atmel_ssc_dai.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781
  1. /*
  2. * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
  3. *
  4. * Copyright (C) 2005 SAN People
  5. * Copyright (C) 2008 Atmel
  6. *
  7. * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
  8. * ATMEL CORP.
  9. *
  10. * Based on at91-ssc.c by
  11. * Frank Mandarino <fmandarino@endrelia.com>
  12. * Based on pxa2xx Platform drivers by
  13. * Liam Girdwood <lrg@slimlogic.co.uk>
  14. *
  15. * This program is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. *
  20. * This program is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  23. * GNU General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public License
  26. * along with this program; if not, write to the Free Software
  27. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  28. */
  29. #include <linux/init.h>
  30. #include <linux/module.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/device.h>
  33. #include <linux/delay.h>
  34. #include <linux/clk.h>
  35. #include <linux/atmel_pdc.h>
  36. #include <linux/atmel-ssc.h>
  37. #include <sound/core.h>
  38. #include <sound/pcm.h>
  39. #include <sound/pcm_params.h>
  40. #include <sound/initval.h>
  41. #include <sound/soc.h>
  42. #include <mach/hardware.h>
  43. #include "atmel-pcm.h"
  44. #include "atmel_ssc_dai.h"
  45. #if defined(CONFIG_ARCH_AT91SAM9260) || defined(CONFIG_ARCH_AT91SAM9G20)
  46. #define NUM_SSC_DEVICES 1
  47. #else
  48. #define NUM_SSC_DEVICES 3
  49. #endif
  50. /*
  51. * SSC PDC registers required by the PCM DMA engine.
  52. */
  53. static struct atmel_pdc_regs pdc_tx_reg = {
  54. .xpr = ATMEL_PDC_TPR,
  55. .xcr = ATMEL_PDC_TCR,
  56. .xnpr = ATMEL_PDC_TNPR,
  57. .xncr = ATMEL_PDC_TNCR,
  58. };
  59. static struct atmel_pdc_regs pdc_rx_reg = {
  60. .xpr = ATMEL_PDC_RPR,
  61. .xcr = ATMEL_PDC_RCR,
  62. .xnpr = ATMEL_PDC_RNPR,
  63. .xncr = ATMEL_PDC_RNCR,
  64. };
  65. /*
  66. * SSC & PDC status bits for transmit and receive.
  67. */
  68. static struct atmel_ssc_mask ssc_tx_mask = {
  69. .ssc_enable = SSC_BIT(CR_TXEN),
  70. .ssc_disable = SSC_BIT(CR_TXDIS),
  71. .ssc_endx = SSC_BIT(SR_ENDTX),
  72. .ssc_endbuf = SSC_BIT(SR_TXBUFE),
  73. .pdc_enable = ATMEL_PDC_TXTEN,
  74. .pdc_disable = ATMEL_PDC_TXTDIS,
  75. };
  76. static struct atmel_ssc_mask ssc_rx_mask = {
  77. .ssc_enable = SSC_BIT(CR_RXEN),
  78. .ssc_disable = SSC_BIT(CR_RXDIS),
  79. .ssc_endx = SSC_BIT(SR_ENDRX),
  80. .ssc_endbuf = SSC_BIT(SR_RXBUFF),
  81. .pdc_enable = ATMEL_PDC_RXTEN,
  82. .pdc_disable = ATMEL_PDC_RXTDIS,
  83. };
  84. /*
  85. * DMA parameters.
