cthw20k1.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File cthw20k1.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of hardware access methord for 20k1.
  12. *
  13. * @Author Liu Chun
  14. * @Date Jun 24 2008
  15. *
  16. */
  17. #include <linux/types.h>
  18. #include <linux/slab.h>
  19. #include <linux/pci.h>
  20. #include <linux/io.h>
  21. #include <linux/string.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/kernel.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/delay.h>
  26. #include "cthw20k1.h"
  27. #include "ct20k1reg.h"
  28. #if BITS_PER_LONG == 32
  29. #define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */
  30. #else
  31. #define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */
  32. #endif
  33. struct hw20k1 {
  34. struct hw hw;
  35. spinlock_t reg_20k1_lock;
  36. spinlock_t reg_pci_lock;
  37. };
  38. static u32 hw_read_20kx(struct hw *hw, u32 reg);
  39. static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
  40. static u32 hw_read_pci(struct hw *hw, u32 reg);
  41. static void hw_write_pci(struct hw *hw, u32 reg, u32 data);
  42. /*
  43. * Type definition block.
  44. * The layout of control structures can be directly applied on 20k2 chip.
  45. */
  46. /*
  47. * SRC control block definitions.
  48. */
  49. /* SRC resource control block */
  50. #define SRCCTL_STATE 0x00000007
  51. #define SRCCTL_BM 0x00000008
  52. #define SRCCTL_RSR 0x00000030
  53. #define SRCCTL_SF 0x000001C0
  54. #define SRCCTL_WR 0x00000200
  55. #define SRCCTL_PM 0x00000400
  56. #define SRCCTL_ROM 0x00001800
  57. #define SRCCTL_VO 0x00002000
  58. #define SRCCTL_ST 0x00004000
  59. #define SRCCTL_IE 0x00008000
  60. #define SRCCTL_ILSZ 0x000F0000
  61. #define SRCCTL_BP 0x00100000
  62. #define SRCCCR_CISZ 0x000007FF
  63. #define SRCCCR_CWA 0x001FF800
  64. #define SRCCCR_D 0x00200000
  65. #define SRCCCR_RS 0x01C00000
  66. #define SRCCCR_NAL 0x3E000000
  67. #define SRCCCR_RA 0xC0000000
  68. #define SRCCA_CA 0x03FFFFFF
  69. #define SRCCA_RS 0x1C000000
  70. #define SRCCA_NAL 0xE0000000
  71. #define SRCSA_SA 0x03FFFFFF
  72. #define SRCLA_LA 0x03FFFFFF
  73. /* Mixer Parameter Ring ram Low and Hight register.
  74. * Fixed-point value in 8.24 format for parameter channel */
  75. #define MPRLH_PITCH 0xFFFFFFFF
  76. /* SRC resource register dirty flags */
  77. union src_dirty {
  78. struct {
  79. u16 ctl:1;
  80. u16 ccr:1;
  81. u16 sa:1;
  82. u16 la:1;
  83. u16 ca:1;
  84. u16 mpr:1;
  85. u16 czbfs:1; /* Clear Z-Buffers */
  86. u16 rsv:9;
  87. } bf;
  88. u16 data;
  89. };
  90. struct src_rsc_ctrl_blk {
  91. unsigned int ctl;
  92. unsigned int ccr;
  93. unsigned int ca;
  94. unsigned int sa;
  95. unsigned int la;
  96. unsigned int mpr;
  97. union src_dirty dirty;
  98. };
  99. /* SRC manager control block */
  100. union src_mgr_dirty {
  101. struct {
  102. u16 enb0:1;
  103. u16 enb1:1;
  104. u16 enb2:1;
  105. u16 enb3:1;
  106. u16 enb4:1;
  107. u16 enb5:1;
  108. u16 enb6:1;
  109. u16 enb7:1;
  110. u16 enbsa:1;
  111. u16 rsv:7;
  112. } bf;
  113. u16 data;
  114. };
  115. struct src_mgr_ctrl_blk {
  116. unsigned int enbsa;
  117. unsigned int enb[8];
  118. union src_mgr_dirty dirty;
  119. };
  120. /* SRCIMP manager control block */
  121. #define SRCAIM_ARC 0x00000FFF
  122. #define SRCAIM_NXT 0x00FF0000
  123. #define SRCAIM_SRC 0xFF000000
  124. struct srcimap {
  125. unsigned int srcaim;
  126. unsigned int idx;
  127. };
  128. /* SRCIMP manager register dirty flags */
  129. union srcimp_mgr_dirty {
  130. struct {
  131. u16 srcimap:1;
  132. u16 rsv:15;
  133. } bf;
  134. u16 data;
  135. };
  136. struct srcimp_mgr_ctrl_blk {
  137. struct srcimap srcimap;
  138. union srcimp_mgr_dirty dirty;
  139. };
  140. /*
  141. * Function implementation block.
  142. */
  143. static int src_get_rsc_ctrl_blk(void **rblk)
  144. {
  145. struct src_rsc_ctrl_blk *blk;
  146. *rblk = NULL;
  147. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  148. if (!blk)
  149. return -ENOMEM;
  150. *rblk = blk;
  151. return 0;
  152. }
  153. static int src_put_rsc_ctrl_blk(void *blk)
  154. {
  155. kfree((struct src_rsc_ctrl_blk *)blk);
  156. return 0;
  157. }
  158. static int src_set_state(void *blk, unsigned int state)
  159. {
  160. struct src_rsc_ctrl_blk *ctl = blk;
  161. set_field(&ctl->ctl, SRCCTL_STATE, state);
  162. ctl->dirty.bf.ctl = 1;
  163. return 0;
  164. }
  165. static int src_set_bm(void *blk, unsigned int bm)
  166. {
  167. struct src_rsc_ctrl_blk *ctl = blk;
  168. set_field(&ctl->ctl, SRCCTL_BM, bm);
  169. ctl->dirty.bf.ctl = 1;
  170. return 0;
  171. }
  172. static int src_set_rsr(void *blk, unsigned int rsr)
  173. {
  174. struct src_rsc_ctrl_blk *ctl = blk;
  175. set_field(&ctl->ctl, SRCCTL_RSR, rsr);
  176. ctl->dirty.bf.ctl = 1;
  177. return 0;
  178. }
  179. static int src_set_sf(void *blk, unsigned int sf)
  180. {
  181. struct src_rsc_ctrl_blk *ctl = blk;
  182. set_field(&ctl->ctl, SRCCTL_SF, sf);
  183. ctl->dirty.bf.ctl = 1;
  184. return 0;
  185. }
  186. static int src_set_wr(void *blk, unsigned int wr)
  187. {
  188. struct src_rsc_ctrl_blk *ctl = blk;
  189. set_field(&ctl->ctl, SRCCTL_WR, wr);
  190. ctl->dirty.bf.ctl = 1;
  191. return 0;
  192. }
  193. static int src_set_pm(void *blk, unsigned int pm)
  194. {
  195. struct src_rsc_ctrl_blk *ctl = blk;
  196. set_field(&ctl->ctl, SRCCTL_PM, pm);
  197. ctl->dirty.bf.ctl = 1;
  198. return 0;
  199. }
  200. static int src_set_rom(void *blk, unsigned int rom)
  201. {
  202. struct src_rsc_ctrl_blk *ctl = blk;
  203. set_field(&ctl->ctl, SRCCTL_ROM, rom);
  204. ctl->dirty.bf.ctl = 1;
  205. return 0;
  206. }
  207. static int src_set_vo(void *blk, unsigned int vo)
  208. {
  209. struct src_rsc_ctrl_blk *ctl = blk;
  210. set_field(&ctl->ctl, SRCCTL_VO, vo);
  211. ctl->dirty.bf.ctl = 1;
  212. return 0;
  213. }
  214. static int src_set_st(void *blk, unsigned int st)
  215. {
  216. struct src_rsc_ctrl_blk *ctl = blk;
  217. set_field(&ctl->ctl, SRCCTL_ST, st);
  218. ctl->dirty.bf.ctl = 1;
  219. return 0;
  220. }
  221. static int src_set_ie(void *blk, unsigned int ie)
  222. {
  223. struct src_rsc_ctrl_blk *ctl = blk;
  224. set_field(&ctl->ctl, SRCCTL_IE, ie);
  225. ctl->dirty.bf.ctl = 1;
  226. return 0;
  227. }
  228. static int src_set_ilsz(void *blk, unsigned int ilsz)
  229. {
  230. struct src_rsc_ctrl_blk *ctl = blk;
  231. set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
  232. ctl->dirty.bf.ctl = 1;
  233. return 0;
  234. }
  235. static int src_set_bp(void *blk, unsigned int bp)
  236. {
  237. struct src_rsc_ctrl_blk *ctl = blk;
  238. set_field(&ctl->ctl, SRCCTL_BP, bp);
  239. ctl->dirty.bf.ctl = 1;
  240. return 0;
  241. }
  242. static int src_set_cisz(void *blk, unsigned int cisz)
  243. {
  244. struct src_rsc_ctrl_blk *ctl = blk;
  245. set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
  246. ctl->dirty.bf.ccr = 1;
  247. return 0;
  248. }
  249. static int src_set_ca(void *blk, unsigned int ca)
  250. {
  251. struct src_rsc_ctrl_blk *ctl = blk;
  252. set_field(&ctl->ca, SRCCA_CA, ca);
