builtin-stat.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. /*
  2. * builtin-stat.c
  3. *
  4. * Builtin stat command: Give a precise performance counters summary
  5. * overview about any workload, CPU or specific PID.
  6. *
  7. * Sample output:
  8. $ perf stat ~/hackbench 10
  9. Time: 0.104
  10. Performance counter stats for '/home/mingo/hackbench':
  11. 1255.538611 task clock ticks # 10.143 CPU utilization factor
  12. 54011 context switches # 0.043 M/sec
  13. 385 CPU migrations # 0.000 M/sec
  14. 17755 pagefaults # 0.014 M/sec
  15. 3808323185 CPU cycles # 3033.219 M/sec
  16. 1575111190 instructions # 1254.530 M/sec
  17. 17367895 cache references # 13.833 M/sec
  18. 7674421 cache misses # 6.112 M/sec
  19. Wall-clock time elapsed: 123.786620 msecs
  20. *
  21. * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
  22. *
  23. * Improvements and fixes by:
  24. *
  25. * Arjan van de Ven <arjan@linux.intel.com>
  26. * Yanmin Zhang <yanmin.zhang@intel.com>
  27. * Wu Fengguang <fengguang.wu@intel.com>
  28. * Mike Galbraith <efault@gmx.de>
  29. * Paul Mackerras <paulus@samba.org>
  30. * Jaswinder Singh Rajput <jaswinder@kernel.org>
  31. *
  32. * Released under the GPL v2. (and only v2, not any later version)
  33. */
  34. #include "perf.h"
  35. #include "builtin.h"
  36. #include "util/util.h"
  37. #include "util/parse-options.h"
  38. #include "util/parse-events.h"
  39. #include "util/event.h"
  40. #include "util/debug.h"
  41. #include <sys/prctl.h>
  42. #include <math.h>
  43. static struct perf_event_attr default_attrs[] = {
  44. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
  45. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
  46. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
  47. { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
  48. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
  49. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
  50. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
  51. { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES },
  52. };
  53. static int system_wide = 0;
  54. static unsigned int nr_cpus = 0;
  55. static int run_idx = 0;
  56. static int run_count = 1;
  57. static int inherit = 1;
  58. static int scale = 1;
  59. static pid_t target_pid = -1;
  60. static pid_t child_pid = -1;
  61. static int null_run = 0;
  62. static int fd[MAX_NR_CPUS][MAX_COUNTERS];
  63. static int event_scaled[MAX_COUNTERS];
  64. struct stats
  65. {
  66. double n, mean, M2;
  67. };
  68. static void update_stats(struct stats *stats, u64 val)
  69. {
  70. double delta;
  71. stats->n++;
  72. delta = val - stats->mean;
  73. stats->mean += delta / stats->n;
  74. stats->M2 += delta*(val - stats->mean);
  75. }
  76. static double avg_stats(struct stats *stats)
  77. {
  78. return stats->mean;
  79. }
  80. /*
  81. * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
  82. *
  83. * (\Sum n_i^2) - ((\Sum n_i)^2)/n
  84. * s^2 = -------------------------------
  85. * n - 1
  86. *
  87. * http://en.wikipedia.org/wiki/Stddev
  88. *
  89. * The std dev of the mean is related to the std dev by:
  90. *
  91. * s
  92. * s_mean = -------
  93. * sqrt(n)
  94. *
  95. */
  96. static double stddev_stats(struct stats *stats)
  97. {
  98. double variance = stats->M2 / (stats->n - 1);
  99. double variance_mean = variance / stats->n;
  100. return sqrt(variance_mean);
  101. }
  102. struct stats event_res_stats[MAX_COUNTERS][3];
  103. struct stats runtime_nsecs_stats;
  104. struct stats walltime_nsecs_stats;
  105. struct stats runtime_cycles_stats;
  106. #define MATCH_EVENT(t, c, counter) \
  107. (attrs[counter].type == PERF_TYPE_##t && \