  86. */
  87. static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
  88. {{
  89. .name = "SSC0 PCM out",
  90. .pdc = &pdc_tx_reg,
  91. .mask = &ssc_tx_mask,
  92. },
  93. {
  94. .name = "SSC0 PCM in",
  95. .pdc = &pdc_rx_reg,
  96. .mask = &ssc_rx_mask,
  97. } },
  98. #if NUM_SSC_DEVICES == 3
  99. {{
  100. .name = "SSC1 PCM out",
  101. .pdc = &pdc_tx_reg,
  102. .mask = &ssc_tx_mask,
  103. },
  104. {
  105. .name = "SSC1 PCM in",
  106. .pdc = &pdc_rx_reg,
  107. .mask = &ssc_rx_mask,
  108. } },
  109. {{
  110. .name = "SSC2 PCM out",
  111. .pdc = &pdc_tx_reg,
  112. .mask = &ssc_tx_mask,
  113. },
  114. {
  115. .name = "SSC2 PCM in",
  116. .pdc = &pdc_rx_reg,
  117. .mask = &ssc_rx_mask,
  118. } },
  119. #endif
  120. };
  121. static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
  122. {
  123. .name = "ssc0",
  124. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
  125. .dir_mask = SSC_DIR_MASK_UNUSED,
  126. .initialized = 0,
  127. },
  128. #if NUM_SSC_DEVICES == 3
  129. {
  130. .name = "ssc1",
  131. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
  132. .dir_mask = SSC_DIR_MASK_UNUSED,
  133. .initialized = 0,
  134. },
  135. {
  136. .name = "ssc2",
  137. .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
  138. .dir_mask = SSC_DIR_MASK_UNUSED,
  139. .initialized = 0,
  140. },
  141. #endif
  142. };
  143. /*
  144. * SSC interrupt handler. Passes PDC interrupts to the DMA
  145. * interrupt handler in the PCM driver.
  146. */
  147. static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
  148. {
  149. struct atmel_ssc_info *ssc_p = dev_id;
  150. struct atmel_pcm_dma_params *dma_params;
  151. u32 ssc_sr;
  152. u32 ssc_substream_mask;
  153. int i;
  154. ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
  155. & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
  156. /*
  157. * Loop through the substreams attached to this SSC. If
  158. * a DMA-related interrupt occurred on that substream, call
  159. * the DMA interrupt handler function, if one has been
  160. * registered in the dma_params structure by the PCM driver.
  161. */
  162. for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
  163. dma_params = ssc_p->dma_params[i];
  164. if ((dma_params != NULL) &&
  165. (dma_params->dma_intr_handler != NULL)) {
  166. ssc_substream_mask = (dma_params->mask->ssc_endx |
  167. dma_params->mask->ssc_endbuf);
  168. if (ssc_sr & ssc_substream_mask) {
  169. dma_params->dma_intr_handler(ssc_sr,
  170. dma_params->
  171. substream);
  172. }
  173. }
  174. }
  175. return IRQ_HANDLED;
  176. }
  177. /*-------------------------------------------------------------------------*\
  178. * DAI functions
  179. \*-------------------------------------------------------------------------*/
  180. /*
  181. * Startup. Only that one substream allowed in each direction.
  182. */
  183. static int atmel_ssc_startup(struct snd_pcm_substream *substream,
  184. struct snd_soc_dai *dai)
  185. {
  186. struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
  187. struct atmel_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id];
  188. int dir_mask;
  189. pr_debug("atmel_ssc_startup: SSC_SR=0x%u\n",
  190. ssc_readl(ssc_p->ssc->regs, SR));
  191. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  192. dir_mask = SSC_DIR_MASK_PLAYBACK;
  193. else
  194. dir_mask = SSC_DIR_MASK_CAPTURE;
  195. spin_lock_irq(&ssc_p->lock);
  196. if (ssc_p->dir_mask & dir_mask) {
  197. spin_unlock_irq(&ssc_p->lock);
  198. return -EBUSY;
  199. }
  200. ssc_p->dir_mask |= dir_mask;
  201. spin_unlock_irq(&ssc_p->lock);
  202. return 0;
  203. }
  204. /*
  205. * Shutdown. Clear DMA parameters and shutdown the SSC if there
  206. * are no other substreams open.