  253. ctl->dirty.bf.ca = 1;
  254. return 0;
  255. }
  256. static int src_set_sa(void *blk, unsigned int sa)
  257. {
  258. struct src_rsc_ctrl_blk *ctl = blk;
  259. set_field(&ctl->sa, SRCSA_SA, sa);
  260. ctl->dirty.bf.sa = 1;
  261. return 0;
  262. }
  263. static int src_set_la(void *blk, unsigned int la)
  264. {
  265. struct src_rsc_ctrl_blk *ctl = blk;
  266. set_field(&ctl->la, SRCLA_LA, la);
  267. ctl->dirty.bf.la = 1;
  268. return 0;
  269. }
  270. static int src_set_pitch(void *blk, unsigned int pitch)
  271. {
  272. struct src_rsc_ctrl_blk *ctl = blk;
  273. set_field(&ctl->mpr, MPRLH_PITCH, pitch);
  274. ctl->dirty.bf.mpr = 1;
  275. return 0;
  276. }
  277. static int src_set_clear_zbufs(void *blk, unsigned int clear)
  278. {
  279. ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
  280. return 0;
  281. }
  282. static int src_set_dirty(void *blk, unsigned int flags)
  283. {
  284. ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
  285. return 0;
  286. }
  287. static int src_set_dirty_all(void *blk)
  288. {
  289. ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
  290. return 0;
  291. }
  292. #define AR_SLOT_SIZE 4096
  293. #define AR_SLOT_BLOCK_SIZE 16
  294. #define AR_PTS_PITCH 6
  295. #define AR_PARAM_SRC_OFFSET 0x60
  296. static unsigned int src_param_pitch_mixer(unsigned int src_idx)
  297. {
  298. return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
  299. - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
  300. }
  301. static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
  302. {
  303. struct src_rsc_ctrl_blk *ctl = blk;
  304. int i;
  305. if (ctl->dirty.bf.czbfs) {
  306. /* Clear Z-Buffer registers */
  307. for (i = 0; i < 8; i++)
  308. hw_write_20kx(hw, SRCUPZ+idx*0x100+i*0x4, 0);
  309. for (i = 0; i < 4; i++)
  310. hw_write_20kx(hw, SRCDN0Z+idx*0x100+i*0x4, 0);
  311. for (i = 0; i < 8; i++)
  312. hw_write_20kx(hw, SRCDN1Z+idx*0x100+i*0x4, 0);
  313. ctl->dirty.bf.czbfs = 0;
  314. }
  315. if (ctl->dirty.bf.mpr) {
  316. /* Take the parameter mixer resource in the same group as that
  317. * the idx src is in for simplicity. Unlike src, all conjugate
  318. * parameter mixer resources must be programmed for
  319. * corresponding conjugate src resources. */
  320. unsigned int pm_idx = src_param_pitch_mixer(idx);
  321. hw_write_20kx(hw, PRING_LO_HI+4*pm_idx, ctl->mpr);
  322. hw_write_20kx(hw, PMOPLO+8*pm_idx, 0x3);
  323. hw_write_20kx(hw, PMOPHI+8*pm_idx, 0x0);
  324. ctl->dirty.bf.mpr = 0;
  325. }
  326. if (ctl->dirty.bf.sa) {
  327. hw_write_20kx(hw, SRCSA+idx*0x100, ctl->sa);
  328. ctl->dirty.bf.sa = 0;
  329. }
  330. if (ctl->dirty.bf.la) {
  331. hw_write_20kx(hw, SRCLA+idx*0x100, ctl->la);
  332. ctl->dirty.bf.la = 0;
  333. }
  334. if (ctl->dirty.bf.ca) {
  335. hw_write_20kx(hw, SRCCA+idx*0x100, ctl->ca);
  336. ctl->dirty.bf.ca = 0;
  337. }
  338. /* Write srccf register */
  339. hw_write_20kx(hw, SRCCF+idx*0x100, 0x0);
  340. if (ctl->dirty.bf.ccr) {
  341. hw_write_20kx(hw, SRCCCR+idx*0x100, ctl->ccr);
  342. ctl->dirty.bf.ccr = 0;
  343. }
  344. if (ctl->dirty.bf.ctl) {
  345. hw_write_20kx(hw, SRCCTL+idx*0x100, ctl->ctl);
  346. ctl->dirty.bf.ctl = 0;
  347. }
  348. return 0;
  349. }
  350. static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
  351. {
  352. struct src_rsc_ctrl_blk *ctl = blk;
  353. ctl->ca = hw_read_20kx(hw, SRCCA+idx*0x100);
  354. ctl->dirty.bf.ca = 0;
  355. return get_field(ctl->ca, SRCCA_CA);
  356. }
  357. static unsigned int src_get_dirty(void *blk)
  358. {
  359. return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
  360. }
  361. static unsigned int src_dirty_conj_mask(void)
  362. {
  363. return 0x20;
  364. }
  365. static int src_mgr_enbs_src(void *blk, unsigned int idx)
  366. {
  367. ((struct src_mgr_ctrl_blk *)blk)->enbsa = ~(0x0);
  368. ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
  369. ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
  370. return 0;
  371. }
  372. static int src_mgr_enb_src(void *blk, unsigned int idx)
  373. {
  374. ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
  375. ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
  376. return 0;
  377. }
  378. static int src_mgr_dsb_src(void *blk, unsigned int idx)
  379. {
  380. ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
  381. ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
  382. return 0;
  383. }
  384. static int src_mgr_commit_write(struct hw *hw, void *blk)
  385. {
  386. struct src_mgr_ctrl_blk *ctl = blk;
  387. int i;
  388. unsigned int ret;
  389. if (ctl->dirty.bf.enbsa) {
  390. do {
  391. ret = hw_read_20kx(hw, SRCENBSTAT);
  392. } while (ret & 0x1);
  393. hw_write_20kx(hw, SRCENBS, ctl->enbsa);
  394. ctl->dirty.bf.enbsa = 0;
  395. }
  396. for (i = 0; i < 8; i++) {
  397. if ((ctl->dirty.data & (0x1 << i))) {
  398. hw_write_20kx(hw, SRCENB+(i*0x100), ctl->enb[i]);
  399. ctl->dirty.data &= ~(0x1 << i);
  400. }
  401. }
  402. return 0;
  403. }
  404. static int src_mgr_get_ctrl_blk(void **rblk)
  405. {
  406. struct src_mgr_ctrl_blk *blk;
  407. *rblk = NULL;
  408. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  409. if (!blk)
  410. return -ENOMEM;
  411. *rblk = blk;
  412. return 0;
  413. }
  414. static int src_mgr_put_ctrl_blk(void *blk)
  415. {
  416. kfree((struct src_mgr_ctrl_blk *)blk);
  417. return 0;
  418. }
  419. static int srcimp_mgr_get_ctrl_blk(void **rblk)
  420. {
  421. struct srcimp_mgr_ctrl_blk *blk;
  422. *rblk = NULL;
  423. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  424. if (!blk)
  425. return -ENOMEM;
  426. *rblk = blk;
  427. return 0;
  428. }
  429. static int srcimp_mgr_put_ctrl_blk(void *blk)
  430. {
  431. kfree((struct srcimp_mgr_ctrl_blk *)blk);
  432. return 0;
  433. }
  434. static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
  435. {
  436. struct srcimp_mgr_ctrl_blk *ctl = blk;
  437. set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
  438. ctl->dirty.bf.srcimap = 1;
  439. return 0;
  440. }
  441. static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
  442. {
  443. struct srcimp_mgr_ctrl_blk *ctl = blk;
  444. set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
  445. ctl->dirty.bf.srcimap = 1;
  446. return 0;
  447. }
  448. static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
  449. {
  450. struct srcimp_mgr_ctrl_blk *ctl = blk;
  451. set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
  452. ctl->dirty.bf.srcimap = 1;
  453. return 0;
  454. }
  455. static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
  456. {
  457. struct srcimp_mgr_ctrl_blk *ctl = blk;
  458. ctl->srcimap.idx = addr;
  459. ctl->dirty.bf.srcimap = 1;
  460. return 0;
  461. }
  462. static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
  463. {
  464. struct srcimp_mgr_ctrl_blk *ctl = blk;
  465. if (ctl->dirty.bf.srcimap) {
  466. hw_write_20kx(hw, SRCIMAP+ctl->srcimap.idx*0x100,
  467. ctl->srcimap.srcaim);
  468. ctl->dirty.bf.srcimap = 0;
  469. }
  470. return 0;
  471. }
  472. /*
  473. * AMIXER control block definitions.
