fsl_dma.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
  7. * under the terms of the GNU General Public License version 2. This
  8. * program is licensed "as is" without any warranty of any kind, whether
  9. * express or implied.
  10. *
  11. * This driver implements ASoC support for the Elo DMA controller, which is
  12. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  13. * the PCM driver is what handles the DMA buffer.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/delay.h>
  21. #include <sound/core.h>
  22. #include <sound/pcm.h>
  23. #include <sound/pcm_params.h>
  24. #include <sound/soc.h>
  25. #include <asm/io.h>
  26. #include "fsl_dma.h"
  27. /*
  28. * The formats that the DMA controller supports, which is anything
  29. * that is 8, 16, or 32 bits.
  30. */
  31. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  32. SNDRV_PCM_FMTBIT_U8 | \
  33. SNDRV_PCM_FMTBIT_S16_LE | \
  34. SNDRV_PCM_FMTBIT_S16_BE | \
  35. SNDRV_PCM_FMTBIT_U16_LE | \
  36. SNDRV_PCM_FMTBIT_U16_BE | \
  37. SNDRV_PCM_FMTBIT_S24_LE | \
  38. SNDRV_PCM_FMTBIT_S24_BE | \
  39. SNDRV_PCM_FMTBIT_U24_LE | \
  40. SNDRV_PCM_FMTBIT_U24_BE | \
  41. SNDRV_PCM_FMTBIT_S32_LE | \
  42. SNDRV_PCM_FMTBIT_S32_BE | \
  43. SNDRV_PCM_FMTBIT_U32_LE | \
  44. SNDRV_PCM_FMTBIT_U32_BE)
  45. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  46. SNDRV_PCM_RATE_CONTINUOUS)
  47. /* DMA global data. This structure is used by fsl_dma_open() to determine
  48. * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
  49. * not allow the machine driver to provide this information to the PCM
  50. * driver in advance, and there's no way to differentiate between the two
  51. * DMA controllers. So for now, this driver only supports one SSI device
  52. * using two DMA channels. We cannot support multiple DMA devices.
  53. *
  54. * ssi_stx_phys: bus address of SSI STX register
  55. * ssi_srx_phys: bus address of SSI SRX register
  56. * dma_channel: pointer to the DMA channel's registers
  57. * irq: IRQ for this DMA channel
  58. * assigned: set to 1 if that DMA channel is assigned to a substream
  59. */
  60. static struct {
  61. dma_addr_t ssi_stx_phys;
  62. dma_addr_t ssi_srx_phys;
  63. struct ccsr_dma_channel __iomem *dma_channel[2];
  64. unsigned int irq[2];
  65. unsigned int assigned[2];
  66. } dma_global_data;
  67. /*
  68. * The number of DMA links to use. Two is the bare minimum, but if you
  69. * have really small links you might need more.
  70. */
  71. #define NUM_DMA_LINKS 2
  72. /** fsl_dma_private: p-substream DMA data
  73. *
  74. * Each substream has a 1-to-1 association with a DMA channel.
  75. *
  76. * The link[] array is first because it needs to be aligned on a 32-byte
  77. * boundary, so putting it first will ensure alignment without padding the
  78. * structure.
  79. *
  80. * @link[]: array of link descriptors
  81. * @controller_id: which DMA controller (0, 1, ...)
  82. * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
  83. * @dma_channel: pointer to the DMA channel's registers
  84. * @irq: IRQ for this DMA channel
  85. * @substream: pointer to the substream object, needed by the ISR
  86. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  87. * @ld_buf_phys: physical address of the LD buffer
  88. * @current_link: index into link[] of the link currently being processed
  89. * @dma_buf_phys: physical address of the DMA buffer
  90. * @dma_buf_next: physical address of the next period to process
  91. * @dma_buf_end: physical address of the byte after the end of the DMA
  92. * @buffer period_size: the size of a single period
  93. * @num_periods: the number of periods in the DMA buffer
  94. */
  95. struct fsl_dma_private {
  96. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  97. unsigned int controller_id;
  98. unsigned int channel_id;
  99. struct ccsr_dma_channel __iomem *dma_channel;
  100. unsigned int irq;
  101. struct snd_pcm_substream *substream;
  102. dma_addr_t ssi_sxx_phys;
  103. dma_addr_t ld_buf_phys;
  104. unsigned int current_link;
  105. dma_addr_t dma_buf_phys;
  106. dma_addr_t dma_buf_next;
  107. dma_addr_t dma_buf_end;
  108. size_t period_size;
  109. unsigned int num_periods;
  110. };
  111. /**
  112. * fsl_dma_hardare: define characteristics of the PCM hardware.