  108. attrs[counter].config == PERF_COUNT_##c)
  109. #define ERR_PERF_OPEN \
  110. "Error: counter %d, sys_perf_event_open() syscall returned with %d (%s)\n"
  111. static void create_perf_stat_counter(int counter, int pid)
  112. {
  113. struct perf_event_attr *attr = attrs + counter;
  114. if (scale)
  115. attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
  116. PERF_FORMAT_TOTAL_TIME_RUNNING;
  117. if (system_wide) {
  118. unsigned int cpu;
  119. for (cpu = 0; cpu < nr_cpus; cpu++) {
  120. fd[cpu][counter] = sys_perf_event_open(attr, -1, cpu, -1, 0);
  121. if (fd[cpu][counter] < 0 && verbose)
  122. fprintf(stderr, ERR_PERF_OPEN, counter,
  123. fd[cpu][counter], strerror(errno));
  124. }
  125. } else {
  126. attr->inherit = inherit;
  127. attr->disabled = 1;
  128. attr->enable_on_exec = 1;
  129. fd[0][counter] = sys_perf_event_open(attr, pid, -1, -1, 0);
  130. if (fd[0][counter] < 0 && verbose)
  131. fprintf(stderr, ERR_PERF_OPEN, counter,
  132. fd[0][counter], strerror(errno));
  133. }
  134. }
  135. /*
  136. * Does the counter have nsecs as a unit?
  137. */
  138. static inline int nsec_counter(int counter)
  139. {
  140. if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
  141. MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
  142. return 1;
  143. return 0;
  144. }
  145. /*
  146. * Read out the results of a single counter:
  147. */
  148. static void read_counter(int counter)
  149. {
  150. u64 count[3], single_count[3];
  151. unsigned int cpu;
  152. size_t res, nv;
  153. int scaled;
  154. int i;
  155. count[0] = count[1] = count[2] = 0;
  156. nv = scale ? 3 : 1;
  157. for (cpu = 0; cpu < nr_cpus; cpu++) {
  158. if (fd[cpu][counter] < 0)
  159. continue;
  160. res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
  161. assert(res == nv * sizeof(u64));
  162. close(fd[cpu][counter]);
  163. fd[cpu][counter] = -1;
  164. count[0] += single_count[0];
  165. if (scale) {
  166. count[1] += single_count[1];
  167. count[2] += single_count[2];
  168. }
  169. }
  170. scaled = 0;
  171. if (scale) {
  172. if (count[2] == 0) {
  173. event_scaled[counter] = -1;
  174. count[0] = 0;
  175. return;
  176. }
  177. if (count[2] < count[1]) {
  178. event_scaled[counter] = 1;
  179. count[0] = (unsigned long long)
  180. ((double)count[0] * count[1] / count[2] + 0.5);
  181. }
  182. }
  183. for (i = 0; i < 3; i++)
  184. update_stats(&event_res_stats[counter][i], count[i]);
  185. if (verbose) {
  186. fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
  187. count[0], count[1], count[2]);
  188. }
  189. /*
  190. * Save the full runtime - to allow normalization during printout:
  191. */
  192. if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
  193. update_stats(&runtime_nsecs_stats, count[0]);
  194. if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
  195. update_stats(&runtime_cycles_stats, count[0]);
  196. }
  197. static int run_perf_stat(int argc __used, const char **argv)
  198. {
  199. unsigned long long t0, t1;
  200. int status = 0;
  201. int counter;
  202. int pid;
  203. int child_ready_pipe[2], go_pipe[2];
  204. char buf;
  205. if (!system_wide)
  206. nr_cpus = 1;
  207. if (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0) {
  208. perror("failed to create pipes");
  209. exit(1);
  210. }
  211. if ((pid = fork()) < 0)
  212. perror("failed to fork");
  213. if (!pid) {
  214. close(child_ready_pipe[0]);
  215. close(go_pipe[1]);
  216. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  217. /*
  218. * Do a dummy execvp to get the PLT entry resolved,
  219. * so we avoid the resolver overhead on the real
  220. * execvp call.
