;
  164. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  165. ack_notifier);
  166. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  167. /* The guest irq may be shared so this ack may be
  168. * from another device.
  169. */
  170. spin_lock_irqsave(&dev->assigned_dev_lock, flags);
  171. if (dev->host_irq_disabled) {
  172. enable_irq(dev->host_irq);
  173. dev->host_irq_disabled = false;
  174. }
  175. spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
  176. }
  177. static void deassign_guest_irq(struct kvm *kvm,
  178. struct kvm_assigned_dev_kernel *assigned_dev)
  179. {
  180. kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
  181. assigned_dev->ack_notifier.gsi = -1;
  182. if (assigned_dev->irq_source_id != -1)
  183. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  184. assigned_dev->irq_source_id = -1;
  185. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
  186. }
  187. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  188. static void deassign_host_irq(struct kvm *kvm,
  189. struct kvm_assigned_dev_kernel *assigned_dev)
  190. {
  191. /*
  192. * In kvm_free_device_irq, cancel_work_sync return true if:
  193. * 1. work is scheduled, and then cancelled.
  194. * 2. work callback is executed.
  195. *
  196. * The first one ensured that the irq is disabled and no more events
  197. * would happen. But for the second one, the irq may be enabled (e.g.
  198. * for MSI). So we disable irq here to prevent further events.
  199. *
  200. * Notice this maybe result in nested disable if the interrupt type is
  201. * INTx, but it's OK for we are going to free it.
  202. *
  203. * If this function is a part of VM destroy, please ensure that till
  204. * now, the kvm state is still legal for probably we also have to wait
  205. * interrupt_work done.
  206. */
  207. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  208. int i;
  209. for (i = 0; i < assigned_dev->entries_nr; i++)
  210. disable_irq_nosync(assigned_dev->
  211. host_msix_entries[i].vector);
  212. cancel_work_sync(&assigned_dev->interrupt_work);
  213. for (i = 0; i < assigned_dev->entries_nr; i++)
  214. free_irq(assigned_dev->host_msix_entries[i].vector,
  215. (void *)assigned_dev);
  216. assigned_dev->entries_nr = 0;
  217. kfree(assigned_dev->host_msix_entries);
  218. kfree(assigned_dev->guest_msix_entries);
  219. pci_disable_msix(assigned_dev->dev);
  220. } else {
  221. /* Deal with MSI and INTx */
  222. disable_irq_nosync(assigned_dev->host_irq);
  223. cancel_work_sync(&assigned_dev->interrupt_work);
  224. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  225. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
  226. pci_disable_msi(assigned_dev->dev);
  227. }
  228. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
  229. }
  230. static int kvm_deassign_irq(struct kvm *kvm,
  231. struct kvm_assigned_dev_kernel *assigned_dev,
  232. unsigned long irq_requested_type)
  233. {
  234. unsigned long guest_irq_type, host_irq_type;
  235. if (!irqchip_in_kernel(kvm))
  236. return -EINVAL;
  237. /* no irq assignment to deassign */
  238. if (!assigned_dev->irq_requested_type)
  239. return -ENXIO;
  240. host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
  241. guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
  242. if (host_irq_type)
  243. deassign_host_irq(kvm, assigned_dev);
  244. if (guest_irq_type)
  245. deassign_guest_irq(kvm, assigned_dev);
  246. return 0;
  247. }
  248. static void kvm_free_assigned_irq(struct kvm *kvm,
  249. struct kvm_assigned_dev_kernel *assigned_dev)
  250. {
  251. kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
  252. }
  253. static void kvm_free_assigned_device(struct kvm *kvm,
  254. struct kvm_assigned_dev_kernel
  255. *assigned_dev)
  256. {
  257. kvm_free_assigned_irq(kvm, assigned_dev);
  258. pci_reset_function(assigned_dev->dev);
  259. pci_release_regions(assigned_dev->dev);
  260. pci_disable_device(assigned_dev->dev);
  261. pci_dev_put(assigned_dev->dev);
  262. list_del(&assigned_dev->list);
  263. kfree(assigned_dev);
  264. }
  265. void kvm_free_all_assigned_devices(struct kvm *kvm)
  266. {
  267. struct list_head *ptr, *ptr2;
  268. struct kvm_assigned_dev_kernel *assigned_dev;
  269. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  270. assigned_dev = list_entry(ptr,
  271. struct kvm_assigned_dev_kernel,
  272. list);
  273. kvm_free_assigned_device(kvm, assigned_dev);
  274. }
  275. }
  276. static int assigned_device_enable_host_intx(struct kvm *kvm,
  277. struct kvm_assigned_dev_kernel *dev)
  278. {
  279. dev->host_irq = dev->dev->irq;
  280. /* Even though this is PCI, we don't want to use shared
  281. * interrupts. Sharing host devices with guest-assigned devices
  282. * on the same interrupt line is not a happy situation: there
  283. * are going to be long delays in accepting, acking, etc.
  284. */
  285. if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
  286. 0, "kvm_assigned_intx_device", (void *)dev))
  287. return -EIO;
  288. return 0;
  289. }
  290. #ifdef __KVM_HAVE_MSI
  291. static int assigned_device_enable_host_msi(struct kvm *kvm,
  292. struct kvm_assigned_dev_kernel *dev)
  293. {
  294. int r;
  295. if (!dev->dev->msi_enabled) {
  296. r = pci_enable_msi(dev->dev);
  297. if (r)
  298. return r;
  299. }
  300. dev->host_irq = dev->dev->irq;
  301. if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
  302. "kvm_assigned_msi_device", (void *)dev)) {
  303. pci_disable_msi(dev->dev);
  304. return -EIO;
  305. }
  306. return 0;
  307. }
  308. #endif
  309. #ifdef __KVM_HAVE_MSIX
  310. static int assigned_device_enable_host_msix(struct kvm *kvm,
  311. struct kvm_assigned_dev_kernel *dev)
  312. {
  313. int i, r = -EINVAL;
  314. /* host_msix_entries and guest_msix_entries should have been
  315. * initialized */
  316. if (dev->entries_nr == 0)
  317. return r;
  318. r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
  319. if (r)
  320. return r;
  321. for (i = 0; i < dev->entries_nr; i++) {
  322. r = request_irq(dev->host_msix_entries[i].vector,
  323. kvm_assigned_dev_intr, 0,
  324. "kvm_assigned_msix_device",
  325. (void *)dev);
  326. /* FIXME: free requested_irq's on failure */
  327. if (r)
  328. return r;
  329. }
  330. return 0;
  331. }
  332. #endif
  333. static int assigned_device_enable_guest_intx(struct kvm *kvm,
  334. struct kvm_assigned_dev_kernel *dev,
  335. struct kvm_assigned_irq *irq)
  336. {
  337. dev->guest_irq = irq->guest_irq;
  338. dev->ack_notifier.gsi = irq->guest_irq;
  339. return 0;
  340. }
  341. #ifdef __KVM_HAVE_MSI
  342. static int assigned_device_enable_guest_msi(struct kvm *kvm,
  343. struct kvm_assigned_dev_kernel *dev,
  344. struct kvm_assigned_irq *irq)
  345. {
  346. dev->guest_irq = irq->guest_irq;
  347. dev->ack_notifier.gsi = -1;
  348. dev->host_irq_disabled = false;
  349. return 0;
  350. }
  351. #endif
  352. #ifdef __KVM_HAVE_MSIX
  353. static int assigned_device_enable_guest_msix(struct kvm *kvm,
  354. struct kvm_assigned_dev_kernel *dev,
  355. struct kvm_assigned_irq *irq)
  356. {
  357. dev->guest_irq = irq->guest_irq;
  358. dev->ack_notifier.gsi = -1;
  359. dev->host_irq_disabled = false;
  360. return 0;
  361. }
  362. #endif
  363. static int assign_host_irq(struct kvm *kvm,
  364. struct kvm_assigned_dev_kernel *dev,
  365. __u32 host_irq_type)
  366. {
  367. int r = -EEXIST;
  368. if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
  369. return r;
  370. switch (host_irq_type) {
  371. case KVM_DEV_IRQ_HOST_INTX:
  372. r = assigned_device_enable_host_intx(kvm, dev);
  373. break;
  374. #ifdef __KVM_HAVE_MSI
  375. case KVM_DEV_IRQ_HOST_MSI:
  376. r = assigned_device_enable_host_msi(kvm, dev);
  377. break;
  378. #endif
  379. #ifdef __KVM_HAVE_MSIX
  380. case KVM_DEV_IRQ_HOST_MSIX:
  381. r = assigned_device_enable_host_msix(kvm, dev);
  382. break;
  383. #endif
  384. default:
  385. r = -EINVAL;
  386. }
  387. if (!r)
  388. dev->irq_requested_type |= host_irq_type;
  389. return r;
  390. }
  391. static int assign_guest_irq(struct kvm *kvm,
  392. struct kvm_assigned_dev_kernel *dev,
  393. struct kvm_assigned_irq *irq,
  394. unsigned long guest_irq_type)
  395. {
  396. int id;
  397. int r = -EEXIST;
  398. if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
  399. return r;
  400. id = kvm_request_irq_source_id(kvm);
  401. if (id < 0)
  402. return id;
  403. dev->irq_source_id = id;
  404. switch (guest_irq_type) {
  405. case KVM_DEV_IRQ_GUEST_INTX:
  406. r = assigned_device_enable_guest_intx(kvm, dev, irq);
  407. break;
  408. #ifdef __KVM_HAVE_MSI
  409. case KVM_DEV_IRQ_GUEST_MSI:
  410. r = assigned_device_enable_guest_msi(kvm, dev, irq);
  411. break;
  412. #endif
  413. #ifdef __KVM_HAVE_MSIX
  414. case KVM_DEV_IRQ_GUEST_MSIX:
  415. r = assigned_device_enable_guest_msix(kvm, dev, irq);
  416. break;
  417. #endif
  418. default:
  419. r = -EINVAL;
  420. }
  421. if (!r) {
  422. dev->irq_requested_type |= guest_irq_type;