  474. */
  475. #define AMOPLO_M 0x00000003
  476. #define AMOPLO_X 0x0003FFF0
  477. #define AMOPLO_Y 0xFFFC0000
  478. #define AMOPHI_SADR 0x000000FF
  479. #define AMOPHI_SE 0x80000000
  480. /* AMIXER resource register dirty flags */
  481. union amixer_dirty {
  482. struct {
  483. u16 amoplo:1;
  484. u16 amophi:1;
  485. u16 rsv:14;
  486. } bf;
  487. u16 data;
  488. };
  489. /* AMIXER resource control block */
  490. struct amixer_rsc_ctrl_blk {
  491. unsigned int amoplo;
  492. unsigned int amophi;
  493. union amixer_dirty dirty;
  494. };
  495. static int amixer_set_mode(void *blk, unsigned int mode)
  496. {
  497. struct amixer_rsc_ctrl_blk *ctl = blk;
  498. set_field(&ctl->amoplo, AMOPLO_M, mode);
  499. ctl->dirty.bf.amoplo = 1;
  500. return 0;
  501. }
  502. static int amixer_set_iv(void *blk, unsigned int iv)
  503. {
  504. /* 20k1 amixer does not have this field */
  505. return 0;
  506. }
  507. static int amixer_set_x(void *blk, unsigned int x)
  508. {
  509. struct amixer_rsc_ctrl_blk *ctl = blk;
  510. set_field(&ctl->amoplo, AMOPLO_X, x);
  511. ctl->dirty.bf.amoplo = 1;
  512. return 0;
  513. }
  514. static int amixer_set_y(void *blk, unsigned int y)
  515. {
  516. struct amixer_rsc_ctrl_blk *ctl = blk;
  517. set_field(&ctl->amoplo, AMOPLO_Y, y);
  518. ctl->dirty.bf.amoplo = 1;
  519. return 0;
  520. }
  521. static int amixer_set_sadr(void *blk, unsigned int sadr)
  522. {
  523. struct amixer_rsc_ctrl_blk *ctl = blk;
  524. set_field(&ctl->amophi, AMOPHI_SADR, sadr);
  525. ctl->dirty.bf.amophi = 1;
  526. return 0;
  527. }
  528. static int amixer_set_se(void *blk, unsigned int se)
  529. {
  530. struct amixer_rsc_ctrl_blk *ctl = blk;
  531. set_field(&ctl->amophi, AMOPHI_SE, se);
  532. ctl->dirty.bf.amophi = 1;
  533. return 0;
  534. }
  535. static int amixer_set_dirty(void *blk, unsigned int flags)
  536. {
  537. ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
  538. return 0;
  539. }
  540. static int amixer_set_dirty_all(void *blk)
  541. {
  542. ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
  543. return 0;
  544. }
  545. static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
  546. {
  547. struct amixer_rsc_ctrl_blk *ctl = blk;
  548. if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
  549. hw_write_20kx(hw, AMOPLO+idx*8, ctl->amoplo);
  550. ctl->dirty.bf.amoplo = 0;
  551. hw_write_20kx(hw, AMOPHI+idx*8, ctl->amophi);
  552. ctl->dirty.bf.amophi = 0;
  553. }
  554. return 0;
  555. }
  556. static int amixer_get_y(void *blk)
  557. {
  558. struct amixer_rsc_ctrl_blk *ctl = blk;
  559. return get_field(ctl->amoplo, AMOPLO_Y);
  560. }
  561. static unsigned int amixer_get_dirty(void *blk)
  562. {
  563. return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
  564. }
  565. static int amixer_rsc_get_ctrl_blk(void **rblk)
  566. {
  567. struct amixer_rsc_ctrl_blk *blk;
  568. *rblk = NULL;
  569. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  570. if (!blk)
  571. return -ENOMEM;
  572. *rblk = blk;
  573. return 0;
  574. }
  575. static int amixer_rsc_put_ctrl_blk(void *blk)
  576. {
  577. kfree((struct amixer_rsc_ctrl_blk *)blk);
  578. return 0;
  579. }
  580. static int amixer_mgr_get_ctrl_blk(void **rblk)
  581. {
  582. /*amixer_mgr_ctrl_blk_t *blk;*/
  583. *rblk = NULL;
  584. /*blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  585. if (!blk)
  586. return -ENOMEM;
  587. *rblk = blk;*/
  588. return 0;
  589. }
  590. static int amixer_mgr_put_ctrl_blk(void *blk)
  591. {
  592. /*kfree((amixer_mgr_ctrl_blk_t *)blk);*/
  593. return 0;
  594. }
  595. /*
  596. * DAIO control block definitions.
  597. */
  598. /* Receiver Sample Rate Tracker Control register */
  599. #define SRTCTL_SRCR 0x000000FF
  600. #define SRTCTL_SRCL 0x0000FF00
  601. #define SRTCTL_RSR 0x00030000
  602. #define SRTCTL_DRAT 0x000C0000
  603. #define SRTCTL_RLE 0x10000000
  604. #define SRTCTL_RLP 0x20000000
  605. #define SRTCTL_EC 0x40000000
  606. #define SRTCTL_ET 0x80000000
  607. /* DAIO Receiver register dirty flags */
  608. union dai_dirty {
  609. struct {
  610. u16 srtctl:1;
  611. u16 rsv:15;
  612. } bf;
  613. u16 data;
  614. };
  615. /* DAIO Receiver control block */
  616. struct dai_ctrl_blk {
  617. unsigned int srtctl;
  618. union dai_dirty dirty;
  619. };
  620. /* S/PDIF Transmitter register dirty flags */
  621. union dao_dirty {
  622. struct {
  623. u16 spos:1;
  624. u16 rsv:15;
  625. } bf;
  626. u16 data;
  627. };
  628. /* S/PDIF Transmitter control block */
  629. struct dao_ctrl_blk {
  630. unsigned int spos; /* S/PDIF Output Channel Status Register */
  631. union dao_dirty dirty;
  632. };
  633. /* Audio Input Mapper RAM */
  634. #define AIM_ARC 0x00000FFF
  635. #define AIM_NXT 0x007F0000
  636. struct daoimap {
  637. unsigned int aim;
  638. unsigned int idx;
  639. };
  640. /* I2S Transmitter/Receiver Control register */
  641. #define I2SCTL_EA 0x00000004
  642. #define I2SCTL_EI 0x00000010
  643. /* S/PDIF Transmitter Control register */
  644. #define SPOCTL_OE 0x00000001
  645. #define SPOCTL_OS 0x0000000E
  646. #define SPOCTL_RIV 0x00000010
  647. #define SPOCTL_LIV 0x00000020
  648. #define SPOCTL_SR 0x000000C0
  649. /* S/PDIF Receiver Control register */
  650. #define SPICTL_EN 0x00000001
  651. #define SPICTL_I24 0x00000002
  652. #define SPICTL_IB 0x00000004
  653. #define SPICTL_SM 0x00000008
  654. #define SPICTL_VM 0x00000010
  655. /* DAIO manager register dirty flags */
  656. union daio_mgr_dirty {
  657. struct {
  658. u32 i2soctl:4;
  659. u32 i2sictl:4;
  660. u32 spoctl:4;
  661. u32 spictl:4;
  662. u32 daoimap:1;
  663. u32 rsv:15;
  664. } bf;
  665. u32 data;
  666. };
  667. /* DAIO manager control block */
  668. struct daio_mgr_ctrl_blk {
  669. unsigned int i2sctl;
  670. unsigned int spoctl;
  671. unsigned int spictl;
  672. struct daoimap daoimap;
  673. union daio_mgr_dirty dirty;
  674. };
  675. static int dai_srt_set_srcr(void *blk, unsigned int src)
  676. {
  677. struct dai_ctrl_blk *ctl = blk;
  678. set_field(&ctl->srtctl, SRTCTL_SRCR, src);
  679. ctl->dirty.bf.srtctl = 1;
  680. return 0;
  681. }
  682. static int dai_srt_set_srcl(void *blk, unsigned int src)
  683. {
  684. struct dai_ctrl_blk *ctl = blk;
  685. set_field(&ctl->srtctl, SRTCTL_SRCL, src);
  686. ctl->dirty.bf.srtctl = 1;
  687. return 0;
  688. }
  689. static int dai_srt_set_rsr(void *blk, unsigned int rsr)
  690. {
  691. struct dai_ctrl_blk *ctl = blk;
  692. set_field(&ctl->srtctl, SRTCTL_RSR, rsr);
  693. ctl->dirty.bf.srtctl = 1;
  694. return 0;
  695. }
  696. static int dai_srt_set_drat(void *blk, unsigned int drat)
  697. {
  698. struct dai_ctrl_blk *ctl = blk;
  699. set_field(&ctl->srtctl, SRTCTL_DRAT, drat);
  700. ctl->dirty.bf.srtctl = 1;
  701. return 0;
  702. }
  703. static int dai_srt_set_ec(void *blk, unsigned int ec)
  704. {
  705. struct dai_ctrl_blk *ctl = blk;
  706. set_field(&ctl->srtctl, SRTCTL_EC, ec ? 1 : 0);
  707. ctl->dirty.bf.srtctl = 1;