  221. */
  222. execvp("", (char **)argv);
  223. /*
  224. * Tell the parent we're ready to go
  225. */
  226. close(child_ready_pipe[1]);
  227. /*
  228. * Wait until the parent tells us to go.
  229. */
  230. if (read(go_pipe[0], &buf, 1) == -1)
  231. perror("unable to read pipe");
  232. execvp(argv[0], (char **)argv);
  233. perror(argv[0]);
  234. exit(-1);
  235. }
  236. child_pid = pid;
  237. /*
  238. * Wait for the child to be ready to exec.
  239. */
  240. close(child_ready_pipe[1]);
  241. close(go_pipe[0]);
  242. if (read(child_ready_pipe[0], &buf, 1) == -1)
  243. perror("unable to read pipe");
  244. close(child_ready_pipe[0]);
  245. for (counter = 0; counter < nr_counters; counter++)
  246. create_perf_stat_counter(counter, pid);
  247. /*
  248. * Enable counters and exec the command:
  249. */
  250. t0 = rdclock();
  251. close(go_pipe[1]);
  252. wait(&status);
  253. t1 = rdclock();
  254. update_stats(&walltime_nsecs_stats, t1 - t0);
  255. for (counter = 0; counter < nr_counters; counter++)
  256. read_counter(counter);
  257. return WEXITSTATUS(status);
  258. }
  259. static void print_noise(int counter, double avg)
  260. {
  261. if (run_count == 1)
  262. return;
  263. fprintf(stderr, " ( +- %7.3f%% )",
  264. 100 * stddev_stats(&event_res_stats[counter][0]) / avg);
  265. }
  266. static void nsec_printout(int counter, double avg)
  267. {
  268. double msecs = avg / 1e6;
  269. fprintf(stderr, " %14.6f %-24s", msecs, event_name(counter));
  270. if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
  271. fprintf(stderr, " # %10.3f CPUs ",
  272. avg / avg_stats(&walltime_nsecs_stats));
  273. }
  274. }
  275. static void abs_printout(int counter, double avg)
  276. {
  277. double total, ratio = 0.0;
  278. fprintf(stderr, " %14.0f %-24s", avg, event_name(counter));
  279. if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
  280. total = avg_stats(&runtime_cycles_stats);
  281. if (total)
  282. ratio = avg / total;
  283. fprintf(stderr, " # %10.3f IPC ", ratio);
  284. } else {
  285. total = avg_stats(&runtime_nsecs_stats);
  286. if (total)
  287. ratio = 1000.0 * avg / total;
  288. fprintf(stderr, " # %10.3f M/sec", ratio);
  289. }
  290. }
  291. /*
  292. * Print out the results of a single counter:
  293. */
  294. static void print_counter(int counter)
  295. {
  296. double avg = avg_stats(&event_res_stats[counter][0]);
  297. int scaled = event_scaled[counter];
  298. if (scaled == -1) {
  299. fprintf(stderr, " %14s %-24s\n",
  300. "<not counted>", event_name(counter));
  301. return;
  302. }
  303. if (nsec_counter(counter))
  304. nsec_printout(counter, avg);
  305. else
  306. abs_printout(counter, avg);
  307. print_noise(counter, avg);
  308. if (scaled) {
  309. double avg_enabled, avg_running;
  310. avg_enabled = avg_stats(&event_res_stats[counter][1]);
  311. avg_running = avg_stats(&event_res_stats[counter][2]);
  312. fprintf(stderr, " (scaled from %.2f%%)",
  313. 100 * avg_running / avg_enabled);
  314. }
  315. fprintf(stderr, "\n");
  316. }
  317. static void print_stat(int argc, const char **argv)
  318. {
  319. int i, counter;
  320. fflush(stdout);
  321. fprintf(stderr, "\n");
  322. fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
  323. for (i = 1; i < argc; i++)