  207. */
  208. static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
  209. struct snd_soc_dai *dai)
  210. {
  211. struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
  212. struct atmel_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id];
  213. struct atmel_pcm_dma_params *dma_params;
  214. int dir, dir_mask;
  215. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  216. dir = 0;
  217. else
  218. dir = 1;
  219. dma_params = ssc_p->dma_params[dir];
  220. if (dma_params != NULL) {
  221. ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
  222. pr_debug("atmel_ssc_shutdown: %s disabled SSC_SR=0x%08x\n",
  223. (dir ? "receive" : "transmit"),
  224. ssc_readl(ssc_p->ssc->regs, SR));
  225. dma_params->ssc = NULL;
  226. dma_params->substream = NULL;
  227. ssc_p->dma_params[dir] = NULL;
  228. }
  229. dir_mask = 1 << dir;
  230. spin_lock_irq(&ssc_p->lock);
  231. ssc_p->dir_mask &= ~dir_mask;
  232. if (!ssc_p->dir_mask) {
  233. if (ssc_p->initialized) {
  234. /* Shutdown the SSC clock. */
  235. pr_debug("atmel_ssc_dau: Stopping clock\n");
  236. clk_disable(ssc_p->ssc->clk);
  237. free_irq(ssc_p->ssc->irq, ssc_p);
  238. ssc_p->initialized = 0;
  239. }
  240. /* Reset the SSC */
  241. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
  242. /* Clear the SSC dividers */
  243. ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
  244. }
  245. spin_unlock_irq(&ssc_p->lock);
  246. }
  247. /*
  248. * Record the DAI format for use in hw_params().
  249. */
  250. static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
  251. unsigned int fmt)
  252. {
  253. struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
  254. ssc_p->daifmt = fmt;
  255. return 0;
  256. }
  257. /*
  258. * Record SSC clock dividers for use in hw_params().
  259. */
  260. static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
  261. int div_id, int div)
  262. {
  263. struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
  264. switch (div_id) {
  265. case ATMEL_SSC_CMR_DIV:
  266. /*
  267. * The same master clock divider is used for both
  268. * transmit and receive, so if a value has already
  269. * been set, it must match this value.
  270. */
  271. if (ssc_p->cmr_div == 0)
  272. ssc_p->cmr_div = div;
  273. else
  274. if (div != ssc_p->cmr_div)
  275. return -EBUSY;
  276. break;
  277. case ATMEL_SSC_TCMR_PERIOD:
  278. ssc_p->tcmr_period = div;
  279. break;
  280. case ATMEL_SSC_RCMR_PERIOD:
  281. ssc_p->rcmr_period = div;
  282. break;
  283. default:
  284. return -EINVAL;
  285. }
  286. return 0;
  287. }
  288. /*
  289. * Configure the SSC.
  290. */
  291. static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
  292. struct snd_pcm_hw_params *params,
  293. struct snd_soc_dai *dai)
  294. {
  295. struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
  296. int id = rtd->dai->cpu_dai->id;
  297. struct atmel_ssc_info *ssc_p = &ssc_info[id];
  298. struct atmel_pcm_dma_params *dma_params;
  299. int dir, channels, bits;
  300. u32 tfmr, rfmr, tcmr, rcmr;
  301. int start_event;
  302. int ret;
  303. /*
  304. * Currently, there is only one set of dma params for
  305. * each direction. If more are added, this code will
  306. * have to be changed to select the proper set.
  307. */
  308. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  309. dir = 0;
  310. else
  311. dir = 1;
  312. dma_params = &ssc_dma_params[id][dir];
  313. dma_params->ssc = ssc_p->ssc;
  314. dma_params->substream = substream;
  315. ssc_p->dma_params[dir] = dma_params;
  316. /*
  317. * The cpu_dai->dma_data field is only used to communicate the
  318. * appropriate DMA parameters to the pcm driver hw_params()
  319. * function. It should not be used for other purposes
  320. * as it is common to all substreams.
  321. */
  322. rtd->dai->cpu_dai->dma_data = dma_params;
  323. channels = params_channels(params);
  324. /*
  325. * Determine sample size in bits and the PDC increment.
  326. */
  327. switch (params_format(params)) {
  328. case SNDRV_PCM_FORMAT_S8:
  329. bits = 8;
  330. dma_params->pdc_xfer_size = 1;
  331. break;
  332. case SNDRV_PCM_FORMAT_S16_LE:
  333. bits = 16;
  334. dma_params->pdc_xfer_size = 2;
  335. break;
  336. case SNDRV_PCM_FORMAT_S24_LE:
  337. bits = 24;
  338. dma_params->pdc_xfer_size = 4;
  339. break;
  340. case SNDRV_PCM_FORMAT_S32_LE:
  341. bits = 32;
  342. dma_params->pdc_xfer_size = 4;
  343. break;
  344. default:
  345. printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
  346. return -EINVAL;
  347. }
  348. /*
  349. * The SSC only supports up to 16-bit samples in I2S format, due
  350. * to the size of the Frame Mode Register FSLEN field.