  708. return 0;
  709. }
  710. static int dai_srt_set_et(void *blk, unsigned int et)
  711. {
  712. struct dai_ctrl_blk *ctl = blk;
  713. set_field(&ctl->srtctl, SRTCTL_ET, et ? 1 : 0);
  714. ctl->dirty.bf.srtctl = 1;
  715. return 0;
  716. }
  717. static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
  718. {
  719. struct dai_ctrl_blk *ctl = blk;
  720. if (ctl->dirty.bf.srtctl) {
  721. if (idx < 4) {
  722. /* S/PDIF SRTs */
  723. hw_write_20kx(hw, SRTSCTL+0x4*idx, ctl->srtctl);
  724. } else {
  725. /* I2S SRT */
  726. hw_write_20kx(hw, SRTICTL, ctl->srtctl);
  727. }
  728. ctl->dirty.bf.srtctl = 0;
  729. }
  730. return 0;
  731. }
  732. static int dai_get_ctrl_blk(void **rblk)
  733. {
  734. struct dai_ctrl_blk *blk;
  735. *rblk = NULL;
  736. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  737. if (!blk)
  738. return -ENOMEM;
  739. *rblk = blk;
  740. return 0;
  741. }
  742. static int dai_put_ctrl_blk(void *blk)
  743. {
  744. kfree((struct dai_ctrl_blk *)blk);
  745. return 0;
  746. }
  747. static int dao_set_spos(void *blk, unsigned int spos)
  748. {
  749. ((struct dao_ctrl_blk *)blk)->spos = spos;
  750. ((struct dao_ctrl_blk *)blk)->dirty.bf.spos = 1;
  751. return 0;
  752. }
  753. static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
  754. {
  755. struct dao_ctrl_blk *ctl = blk;
  756. if (ctl->dirty.bf.spos) {
  757. if (idx < 4) {
  758. /* S/PDIF SPOSx */
  759. hw_write_20kx(hw, SPOS+0x4*idx, ctl->spos);
  760. }
  761. ctl->dirty.bf.spos = 0;
  762. }
  763. return 0;
  764. }
  765. static int dao_get_spos(void *blk, unsigned int *spos)
  766. {
  767. *spos = ((struct dao_ctrl_blk *)blk)->spos;
  768. return 0;
  769. }
  770. static int dao_get_ctrl_blk(void **rblk)
  771. {
  772. struct dao_ctrl_blk *blk;
  773. *rblk = NULL;
  774. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  775. if (!blk)
  776. return -ENOMEM;
  777. *rblk = blk;
  778. return 0;
  779. }
  780. static int dao_put_ctrl_blk(void *blk)
  781. {
  782. kfree((struct dao_ctrl_blk *)blk);
  783. return 0;
  784. }
  785. static int daio_mgr_enb_dai(void *blk, unsigned int idx)
  786. {
  787. struct daio_mgr_ctrl_blk *ctl = blk;
  788. if (idx < 4) {
  789. /* S/PDIF input */
  790. set_field(&ctl->spictl, SPICTL_EN << (idx*8), 1);
  791. ctl->dirty.bf.spictl |= (0x1 << idx);
  792. } else {
  793. /* I2S input */
  794. idx %= 4;
  795. set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 1);
  796. ctl->dirty.bf.i2sictl |= (0x1 << idx);
  797. }
  798. return 0;
  799. }
  800. static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
  801. {
  802. struct daio_mgr_ctrl_blk *ctl = blk;
  803. if (idx < 4) {
  804. /* S/PDIF input */
  805. set_field(&ctl->spictl, SPICTL_EN << (idx*8), 0);
  806. ctl->dirty.bf.spictl |= (0x1 << idx);
  807. } else {
  808. /* I2S input */
  809. idx %= 4;
  810. set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 0);
  811. ctl->dirty.bf.i2sictl |= (0x1 << idx);
  812. }
  813. return 0;
  814. }
  815. static int daio_mgr_enb_dao(void *blk, unsigned int idx)
  816. {
  817. struct daio_mgr_ctrl_blk *ctl = blk;
  818. if (idx < 4) {
  819. /* S/PDIF output */
  820. set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 1);
  821. ctl->dirty.bf.spoctl |= (0x1 << idx);
  822. } else {
  823. /* I2S output */
  824. idx %= 4;
  825. set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 1);
  826. ctl->dirty.bf.i2soctl |= (0x1 << idx);
  827. }
  828. return 0;
  829. }
  830. static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
  831. {
  832. struct daio_mgr_ctrl_blk *ctl = blk;
  833. if (idx < 4) {
  834. /* S/PDIF output */
  835. set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 0);
  836. ctl->dirty.bf.spoctl |= (0x1 << idx);
  837. } else {
  838. /* I2S output */
  839. idx %= 4;
  840. set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 0);
  841. ctl->dirty.bf.i2soctl |= (0x1 << idx);
  842. }
  843. return 0;
  844. }
  845. static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
  846. {
  847. struct daio_mgr_ctrl_blk *ctl = blk;
  848. if (idx < 4) {
  849. /* S/PDIF output */
  850. switch ((conf & 0x7)) {
  851. case 0:
  852. set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 3);
  853. break; /* CDIF */
  854. case 1:
  855. set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 0);
  856. break;
  857. case 2:
  858. set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 1);
  859. break;
  860. case 4:
  861. set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 2);
  862. break;
  863. default:
  864. break;
  865. }
  866. set_field(&ctl->spoctl, SPOCTL_LIV << (idx*8),
  867. (conf >> 4) & 0x1); /* Non-audio */
  868. set_field(&ctl->spoctl, SPOCTL_RIV << (idx*8),
  869. (conf >> 4) & 0x1); /* Non-audio */
  870. set_field(&ctl->spoctl, SPOCTL_OS << (idx*8),
  871. ((conf >> 3) & 0x1) ? 2 : 2); /* Raw */
  872. ctl->dirty.bf.spoctl |= (0x1 << idx);
  873. } else {
  874. /* I2S output */
  875. /*idx %= 4; */
  876. }
  877. return 0;
  878. }
  879. static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
  880. {
  881. struct daio_mgr_ctrl_blk *ctl = blk;
  882. set_field(&ctl->daoimap.aim, AIM_ARC, slot);
  883. ctl->dirty.bf.daoimap = 1;
  884. return 0;
  885. }
  886. static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
  887. {
  888. struct daio_mgr_ctrl_blk *ctl = blk;
  889. set_field(&ctl->daoimap.aim, AIM_NXT, next);
  890. ctl->dirty.bf.daoimap = 1;
  891. return 0;
  892. }
  893. static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
  894. {
  895. struct daio_mgr_ctrl_blk *ctl = blk;
  896. ctl->daoimap.idx = addr;
  897. ctl->dirty.bf.daoimap = 1;
  898. return 0;
  899. }
  900. static int daio_mgr_commit_write(struct hw *hw, void *blk)
  901. {
  902. struct daio_mgr_ctrl_blk *ctl = blk;
  903. int i;
  904. if (ctl->dirty.bf.i2sictl || ctl->dirty.bf.i2soctl) {
  905. for (i = 0; i < 4; i++) {
  906. if ((ctl->dirty.bf.i2sictl & (0x1 << i)))
  907. ctl->dirty.bf.i2sictl &= ~(0x1 << i);
  908. if ((ctl->dirty.bf.i2soctl & (0x1 << i)))
  909. ctl->dirty.bf.i2soctl &= ~(0x1 << i);
  910. }
  911. hw_write_20kx(hw, I2SCTL, ctl->i2sctl);
  912. mdelay(1);
  913. }
  914. if (ctl->dirty.bf.spoctl) {
  915. for (i = 0; i < 4; i++) {
  916. if ((ctl->dirty.bf.spoctl & (0x1 << i)))
  917. ctl->dirty.bf.spoctl &= ~(0x1 << i);
  918. }
  919. hw_write_20kx(hw, SPOCTL, ctl->spoctl);
  920. mdelay(1);
  921. }
  922. if (ctl->dirty.bf.spictl) {
  923. for (i = 0; i < 4; i++) {
  924. if ((ctl->dirty.bf.spictl & (0x1 << i)))
  925. ctl->dirty.bf.spictl &= ~(0x1 << i);
  926. }
  927. hw_write_20kx(hw, SPICTL, ctl->spictl);
  928. mdelay(1);
  929. }
  930. if (ctl->dirty.bf.daoimap) {
  931. hw_write_20kx(hw, DAOIMAP+ctl->daoimap.idx*4,
  932. ctl->daoimap.aim);
  933. ctl->dirty.bf.daoimap = 0;
  934. }
  935. return 0;
  936. }
  937. static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
  938. {
  939. struct daio_mgr_ctrl_blk *blk;