  423. kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
  424. } else
  425. kvm_free_irq_source_id(kvm, dev->irq_source_id);
  426. return r;
  427. }
  428. /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
  429. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  430. struct kvm_assigned_irq *assigned_irq)
  431. {
  432. int r = -EINVAL;
  433. struct kvm_assigned_dev_kernel *match;
  434. unsigned long host_irq_type, guest_irq_type;
  435. if (!capable(CAP_SYS_RAWIO))
  436. return -EPERM;
  437. if (!irqchip_in_kernel(kvm))
  438. return r;
  439. mutex_lock(&kvm->lock);
  440. r = -ENODEV;
  441. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  442. assigned_irq->assigned_dev_id);
  443. if (!match)
  444. goto out;
  445. host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
  446. guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
  447. r = -EINVAL;
  448. /* can only assign one type at a time */
  449. if (hweight_long(host_irq_type) > 1)
  450. goto out;
  451. if (hweight_long(guest_irq_type) > 1)
  452. goto out;
  453. if (host_irq_type == 0 && guest_irq_type == 0)
  454. goto out;
  455. r = 0;
  456. if (host_irq_type)
  457. r = assign_host_irq(kvm, match, host_irq_type);
  458. if (r)
  459. goto out;
  460. if (guest_irq_type)
  461. r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
  462. out:
  463. mutex_unlock(&kvm->lock);
  464. return r;
  465. }
  466. static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
  467. struct kvm_assigned_irq
  468. *assigned_irq)
  469. {
  470. int r = -ENODEV;
  471. struct kvm_assigned_dev_kernel *match;
  472. mutex_lock(&kvm->lock);
  473. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  474. assigned_irq->assigned_dev_id);
  475. if (!match)
  476. goto out;
  477. r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
  478. out:
  479. mutex_unlock(&kvm->lock);
  480. return r;
  481. }
  482. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  483. struct kvm_assigned_pci_dev *assigned_dev)
  484. {
  485. int r = 0;
  486. struct kvm_assigned_dev_kernel *match;
  487. struct pci_dev *dev;
  488. down_read(&kvm->slots_lock);
  489. mutex_lock(&kvm->lock);
  490. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  491. assigned_dev->assigned_dev_id);
  492. if (match) {
  493. /* device already assigned */
  494. r = -EEXIST;
  495. goto out;
  496. }
  497. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  498. if (match == NULL) {
  499. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  500. __func__);
  501. r = -ENOMEM;
  502. goto out;
  503. }
  504. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  505. assigned_dev->devfn);
  506. if (!dev) {
  507. printk(KERN_INFO "%s: host device not found\n", __func__);
  508. r = -EINVAL;
  509. goto out_free;
  510. }
  511. if (pci_enable_device(dev)) {
  512. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  513. r = -EBUSY;
  514. goto out_put;
  515. }
  516. r = pci_request_regions(dev, "kvm_assigned_device");
  517. if (r) {
  518. printk(KERN_INFO "%s: Could not get access to device regions\n",
  519. __func__);
  520. goto out_disable;
  521. }
  522. pci_reset_function(dev);
  523. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  524. match->host_busnr = assigned_dev->busnr;
  525. match->host_devfn = assigned_dev->devfn;
  526. match->flags = assigned_dev->flags;
  527. match->dev = dev;
  528. spin_lock_init(&match->assigned_dev_lock);
  529. match->irq_source_id = -1;
  530. match->kvm = kvm;
  531. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  532. INIT_WORK(&match->interrupt_work,
  533. kvm_assigned_dev_interrupt_work_handler);
  534. list_add(&match->list, &kvm->arch.assigned_dev_head);
  535. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  536. if (!kvm->arch.iommu_domain) {
  537. r = kvm_iommu_map_guest(kvm);
  538. if (r)
  539. goto out_list_del;
  540. }
  541. r = kvm_assign_device(kvm, match);
  542. if (r)
  543. goto out_list_del;
  544. }
  545. out:
  546. mutex_unlock(&kvm->lock);
  547. up_read(&kvm->slots_lock);
  548. return r;
  549. out_list_del:
  550. list_del(&match->list);
  551. pci_release_regions(dev);
  552. out_disable:
  553. pci_disable_device(dev);
  554. out_put:
  555. pci_dev_put(dev);
  556. out_free:
  557. kfree(match);
  558. mutex_unlock(&kvm->lock);
  559. up_read(&kvm->slots_lock);
  560. return r;
  561. }
  562. #endif
  563. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  564. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  565. struct kvm_assigned_pci_dev *assigned_dev)
  566. {
  567. int r = 0;
  568. struct kvm_assigned_dev_kernel *match;
  569. mutex_lock(&kvm->lock);
  570. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  571. assigned_dev->assigned_dev_id);
  572. if (!match) {
  573. printk(KERN_INFO "%s: device hasn't been assigned before, "
  574. "so cannot be deassigned\n", __func__);
  575. r = -EINVAL;
  576. goto out;
  577. }
  578. if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  579. kvm_deassign_device(kvm, match);
  580. kvm_free_assigned_device(kvm, match);
  581. out:
  582. mutex_unlock(&kvm->lock);
  583. return r;
  584. }
  585. #endif
  586. inline int kvm_is_mmio_pfn(pfn_t pfn)
  587. {
  588. if (pfn_valid(pfn)) {
  589. struct page *page = compound_head(pfn_to_page(pfn));
  590. return PageReserved(page);
  591. }
  592. return true;
  593. }
  594. /*
  595. * Switches to specified vcpu, until a matching vcpu_put()
  596. */
  597. void vcpu_load(struct kvm_vcpu *vcpu)
  598. {
  599. int cpu;
  600. mutex_lock(&vcpu->mutex);
  601. cpu = get_cpu();
  602. preempt_notifier_register(&vcpu->preempt_notifier);
  603. kvm_arch_vcpu_load(vcpu, cpu);
  604. put_cpu();
  605. }
  606. void vcpu_put(struct kvm_vcpu *vcpu)
  607. {
  608. preempt_disable();
  609. kvm_arch_vcpu_put(vcpu);
  610. preempt_notifier_unregister(&vcpu->preempt_notifier);
  611. preempt_enable();
  612. mutex_unlock(&vcpu->mutex);
  613. }
  614. static void ack_flush(void *_completed)
  615. {
  616. }
  617. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  618. {
  619. int i, cpu, me;
  620. cpumask_var_t cpus;
  621. bool called = true;
  622. struct kvm_vcpu *vcpu;
  623. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  624. spin_lock(&kvm->requests_lock);
  625. me = smp_processor_id();
  626. kvm_for_each_vcpu(i, vcpu, kvm) {
  627. if (test_and_set_bit(req, &vcpu->requests))
  628. continue;
  629. cpu = vcpu->cpu;
  630. if (cpus != NULL && cpu != -1 && cpu != me)
  631. cpumask_set_cpu(cpu, cpus);
  632. }
  633. if (unlikely(cpus == NULL))
  634. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  635. else if (!cpumask_empty(cpus))
  636. smp_call_function_many(cpus, ack_flush, NULL, 1);
  637. else
  638. called = false;
  639. spin_unlock(&kvm->requests_lock);
  640. free_cpumask_var(cpus);
  641. return called;
  642. }
  643. void kvm_flush_remote_tlbs(struct kvm *kvm)
  644. {
  645. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  646. ++kvm->stat.remote_tlb_flush;
  647. }
  648. void kvm_reload_remote_mmus(struct kvm *kvm)
  649. {
  650. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  651. }
  652. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  653. {
  654. struct page *page;
  655. int r;
  656. mutex_init(&vcpu->mutex);
  657. vcpu->cpu = -1;
  658. vcpu->kvm = kvm;
  659. vcpu->vcpu_id = id;
  660. init_waitqueue_head(&vcpu->wq);
  661. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  662. if (!page) {
  663. r = -ENOMEM;
  664. goto fail;
  665. }
  666. vcpu->run = page_address(page);
  667. r = kvm_arch_vcpu_init(vcpu);
  668. if (r < 0)
  669. goto fail_free_run;
  670. return 0;
  671. fail_free_run:
  672. free_page((unsigned long)vcpu->run);
  673. fail:
  674. return r;
  675. }
  676. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  677. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  678. {
  679. kvm_arch_vcpu_uninit(vcpu);
  680. free_page((unsigned long)vcpu->run);
  681. }
  682. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  683. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  684. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  685. {
  686. return container_of(mn, struct kvm, mmu_notifier);
  687. }
  688. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  689. struct mm_struct *mm,
  690. unsigned long address)
  691. {
  692. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  693. int need_tlb_flush;
  694. /*
  695. * When ->invalidate_page runs, the linux pte has been zapped
  696. * already but the page is still allocated until
  697. * ->invalidate_page returns. So if we increase the sequence
  698. * here the kvm page fault will notice if the spte can't be
  699. * established because the page is going to be freed. If
  700. * instead the kvm page fault establishes the spte before
  701. * ->invalidate_page runs, kvm_unmap_hva will release it
  702. * before returning.
  703. *
  704. * The sequence increase only need to be seen at spin_unlock
  705. * time, and not at spin_lock time.