  113. *
  114. * The PCM hardware is the Freescale DMA controller. This structure defines
  115. * the capabilities of that hardware.
  116. *
  117. * Since the sampling rate and data format are not controlled by the DMA
  118. * controller, we specify no limits for those values. The only exception is
  119. * period_bytes_min, which is set to a reasonably low value to prevent the
  120. * DMA controller from generating too many interrupts per second.
  121. *
  122. * Since each link descriptor has a 32-bit byte count field, we set
  123. * period_bytes_max to the largest 32-bit number. We also have no maximum
  124. * number of periods.
  125. *
  126. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  127. * limitation in the SSI driver requires the sample rates for playback and
  128. * capture to be the same.
  129. */
  130. static const struct snd_pcm_hardware fsl_dma_hardware = {
  131. .info = SNDRV_PCM_INFO_INTERLEAVED |
  132. SNDRV_PCM_INFO_MMAP |
  133. SNDRV_PCM_INFO_MMAP_VALID |
  134. SNDRV_PCM_INFO_JOINT_DUPLEX |
  135. SNDRV_PCM_INFO_PAUSE,
  136. .formats = FSLDMA_PCM_FORMATS,
  137. .rates = FSLDMA_PCM_RATES,
  138. .rate_min = 5512,
  139. .rate_max = 192000,
  140. .period_bytes_min = 512, /* A reasonable limit */
  141. .period_bytes_max = (u32) -1,
  142. .periods_min = NUM_DMA_LINKS,
  143. .periods_max = (unsigned int) -1,
  144. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  145. };
  146. /**
  147. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  148. *
  149. * This function should be called by the ISR whenever the DMA controller
  150. * halts data transfer.
  151. */
  152. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  153. {
  154. unsigned long flags;
  155. snd_pcm_stream_lock_irqsave(substream, flags);
  156. if (snd_pcm_running(substream))
  157. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  158. snd_pcm_stream_unlock_irqrestore(substream, flags);
  159. }
  160. /**
  161. * fsl_dma_update_pointers - update LD pointers to point to the next period
  162. *
  163. * As each period is completed, this function changes the the link
  164. * descriptor pointers for that period to point to the next period.
  165. */
  166. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  167. {
  168. struct fsl_dma_link_descriptor *link =
  169. &dma_private->link[dma_private->current_link];
  170. /* Update our link descriptors to point to the next period */
  171. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  172. link->source_addr =
  173. cpu_to_be32(dma_private->dma_buf_next);
  174. else
  175. link->dest_addr =
  176. cpu_to_be32(dma_private->dma_buf_next);
  177. /* Update our variables for next time */
  178. dma_private->dma_buf_next += dma_private->period_size;
  179. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  180. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  181. if (++dma_private->current_link >= NUM_DMA_LINKS)
  182. dma_private->current_link = 0;
  183. }
  184. /**
  185. * fsl_dma_isr: interrupt handler for the DMA controller
  186. *
  187. * @irq: IRQ of the DMA channel
  188. * @dev_id: pointer to the dma_private structure for this DMA channel
  189. */
  190. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  191. {
  192. struct fsl_dma_private *dma_private = dev_id;
  193. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  194. irqreturn_t ret = IRQ_NONE;
  195. u32 sr, sr2 = 0;
  196. /* We got an interrupt, so read the status register to see what we
  197. were interrupted for.