  940. *rblk = NULL;
  941. blk = kzalloc(sizeof(*blk), GFP_KERNEL);
  942. if (!blk)
  943. return -ENOMEM;
  944. blk->i2sctl = hw_read_20kx(hw, I2SCTL);
  945. blk->spoctl = hw_read_20kx(hw, SPOCTL);
  946. blk->spictl = hw_read_20kx(hw, SPICTL);
  947. *rblk = blk;
  948. return 0;
  949. }
  950. static int daio_mgr_put_ctrl_blk(void *blk)
  951. {
  952. kfree((struct daio_mgr_ctrl_blk *)blk);
  953. return 0;
  954. }
  955. /* Timer interrupt */
  956. static int set_timer_irq(struct hw *hw, int enable)
  957. {
  958. hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
  959. return 0;
  960. }
  961. static int set_timer_tick(struct hw *hw, unsigned int ticks)
  962. {
  963. if (ticks)
  964. ticks |= TIMR_IE | TIMR_IP;
  965. hw_write_20kx(hw, TIMR, ticks);
  966. return 0;
  967. }
  968. static unsigned int get_wc(struct hw *hw)
  969. {
  970. return hw_read_20kx(hw, WC);
  971. }
  972. /* Card hardware initialization block */
  973. struct dac_conf {
  974. unsigned int msr; /* master sample rate in rsrs */
  975. };
  976. struct adc_conf {
  977. unsigned int msr; /* master sample rate in rsrs */
  978. unsigned char input; /* the input source of ADC */
  979. unsigned char mic20db; /* boost mic by 20db if input is microphone */
  980. };
  981. struct daio_conf {
  982. unsigned int msr; /* master sample rate in rsrs */
  983. };
  984. struct trn_conf {
  985. unsigned long vm_pgt_phys;
  986. };
  987. static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
  988. {
  989. u32 i2sorg;
  990. u32 spdorg;
  991. /* Read I2S CTL. Keep original value. */
  992. /*i2sorg = hw_read_20kx(hw, I2SCTL);*/
  993. i2sorg = 0x94040404; /* enable all audio out and I2S-D input */
  994. /* Program I2S with proper master sample rate and enable
  995. * the correct I2S channel. */
  996. i2sorg &= 0xfffffffc;
  997. /* Enable S/PDIF-out-A in fixed 24-bit data
  998. * format and default to 48kHz. */
  999. /* Disable all before doing any changes. */
  1000. hw_write_20kx(hw, SPOCTL, 0x0);
  1001. spdorg = 0x05;
  1002. switch (info->msr) {
  1003. case 1:
  1004. i2sorg |= 1;
  1005. spdorg |= (0x0 << 6);
  1006. break;
  1007. case 2:
  1008. i2sorg |= 2;
  1009. spdorg |= (0x1 << 6);
  1010. break;
  1011. case 4:
  1012. i2sorg |= 3;
  1013. spdorg |= (0x2 << 6);
  1014. break;
  1015. default:
  1016. i2sorg |= 1;
  1017. break;
  1018. }
  1019. hw_write_20kx(hw, I2SCTL, i2sorg);
  1020. hw_write_20kx(hw, SPOCTL, spdorg);
  1021. /* Enable S/PDIF-in-A in fixed 24-bit data format. */
  1022. /* Disable all before doing any changes. */
  1023. hw_write_20kx(hw, SPICTL, 0x0);
  1024. mdelay(1);
  1025. spdorg = 0x0a0a0a0a;
  1026. hw_write_20kx(hw, SPICTL, spdorg);
  1027. mdelay(1);
  1028. return 0;
  1029. }
  1030. /* TRANSPORT operations */
  1031. static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
  1032. {
  1033. u32 trnctl;
  1034. u32 ptp_phys_low, ptp_phys_high;
  1035. /* Set up device page table */
  1036. if ((~0UL) == info->vm_pgt_phys) {
  1037. printk(KERN_ERR "Wrong device page table page address!\n");
  1038. return -1;
  1039. }
  1040. trnctl = 0x13; /* 32-bit, 4k-size page */
  1041. ptp_phys_low = (u32)info->vm_pgt_phys;
  1042. ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
  1043. if (sizeof(void *) == 8) /* 64bit address */
  1044. trnctl |= (1 << 2);
  1045. #if 0 /* Only 4k h/w pages for simplicitiy */
  1046. #if PAGE_SIZE == 8192
  1047. trnctl |= (1<<5);
  1048. #endif
  1049. #endif
  1050. hw_write_20kx(hw, PTPALX, ptp_phys_low);
  1051. hw_write_20kx(hw, PTPAHX, ptp_phys_high);
  1052. hw_write_20kx(hw, TRNCTL, trnctl);
  1053. hw_write_20kx(hw, TRNIS, 0x200c01); /* realy needed? */
  1054. return 0;
  1055. }
  1056. /* Card initialization */
  1057. #define GCTL_EAC 0x00000001
  1058. #define GCTL_EAI 0x00000002
  1059. #define GCTL_BEP 0x00000004
  1060. #define GCTL_BES 0x00000008
  1061. #define GCTL_DSP 0x00000010
  1062. #define GCTL_DBP 0x00000020
  1063. #define GCTL_ABP 0x00000040
  1064. #define GCTL_TBP 0x00000080
  1065. #define GCTL_SBP 0x00000100
  1066. #define GCTL_FBP 0x00000200
  1067. #define GCTL_XA 0x00000400
  1068. #define GCTL_ET 0x00000800
  1069. #define GCTL_PR 0x00001000
  1070. #define GCTL_MRL 0x00002000
  1071. #define GCTL_SDE 0x00004000
  1072. #define GCTL_SDI 0x00008000
  1073. #define GCTL_SM 0x00010000
  1074. #define GCTL_SR 0x00020000
  1075. #define GCTL_SD 0x00040000
  1076. #define GCTL_SE 0x00080000
  1077. #define GCTL_AID 0x00100000
  1078. static int hw_pll_init(struct hw *hw, unsigned int rsr)
  1079. {
  1080. unsigned int pllctl;
  1081. int i;
  1082. pllctl = (48000 == rsr) ? 0x1480a001 : 0x1480a731;
  1083. for (i = 0; i < 3; i++) {
  1084. if (hw_read_20kx(hw, PLLCTL) == pllctl)
  1085. break;
  1086. hw_write_20kx(hw, PLLCTL, pllctl);
  1087. mdelay(40);
  1088. }
  1089. if (i >= 3) {
  1090. printk(KERN_ALERT "PLL initialization failed!!!\n");
  1091. return -EBUSY;
  1092. }
  1093. return 0;
  1094. }
  1095. static int hw_auto_init(struct hw *hw)
  1096. {
  1097. unsigned int gctl;
  1098. int i;
  1099. gctl = hw_read_20kx(hw, GCTL);
  1100. set_field(&gctl, GCTL_EAI, 0);
  1101. hw_write_20kx(hw, GCTL, gctl);
  1102. set_field(&gctl, GCTL_EAI, 1);
  1103. hw_write_20kx(hw, GCTL, gctl);
  1104. mdelay(10);
  1105. for (i = 0; i < 400000; i++) {
  1106. gctl = hw_read_20kx(hw, GCTL);
  1107. if (get_field(gctl, GCTL_AID))
  1108. break;
  1109. }
  1110. if (!get_field(gctl, GCTL_AID)) {
  1111. printk(KERN_ALERT "Card Auto-init failed!!!\n");
  1112. return -EBUSY;
  1113. }
  1114. return 0;
  1115. }
  1116. static int i2c_unlock(struct hw *hw)
  1117. {
  1118. if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
  1119. return 0;
  1120. hw_write_pci(hw, 0xcc, 0x8c);
  1121. hw_write_pci(hw, 0xcc, 0x0e);
  1122. if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
  1123. return 0;
  1124. hw_write_pci(hw, 0xcc, 0xee);
  1125. hw_write_pci(hw, 0xcc, 0xaa);
  1126. if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
  1127. return 0;
  1128. return -1;
  1129. }
  1130. static void i2c_lock(struct hw *hw)
  1131. {
  1132. if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
  1133. hw_write_pci(hw, 0xcc, 0x00);
  1134. }
  1135. static void i2c_write(struct hw *hw, u32 device, u32 addr, u32 data)
  1136. {
  1137. unsigned int ret;
  1138. do {
  1139. ret = hw_read_pci(hw, 0xEC);
  1140. } while (!(ret & 0x800000));
  1141. hw_write_pci(hw, 0xE0, device);
  1142. hw_write_pci(hw, 0xE4, (data << 8) | (addr & 0xff));
  1143. }
  1144. /* DAC operations */
  1145. static int hw_reset_dac(struct hw *hw)
  1146. {
  1147. u32 i;
  1148. u16 gpioorg;
  1149. unsigned int ret;
  1150. if (i2c_unlock(hw))
  1151. return -1;
  1152. do {
  1153. ret = hw_read_pci(hw, 0xEC);
  1154. } while (!(ret & 0x800000));
  1155. hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
  1156. /* To be effective, need to reset the DAC twice. */
  1157. for (i = 0; i < 2; i++) {