  706. *
  707. * Increasing the sequence after the spin_unlock would be
  708. * unsafe because the kvm page fault could then establish the
  709. * pte after kvm_unmap_hva returned, without noticing the page
  710. * is going to be freed.
  711. */
  712. spin_lock(&kvm->mmu_lock);
  713. kvm->mmu_notifier_seq++;
  714. need_tlb_flush = kvm_unmap_hva(kvm, address);
  715. spin_unlock(&kvm->mmu_lock);
  716. /* we've to flush the tlb before the pages can be freed */
  717. if (need_tlb_flush)
  718. kvm_flush_remote_tlbs(kvm);
  719. }
  720. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  721. struct mm_struct *mm,
  722. unsigned long address,
  723. pte_t pte)
  724. {
  725. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  726. spin_lock(&kvm->mmu_lock);
  727. kvm->mmu_notifier_seq++;
  728. kvm_set_spte_hva(kvm, address, pte);
  729. spin_unlock(&kvm->mmu_lock);
  730. }
  731. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  732. struct mm_struct *mm,
  733. unsigned long start,
  734. unsigned long end)
  735. {
  736. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  737. int need_tlb_flush = 0;
  738. spin_lock(&kvm->mmu_lock);
  739. /*
  740. * The count increase must become visible at unlock time as no
  741. * spte can be established without taking the mmu_lock and
  742. * count is also read inside the mmu_lock critical section.
  743. */
  744. kvm->mmu_notifier_count++;
  745. for (; start < end; start += PAGE_SIZE)
  746. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  747. spin_unlock(&kvm->mmu_lock);
  748. /* we've to flush the tlb before the pages can be freed */
  749. if (need_tlb_flush)
  750. kvm_flush_remote_tlbs(kvm);
  751. }
  752. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  753. struct mm_struct *mm,
  754. unsigned long start,
  755. unsigned long end)
  756. {
  757. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  758. spin_lock(&kvm->mmu_lock);
  759. /*
  760. * This sequence increase will notify the kvm page fault that
  761. * the page that is going to be mapped in the spte could have
  762. * been freed.
  763. */
  764. kvm->mmu_notifier_seq++;
  765. /*
  766. * The above sequence increase must be visible before the
  767. * below count decrease but both values are read by the kvm
  768. * page fault under mmu_lock spinlock so we don't need to add
  769. * a smb_wmb() here in between the two.
  770. */
  771. kvm->mmu_notifier_count--;
  772. spin_unlock(&kvm->mmu_lock);
  773. BUG_ON(kvm->mmu_notifier_count < 0);
  774. }
  775. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  776. struct mm_struct *mm,
  777. unsigned long address)
  778. {
  779. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  780. int young;
  781. spin_lock(&kvm->mmu_lock);
  782. young = kvm_age_hva(kvm, address);
  783. spin_unlock(&kvm->mmu_lock);
  784. if (young)
  785. kvm_flush_remote_tlbs(kvm);
  786. return young;
  787. }
  788. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  789. struct mm_struct *mm)
  790. {
  791. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  792. kvm_arch_flush_shadow(kvm);
  793. }
  794. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  795. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  796. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  797. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  798. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  799. .change_pte = kvm_mmu_notifier_change_pte,
  800. .release = kvm_mmu_notifier_release,
  801. };
  802. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  803. static struct kvm *kvm_create_vm(void)
  804. {
  805. struct kvm *kvm = kvm_arch_create_vm();
  806. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  807. struct page *page;
  808. #endif
  809. if (IS_ERR(kvm))
  810. goto out;
  811. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  812. INIT_LIST_HEAD(&kvm->irq_routing);
  813. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  814. #endif
  815. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  816. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  817. if (!page) {
  818. kfree(kvm);
  819. return ERR_PTR(-ENOMEM);
  820. }
  821. kvm->coalesced_mmio_ring =
  822. (struct kvm_coalesced_mmio_ring *)page_address(page);
  823. #endif
  824. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  825. {
  826. int err;
  827. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  828. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  829. if (err) {
  830. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  831. put_page(page);
  832. #endif
  833. kfree(kvm);
  834. return ERR_PTR(err);
  835. }
  836. }
  837. #endif
  838. kvm->mm = current->mm;
  839. atomic_inc(&kvm->mm->mm_count);
  840. spin_lock_init(&kvm->mmu_lock);
  841. spin_lock_init(&kvm->requests_lock);
  842. kvm_io_bus_init(&kvm->pio_bus);
  843. kvm_eventfd_init(kvm);
  844. mutex_init(&kvm->lock);
  845. mutex_init(&kvm->irq_lock);
  846. kvm_io_bus_init(&kvm->mmio_bus);
  847. init_rwsem(&kvm->slots_lock);
  848. atomic_set(&kvm->users_count, 1);
  849. spin_lock(&kvm_lock);
  850. list_add(&kvm->vm_list, &vm_list);
  851. spin_unlock(&kvm_lock);
  852. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  853. kvm_coalesced_mmio_init(kvm);
  854. #endif
  855. out:
  856. return kvm;
  857. }
  858. /*
  859. * Free any memory in @free but not in @dont.
  860. */
  861. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  862. struct kvm_memory_slot *dont)
  863. {
  864. int i;
  865. if (!dont || free->rmap != dont->rmap)
  866. vfree(free->rmap);
  867. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  868. vfree(free->dirty_bitmap);
  869. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  870. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  871. vfree(free->lpage_info[i]);
  872. free->lpage_info[i] = NULL;
  873. }
  874. }
  875. free->npages = 0;
  876. free->dirty_bitmap = NULL;
  877. free->rmap = NULL;
  878. }
  879. void kvm_free_physmem(struct kvm *kvm)
  880. {
  881. int i;
  882. for (i = 0; i < kvm->nmemslots; ++i)
  883. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  884. }
  885. static void kvm_destroy_vm(struct kvm *kvm)
  886. {
  887. struct mm_struct *mm = kvm->mm;
  888. kvm_arch_sync_events(kvm);
  889. spin_lock(&kvm_lock);
  890. list_del(&kvm->vm_list);
  891. spin_unlock(&kvm_lock);
  892. kvm_free_irq_routing(kvm);
  893. kvm_io_bus_destroy(&kvm->pio_bus);
  894. kvm_io_bus_destroy(&kvm->mmio_bus);
  895. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  896. if (kvm->coalesced_mmio_ring != NULL)
  897. free_page((unsigned long)kvm->coalesced_mmio_ring);
  898. #endif
  899. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  900. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  901. #else
  902. kvm_arch_flush_shadow(kvm);
  903. #endif
  904. kvm_arch_destroy_vm(kvm);
  905. mmdrop(mm);
  906. }
  907. void kvm_get_kvm(struct kvm *kvm)
  908. {
  909. atomic_inc(&kvm->users_count);
  910. }
  911. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  912. void kvm_put_kvm(struct kvm *kvm)
  913. {
  914. if (atomic_dec_and_test(&kvm->users_count))
  915. kvm_destroy_vm(kvm);
  916. }
  917. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  918. static int kvm_vm_release(struct inode *inode, struct file *filp)
  919. {
  920. struct kvm *kvm = filp->private_data;
  921. kvm_irqfd_release(kvm);
  922. kvm_put_kvm(kvm);
  923. return 0;
  924. }
  925. /*
  926. * Allocate some memory and give it an address in the guest physical address
  927. * space.
  928. *
  929. * Discontiguous memory is allowed, mostly for framebuffers.
  930. *
  931. * Must be called holding mmap_sem for write.
  932. */
  933. int __kvm_set_memory_region(struct kvm *kvm,
  934. struct kvm_userspace_memory_region *mem,
  935. int user_alloc)
  936. {
  937. int r;
  938. gfn_t base_gfn;
  939. unsigned long npages;
  940. unsigned long i;
  941. struct kvm_memory_slot *memslot;
  942. struct kvm_memory_slot old, new;
  943. r = -EINVAL;
  944. /* General sanity checks */
  945. if (mem->memory_size & (PAGE_SIZE - 1))
  946. goto out;
  947. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  948. goto out;
  949. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  950. goto out;
  951. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  952. goto out;
  953. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  954. goto out;
  955. memslot = &kvm->memslots[mem->slot];
  956. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  957. npages = mem->memory_size >> PAGE_SHIFT;
  958. if (!npages)
  959. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  960. new = old = *memslot;
  961. new.base_gfn = base_gfn;
  962. new.npages = npages;
  963. new.flags = mem->flags;
  964. /* Disallow changing a memory slot's size. */
  965. r = -EINVAL;
  966. if (npages && old.npages && npages != old.npages)
  967. goto out_free;
  968. /* Check for overlaps */
  969. r = -EEXIST;
  970. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  971. struct kvm_memory_slot *s = &kvm->memslots[i];
  972. if (s == memslot || !s->npages)
  973. continue;
  974. if (!((base_gfn + npages <= s->base_gfn) ||
  975. (base_gfn >= s->base_gfn + s->npages)))
  976. goto out_free;
  977. }
  978. /* Free page dirty bitmap if unneeded */
  979. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  980. new.dirty_bitmap = NULL;
  981. r = -ENOMEM;
  982. /* Allocate if a slot is being created */
  983. #ifndef CONFIG_S390
  984. if (npages && !new.rmap) {
  985. new.rmap = vmalloc(npages * sizeof(struct page *));
  986. if (!new.rmap)
  987. goto out_free;
  988. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  989. new.user_alloc = user_alloc;
  990. /*
  991. * hva_to_rmmap() serialzies with the mmu_lock and to be
  992. * safe it has to ignore memslots with !user_alloc &&
  993. * !userspace_addr.