  198. */
  199. sr = in_be32(&dma_channel->sr);
  200. if (sr & CCSR_DMA_SR_TE) {
  201. dev_err(dma_private->substream->pcm->card->dev,
  202. "DMA transmit error (controller=%u channel=%u irq=%u\n",
  203. dma_private->controller_id,
  204. dma_private->channel_id, irq);
  205. fsl_dma_abort_stream(dma_private->substream);
  206. sr2 |= CCSR_DMA_SR_TE;
  207. ret = IRQ_HANDLED;
  208. }
  209. if (sr & CCSR_DMA_SR_CH)
  210. ret = IRQ_HANDLED;
  211. if (sr & CCSR_DMA_SR_PE) {
  212. dev_err(dma_private->substream->pcm->card->dev,
  213. "DMA%u programming error (channel=%u irq=%u)\n",
  214. dma_private->controller_id,
  215. dma_private->channel_id, irq);
  216. fsl_dma_abort_stream(dma_private->substream);
  217. sr2 |= CCSR_DMA_SR_PE;
  218. ret = IRQ_HANDLED;
  219. }
  220. if (sr & CCSR_DMA_SR_EOLNI) {
  221. sr2 |= CCSR_DMA_SR_EOLNI;
  222. ret = IRQ_HANDLED;
  223. }
  224. if (sr & CCSR_DMA_SR_CB)
  225. ret = IRQ_HANDLED;
  226. if (sr & CCSR_DMA_SR_EOSI) {
  227. struct snd_pcm_substream *substream = dma_private->substream;
  228. /* Tell ALSA we completed a period. */
  229. snd_pcm_period_elapsed(substream);
  230. /*
  231. * Update our link descriptors to point to the next period. We
  232. * only need to do this if the number of periods is not equal to
  233. * the number of links.
  234. */
  235. if (dma_private->num_periods != NUM_DMA_LINKS)
  236. fsl_dma_update_pointers(dma_private);
  237. sr2 |= CCSR_DMA_SR_EOSI;
  238. ret = IRQ_HANDLED;
  239. }
  240. if (sr & CCSR_DMA_SR_EOLSI) {
  241. sr2 |= CCSR_DMA_SR_EOLSI;
  242. ret = IRQ_HANDLED;
  243. }
  244. /* Clear the bits that we set */
  245. if (sr2)
  246. out_be32(&dma_channel->sr, sr2);
  247. return ret;
  248. }
  249. /**
  250. * fsl_dma_new: initialize this PCM driver.
  251. *
  252. * This function is called when the codec driver calls snd_soc_new_pcms(),
  253. * once for each .dai_link in the machine driver's snd_soc_card
  254. * structure.
  255. */
  256. static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
  257. struct snd_pcm *pcm)
  258. {
  259. static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
  260. int ret;
  261. if (!card->dev->dma_mask)
  262. card->dev->dma_mask = &fsl_dma_dmamask;
  263. if (!card->dev->coherent_dma_mask)
  264. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  265. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  266. fsl_dma_hardware.buffer_bytes_max,
  267. &pcm->streams[0].substream->dma_buffer);
  268. if (ret) {
  269. dev_err(card->dev,
  270. "Can't allocate playback DMA buffer (size=%u)\n",
  271. fsl_dma_hardware.buffer_bytes_max);
  272. return -ENOMEM;
  273. }
  274. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  275. fsl_dma_hardware.buffer_bytes_max,
  276. &pcm->streams[1].substream->dma_buffer);
  277. if (ret) {
  278. snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
  279. dev_err(card->dev,
  280. "Can't allocate capture DMA buffer (size=%u)\n",
  281. fsl_dma_hardware.buffer_bytes_max);
  282. return -ENOMEM;
  283. }
  284. return 0;
  285. }
  286. /**
  287. * fsl_dma_open: open a new substream.
  288. *
  289. * Each substream has its own DMA buffer.
  290. *
  291. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  292. * descriptors that ping-pong from one period to the next. For example, if
  293. * there are six periods and two link descriptors, this is how they look
  294. * before playback starts:
  295. *
  296. * The last link descriptor
  297. * ____________ points back to the first
  298. * | |
  299. * V |
  300. * ___ ___ |
  301. * | |->| |->|
  302. * |___| |___|
  303. * | |
  304. * | |
  305. * V V
  306. * _________________________________________
  307. * | | | | | | | The DMA buffer is
  308. * | | | | | | | divided into 6 parts
  309. * |______|______|______|______|______|______|
  310. *
  311. * and here's how they look after the first period is finished playing:
  312. *
  313. * ____________
  314. * | |
  315. * V |
  316. * ___ ___ |
  317. * | |->| |->|
  318. * |___| |___|
  319. * | |
  320. * |______________
  321. * | |
  322. * V V
  323. * _________________________________________
  324. * | | | | | | |
  325. * | | | | | | |
  326. * |______|______|______|______|______|______|
  327. *
  328. * The first link descriptor now points to the third period. The DMA
  329. * controller is currently playing the second period. When it finishes, it
  330. * will jump back to the first descriptor and play the third period.