  1158. /* set gpio */
  1159. mdelay(100);
  1160. gpioorg = (u16)hw_read_20kx(hw, GPIO);
  1161. gpioorg &= 0xfffd;
  1162. hw_write_20kx(hw, GPIO, gpioorg);
  1163. mdelay(1);
  1164. hw_write_20kx(hw, GPIO, gpioorg | 0x2);
  1165. }
  1166. i2c_write(hw, 0x00180080, 0x01, 0x80);
  1167. i2c_write(hw, 0x00180080, 0x02, 0x10);
  1168. i2c_lock(hw);
  1169. return 0;
  1170. }
  1171. static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
  1172. {
  1173. u32 data;
  1174. u16 gpioorg;
  1175. unsigned int ret;
  1176. if (hw->model == CTSB055X) {
  1177. /* SB055x, unmute outputs */
  1178. gpioorg = (u16)hw_read_20kx(hw, GPIO);
  1179. gpioorg &= 0xffbf; /* set GPIO6 to low */
  1180. gpioorg |= 2; /* set GPIO1 to high */
  1181. hw_write_20kx(hw, GPIO, gpioorg);
  1182. return 0;
  1183. }
  1184. /* mute outputs */
  1185. gpioorg = (u16)hw_read_20kx(hw, GPIO);
  1186. gpioorg &= 0xffbf;
  1187. hw_write_20kx(hw, GPIO, gpioorg);
  1188. hw_reset_dac(hw);
  1189. if (i2c_unlock(hw))
  1190. return -1;
  1191. hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
  1192. do {
  1193. ret = hw_read_pci(hw, 0xEC);
  1194. } while (!(ret & 0x800000));
  1195. switch (info->msr) {
  1196. case 1:
  1197. data = 0x24;
  1198. break;
  1199. case 2:
  1200. data = 0x25;
  1201. break;
  1202. case 4:
  1203. data = 0x26;
  1204. break;
  1205. default:
  1206. data = 0x24;
  1207. break;
  1208. }
  1209. i2c_write(hw, 0x00180080, 0x06, data);
  1210. i2c_write(hw, 0x00180080, 0x09, data);
  1211. i2c_write(hw, 0x00180080, 0x0c, data);
  1212. i2c_write(hw, 0x00180080, 0x0f, data);
  1213. i2c_lock(hw);
  1214. /* unmute outputs */
  1215. gpioorg = (u16)hw_read_20kx(hw, GPIO);
  1216. gpioorg = gpioorg | 0x40;
  1217. hw_write_20kx(hw, GPIO, gpioorg);
  1218. return 0;
  1219. }
  1220. /* ADC operations */
  1221. static int is_adc_input_selected_SB055x(struct hw *hw, enum ADCSRC type)
  1222. {
  1223. return 0;
  1224. }
  1225. static int is_adc_input_selected_SBx(struct hw *hw, enum ADCSRC type)
  1226. {
  1227. u32 data;
  1228. data = hw_read_20kx(hw, GPIO);
  1229. switch (type) {
  1230. case ADC_MICIN:
  1231. data = ((data & (0x1<<7)) && (data & (0x1<<8)));
  1232. break;
  1233. case ADC_LINEIN:
  1234. data = (!(data & (0x1<<7)) && (data & (0x1<<8)));
  1235. break;
  1236. case ADC_NONE: /* Digital I/O */
  1237. data = (!(data & (0x1<<8)));
  1238. break;
  1239. default:
  1240. data = 0;
  1241. }
  1242. return data;
  1243. }
  1244. static int is_adc_input_selected_hendrix(struct hw *hw, enum ADCSRC type)
  1245. {
  1246. u32 data;
  1247. data = hw_read_20kx(hw, GPIO);
  1248. switch (type) {
  1249. case ADC_MICIN:
  1250. data = (data & (0x1 << 7)) ? 1 : 0;
  1251. break;
  1252. case ADC_LINEIN:
  1253. data = (data & (0x1 << 7)) ? 0 : 1;
  1254. break;
  1255. default:
  1256. data = 0;
  1257. }
  1258. return data;
  1259. }
  1260. static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
  1261. {
  1262. switch (hw->model) {
  1263. case CTSB055X:
  1264. return is_adc_input_selected_SB055x(hw, type);
  1265. case CTSB073X:
  1266. return is_adc_input_selected_hendrix(hw, type);
  1267. case CTUAA:
  1268. return is_adc_input_selected_hendrix(hw, type);
  1269. default:
  1270. return is_adc_input_selected_SBx(hw, type);
  1271. }
  1272. }
  1273. static int
  1274. adc_input_select_SB055x(struct hw *hw, enum ADCSRC type, unsigned char boost)
  1275. {
  1276. u32 data;
  1277. /*
  1278. * check and set the following GPIO bits accordingly
  1279. * ADC_Gain = GPIO2
  1280. * DRM_off = GPIO3
  1281. * Mic_Pwr_on = GPIO7
  1282. * Digital_IO_Sel = GPIO8
  1283. * Mic_Sw = GPIO9
  1284. * Aux/MicLine_Sw = GPIO12
  1285. */
  1286. data = hw_read_20kx(hw, GPIO);
  1287. data &= 0xec73;
  1288. switch (type) {
  1289. case ADC_MICIN:
  1290. data |= (0x1<<7) | (0x1<<8) | (0x1<<9) ;
  1291. data |= boost ? (0x1<<2) : 0;
  1292. break;
  1293. case ADC_LINEIN:
  1294. data |= (0x1<<8);
  1295. break;
  1296. case ADC_AUX:
  1297. data |= (0x1<<8) | (0x1<<12);
  1298. break;
  1299. case ADC_NONE:
  1300. data |= (0x1<<12); /* set to digital */
  1301. break;
  1302. default:
  1303. return -1;
  1304. }
  1305. hw_write_20kx(hw, GPIO, data);
  1306. return 0;
  1307. }
  1308. static int
  1309. adc_input_select_SBx(struct hw *hw, enum ADCSRC type, unsigned char boost)
  1310. {
  1311. u32 data;
  1312. u32 i2c_data;
  1313. unsigned int ret;
  1314. if (i2c_unlock(hw))
  1315. return -1;
  1316. do {
  1317. ret = hw_read_pci(hw, 0xEC);
  1318. } while (!(ret & 0x800000)); /* i2c ready poll */
  1319. /* set i2c access mode as Direct Control */
  1320. hw_write_pci(hw, 0xEC, 0x05);
  1321. data = hw_read_20kx(hw, GPIO);
  1322. switch (type) {
  1323. case ADC_MICIN:
  1324. data |= ((0x1 << 7) | (0x1 << 8));
  1325. i2c_data = 0x1; /* Mic-in */
  1326. break;
  1327. case ADC_LINEIN:
  1328. data &= ~(0x1 << 7);
  1329. data |= (0x1 << 8);
  1330. i2c_data = 0x2; /* Line-in */
  1331. break;
  1332. case ADC_NONE:
  1333. data &= ~(0x1 << 8);
  1334. i2c_data = 0x0; /* set to Digital */
  1335. break;
  1336. default:
  1337. i2c_lock(hw);
  1338. return -1;
  1339. }
  1340. hw_write_20kx(hw, GPIO, data);
  1341. i2c_write(hw, 0x001a0080, 0x2a, i2c_data);
  1342. if (boost) {
  1343. i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */
  1344. i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */
  1345. } else {
  1346. i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */
  1347. i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */
  1348. }
  1349. i2c_lock(hw);
  1350. return 0;
  1351. }
  1352. static int
  1353. adc_input_select_hendrix(struct hw *hw, enum ADCSRC type, unsigned char boost)
  1354. {
  1355. u32 data;
  1356. u32 i2c_data;
  1357. unsigned int ret;
  1358. if (i2c_unlock(hw))
  1359. return -1;
  1360. do {
  1361. ret = hw_read_pci(hw, 0xEC);
  1362. } while (!(ret & 0x800000)); /* i2c ready poll */
  1363. /* set i2c access mode as Direct Control */
  1364. hw_write_pci(hw, 0xEC, 0x05);
  1365. data = hw_read_20kx(hw, GPIO);
  1366. switch (type) {
  1367. case ADC_MICIN:
  1368. data |= (0x1 << 7);
  1369. i2c_data = 0x1; /* Mic-in */
  1370. break;
  1371. case ADC_LINEIN:
  1372. data &= ~(0x1 << 7);
  1373. i2c_data = 0x2; /* Line-in */
  1374. break;
  1375. default:
  1376. i2c_lock(hw);
  1377. return -1;
  1378. }
  1379. hw_write_20kx(hw, GPIO, data);
  1380. i2c_write(hw, 0x001a0080, 0x2a, i2c_data);
  1381. if (boost) {
  1382. i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */
  1383. i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */
  1384. } else {
  1385. i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */
  1386. i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */
  1387. }
  1388. i2c_lock(hw);
  1389. return 0;
  1390. }
  1391. static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
  1392. {
  1393. int state = type == ADC_MICIN;
  1394. switch (hw->model) {
  1395. case CTSB055X:
  1396. return adc_input_select_SB055x(hw, type, state);
  1397. case CTSB073X:
  1398. return adc_input_select_hendrix(hw, type, state);
  1399. case CTUAA:
  1400. return adc_input_select_hendrix(hw, type, state);
  1401. default:
  1402. return adc_input_select_SBx(hw, type, state);
  1403. }
  1404. }
  1405. static int adc_init_SB055x(struct hw *hw, int input, int mic20db)
  1406. {
  1407. return adc_input_select_SB055x(hw, input, mic20db);
  1408. }
  1409. static int adc_init_SBx(struct hw *hw, int input, int mic20db)
  1410. {
  1411. u16 gpioorg;
  1412. u16 input_source;
  1413. u32 adcdata;
  1414. unsigned int ret;
  1415. input_source = 0x100; /* default to analog */
  1416. switch (input) {
  1417. case ADC_MICIN:
  1418. adcdata = 0x1;
  1419. input_source = 0x180; /* set GPIO7 to select Mic */
  1420. break;
  1421. case ADC_LINEIN:
  1422. adcdata = 0x2;
  1423. break;
  1424. case ADC_VIDEO:
  1425. adcdata = 0x4;
  1426. break;
  1427. case ADC_AUX:
  1428. adcdata = 0x8;
  1429. break;
  1430. case ADC_NONE:
  1431. adcdata = 0x0;
  1432. input_source = 0x0; /* set to Digital */
  1433. break;
  1434. default:
  1435. adcdata = 0x0;
  1436. break;
  1437. }
  1438. if (i2c_unlock(hw))
  1439. return -1;
  1440. do {
  1441. ret = hw_read_pci(hw, 0xEC);
  1442. } while (!(ret & 0x800000)); /* i2c ready poll */
  1443. hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
  1444. i2c_write(hw, 0x001a0080, 0x0e, 0x08);
  1445. i2c_write(hw, 0x001a0080, 0x18, 0x0a);
  1446. i2c_write(hw, 0x001a0080, 0x28, 0x86);
  1447. i2c_write(hw, 0x001a0080, 0x2a, adcdata);
  1448. if (mic20db) {
  1449. i2c_write(hw, 0x001a0080, 0x1c, 0xf7);
  1450. i2c_write(hw, 0x001a0080, 0x1e, 0xf7);
  1451. } else {
  1452. i2c_write(hw, 0x001a0080, 0x1c, 0xcf);
  1453. i2c_write(hw, 0x001a0080, 0x1e, 0xcf);
  1454. }
  1455. if (!(hw_read_20kx(hw, ID0) & 0x100))
  1456. i2c_write(hw, 0x001a0080, 0x16, 0x26);
  1457. i2c_lock(hw);
  1458. gpioorg = (u16)hw_read_20kx(hw, GPIO);
  1459. gpioorg &= 0xfe7f;
  1460. gpioorg |= input_source;
  1461. hw_write_20kx(hw, GPIO, gpioorg);
  1462. return 0;
  1463. }
  1464. static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
  1465. {
  1466. if (hw->model == CTSB055X)
  1467. return adc_init_SB055x(hw, info->input, info->mic20db);
  1468. else
  1469. return adc_init_SBx(hw, info->input, info->mic20db);
  1470. }
  1471. static int hw_have_digit_io_switch(struct hw *hw)
  1472. {
  1473. /* SB073x and Vista compatible cards have no digit IO switch */
  1474. return !(hw->model == CTSB073X || hw->model == CTUAA);
  1475. }
  1476. #define CTLBITS(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
  1477. #define UAA_CFG_PWRSTATUS 0x44
  1478. #define UAA_CFG_SPACE_FLAG 0xA0
  1479. #define UAA_CORE_CHANGE 0x3FFC
  1480. static int uaa_to_xfi(struct pci_dev *pci)
  1481. {
  1482. unsigned int bar0, bar1, bar2, bar3, bar4, bar5;
  1483. unsigned int cmd, irq, cl_size, l_timer, pwr;
  1484. unsigned int is_uaa;
  1485. unsigned int data[4] = {0};
  1486. unsigned int io_base;
  1487. void *mem_base;
  1488. int i;
  1489. const u32 CTLX = CTLBITS('C', 'T', 'L', 'X');
  1490. const u32 CTL_ = CTLBITS('C', 'T', 'L', '-');
  1491. const u32 CTLF = CTLBITS('C', 'T', 'L', 'F');
  1492. const u32 CTLi = CTLBITS('C', 'T', 'L', 'i');
  1493. const u32 CTLA = CTLBITS('C', 'T', 'L', 'A');
  1494. const u32 CTLZ = CTLBITS('C', 'T', 'L', 'Z');
  1495. const u32 CTLL = CTLBITS('C', 'T', 'L', 'L');
  1496. /* By default, Hendrix card UAA Bar0 should be using memory... */
  1497. io_base = pci_resource_start(pci, 0);
  1498. mem_base = ioremap(io_base, pci_resource_len(pci, 0));
  1499. if (!mem_base)
  1500. return -ENOENT;
  1501. /* Read current mode from Mode Change Register */
  1502. for (i = 0; i < 4; i++)
  1503. data[i] = readl(mem_base + UAA_CORE_CHANGE);
  1504. /* Determine current mode... */
  1505. if (data[0] == CTLA) {
  1506. is_uaa = ((data[1] == CTLZ && data[2] == CTLL
  1507. && data[3] == CTLA) || (data[1] == CTLA
  1508. && data[2] == CTLZ && data[3] == CTLL));
  1509. } else if (data[0] == CTLZ) {
  1510. is_uaa = (data[1] == CTLL
  1511. && data[2] == CTLA && data[3] == CTLA);
  1512. } else if (data[0] == CTLL) {
  1513. is_uaa = (data[1] == CTLA
  1514. && data[2] == CTLA && data[3] == CTLZ);
  1515. } else {
  1516. is_uaa = 0;
  1517. }
  1518. if (!is_uaa) {
  1519. /* Not in UAA mode currently. Return directly. */
  1520. iounmap(mem_base);
  1521. return 0;
  1522. }
  1523. pci_read_config_dword(pci, PCI_BASE_ADDRESS_0, &bar0);
  1524. pci_read_config_dword(pci, PCI_BASE_ADDRESS_1, &bar1);
  1525. pci_read_config_dword(pci, PCI_BASE_ADDRESS_2, &bar2);
  1526. pci_read_config_dword(pci, PCI_BASE_ADDRESS_3, &bar3);
  1527. pci_read_config_dword(pci, PCI_BASE_ADDRESS_4, &bar4);
  1528. pci_read_config_dword(pci, PCI_BASE_ADDRESS_5, &bar5);
  1529. pci_read_config_dword(pci, PCI_INTERRUPT_LINE, &irq);
  1530. pci_read_config_dword(pci, PCI_CACHE_LINE_SIZE, &cl_size);
  1531. pci_read_config_dword(pci, PCI_LATENCY_TIMER, &l_timer);
  1532. pci_read_config_dword(pci, UAA_CFG_PWRSTATUS, &pwr);
  1533. pci_read_config_dword(pci, PCI_COMMAND, &cmd);
  1534. /* Set up X-Fi core PCI configuration space. */
  1535. /* Switch to X-Fi config space with BAR0 exposed. */
  1536. pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x87654321);
  1537. /* Copy UAA's BAR5 into X-Fi BAR0 */
  1538. pci_write_config_dword(pci, PCI_BASE_ADDRESS_0, bar5);
  1539. /* Switch to X-Fi config space without BAR0 exposed. */
  1540. pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x12345678);
  1541. pci_write_config_dword(pci, PCI_BASE_ADDRESS_1, bar1);
  1542. pci_write_config_dword(pci, PCI_BASE_ADDRESS_2, bar2);
  1543. pci_write_config_dword(pci, PCI_BASE_ADDRESS_3, bar3);
  1544. pci_write_config_dword(pci, PCI_BASE_ADDRESS_4, bar4);
  1545. pci_write_config_dword(pci, PCI_INTERRUPT_LINE, irq);
  1546. pci_write_config_dword(pci, PCI_CACHE_LINE_SIZE, cl_size);
  1547. pci_write_config_dword(pci, PCI_LATENCY_TIMER, l_timer);
  1548. pci_write_config_dword(pci, UAA_CFG_PWRSTATUS, pwr);
  1549. pci_write_config_dword(pci, PCI_COMMAND, cmd);
  1550. /* Switch to X-Fi mode */
  1551. writel(CTLX, (mem_base + UAA_CORE_CHANGE));
  1552. writel(CTL_, (mem_base + UAA_CORE_CHANGE));
  1553. writel(CTLF, (mem_base + UAA_CORE_CHANGE));
  1554. writel(CTLi, (mem_base + UAA_CORE_CHANGE));
  1555. iounmap(mem_base);
  1556. return 0;
  1557. }
  1558. static irqreturn_t ct_20k1_interrupt(int irq, void *dev_id)
  1559. {
  1560. struct hw *hw = dev_id;
  1561. unsigned int status;
  1562. status = hw_read_20kx(hw, GIP);
  1563. if (!status)
  1564. return IRQ_NONE;
  1565. if (hw->irq_callback)
  1566. hw->irq_callback(hw->irq_callback_data, status);
  1567. hw_write_20kx(hw, GIP, status);
  1568. return IRQ_HANDLED;
  1569. }
  1570. static int hw_card_start(struct hw *hw)
  1571. {
  1572. int err;
  1573. struct pci_dev *pci = hw->pci;
  1574. err = pci_enable_device(pci);
  1575. if (err < 0)
  1576. return err;