  994. */
  995. if (user_alloc)
  996. new.userspace_addr = mem->userspace_addr;
  997. else
  998. new.userspace_addr = 0;
  999. }
  1000. if (!npages)
  1001. goto skip_lpage;
  1002. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  1003. unsigned long ugfn;
  1004. unsigned long j;
  1005. int lpages;
  1006. int level = i + 2;
  1007. /* Avoid unused variable warning if no large pages */
  1008. (void)level;
  1009. if (new.lpage_info[i])
  1010. continue;
  1011. lpages = 1 + (base_gfn + npages - 1) /
  1012. KVM_PAGES_PER_HPAGE(level);
  1013. lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
  1014. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  1015. if (!new.lpage_info[i])
  1016. goto out_free;
  1017. memset(new.lpage_info[i], 0,
  1018. lpages * sizeof(*new.lpage_info[i]));
  1019. if (base_gfn % KVM_PAGES_PER_HPAGE(level))
  1020. new.lpage_info[i][0].write_count = 1;
  1021. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
  1022. new.lpage_info[i][lpages - 1].write_count = 1;
  1023. ugfn = new.userspace_addr >> PAGE_SHIFT;
  1024. /*
  1025. * If the gfn and userspace address are not aligned wrt each
  1026. * other, or if explicitly asked to, disable large page
  1027. * support for this slot
  1028. */
  1029. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  1030. !largepages_enabled)
  1031. for (j = 0; j < lpages; ++j)
  1032. new.lpage_info[i][j].write_count = 1;
  1033. }
  1034. skip_lpage:
  1035. /* Allocate page dirty bitmap if needed */
  1036. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  1037. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  1038. new.dirty_bitmap = vmalloc(dirty_bytes);
  1039. if (!new.dirty_bitmap)
  1040. goto out_free;
  1041. memset(new.dirty_bitmap, 0, dirty_bytes);
  1042. if (old.npages)
  1043. kvm_arch_flush_shadow(kvm);
  1044. }
  1045. #else /* not defined CONFIG_S390 */
  1046. new.user_alloc = user_alloc;
  1047. if (user_alloc)
  1048. new.userspace_addr = mem->userspace_addr;
  1049. #endif /* not defined CONFIG_S390 */
  1050. if (!npages)
  1051. kvm_arch_flush_shadow(kvm);
  1052. spin_lock(&kvm->mmu_lock);
  1053. if (mem->slot >= kvm->nmemslots)
  1054. kvm->nmemslots = mem->slot + 1;
  1055. *memslot = new;
  1056. spin_unlock(&kvm->mmu_lock);
  1057. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  1058. if (r) {
  1059. spin_lock(&kvm->mmu_lock);
  1060. *memslot = old;
  1061. spin_unlock(&kvm->mmu_lock);
  1062. goto out_free;
  1063. }
  1064. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  1065. /* Slot deletion case: we have to update the current slot */
  1066. spin_lock(&kvm->mmu_lock);
  1067. if (!npages)
  1068. *memslot = old;
  1069. spin_unlock(&kvm->mmu_lock);
  1070. #ifdef CONFIG_DMAR
  1071. /* map the pages in iommu page table */
  1072. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  1073. if (r)
  1074. goto out;
  1075. #endif
  1076. return 0;
  1077. out_free:
  1078. kvm_free_physmem_slot(&new, &old);
  1079. out:
  1080. return r;
  1081. }
  1082. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  1083. int kvm_set_memory_region(struct kvm *kvm,
  1084. struct kvm_userspace_memory_region *mem,
  1085. int user_alloc)
  1086. {
  1087. int r;
  1088. down_write(&kvm->slots_lock);
  1089. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  1090. up_write(&kvm->slots_lock);
  1091. return r;
  1092. }
  1093. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  1094. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  1095. struct
  1096. kvm_userspace_memory_region *mem,
  1097. int user_alloc)
  1098. {
  1099. if (mem->slot >= KVM_MEMORY_SLOTS)
  1100. return -EINVAL;
  1101. return kvm_set_memory_region(kvm, mem, user_alloc);
  1102. }
  1103. int kvm_get_dirty_log(struct kvm *kvm,
  1104. struct kvm_dirty_log *log, int *is_dirty)
  1105. {
  1106. struct kvm_memory_slot *memslot;
  1107. int r, i;
  1108. int n;
  1109. unsigned long any = 0;
  1110. r = -EINVAL;
  1111. if (log->slot >= KVM_MEMORY_SLOTS)
  1112. goto out;
  1113. memslot = &kvm->memslots[log->slot];
  1114. r = -ENOENT;
  1115. if (!memslot->dirty_bitmap)
  1116. goto out;
  1117. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1118. for (i = 0; !any && i < n/sizeof(long); ++i)
  1119. any = memslot->dirty_bitmap[i];
  1120. r = -EFAULT;
  1121. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1122. goto out;
  1123. if (any)
  1124. *is_dirty = 1;
  1125. r = 0;
  1126. out:
  1127. return r;
  1128. }
  1129. void kvm_disable_largepages(void)
  1130. {
  1131. largepages_enabled = false;
  1132. }
  1133. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  1134. int is_error_page(struct page *page)
  1135. {
  1136. return page == bad_page;
  1137. }
  1138. EXPORT_SYMBOL_GPL(is_error_page);
  1139. int is_error_pfn(pfn_t pfn)
  1140. {
  1141. return pfn == bad_pfn;
  1142. }
  1143. EXPORT_SYMBOL_GPL(is_error_pfn);
  1144. static inline unsigned long bad_hva(void)
  1145. {
  1146. return PAGE_OFFSET;
  1147. }
  1148. int kvm_is_error_hva(unsigned long addr)
  1149. {
  1150. return addr == bad_hva();
  1151. }
  1152. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1153. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1154. {
  1155. int i;
  1156. for (i = 0; i < kvm->nmemslots; ++i) {
  1157. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1158. if (gfn >= memslot->base_gfn
  1159. && gfn < memslot->base_gfn + memslot->npages)
  1160. return memslot;
  1161. }
  1162. return NULL;
  1163. }
  1164. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1165. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1166. {
  1167. gfn = unalias_gfn(kvm, gfn);
  1168. return gfn_to_memslot_unaliased(kvm, gfn);
  1169. }
  1170. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1171. {
  1172. int i;
  1173. gfn = unalias_gfn(kvm, gfn);
  1174. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1175. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1176. if (gfn >= memslot->base_gfn
  1177. && gfn < memslot->base_gfn + memslot->npages)
  1178. return 1;
  1179. }
  1180. return 0;
  1181. }
  1182. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1183. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1184. {
  1185. struct kvm_memory_slot *slot;
  1186. gfn = unalias_gfn(kvm, gfn);
  1187. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1188. if (!slot)
  1189. return bad_hva();
  1190. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1191. }
  1192. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1193. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1194. {
  1195. struct page *page[1];
  1196. unsigned long addr;
  1197. int npages;
  1198. pfn_t pfn;
  1199. might_sleep();
  1200. addr = gfn_to_hva(kvm, gfn);
  1201. if (kvm_is_error_hva(addr)) {
  1202. get_page(bad_page);
  1203. return page_to_pfn(bad_page);
  1204. }
  1205. npages = get_user_pages_fast(addr, 1, 1, page);
  1206. if (unlikely(npages != 1)) {
  1207. struct vm_area_struct *vma;
  1208. down_read(&current->mm->mmap_sem);
  1209. vma = find_vma(current->mm, addr);
  1210. if (vma == NULL || addr < vma->vm_start ||
  1211. !(vma->vm_flags & VM_PFNMAP)) {
  1212. up_read(&current->mm->mmap_sem);
  1213. get_page(bad_page);
  1214. return page_to_pfn(bad_page);
  1215. }
  1216. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1217. up_read(&current->mm->mmap_sem);
  1218. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1219. } else
  1220. pfn = page_to_pfn(page[0]);
  1221. return pfn;
  1222. }
  1223. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1224. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1225. {
  1226. pfn_t pfn;
  1227. pfn = gfn_to_pfn(kvm, gfn);
  1228. if (!kvm_is_mmio_pfn(pfn))
  1229. return pfn_to_page(pfn);
  1230. WARN_ON(kvm_is_mmio_pfn(pfn));
  1231. get_page(bad_page);
  1232. return bad_page;
  1233. }
  1234. EXPORT_SYMBOL_GPL(gfn_to_page);
  1235. void kvm_release_page_clean(struct page *page)
  1236. {
  1237. kvm_release_pfn_clean(page_to_pfn(page));
  1238. }
  1239. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1240. void kvm_release_pfn_clean(pfn_t pfn)
  1241. {
  1242. if (!kvm_is_mmio_pfn(pfn))
  1243. put_page(pfn_to_page(pfn));
  1244. }
  1245. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1246. void kvm_release_page_dirty(struct page *page)
  1247. {
  1248. kvm_release_pfn_dirty(page_to_pfn(page));
  1249. }
  1250. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1251. void kvm_release_pfn_dirty(pfn_t pfn)
  1252. {
  1253. kvm_set_pfn_dirty(pfn);
  1254. kvm_release_pfn_clean(pfn);
  1255. }
  1256. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1257. void kvm_set_page_dirty(struct page *page)
  1258. {
  1259. kvm_set_pfn_dirty(page_to_pfn(page));
  1260. }
  1261. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1262. void kvm_set_pfn_dirty(pfn_t pfn)