  351. */
  352. if ((ssc_p->daifmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_I2S
  353. && bits > 16) {
  354. printk(KERN_WARNING
  355. "atmel_ssc_dai: sample size %d"
  356. "is too large for I2S\n", bits);
  357. return -EINVAL;
  358. }
  359. /*
  360. * Compute SSC register settings.
  361. */
  362. switch (ssc_p->daifmt
  363. & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
  364. case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
  365. /*
  366. * I2S format, SSC provides BCLK and LRC clocks.
  367. *
  368. * The SSC transmit and receive clocks are generated
  369. * from the MCK divider, and the BCLK signal
  370. * is output on the SSC TK line.
  371. */
  372. rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
  373. | SSC_BF(RCMR_STTDLY, START_DELAY)
  374. | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
  375. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  376. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  377. | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
  378. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  379. | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
  380. | SSC_BF(RFMR_FSLEN, (bits - 1))
  381. | SSC_BF(RFMR_DATNB, (channels - 1))
  382. | SSC_BIT(RFMR_MSBF)
  383. | SSC_BF(RFMR_LOOP, 0)
  384. | SSC_BF(RFMR_DATLEN, (bits - 1));
  385. tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
  386. | SSC_BF(TCMR_STTDLY, START_DELAY)
  387. | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
  388. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  389. | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
  390. | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
  391. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  392. | SSC_BF(TFMR_FSDEN, 0)
  393. | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
  394. | SSC_BF(TFMR_FSLEN, (bits - 1))
  395. | SSC_BF(TFMR_DATNB, (channels - 1))
  396. | SSC_BIT(TFMR_MSBF)
  397. | SSC_BF(TFMR_DATDEF, 0)
  398. | SSC_BF(TFMR_DATLEN, (bits - 1));
  399. break;
  400. case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
  401. /*
  402. * I2S format, CODEC supplies BCLK and LRC clocks.
  403. *
  404. * The SSC transmit clock is obtained from the BCLK signal on
  405. * on the TK line, and the SSC receive clock is
  406. * generated from the transmit clock.
  407. *
  408. * For single channel data, one sample is transferred
  409. * on the falling edge of the LRC clock.
  410. * For two channel data, one sample is
  411. * transferred on both edges of the LRC clock.
  412. */
  413. start_event = ((channels == 1)
  414. ? SSC_START_FALLING_RF
  415. : SSC_START_EDGE_RF);
  416. rcmr = SSC_BF(RCMR_PERIOD, 0)
  417. | SSC_BF(RCMR_STTDLY, START_DELAY)
  418. | SSC_BF(RCMR_START, start_event)
  419. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  420. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  421. | SSC_BF(RCMR_CKS, SSC_CKS_CLOCK);
  422. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  423. | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
  424. | SSC_BF(RFMR_FSLEN, 0)
  425. | SSC_BF(RFMR_DATNB, 0)
  426. | SSC_BIT(RFMR_MSBF)
  427. | SSC_BF(RFMR_LOOP, 0)
  428. | SSC_BF(RFMR_DATLEN, (bits - 1));
  429. tcmr = SSC_BF(TCMR_PERIOD, 0)
  430. | SSC_BF(TCMR_STTDLY, START_DELAY)
  431. | SSC_BF(TCMR_START, start_event)
  432. | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
  433. | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
  434. | SSC_BF(TCMR_CKS, SSC_CKS_PIN);
  435. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  436. | SSC_BF(TFMR_FSDEN, 0)
  437. | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
  438. | SSC_BF(TFMR_FSLEN, 0)
  439. | SSC_BF(TFMR_DATNB, 0)
  440. | SSC_BIT(TFMR_MSBF)
  441. | SSC_BF(TFMR_DATDEF, 0)
  442. | SSC_BF(TFMR_DATLEN, (bits - 1));
  443. break;
  444. case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
  445. /*
  446. * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
  447. *
  448. * The SSC transmit and receive clocks are generated from the
  449. * MCK divider, and the BCLK signal is output
  450. * on the SSC TK line.