  324. fprintf(stderr, " %s", argv[i]);
  325. fprintf(stderr, "\'");
  326. if (run_count > 1)
  327. fprintf(stderr, " (%d runs)", run_count);
  328. fprintf(stderr, ":\n\n");
  329. for (counter = 0; counter < nr_counters; counter++)
  330. print_counter(counter);
  331. fprintf(stderr, "\n");
  332. fprintf(stderr, " %14.9f seconds time elapsed",
  333. avg_stats(&walltime_nsecs_stats)/1e9);
  334. if (run_count > 1) {
  335. fprintf(stderr, " ( +- %7.3f%% )",
  336. 100*stddev_stats(&walltime_nsecs_stats) /
  337. avg_stats(&walltime_nsecs_stats));
  338. }
  339. fprintf(stderr, "\n\n");
  340. }
  341. static volatile int signr = -1;
  342. static void skip_signal(int signo)
  343. {
  344. signr = signo;
  345. }
  346. static void sig_atexit(void)
  347. {
  348. if (child_pid != -1)
  349. kill(child_pid, SIGTERM);
  350. if (signr == -1)
  351. return;
  352. signal(signr, SIG_DFL);
  353. kill(getpid(), signr);
  354. }
  355. static const char * const stat_usage[] = {
  356. "perf stat [<options>] <command>",
  357. NULL
  358. };
  359. static const struct option options[] = {
  360. OPT_CALLBACK('e', "event", NULL, "event",
  361. "event selector. use 'perf list' to list available events",
  362. parse_events),
  363. OPT_BOOLEAN('i', "inherit", &inherit,
  364. "child tasks inherit counters"),
  365. OPT_INTEGER('p', "pid", &target_pid,
  366. "stat events on existing pid"),
  367. OPT_BOOLEAN('a', "all-cpus", &system_wide,
  368. "system-wide collection from all CPUs"),
  369. OPT_BOOLEAN('c', "scale", &scale,
  370. "scale/normalize counters"),
  371. OPT_BOOLEAN('v', "verbose", &verbose,
  372. "be more verbose (show counter open errors, etc)"),
  373. OPT_INTEGER('r', "repeat", &run_count,
  374. "repeat command and print average + stddev (max: 100)"),
  375. OPT_BOOLEAN('n', "null", &null_run,
  376. "null run - dont start any counters"),
  377. OPT_END()
  378. };
  379. int cmd_stat(int argc, const char **argv, const char *prefix __used)
  380. {
  381. int status;
  382. argc = parse_options(argc, argv, options, stat_usage,
  383. PARSE_OPT_STOP_AT_NON_OPTION);
  384. if (!argc)
  385. usage_with_options(stat_usage, options);
  386. if (run_count <= 0)
  387. usage_with_options(stat_usage, options);
  388. /* Set attrs and nr_counters if no event is selected and !null_run */
  389. if (!null_run && !nr_counters) {
  390. memcpy(attrs, default_attrs, sizeof(default_attrs));
  391. nr_counters = ARRAY_SIZE(default_attrs);
  392. }
  393. nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
  394. assert(nr_cpus <= MAX_NR_CPUS);
  395. assert((int)nr_cpus >= 0);
  396. /*
  397. * We dont want to block the signals - that would cause
  398. * child tasks to inherit that and Ctrl-C would not work.
  399. * What we want is for Ctrl-C to work in the exec()-ed
  400. * task, but being ignored by perf stat itself:
  401. */
  402. atexit(sig_atexit);
  403. signal(SIGINT, skip_signal);
  404. signal(SIGALRM, skip_signal);
  405. signal(SIGABRT, skip_signal);
  406. status = 0;
  407. for (run_idx = 0; run_idx < run_count; run_idx++) {
  408. if (run_count != 1 && verbose)
  409. fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
  410. status = run_perf_stat(argc, argv);
  411. }
  412. print_stat(argc, argv);
  413. return status;
  414. }