  1263. {
  1264. if (!kvm_is_mmio_pfn(pfn)) {
  1265. struct page *page = pfn_to_page(pfn);
  1266. if (!PageReserved(page))
  1267. SetPageDirty(page);
  1268. }
  1269. }
  1270. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1271. void kvm_set_pfn_accessed(pfn_t pfn)
  1272. {
  1273. if (!kvm_is_mmio_pfn(pfn))
  1274. mark_page_accessed(pfn_to_page(pfn));
  1275. }
  1276. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1277. void kvm_get_pfn(pfn_t pfn)
  1278. {
  1279. if (!kvm_is_mmio_pfn(pfn))
  1280. get_page(pfn_to_page(pfn));
  1281. }
  1282. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1283. static int next_segment(unsigned long len, int offset)
  1284. {
  1285. if (len > PAGE_SIZE - offset)
  1286. return PAGE_SIZE - offset;
  1287. else
  1288. return len;
  1289. }
  1290. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1291. int len)
  1292. {
  1293. int r;
  1294. unsigned long addr;
  1295. addr = gfn_to_hva(kvm, gfn);
  1296. if (kvm_is_error_hva(addr))
  1297. return -EFAULT;
  1298. r = copy_from_user(data, (void __user *)addr + offset, len);
  1299. if (r)
  1300. return -EFAULT;
  1301. return 0;
  1302. }
  1303. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1304. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1305. {
  1306. gfn_t gfn = gpa >> PAGE_SHIFT;
  1307. int seg;
  1308. int offset = offset_in_page(gpa);
  1309. int ret;
  1310. while ((seg = next_segment(len, offset)) != 0) {
  1311. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1312. if (ret < 0)
  1313. return ret;
  1314. offset = 0;
  1315. len -= seg;
  1316. data += seg;
  1317. ++gfn;
  1318. }
  1319. return 0;
  1320. }
  1321. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1322. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1323. unsigned long len)
  1324. {
  1325. int r;
  1326. unsigned long addr;
  1327. gfn_t gfn = gpa >> PAGE_SHIFT;
  1328. int offset = offset_in_page(gpa);
  1329. addr = gfn_to_hva(kvm, gfn);
  1330. if (kvm_is_error_hva(addr))
  1331. return -EFAULT;
  1332. pagefault_disable();
  1333. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1334. pagefault_enable();
  1335. if (r)
  1336. return -EFAULT;
  1337. return 0;
  1338. }
  1339. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1340. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1341. int offset, int len)
  1342. {
  1343. int r;
  1344. unsigned long addr;
  1345. addr = gfn_to_hva(kvm, gfn);
  1346. if (kvm_is_error_hva(addr))
  1347. return -EFAULT;
  1348. r = copy_to_user((void __user *)addr + offset, data, len);
  1349. if (r)
  1350. return -EFAULT;
  1351. mark_page_dirty(kvm, gfn);
  1352. return 0;
  1353. }
  1354. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1355. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1356. unsigned long len)
  1357. {
  1358. gfn_t gfn = gpa >> PAGE_SHIFT;
  1359. int seg;
  1360. int offset = offset_in_page(gpa);
  1361. int ret;
  1362. while ((seg = next_segment(len, offset)) != 0) {
  1363. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1364. if (ret < 0)
  1365. return ret;
  1366. offset = 0;
  1367. len -= seg;
  1368. data += seg;
  1369. ++gfn;
  1370. }
  1371. return 0;
  1372. }
  1373. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1374. {
  1375. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1376. }
  1377. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1378. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1379. {
  1380. gfn_t gfn = gpa >> PAGE_SHIFT;
  1381. int seg;
  1382. int offset = offset_in_page(gpa);
  1383. int ret;
  1384. while ((seg = next_segment(len, offset)) != 0) {
  1385. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1386. if (ret < 0)
  1387. return ret;
  1388. offset = 0;
  1389. len -= seg;
  1390. ++gfn;
  1391. }
  1392. return 0;
  1393. }
  1394. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1395. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1396. {
  1397. struct kvm_memory_slot *memslot;
  1398. gfn = unalias_gfn(kvm, gfn);
  1399. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1400. if (memslot && memslot->dirty_bitmap) {
  1401. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1402. /* avoid RMW */
  1403. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1404. set_bit(rel_gfn, memslot->dirty_bitmap);
  1405. }
  1406. }
  1407. /*
  1408. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1409. */
  1410. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1411. {
  1412. DEFINE_WAIT(wait);
  1413. for (;;) {
  1414. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1415. if (kvm_arch_vcpu_runnable(vcpu)) {
  1416. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1417. break;
  1418. }
  1419. if (kvm_cpu_has_pending_timer(vcpu))
  1420. break;
  1421. if (signal_pending(current))
  1422. break;
  1423. vcpu_put(vcpu);
  1424. schedule();
  1425. vcpu_load(vcpu);
  1426. }
  1427. finish_wait(&vcpu->wq, &wait);
  1428. }
  1429. void kvm_resched(struct kvm_vcpu *vcpu)
  1430. {
  1431. if (!need_resched())
  1432. return;
  1433. cond_resched();
  1434. }
  1435. EXPORT_SYMBOL_GPL(kvm_resched);
  1436. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1437. {
  1438. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1439. struct page *page;
  1440. if (vmf->pgoff == 0)
  1441. page = virt_to_page(vcpu->run);
  1442. #ifdef CONFIG_X86
  1443. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1444. page = virt_to_page(vcpu->arch.pio_data);
  1445. #endif
  1446. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1447. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1448. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1449. #endif
  1450. else
  1451. return VM_FAULT_SIGBUS;
  1452. get_page(page);
  1453. vmf->page = page;
  1454. return 0;
  1455. }
  1456. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1457. .fault = kvm_vcpu_fault,
  1458. };
  1459. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1460. {
  1461. vma->vm_ops = &kvm_vcpu_vm_ops;
  1462. return 0;
  1463. }
  1464. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1465. {
  1466. struct kvm_vcpu *vcpu = filp->private_data;
  1467. kvm_put_kvm(vcpu->kvm);
  1468. return 0;
  1469. }
  1470. static struct file_operations kvm_vcpu_fops = {
  1471. .release = kvm_vcpu_release,
  1472. .unlocked_ioctl = kvm_vcpu_ioctl,
  1473. .compat_ioctl = kvm_vcpu_ioctl,
  1474. .mmap = kvm_vcpu_mmap,
  1475. };
  1476. /*
  1477. * Allocates an inode for the vcpu.
  1478. */
  1479. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1480. {
  1481. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1482. }
  1483. /*
  1484. * Creates some virtual cpus. Good luck creating more than one.
  1485. */
  1486. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1487. {
  1488. int r;
  1489. struct kvm_vcpu *vcpu, *v;
  1490. vcpu = kvm_arch_vcpu_create(kvm, id);
  1491. if (IS_ERR(vcpu))
  1492. return PTR_ERR(vcpu);
  1493. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1494. r = kvm_arch_vcpu_setup(vcpu);
  1495. if (r)
  1496. return r;
  1497. mutex_lock(&kvm->lock);
  1498. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1499. r = -EINVAL;
  1500. goto vcpu_destroy;
  1501. }
  1502. kvm_for_each_vcpu(r, v, kvm)
  1503. if (v->vcpu_id == id) {
  1504. r = -EEXIST;
  1505. goto vcpu_destroy;
  1506. }
  1507. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1508. /* Now it's all set up, let userspace reach it */
  1509. kvm_get_kvm(kvm);
  1510. r = create_vcpu_fd(vcpu);
  1511. if (r < 0) {
  1512. kvm_put_kvm(kvm);
  1513. goto vcpu_destroy;
  1514. }
  1515. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1516. smp_wmb();
  1517. atomic_inc(&kvm->online_vcpus);
  1518. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1519. if (kvm->bsp_vcpu_id == id)
  1520. kvm->bsp_vcpu = vcpu;
  1521. #endif
  1522. mutex_unlock(&kvm->lock);
  1523. return r;
  1524. vcpu_destroy:
  1525. mutex_unlock(&kvm->lock);
  1526. kvm_arch_vcpu_destroy(vcpu);
  1527. return r;
  1528. }
  1529. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1530. {
  1531. if (sigset) {
  1532. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1533. vcpu->sigset_active = 1;
  1534. vcpu->sigset = *sigset;
  1535. } else
  1536. vcpu->sigset_active = 0;
  1537. return 0;
  1538. }
  1539. #ifdef __KVM_HAVE_MSIX
  1540. static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
  1541. struct kvm_assigned_msix_nr *entry_nr)
  1542. {
  1543. int r = 0;
  1544. struct kvm_assigned_dev_kernel *adev;
  1545. mutex_lock(&kvm->lock);
  1546. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1547. entry_nr->assigned_dev_id);
  1548. if (!adev) {
  1549. r = -EINVAL;
  1550. goto msix_nr_out;
  1551. }
  1552. if (adev->entries_nr == 0) {
  1553. adev->entries_nr = entry_nr->entry_nr;