  451. */
  452. rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
  453. | SSC_BF(RCMR_STTDLY, 1)
  454. | SSC_BF(RCMR_START, SSC_START_RISING_RF)
  455. | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
  456. | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
  457. | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
  458. rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  459. | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
  460. | SSC_BF(RFMR_FSLEN, 0)
  461. | SSC_BF(RFMR_DATNB, (channels - 1))
  462. | SSC_BIT(RFMR_MSBF)
  463. | SSC_BF(RFMR_LOOP, 0)
  464. | SSC_BF(RFMR_DATLEN, (bits - 1));
  465. tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
  466. | SSC_BF(TCMR_STTDLY, 1)
  467. | SSC_BF(TCMR_START, SSC_START_RISING_RF)
  468. | SSC_BF(TCMR_CKI, SSC_CKI_RISING)
  469. | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
  470. | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
  471. tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
  472. | SSC_BF(TFMR_FSDEN, 0)
  473. | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
  474. | SSC_BF(TFMR_FSLEN, 0)
  475. | SSC_BF(TFMR_DATNB, (channels - 1))
  476. | SSC_BIT(TFMR_MSBF)
  477. | SSC_BF(TFMR_DATDEF, 0)
  478. | SSC_BF(TFMR_DATLEN, (bits - 1));
  479. break;
  480. case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
  481. default:
  482. printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
  483. ssc_p->daifmt);
  484. return -EINVAL;
  485. break;
  486. }
  487. pr_debug("atmel_ssc_hw_params: "
  488. "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
  489. rcmr, rfmr, tcmr, tfmr);
  490. if (!ssc_p->initialized) {
  491. /* Enable PMC peripheral clock for this SSC */
  492. pr_debug("atmel_ssc_dai: Starting clock\n");
  493. clk_enable(ssc_p->ssc->clk);
  494. /* Reset the SSC and its PDC registers */
  495. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
  496. ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
  497. ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
  498. ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
  499. ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
  500. ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
  501. ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
  502. ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
  503. ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
  504. ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
  505. ssc_p->name, ssc_p);
  506. if (ret < 0) {
  507. printk(KERN_WARNING
  508. "atmel_ssc_dai: request_irq failure\n");
  509. pr_debug("Atmel_ssc_dai: Stoping clock\n");
  510. clk_disable(ssc_p->ssc->clk);
  511. return ret;
  512. }
  513. ssc_p->initialized = 1;
  514. }
  515. /* set SSC clock mode register */
  516. ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
  517. /* set receive clock mode and format */
  518. ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
  519. ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
  520. /* set transmit clock mode and format */
  521. ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
  522. ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
  523. pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
  524. return 0;
  525. }
  526. static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
  527. struct snd_soc_dai *dai)
  528. {
  529. struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
  530. struct atmel_ssc_info *ssc_p = &ssc_info[rtd->dai->cpu_dai->id];
  531. struct atmel_pcm_dma_params *dma_params;
  532. int dir;
  533. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  534. dir = 0;
  535. else
  536. dir = 1;
  537. dma_params = ssc_p->dma_params[dir];
  538. ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
  539. pr_debug("%s enabled SSC_SR=0x%08x\n",
  540. dir ? "receive" : "transmit",
  541. ssc_readl(ssc_p->ssc->regs, SR));
  542. return 0;
  543. }
  544. #ifdef CONFIG_PM
  545. static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
  546. {
  547. struct atmel_ssc_info *ssc_p;
  548. if (!cpu_dai->active)
  549. return 0;
  550. ssc_p = &ssc_info[cpu_dai->id];
  551. /* Save the status register before disabling transmit and receive */
  552. ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