  331. *
  332. * There are four reasons we do this:
  333. *
  334. * 1. The only way to get the DMA controller to automatically restart the
  335. * transfer when it gets to the end of the buffer is to use chaining
  336. * mode. Basic direct mode doesn't offer that feature.
  337. * 2. We need to receive an interrupt at the end of every period. The DMA
  338. * controller can generate an interrupt at the end of every link transfer
  339. * (aka segment). Making each period into a DMA segment will give us the
  340. * interrupts we need.
  341. * 3. By creating only two link descriptors, regardless of the number of
  342. * periods, we do not need to reallocate the link descriptors if the
  343. * number of periods changes.
  344. * 4. All of the audio data is still stored in a single, contiguous DMA
  345. * buffer, which is what ALSA expects. We're just dividing it into
  346. * contiguous parts, and creating a link descriptor for each one.
  347. */
  348. static int fsl_dma_open(struct snd_pcm_substream *substream)
  349. {
  350. struct snd_pcm_runtime *runtime = substream->runtime;
  351. struct fsl_dma_private *dma_private;
  352. struct ccsr_dma_channel __iomem *dma_channel;
  353. dma_addr_t ld_buf_phys;
  354. u64 temp_link; /* Pointer to next link descriptor */
  355. u32 mr;
  356. unsigned int channel;
  357. int ret = 0;
  358. unsigned int i;
  359. /*
  360. * Reject any DMA buffer whose size is not a multiple of the period
  361. * size. We need to make sure that the DMA buffer can be evenly divided
  362. * into periods.
  363. */
  364. ret = snd_pcm_hw_constraint_integer(runtime,
  365. SNDRV_PCM_HW_PARAM_PERIODS);
  366. if (ret < 0) {
  367. dev_err(substream->pcm->card->dev, "invalid buffer size\n");
  368. return ret;
  369. }
  370. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  371. if (dma_global_data.assigned[channel]) {
  372. dev_err(substream->pcm->card->dev,
  373. "DMA channel already assigned\n");
  374. return -EBUSY;
  375. }
  376. dma_private = dma_alloc_coherent(substream->pcm->card->dev,
  377. sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
  378. if (!dma_private) {
  379. dev_err(substream->pcm->card->dev,
  380. "can't allocate DMA private data\n");
  381. return -ENOMEM;
  382. }
  383. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  384. dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
  385. else
  386. dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
  387. dma_private->dma_channel = dma_global_data.dma_channel[channel];
  388. dma_private->irq = dma_global_data.irq[channel];
  389. dma_private->substream = substream;
  390. dma_private->ld_buf_phys = ld_buf_phys;
  391. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  392. /* We only support one DMA controller for now */
  393. dma_private->controller_id = 0;
  394. dma_private->channel_id = channel;
  395. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
  396. if (ret) {
  397. dev_err(substream->pcm->card->dev,
  398. "can't register ISR for IRQ %u (ret=%i)\n",
  399. dma_private->irq, ret);
  400. dma_free_coherent(substream->pcm->card->dev,
  401. sizeof(struct fsl_dma_private),
  402. dma_private, dma_private->ld_buf_phys);
  403. return ret;
  404. }
  405. dma_global_data.assigned[channel] = 1;
  406. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  407. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  408. runtime->private_data = dma_private;
  409. /* Program the fixed DMA controller parameters */
  410. dma_channel = dma_private->dma_channel;
  411. temp_link = dma_private->ld_buf_phys +
  412. sizeof(struct fsl_dma_link_descriptor);
  413. for (i = 0; i < NUM_DMA_LINKS; i++) {
  414. dma_private->link[i].next = cpu_to_be64(temp_link);
  415. temp_link += sizeof(struct fsl_dma_link_descriptor);
  416. }
  417. /* The last link descriptor points to the first */
  418. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  419. /* Tell the DMA controller where the first link descriptor is */
  420. out_be32(&dma_channel->clndar,
  421. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  422. out_be32(&dma_channel->eclndar,
  423. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  424. /* The manual says the BCR must be clear before enabling EMP */
  425. out_be32(&dma_channel->bcr, 0);
  426. /*
  427. * Program the mode register for interrupts, external master control,
  428. * and source/destination hold. Also clear the Channel Abort bit.