  1554. if (adev->entries_nr == 0 ||
  1555. adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
  1556. r = -EINVAL;
  1557. goto msix_nr_out;
  1558. }
  1559. adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
  1560. entry_nr->entry_nr,
  1561. GFP_KERNEL);
  1562. if (!adev->host_msix_entries) {
  1563. r = -ENOMEM;
  1564. goto msix_nr_out;
  1565. }
  1566. adev->guest_msix_entries = kzalloc(
  1567. sizeof(struct kvm_guest_msix_entry) *
  1568. entry_nr->entry_nr, GFP_KERNEL);
  1569. if (!adev->guest_msix_entries) {
  1570. kfree(adev->host_msix_entries);
  1571. r = -ENOMEM;
  1572. goto msix_nr_out;
  1573. }
  1574. } else /* Not allowed set MSI-X number twice */
  1575. r = -EINVAL;
  1576. msix_nr_out:
  1577. mutex_unlock(&kvm->lock);
  1578. return r;
  1579. }
  1580. static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
  1581. struct kvm_assigned_msix_entry *entry)
  1582. {
  1583. int r = 0, i;
  1584. struct kvm_assigned_dev_kernel *adev;
  1585. mutex_lock(&kvm->lock);
  1586. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1587. entry->assigned_dev_id);
  1588. if (!adev) {
  1589. r = -EINVAL;
  1590. goto msix_entry_out;
  1591. }
  1592. for (i = 0; i < adev->entries_nr; i++)
  1593. if (adev->guest_msix_entries[i].vector == 0 ||
  1594. adev->guest_msix_entries[i].entry == entry->entry) {
  1595. adev->guest_msix_entries[i].entry = entry->entry;
  1596. adev->guest_msix_entries[i].vector = entry->gsi;
  1597. adev->host_msix_entries[i].entry = entry->entry;
  1598. break;
  1599. }
  1600. if (i == adev->entries_nr) {
  1601. r = -ENOSPC;
  1602. goto msix_entry_out;
  1603. }
  1604. msix_entry_out:
  1605. mutex_unlock(&kvm->lock);
  1606. return r;
  1607. }
  1608. #endif
  1609. static long kvm_vcpu_ioctl(struct file *filp,
  1610. unsigned int ioctl, unsigned long arg)
  1611. {
  1612. struct kvm_vcpu *vcpu = filp->private_data;
  1613. void __user *argp = (void __user *)arg;
  1614. int r;
  1615. struct kvm_fpu *fpu = NULL;
  1616. struct kvm_sregs *kvm_sregs = NULL;
  1617. if (vcpu->kvm->mm != current->mm)
  1618. return -EIO;
  1619. switch (ioctl) {
  1620. case KVM_RUN:
  1621. r = -EINVAL;
  1622. if (arg)
  1623. goto out;
  1624. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1625. break;
  1626. case KVM_GET_REGS: {
  1627. struct kvm_regs *kvm_regs;
  1628. r = -ENOMEM;
  1629. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1630. if (!kvm_regs)
  1631. goto out;
  1632. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1633. if (r)
  1634. goto out_free1;
  1635. r = -EFAULT;
  1636. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1637. goto out_free1;
  1638. r = 0;
  1639. out_free1:
  1640. kfree(kvm_regs);
  1641. break;
  1642. }
  1643. case KVM_SET_REGS: {
  1644. struct kvm_regs *kvm_regs;
  1645. r = -ENOMEM;
  1646. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1647. if (!kvm_regs)
  1648. goto out;
  1649. r = -EFAULT;
  1650. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1651. goto out_free2;
  1652. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1653. if (r)
  1654. goto out_free2;
  1655. r = 0;
  1656. out_free2:
  1657. kfree(kvm_regs);
  1658. break;
  1659. }
  1660. case KVM_GET_SREGS: {
  1661. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1662. r = -ENOMEM;
  1663. if (!kvm_sregs)
  1664. goto out;
  1665. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1666. if (r)
  1667. goto out;
  1668. r = -EFAULT;
  1669. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1670. goto out;
  1671. r = 0;
  1672. break;
  1673. }
  1674. case KVM_SET_SREGS: {
  1675. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1676. r = -ENOMEM;
  1677. if (!kvm_sregs)
  1678. goto out;
  1679. r = -EFAULT;
  1680. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1681. goto out;
  1682. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1683. if (r)
  1684. goto out;
  1685. r = 0;
  1686. break;
  1687. }
  1688. case KVM_GET_MP_STATE: {
  1689. struct kvm_mp_state mp_state;
  1690. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1691. if (r)
  1692. goto out;
  1693. r = -EFAULT;
  1694. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1695. goto out;
  1696. r = 0;
  1697. break;
  1698. }
  1699. case KVM_SET_MP_STATE: {
  1700. struct kvm_mp_state mp_state;
  1701. r = -EFAULT;
  1702. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1703. goto out;
  1704. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1705. if (r)
  1706. goto out;
  1707. r = 0;
  1708. break;
  1709. }
  1710. case KVM_TRANSLATE: {
  1711. struct kvm_translation tr;
  1712. r = -EFAULT;
  1713. if (copy_from_user(&tr, argp, sizeof tr))
  1714. goto out;
  1715. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1716. if (r)
  1717. goto out;
  1718. r = -EFAULT;
  1719. if (copy_to_user(argp, &tr, sizeof tr))
  1720. goto out;
  1721. r = 0;
  1722. break;
  1723. }
  1724. case KVM_SET_GUEST_DEBUG: {
  1725. struct kvm_guest_debug dbg;
  1726. r = -EFAULT;
  1727. if (copy_from_user(&dbg, argp, sizeof dbg))
  1728. goto out;
  1729. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1730. if (r)
  1731. goto out;
  1732. r = 0;
  1733. break;
  1734. }
  1735. case KVM_SET_SIGNAL_MASK: {
  1736. struct kvm_signal_mask __user *sigmask_arg = argp;
  1737. struct kvm_signal_mask kvm_sigmask;
  1738. sigset_t sigset, *p;
  1739. p = NULL;
  1740. if (argp) {
  1741. r = -EFAULT;
  1742. if (copy_from_user(&kvm_sigmask, argp,
  1743. sizeof kvm_sigmask))
  1744. goto out;
  1745. r = -EINVAL;
  1746. if (kvm_sigmask.len != sizeof sigset)
  1747. goto out;
  1748. r = -EFAULT;
  1749. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1750. sizeof sigset))
  1751. goto out;
  1752. p = &sigset;
  1753. }
  1754. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1755. break;
  1756. }
  1757. case KVM_GET_FPU: {
  1758. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1759. r = -ENOMEM;
  1760. if (!fpu)
  1761. goto out;
  1762. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1763. if (r)
  1764. goto out;
  1765. r = -EFAULT;
  1766. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1767. goto out;
  1768. r = 0;
  1769. break;
  1770. }
  1771. case KVM_SET_FPU: {
  1772. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1773. r = -ENOMEM;
  1774. if (!fpu)
  1775. goto out;
  1776. r = -EFAULT;
  1777. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1778. goto out;
  1779. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1780. if (r)
  1781. goto out;
  1782. r = 0;
  1783. break;
  1784. }
  1785. default:
  1786. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1787. }
  1788. out:
  1789. kfree(fpu);
  1790. kfree(kvm_sregs);
  1791. return r;
  1792. }
  1793. static long kvm_vm_ioctl(struct file *filp,
  1794. unsigned int ioctl, unsigned long arg)
  1795. {
  1796. struct kvm *kvm = filp->private_data;
  1797. void __user *argp = (void __user *)arg;
  1798. int r;
  1799. if (kvm->mm != current->mm)
  1800. return -EIO;
  1801. switch (ioctl) {
  1802. case KVM_CREATE_VCPU:
  1803. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1804. if (r < 0)
  1805. goto out;
  1806. break;
  1807. case KVM_SET_USER_MEMORY_REGION: {
  1808. struct kvm_userspace_memory_region kvm_userspace_mem;
  1809. r = -EFAULT;
  1810. if (copy_from_user(&kvm_userspace_mem, argp,
  1811. sizeof kvm_userspace_mem))
  1812. goto out;
  1813. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1814. if (r)
  1815. goto out;
  1816. break;
  1817. }
  1818. case KVM_GET_DIRTY_LOG: {
  1819. struct kvm_dirty_log log;
  1820. r = -EFAULT;
  1821. if (copy_from_user(&log, argp, sizeof log))
  1822. goto out;
  1823. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1824. if (r)
  1825. goto out;
  1826. break;
  1827. }
  1828. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1829. case KVM_REGISTER_COALESCED_MMIO: {
  1830. struct kvm_coalesced_mmio_zone zone;
  1831. r = -EFAULT;
  1832. if (copy_from_user(&zone, argp, sizeof zone))
  1833. goto out;
  1834. r = -ENXIO;
  1835. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1836. if (r)
  1837. goto out;
  1838. r = 0;
  1839. break;
  1840. }
  1841. case KVM_UNREGISTER_COALESCED_MMIO: {
  1842. struct kvm_coalesced_mmio_zone zone;
  1843. r = -EFAULT;
  1844. if (copy_from_user(&zone, argp, sizeof zone))
  1845. goto out;
  1846. r = -ENXIO;
  1847. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1848. if (r)
  1849. goto out;
  1850. r = 0;
  1851. break;
  1852. }
  1853. #endif
  1854. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1855. case KVM_ASSIGN_PCI_DEVICE: {
  1856. struct kvm_assigned_pci_dev assigned_dev;
  1857. r = -EFAULT;
  1858. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1859. goto out;
  1860. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1861. if (r)