  553. ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
  554. /* Save the current interrupt mask, then disable unmasked interrupts */
  555. ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
  556. ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
  557. ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
  558. ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
  559. ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
  560. ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
  561. ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
  562. return 0;
  563. }
  564. static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
  565. {
  566. struct atmel_ssc_info *ssc_p;
  567. u32 cr;
  568. if (!cpu_dai->active)
  569. return 0;
  570. ssc_p = &ssc_info[cpu_dai->id];
  571. /* restore SSC register settings */
  572. ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
  573. ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
  574. ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
  575. ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
  576. ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
  577. /* re-enable interrupts */
  578. ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
  579. /* Re-enable recieve and transmit as appropriate */
  580. cr = 0;
  581. cr |=
  582. (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
  583. cr |=
  584. (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
  585. ssc_writel(ssc_p->ssc->regs, CR, cr);
  586. return 0;
  587. }
  588. #else /* CONFIG_PM */
  589. # define atmel_ssc_suspend NULL
  590. # define atmel_ssc_resume NULL
  591. #endif /* CONFIG_PM */
  592. #define ATMEL_SSC_RATES (SNDRV_PCM_RATE_8000_96000)
  593. #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
  594. SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
  595. static struct snd_soc_dai_ops atmel_ssc_dai_ops = {
  596. .startup = atmel_ssc_startup,
  597. .shutdown = atmel_ssc_shutdown,
  598. .prepare = atmel_ssc_prepare,
  599. .hw_params = atmel_ssc_hw_params,
  600. .set_fmt = atmel_ssc_set_dai_fmt,
  601. .set_clkdiv = atmel_ssc_set_dai_clkdiv,
  602. };
  603. struct snd_soc_dai atmel_ssc_dai[NUM_SSC_DEVICES] = {
  604. { .name = "atmel-ssc0",
  605. .id = 0,
  606. .suspend = atmel_ssc_suspend,
  607. .resume = atmel_ssc_resume,
  608. .playback = {
  609. .channels_min = 1,
  610. .channels_max = 2,
  611. .rates = ATMEL_SSC_RATES,
  612. .formats = ATMEL_SSC_FORMATS,},
  613. .capture = {
  614. .channels_min = 1,
  615. .channels_max = 2,
  616. .rates = ATMEL_SSC_RATES,
  617. .formats = ATMEL_SSC_FORMATS,},
  618. .ops = &atmel_ssc_dai_ops,
  619. .private_data = &ssc_info[0],
  620. },
  621. #if NUM_SSC_DEVICES == 3
  622. { .name = "atmel-ssc1",
  623. .id = 1,
  624. .suspend = atmel_ssc_suspend,
  625. .resume = atmel_ssc_resume,
  626. .playback = {
  627. .channels_min = 1,
  628. .channels_max = 2,
  629. .rates = ATMEL_SSC_RATES,
  630. .formats = ATMEL_SSC_FORMATS,},
  631. .capture = {
  632. .channels_min = 1,
  633. .channels_max = 2,
  634. .rates = ATMEL_SSC_RATES,
  635. .formats = ATMEL_SSC_FORMATS,},
  636. .ops = &atmel_ssc_dai_ops,
  637. .private_data = &ssc_info[1],
  638. },
  639. { .name = "atmel-ssc2",
  640. .id = 2,
  641. .suspend = atmel_ssc_suspend,
  642. .resume = atmel_ssc_resume,
  643. .playback = {
  644. .channels_min = 1,
  645. .channels_max = 2,
  646. .rates = ATMEL_SSC_RATES,
  647. .formats = ATMEL_SSC_FORMATS,},
  648. .capture = {
  649. .channels_min = 1,
  650. .channels_max = 2,
  651. .rates = ATMEL_SSC_RATES,
  652. .formats = ATMEL_SSC_FORMATS,},
  653. .ops = &atmel_ssc_dai_ops,
  654. .private_data = &ssc_info[2],
  655. },
  656. #endif
  657. };
  658. EXPORT_SYMBOL_GPL(atmel_ssc_dai);
  659. static int __init atmel_ssc_modinit(void)
  660. {
  661. return snd_soc_register_dais(atmel_ssc_dai, ARRAY_SIZE(atmel_ssc_dai));
  662. }
  663. module_init(atmel_ssc_modinit);
  664. static void __exit atmel_ssc_modexit(void)
  665. {
  666. snd_soc_unregister_dais(atmel_ssc_dai, ARRAY_SIZE(atmel_ssc_dai));
  667. }
  668. module_exit(atmel_ssc_modexit);
  669. /* Module information */
  670. MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
  671. MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
  672. MODULE_LICENSE("GPL");