  429. */
  430. mr = in_be32(&dma_channel->mr) &
  431. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  432. /*
  433. * We want External Master Start and External Master Pause enabled,
  434. * because the SSI is controlling the DMA controller. We want the DMA
  435. * controller to be set up in advance, and then we signal only the SSI
  436. * to start transferring.
  437. *
  438. * We want End-Of-Segment Interrupts enabled, because this will generate
  439. * an interrupt at the end of each segment (each link descriptor
  440. * represents one segment). Each DMA segment is the same thing as an
  441. * ALSA period, so this is how we get an interrupt at the end of every
  442. * period.
  443. *
  444. * We want Error Interrupt enabled, so that we can get an error if
  445. * the DMA controller is mis-programmed somehow.
  446. */
  447. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  448. CCSR_DMA_MR_EMS_EN;
  449. /* For playback, we want the destination address to be held. For
  450. capture, set the source address to be held. */
  451. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  452. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  453. out_be32(&dma_channel->mr, mr);
  454. return 0;
  455. }
  456. /**
  457. * fsl_dma_hw_params: continue initializing the DMA links
  458. *
  459. * This function obtains hardware parameters about the opened stream and
  460. * programs the DMA controller accordingly.
  461. *
  462. * One drawback of big-endian is that when copying integers of different
  463. * sizes to a fixed-sized register, the address to which the integer must be
  464. * copied is dependent on the size of the integer.
  465. *
  466. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  467. * integer, then X should be copied to address P. However, if X is a 16-bit
  468. * integer, then it should be copied to P+2. If X is an 8-bit register,
  469. * then it should be copied to P+3.
  470. *
  471. * So for playback of 8-bit samples, the DMA controller must transfer single
  472. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  473. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  474. *
  475. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  476. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  477. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  478. * 24-bit data must be padded to 32 bits.
  479. */
  480. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  481. struct snd_pcm_hw_params *hw_params)
  482. {
  483. struct snd_pcm_runtime *runtime = substream->runtime;
  484. struct fsl_dma_private *dma_private = runtime->private_data;
  485. /* Number of bits per sample */
  486. unsigned int sample_size =
  487. snd_pcm_format_physical_width(params_format(hw_params));
  488. /* Number of bytes per frame */
  489. unsigned int frame_size = 2 * (sample_size / 8);
  490. /* Bus address of SSI STX register */
  491. dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
  492. /* Size of the DMA buffer, in bytes */
  493. size_t buffer_size = params_buffer_bytes(hw_params);
  494. /* Number of bytes per period */
  495. size_t period_size = params_period_bytes(hw_params);
  496. /* Pointer to next period */
  497. dma_addr_t temp_addr = substream->dma_buffer.addr;
  498. /* Pointer to DMA controller */
  499. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  500. u32 mr; /* DMA Mode Register */
  501. unsigned int i;
  502. /* Initialize our DMA tracking variables */
  503. dma_private->period_size = period_size;
  504. dma_private->num_periods = params_periods(hw_params);
  505. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  506. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  507. (NUM_DMA_LINKS * period_size);
  508. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  509. /* This happens if the number of periods == NUM_DMA_LINKS */
  510. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  511. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  512. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  513. /* Due to a quirk of the SSI's STX register, the target address
  514. * for the DMA operations depends on the sample size. So we calculate
  515. * that offset here. While we're at it, also tell the DMA controller
  516. * how much data to transfer per sample.
  517. */
  518. switch (sample_size) {
  519. case 8:
  520. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  521. ssi_sxx_phys += 3;
  522. break;
  523. case 16:
  524. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  525. ssi_sxx_phys += 2;
  526. break;
  527. case 32:
  528. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  529. break;
  530. default:
  531. /* We should never get here */
  532. dev_err(substream->pcm->card->dev,
  533. "unsupported sample size %u\n", sample_size);
  534. return -EINVAL;
  535. }
  536. /*
  537. * BWC should always be a multiple of the frame size. BWC determines
  538. * how many bytes are sent/received before the DMA controller checks the
  539. * SSI to see if it needs to stop. For playback, the transmit FIFO can
  540. * hold three frames, so we want to send two frames at a time. For
  541. * capture, the receive FIFO is triggered when it contains one frame, so
  542. * we want to receive one frame at a time.