  1862. goto out;
  1863. break;
  1864. }
  1865. case KVM_ASSIGN_IRQ: {
  1866. r = -EOPNOTSUPP;
  1867. break;
  1868. }
  1869. #ifdef KVM_CAP_ASSIGN_DEV_IRQ
  1870. case KVM_ASSIGN_DEV_IRQ: {
  1871. struct kvm_assigned_irq assigned_irq;
  1872. r = -EFAULT;
  1873. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1874. goto out;
  1875. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1876. if (r)
  1877. goto out;
  1878. break;
  1879. }
  1880. case KVM_DEASSIGN_DEV_IRQ: {
  1881. struct kvm_assigned_irq assigned_irq;
  1882. r = -EFAULT;
  1883. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1884. goto out;
  1885. r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
  1886. if (r)
  1887. goto out;
  1888. break;
  1889. }
  1890. #endif
  1891. #endif
  1892. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1893. case KVM_DEASSIGN_PCI_DEVICE: {
  1894. struct kvm_assigned_pci_dev assigned_dev;
  1895. r = -EFAULT;
  1896. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1897. goto out;
  1898. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1899. if (r)
  1900. goto out;
  1901. break;
  1902. }
  1903. #endif
  1904. #ifdef KVM_CAP_IRQ_ROUTING
  1905. case KVM_SET_GSI_ROUTING: {
  1906. struct kvm_irq_routing routing;
  1907. struct kvm_irq_routing __user *urouting;
  1908. struct kvm_irq_routing_entry *entries;
  1909. r = -EFAULT;
  1910. if (copy_from_user(&routing, argp, sizeof(routing)))
  1911. goto out;
  1912. r = -EINVAL;
  1913. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1914. goto out;
  1915. if (routing.flags)
  1916. goto out;
  1917. r = -ENOMEM;
  1918. entries = vmalloc(routing.nr * sizeof(*entries));
  1919. if (!entries)
  1920. goto out;
  1921. r = -EFAULT;
  1922. urouting = argp;
  1923. if (copy_from_user(entries, urouting->entries,
  1924. routing.nr * sizeof(*entries)))
  1925. goto out_free_irq_routing;
  1926. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1927. routing.flags);
  1928. out_free_irq_routing:
  1929. vfree(entries);
  1930. break;
  1931. }
  1932. #endif /* KVM_CAP_IRQ_ROUTING */
  1933. #ifdef __KVM_HAVE_MSIX
  1934. case KVM_ASSIGN_SET_MSIX_NR: {
  1935. struct kvm_assigned_msix_nr entry_nr;
  1936. r = -EFAULT;
  1937. if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
  1938. goto out;
  1939. r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
  1940. if (r)
  1941. goto out;
  1942. break;
  1943. }
  1944. case KVM_ASSIGN_SET_MSIX_ENTRY: {
  1945. struct kvm_assigned_msix_entry entry;
  1946. r = -EFAULT;
  1947. if (copy_from_user(&entry, argp, sizeof entry))
  1948. goto out;
  1949. r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
  1950. if (r)
  1951. goto out;
  1952. break;
  1953. }
  1954. #endif
  1955. case KVM_IRQFD: {
  1956. struct kvm_irqfd data;
  1957. r = -EFAULT;
  1958. if (copy_from_user(&data, argp, sizeof data))
  1959. goto out;
  1960. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1961. break;
  1962. }
  1963. case KVM_IOEVENTFD: {
  1964. struct kvm_ioeventfd data;
  1965. r = -EFAULT;
  1966. if (copy_from_user(&data, argp, sizeof data))
  1967. goto out;
  1968. r = kvm_ioeventfd(kvm, &data);
  1969. break;
  1970. }
  1971. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1972. case KVM_SET_BOOT_CPU_ID:
  1973. r = 0;
  1974. mutex_lock(&kvm->lock);
  1975. if (atomic_read(&kvm->online_vcpus) != 0)
  1976. r = -EBUSY;
  1977. else
  1978. kvm->bsp_vcpu_id = arg;
  1979. mutex_unlock(&kvm->lock);
  1980. break;
  1981. #endif
  1982. default:
  1983. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1984. }
  1985. out:
  1986. return r;
  1987. }
  1988. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1989. {
  1990. struct page *page[1];
  1991. unsigned long addr;
  1992. int npages;
  1993. gfn_t gfn = vmf->pgoff;
  1994. struct kvm *kvm = vma->vm_file->private_data;
  1995. addr = gfn_to_hva(kvm, gfn);
  1996. if (kvm_is_error_hva(addr))
  1997. return VM_FAULT_SIGBUS;
  1998. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1999. NULL);
  2000. if (unlikely(npages != 1))
  2001. return VM_FAULT_SIGBUS;
  2002. vmf->page = page[0];
  2003. return 0;
  2004. }
  2005. static const struct vm_operations_struct kvm_vm_vm_ops = {
  2006. .fault = kvm_vm_fault,
  2007. };
  2008. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2009. {
  2010. vma->vm_ops = &kvm_vm_vm_ops;
  2011. return 0;
  2012. }
  2013. static struct file_operations kvm_vm_fops = {
  2014. .release = kvm_vm_release,
  2015. .unlocked_ioctl = kvm_vm_ioctl,
  2016. .compat_ioctl = kvm_vm_ioctl,
  2017. .mmap = kvm_vm_mmap,
  2018. };
  2019. static int kvm_dev_ioctl_create_vm(void)
  2020. {
  2021. int fd;
  2022. struct kvm *kvm;
  2023. kvm = kvm_create_vm();
  2024. if (IS_ERR(kvm))
  2025. return PTR_ERR(kvm);
  2026. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  2027. if (fd < 0)
  2028. kvm_put_kvm(kvm);
  2029. return fd;
  2030. }
  2031. static long kvm_dev_ioctl_check_extension_generic(long arg)
  2032. {
  2033. switch (arg) {
  2034. case KVM_CAP_USER_MEMORY:
  2035. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  2036. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  2037. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  2038. case KVM_CAP_SET_BOOT_CPU_ID:
  2039. #endif
  2040. return 1;
  2041. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  2042. case KVM_CAP_IRQ_ROUTING:
  2043. return KVM_MAX_IRQ_ROUTES;
  2044. #endif
  2045. default:
  2046. break;
  2047. }
  2048. return kvm_dev_ioctl_check_extension(arg);
  2049. }
  2050. static long kvm_dev_ioctl(struct file *filp,
  2051. unsigned int ioctl, unsigned long arg)
  2052. {
  2053. long r = -EINVAL;
  2054. switch (ioctl) {
  2055. case KVM_GET_API_VERSION:
  2056. r = -EINVAL;
  2057. if (arg)
  2058. goto out;
  2059. r = KVM_API_VERSION;
  2060. break;
  2061. case KVM_CREATE_VM:
  2062. r = -EINVAL;
  2063. if (arg)
  2064. goto out;
  2065. r = kvm_dev_ioctl_create_vm();
  2066. break;
  2067. case KVM_CHECK_EXTENSION:
  2068. r = kvm_dev_ioctl_check_extension_generic(arg);
  2069. break;
  2070. case KVM_GET_VCPU_MMAP_SIZE:
  2071. r = -EINVAL;
  2072. if (arg)
  2073. goto out;
  2074. r = PAGE_SIZE; /* struct kvm_run */
  2075. #ifdef CONFIG_X86
  2076. r += PAGE_SIZE; /* pio data page */
  2077. #endif
  2078. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2079. r += PAGE_SIZE; /* coalesced mmio ring page */
  2080. #endif
  2081. break;
  2082. case KVM_TRACE_ENABLE:
  2083. case KVM_TRACE_PAUSE:
  2084. case KVM_TRACE_DISABLE:
  2085. r = -EOPNOTSUPP;
  2086. break;
  2087. default:
  2088. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2089. }
  2090. out:
  2091. return r;
  2092. }
  2093. static struct file_operations kvm_chardev_ops = {
  2094. .unlocked_ioctl = kvm_dev_ioctl,
  2095. .compat_ioctl = kvm_dev_ioctl,
  2096. };
  2097. static struct miscdevice kvm_dev = {
  2098. KVM_MINOR,
  2099. "kvm",
  2100. &kvm_chardev_ops,
  2101. };
  2102. static void hardware_enable(void *junk)
  2103. {
  2104. int cpu = raw_smp_processor_id();
  2105. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2106. return;
  2107. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2108. kvm_arch_hardware_enable(NULL);
  2109. }
  2110. static void hardware_disable(void *junk)
  2111. {
  2112. int cpu = raw_smp_processor_id();
  2113. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2114. return;
  2115. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2116. kvm_arch_hardware_disable(NULL);
  2117. }
  2118. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2119. void *v)
  2120. {
  2121. int cpu = (long)v;
  2122. val &= ~CPU_TASKS_FROZEN;
  2123. switch (val) {
  2124. case CPU_DYING:
  2125. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2126. cpu);
  2127. hardware_disable(NULL);
  2128. break;
  2129. case CPU_UP_CANCELED:
  2130. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2131. cpu);
  2132. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  2133. break;
  2134. case CPU_ONLINE:
  2135. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2136. cpu);
  2137. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  2138. break;
  2139. }
  2140. return NOTIFY_OK;
  2141. }
  2142. asmlinkage void kvm_handle_fault_on_reboot(void)
  2143. {
  2144. if (kvm_rebooting)
  2145. /* spin while reset goes on */
  2146. while (true)
  2147. ;
  2148. /* Fault while not rebooting. We want the trace. */
  2149. BUG();
  2150. }
  2151. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  2152. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2153. void *v)
  2154. {
  2155. /*
  2156. * Some (well, at least mine) BIOSes hang on reboot if
  2157. * in vmx root mode.
  2158. *
  2159. * And Intel TXT required VMX off for all cpu when system shutdown.