  543. */
  544. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  545. mr |= CCSR_DMA_MR_BWC(2 * frame_size);
  546. else
  547. mr |= CCSR_DMA_MR_BWC(frame_size);
  548. out_be32(&dma_channel->mr, mr);
  549. for (i = 0; i < NUM_DMA_LINKS; i++) {
  550. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  551. link->count = cpu_to_be32(period_size);
  552. /* Even though the DMA controller supports 36-bit addressing,
  553. * for simplicity we allow only 32-bit addresses for the audio
  554. * buffer itself. This was enforced in fsl_dma_new() with the
  555. * DMA mask.
  556. *
  557. * The snoop bit tells the DMA controller whether it should tell
  558. * the ECM to snoop during a read or write to an address. For
  559. * audio, we use DMA to transfer data between memory and an I/O
  560. * device (the SSI's STX0 or SRX0 register). Snooping is only
  561. * needed if there is a cache, so we need to snoop memory
  562. * addresses only. For playback, that means we snoop the source
  563. * but not the destination. For capture, we snoop the
  564. * destination but not the source.
  565. *
  566. * Note that failing to snoop properly is unlikely to cause
  567. * cache incoherency if the period size is larger than the
  568. * size of L1 cache. This is because filling in one period will
  569. * flush out the data for the previous period. So if you
  570. * increased period_bytes_min to a large enough size, you might
  571. * get more performance by not snooping, and you'll still be
  572. * okay.
  573. */
  574. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  575. link->source_addr = cpu_to_be32(temp_addr);
  576. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  577. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  578. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
  579. } else {
  580. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  581. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
  582. link->dest_addr = cpu_to_be32(temp_addr);
  583. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
  584. }
  585. temp_addr += period_size;
  586. }
  587. return 0;
  588. }
  589. /**
  590. * fsl_dma_pointer: determine the current position of the DMA transfer
  591. *
  592. * This function is called by ALSA when ALSA wants to know where in the
  593. * stream buffer the hardware currently is.
  594. *
  595. * For playback, the SAR register contains the physical address of the most
  596. * recent DMA transfer. For capture, the value is in the DAR register.
  597. *
  598. * The base address of the buffer is stored in the source_addr field of the
  599. * first link descriptor.
  600. */
  601. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  602. {
  603. struct snd_pcm_runtime *runtime = substream->runtime;
  604. struct fsl_dma_private *dma_private = runtime->private_data;
  605. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  606. dma_addr_t position;
  607. snd_pcm_uframes_t frames;
  608. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  609. position = in_be32(&dma_channel->sar);
  610. else
  611. position = in_be32(&dma_channel->dar);
  612. /*
  613. * When capture is started, the SSI immediately starts to fill its FIFO.
  614. * This means that the DMA controller is not started until the FIFO is
  615. * full. However, ALSA calls this function before that happens, when
  616. * MR.DAR is still zero. In this case, just return zero to indicate
  617. * that nothing has been received yet.
  618. */
  619. if (!position)
  620. return 0;
  621. if ((position < dma_private->dma_buf_phys) ||
  622. (position > dma_private->dma_buf_end)) {
  623. dev_err(substream->pcm->card->dev,
  624. "dma pointer is out of range, halting stream\n");
  625. return SNDRV_PCM_POS_XRUN;
  626. }
  627. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  628. /*
  629. * If the current address is just past the end of the buffer, wrap it
  630. * around.
  631. */
  632. if (frames == runtime->buffer_size)
  633. frames = 0;
  634. return frames;
  635. }
  636. /**
  637. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  638. *
  639. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  640. * registers.
  641. *
  642. * This function can be called multiple times.
  643. */
  644. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  645. {
  646. struct snd_pcm_runtime *runtime = substream->runtime;
  647. struct fsl_dma_private *dma_private = runtime->private_data;
  648. if (dma_private) {
  649. struct ccsr_dma_channel __iomem *dma_channel;
  650. dma_channel = dma_private->dma_channel;
  651. /* Stop the DMA */
  652. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  653. out_be32(&dma_channel->mr, 0);
  654. /* Reset all the other registers */
  655. out_be32(&dma_channel->sr, -1);
  656. out_be32(&dma_channel->clndar, 0);
  657. out_be32(&dma_channel->eclndar, 0);
  658. out_be32(&dma_channel->satr, 0);
  659. out_be32(&dma_channel->sar, 0);
  660. out_be32(&dma_channel->datr, 0);
  661. out_be32(&dma_channel->dar, 0);
  662. out_be32(&dma_channel->bcr, 0);
  663. out_be32(&dma_channel->nlndar, 0);
  664. out_be32(&dma_channel->enlndar, 0);
  665. }
  666. return 0;
  667. }
  668. /**
  669. * fsl_dma_close: close the stream.