  2160. */
  2161. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2162. kvm_rebooting = true;
  2163. on_each_cpu(hardware_disable, NULL, 1);
  2164. return NOTIFY_OK;
  2165. }
  2166. static struct notifier_block kvm_reboot_notifier = {
  2167. .notifier_call = kvm_reboot,
  2168. .priority = 0,
  2169. };
  2170. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2171. {
  2172. memset(bus, 0, sizeof(*bus));
  2173. }
  2174. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2175. {
  2176. int i;
  2177. for (i = 0; i < bus->dev_count; i++) {
  2178. struct kvm_io_device *pos = bus->devs[i];
  2179. kvm_iodevice_destructor(pos);
  2180. }
  2181. }
  2182. /* kvm_io_bus_write - called under kvm->slots_lock */
  2183. int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
  2184. int len, const void *val)
  2185. {
  2186. int i;
  2187. for (i = 0; i < bus->dev_count; i++)
  2188. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  2189. return 0;
  2190. return -EOPNOTSUPP;
  2191. }
  2192. /* kvm_io_bus_read - called under kvm->slots_lock */
  2193. int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
  2194. {
  2195. int i;
  2196. for (i = 0; i < bus->dev_count; i++)
  2197. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  2198. return 0;
  2199. return -EOPNOTSUPP;
  2200. }
  2201. int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
  2202. struct kvm_io_device *dev)
  2203. {
  2204. int ret;
  2205. down_write(&kvm->slots_lock);
  2206. ret = __kvm_io_bus_register_dev(bus, dev);
  2207. up_write(&kvm->slots_lock);
  2208. return ret;
  2209. }
  2210. /* An unlocked version. Caller must have write lock on slots_lock. */
  2211. int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
  2212. struct kvm_io_device *dev)
  2213. {
  2214. if (bus->dev_count > NR_IOBUS_DEVS-1)
  2215. return -ENOSPC;
  2216. bus->devs[bus->dev_count++] = dev;
  2217. return 0;
  2218. }
  2219. void kvm_io_bus_unregister_dev(struct kvm *kvm,
  2220. struct kvm_io_bus *bus,
  2221. struct kvm_io_device *dev)
  2222. {
  2223. down_write(&kvm->slots_lock);
  2224. __kvm_io_bus_unregister_dev(bus, dev);
  2225. up_write(&kvm->slots_lock);
  2226. }
  2227. /* An unlocked version. Caller must have write lock on slots_lock. */
  2228. void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
  2229. struct kvm_io_device *dev)
  2230. {
  2231. int i;
  2232. for (i = 0; i < bus->dev_count; i++)
  2233. if (bus->devs[i] == dev) {
  2234. bus->devs[i] = bus->devs[--bus->dev_count];
  2235. break;
  2236. }
  2237. }
  2238. static struct notifier_block kvm_cpu_notifier = {
  2239. .notifier_call = kvm_cpu_hotplug,
  2240. .priority = 20, /* must be > scheduler priority */
  2241. };
  2242. static int vm_stat_get(void *_offset, u64 *val)
  2243. {
  2244. unsigned offset = (long)_offset;
  2245. struct kvm *kvm;
  2246. *val = 0;
  2247. spin_lock(&kvm_lock);
  2248. list_for_each_entry(kvm, &vm_list, vm_list)
  2249. *val += *(u32 *)((void *)kvm + offset);
  2250. spin_unlock(&kvm_lock);
  2251. return 0;
  2252. }
  2253. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2254. static int vcpu_stat_get(void *_offset, u64 *val)
  2255. {
  2256. unsigned offset = (long)_offset;
  2257. struct kvm *kvm;
  2258. struct kvm_vcpu *vcpu;
  2259. int i;
  2260. *val = 0;
  2261. spin_lock(&kvm_lock);
  2262. list_for_each_entry(kvm, &vm_list, vm_list)
  2263. kvm_for_each_vcpu(i, vcpu, kvm)
  2264. *val += *(u32 *)((void *)vcpu + offset);
  2265. spin_unlock(&kvm_lock);
  2266. return 0;
  2267. }
  2268. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2269. static const struct file_operations *stat_fops[] = {
  2270. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2271. [KVM_STAT_VM] = &vm_stat_fops,
  2272. };
  2273. static void kvm_init_debug(void)
  2274. {
  2275. struct kvm_stats_debugfs_item *p;
  2276. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2277. for (p = debugfs_entries; p->name; ++p)
  2278. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2279. (void *)(long)p->offset,
  2280. stat_fops[p->kind]);
  2281. }
  2282. static void kvm_exit_debug(void)
  2283. {
  2284. struct kvm_stats_debugfs_item *p;
  2285. for (p = debugfs_entries; p->name; ++p)
  2286. debugfs_remove(p->dentry);
  2287. debugfs_remove(kvm_debugfs_dir);
  2288. }
  2289. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2290. {
  2291. hardware_disable(NULL);
  2292. return 0;
  2293. }
  2294. static int kvm_resume(struct sys_device *dev)
  2295. {
  2296. hardware_enable(NULL);
  2297. return 0;
  2298. }
  2299. static struct sysdev_class kvm_sysdev_class = {
  2300. .name = "kvm",
  2301. .suspend = kvm_suspend,
  2302. .resume = kvm_resume,
  2303. };
  2304. static struct sys_device kvm_sysdev = {
  2305. .id = 0,
  2306. .cls = &kvm_sysdev_class,
  2307. };
  2308. struct page *bad_page;
  2309. pfn_t bad_pfn;
  2310. static inline
  2311. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2312. {
  2313. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2314. }
  2315. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2316. {
  2317. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2318. kvm_arch_vcpu_load(vcpu, cpu);
  2319. }
  2320. static void kvm_sched_out(struct preempt_notifier *pn,
  2321. struct task_struct *next)
  2322. {
  2323. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2324. kvm_arch_vcpu_put(vcpu);
  2325. }
  2326. int kvm_init(void *opaque, unsigned int vcpu_size,
  2327. struct module *module)
  2328. {
  2329. int r;
  2330. int cpu;
  2331. r = kvm_arch_init(opaque);
  2332. if (r)
  2333. goto out_fail;
  2334. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2335. if (bad_page == NULL) {
  2336. r = -ENOMEM;
  2337. goto out;
  2338. }
  2339. bad_pfn = page_to_pfn(bad_page);
  2340. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2341. r = -ENOMEM;
  2342. goto out_free_0;
  2343. }
  2344. r = kvm_arch_hardware_setup();
  2345. if (r < 0)
  2346. goto out_free_0a;
  2347. for_each_online_cpu(cpu) {
  2348. smp_call_function_single(cpu,
  2349. kvm_arch_check_processor_compat,
  2350. &r, 1);
  2351. if (r < 0)
  2352. goto out_free_1;
  2353. }
  2354. on_each_cpu(hardware_enable, NULL, 1);
  2355. r = register_cpu_notifier(&kvm_cpu_notifier);
  2356. if (r)
  2357. goto out_free_2;
  2358. register_reboot_notifier(&kvm_reboot_notifier);
  2359. r = sysdev_class_register(&kvm_sysdev_class);
  2360. if (r)
  2361. goto out_free_3;
  2362. r = sysdev_register(&kvm_sysdev);
  2363. if (r)
  2364. goto out_free_4;
  2365. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2366. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2367. __alignof__(struct kvm_vcpu),
  2368. 0, NULL);
  2369. if (!kvm_vcpu_cache) {
  2370. r = -ENOMEM;
  2371. goto out_free_5;
  2372. }
  2373. kvm_chardev_ops.owner = module;
  2374. kvm_vm_fops.owner = module;
  2375. kvm_vcpu_fops.owner = module;
  2376. r = misc_register(&kvm_dev);
  2377. if (r) {
  2378. printk(KERN_ERR "kvm: misc device register failed\n");
  2379. goto out_free;
  2380. }
  2381. kvm_preempt_ops.sched_in = kvm_sched_in;
  2382. kvm_preempt_ops.sched_out = kvm_sched_out;
  2383. kvm_init_debug();
  2384. return 0;
  2385. out_free:
  2386. kmem_cache_destroy(kvm_vcpu_cache);
  2387. out_free_5:
  2388. sysdev_unregister(&kvm_sysdev);
  2389. out_free_4:
  2390. sysdev_class_unregister(&kvm_sysdev_class);
  2391. out_free_3:
  2392. unregister_reboot_notifier(&kvm_reboot_notifier);
  2393. unregister_cpu_notifier(&kvm_cpu_notifier);
  2394. out_free_2:
  2395. on_each_cpu(hardware_disable, NULL, 1);
  2396. out_free_1:
  2397. kvm_arch_hardware_unsetup();
  2398. out_free_0a:
  2399. free_cpumask_var(cpus_hardware_enabled);
  2400. out_free_0:
  2401. __free_page(bad_page);
  2402. out:
  2403. kvm_arch_exit();
  2404. out_fail:
  2405. return r;
  2406. }
  2407. EXPORT_SYMBOL_GPL(kvm_init);
  2408. void kvm_exit(void)
  2409. {
  2410. tracepoint_synchronize_unregister();
  2411. kvm_exit_debug();
  2412. misc_deregister(&kvm_dev);
  2413. kmem_cache_destroy(kvm_vcpu_cache);
  2414. sysdev_unregister(&kvm_sysdev);
  2415. sysdev_class_unregister(&kvm_sysdev_class);
  2416. unregister_reboot_notifier(&kvm_reboot_notifier);
  2417. unregister_cpu_notifier(&kvm_cpu_notifier);
  2418. on_each_cpu(hardware_disable, NULL, 1);
  2419. kvm_arch_hardware_unsetup();
  2420. kvm_arch_exit();
  2421. free_cpumask_var(cpus_hardware_enabled);
  2422. __free_page(bad_page);
  2423. }
  2424. EXPORT_SYMBOL_GPL(kvm_exit);