  670. */
  671. static int fsl_dma_close(struct snd_pcm_substream *substream)
  672. {
  673. struct snd_pcm_runtime *runtime = substream->runtime;
  674. struct fsl_dma_private *dma_private = runtime->private_data;
  675. int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  676. if (dma_private) {
  677. if (dma_private->irq)
  678. free_irq(dma_private->irq, dma_private);
  679. if (dma_private->ld_buf_phys) {
  680. dma_unmap_single(substream->pcm->card->dev,
  681. dma_private->ld_buf_phys,
  682. sizeof(dma_private->link), DMA_TO_DEVICE);
  683. }
  684. /* Deallocate the fsl_dma_private structure */
  685. dma_free_coherent(substream->pcm->card->dev,
  686. sizeof(struct fsl_dma_private),
  687. dma_private, dma_private->ld_buf_phys);
  688. substream->runtime->private_data = NULL;
  689. }
  690. dma_global_data.assigned[dir] = 0;
  691. return 0;
  692. }
  693. /*
  694. * Remove this PCM driver.
  695. */
  696. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  697. {
  698. struct snd_pcm_substream *substream;
  699. unsigned int i;
  700. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  701. substream = pcm->streams[i].substream;
  702. if (substream) {
  703. snd_dma_free_pages(&substream->dma_buffer);
  704. substream->dma_buffer.area = NULL;
  705. substream->dma_buffer.addr = 0;
  706. }
  707. }
  708. }
  709. static struct snd_pcm_ops fsl_dma_ops = {
  710. .open = fsl_dma_open,
  711. .close = fsl_dma_close,
  712. .ioctl = snd_pcm_lib_ioctl,
  713. .hw_params = fsl_dma_hw_params,
  714. .hw_free = fsl_dma_hw_free,
  715. .pointer = fsl_dma_pointer,
  716. };
  717. struct snd_soc_platform fsl_soc_platform = {
  718. .name = "fsl-dma",
  719. .pcm_ops = &fsl_dma_ops,
  720. .pcm_new = fsl_dma_new,
  721. .pcm_free = fsl_dma_free_dma_buffers,
  722. };
  723. EXPORT_SYMBOL_GPL(fsl_soc_platform);
  724. /**
  725. * fsl_dma_configure: store the DMA parameters from the fabric driver.
  726. *
  727. * This function is called by the ASoC fabric driver to give us the DMA and
  728. * SSI channel information.
  729. *
  730. * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
  731. * data when a substream is created, so for now we need to store this data
  732. * into a global variable. This means that we can only support one DMA
  733. * controller, and hence only one SSI.
  734. */
  735. int fsl_dma_configure(struct fsl_dma_info *dma_info)
  736. {
  737. static int initialized;
  738. /* We only support one DMA controller for now */
  739. if (initialized)
  740. return 0;
  741. dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
  742. dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
  743. dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
  744. dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
  745. dma_global_data.irq[0] = dma_info->dma_irq[0];
  746. dma_global_data.irq[1] = dma_info->dma_irq[1];
  747. dma_global_data.assigned[0] = 0;
  748. dma_global_data.assigned[1] = 0;
  749. initialized = 1;
  750. return 1;
  751. }
  752. EXPORT_SYMBOL_GPL(fsl_dma_configure);
  753. static int __init fsl_soc_platform_init(void)
  754. {
  755. return snd_soc_register_platform(&fsl_soc_platform);
  756. }
  757. module_init(fsl_soc_platform_init);
  758. static void __exit fsl_soc_platform_exit(void)
  759. {
  760. snd_soc_unregister_platform(&fsl_soc_platform);
  761. }
  762. module_exit(fsl_soc_platform_exit);
  763. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  764. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
  765. MODULE_LICENSE("GPL");