  1577. /* Set DMA transfer mask */
  1578. if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 ||
  1579. pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) {
  1580. printk(KERN_ERR "architecture does not support PCI "
  1581. "busmaster DMA with mask 0x%llx\n",
  1582. CT_XFI_DMA_MASK);
  1583. err = -ENXIO;
  1584. goto error1;
  1585. }
  1586. if (!hw->io_base) {
  1587. err = pci_request_regions(pci, "XFi");
  1588. if (err < 0)
  1589. goto error1;
  1590. if (hw->model == CTUAA)
  1591. hw->io_base = pci_resource_start(pci, 5);
  1592. else
  1593. hw->io_base = pci_resource_start(pci, 0);
  1594. }
  1595. /* Switch to X-Fi mode from UAA mode if neeeded */
  1596. if (hw->model == CTUAA) {
  1597. err = uaa_to_xfi(pci);
  1598. if (err)
  1599. goto error2;
  1600. }
  1601. if (hw->irq < 0) {
  1602. err = request_irq(pci->irq, ct_20k1_interrupt, IRQF_SHARED,
  1603. "ctxfi", hw);
  1604. if (err < 0) {
  1605. printk(KERN_ERR "XFi: Cannot get irq %d\n", pci->irq);
  1606. goto error2;
  1607. }
  1608. hw->irq = pci->irq;
  1609. }
  1610. pci_set_master(pci);
  1611. return 0;
  1612. error2:
  1613. pci_release_regions(pci);
  1614. hw->io_base = 0;
  1615. error1:
  1616. pci_disable_device(pci);
  1617. return err;
  1618. }
  1619. static int hw_card_stop(struct hw *hw)
  1620. {
  1621. unsigned int data;
  1622. /* disable transport bus master and queueing of request */
  1623. hw_write_20kx(hw, TRNCTL, 0x00);
  1624. /* disable pll */
  1625. data = hw_read_20kx(hw, PLLCTL);
  1626. hw_write_20kx(hw, PLLCTL, (data & (~(0x0F<<12))));
  1627. /* TODO: Disable interrupt and so on... */
  1628. if (hw->irq >= 0)
  1629. synchronize_irq(hw->irq);
  1630. return 0;
  1631. }
  1632. static int hw_card_shutdown(struct hw *hw)
  1633. {
  1634. if (hw->irq >= 0)
  1635. free_irq(hw->irq, hw);
  1636. hw->irq = -1;
  1637. if (hw->mem_base)
  1638. iounmap((void *)hw->mem_base);
  1639. hw->mem_base = (unsigned long)NULL;
  1640. if (hw->io_base)
  1641. pci_release_regions(hw->pci);
  1642. hw->io_base = 0;
  1643. pci_disable_device(hw->pci);
  1644. return 0;
  1645. }
  1646. static int hw_card_init(struct hw *hw, struct card_conf *info)
  1647. {
  1648. int err;
  1649. unsigned int gctl;
  1650. u32 data;
  1651. struct dac_conf dac_info = {0};
  1652. struct adc_conf adc_info = {0};
  1653. struct daio_conf daio_info = {0};
  1654. struct trn_conf trn_info = {0};
  1655. /* Get PCI io port base address and do Hendrix switch if needed. */
  1656. err = hw_card_start(hw);
  1657. if (err)
  1658. return err;
  1659. /* PLL init */
  1660. err = hw_pll_init(hw, info->rsr);
  1661. if (err < 0)
  1662. return err;
  1663. /* kick off auto-init */
  1664. err = hw_auto_init(hw);
  1665. if (err < 0)
  1666. return err;
  1667. /* Enable audio ring */
  1668. gctl = hw_read_20kx(hw, GCTL);
  1669. set_field(&gctl, GCTL_EAC, 1);
  1670. set_field(&gctl, GCTL_DBP, 1);
  1671. set_field(&gctl, GCTL_TBP, 1);
  1672. set_field(&gctl, GCTL_FBP, 1);
  1673. set_field(&gctl, GCTL_ET, 1);
  1674. hw_write_20kx(hw, GCTL, gctl);
  1675. mdelay(10);
  1676. /* Reset all global pending interrupts */
  1677. hw_write_20kx(hw, GIE, 0);
  1678. /* Reset all SRC pending interrupts */
  1679. hw_write_20kx(hw, SRCIP, 0);
  1680. mdelay(30);
  1681. /* Detect the card ID and configure GPIO accordingly. */
  1682. switch (hw->model) {
  1683. case CTSB055X:
  1684. hw_write_20kx(hw, GPIOCTL, 0x13fe);
  1685. break;
  1686. case CTSB073X:
  1687. hw_write_20kx(hw, GPIOCTL, 0x00e6);
  1688. break;
  1689. case CTUAA:
  1690. hw_write_20kx(hw, GPIOCTL, 0x00c2);
  1691. break;
  1692. default:
  1693. hw_write_20kx(hw, GPIOCTL, 0x01e6);
  1694. break;
  1695. }
  1696. trn_info.vm_pgt_phys = info->vm_pgt_phys;
  1697. err = hw_trn_init(hw, &trn_info);
  1698. if (err < 0)
  1699. return err;
  1700. daio_info.msr = info->msr;
  1701. err = hw_daio_init(hw, &daio_info);
  1702. if (err < 0)
  1703. return err;
  1704. dac_info.msr = info->msr;
  1705. err = hw_dac_init(hw, &dac_info);
  1706. if (err < 0)
  1707. return err;
  1708. adc_info.msr = info->msr;
  1709. adc_info.input = ADC_LINEIN;
  1710. adc_info.mic20db = 0;
  1711. err = hw_adc_init(hw, &adc_info);
  1712. if (err < 0)
  1713. return err;
  1714. data = hw_read_20kx(hw, SRCMCTL);
  1715. data |= 0x1; /* Enables input from the audio ring */
  1716. hw_write_20kx(hw, SRCMCTL, data);
  1717. return 0;
  1718. }
  1719. #ifdef CONFIG_PM
  1720. static int hw_suspend(struct hw *hw, pm_message_t state)
  1721. {
  1722. struct pci_dev *pci = hw->pci;
  1723. hw_card_stop(hw);
  1724. if (hw->model == CTUAA) {
  1725. /* Switch to UAA config space. */
  1726. pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x0);
  1727. }
  1728. pci_disable_device(pci);
  1729. pci_save_state(pci);
  1730. pci_set_power_state(pci, pci_choose_state(pci, state));
  1731. return 0;
  1732. }
  1733. static int hw_resume(struct hw *hw, struct card_conf *info)
  1734. {
  1735. struct pci_dev *pci = hw->pci;
  1736. pci_set_power_state(pci, PCI_D0);
  1737. pci_restore_state(pci);
  1738. /* Re-initialize card hardware. */
  1739. return hw_card_init(hw, info);
  1740. }
  1741. #endif
  1742. static u32 hw_read_20kx(struct hw *hw, u32 reg)
  1743. {
  1744. u32 value;
  1745. unsigned long flags;
  1746. spin_lock_irqsave(
  1747. &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
  1748. outl(reg, hw->io_base + 0x0);
  1749. value = inl(hw->io_base + 0x4);
  1750. spin_unlock_irqrestore(
  1751. &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
  1752. return value;
  1753. }
  1754. static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
  1755. {
  1756. unsigned long flags;
  1757. spin_lock_irqsave(
  1758. &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
  1759. outl(reg, hw->io_base + 0x0);
  1760. outl(data, hw->io_base + 0x4);
  1761. spin_unlock_irqrestore(
  1762. &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
  1763. }
  1764. static u32 hw_read_pci(struct hw *hw, u32 reg)
  1765. {
  1766. u32 value;
  1767. unsigned long flags;
  1768. spin_lock_irqsave(
  1769. &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
  1770. outl(reg, hw->io_base + 0x10);
  1771. value = inl(hw->io_base + 0x14);
  1772. spin_unlock_irqrestore(
  1773. &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
  1774. return value;
  1775. }
  1776. static void hw_write_pci(struct hw *hw, u32 reg, u32 data)
  1777. {
  1778. unsigned long flags;
  1779. spin_lock_irqsave(
  1780. &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
  1781. outl(reg, hw->io_base + 0x10);
  1782. outl(data, hw->io_base + 0x14);
  1783. spin_unlock_irqrestore(
  1784. &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
  1785. }
  1786. static struct hw ct20k1_preset __devinitdata = {
  1787. .irq = -1,
  1788. .card_init = hw_card_init,
  1789. .card_stop = hw_card_stop,
  1790. .pll_init = hw_pll_init,
  1791. .is_adc_source_selected = hw_is_adc_input_selected,
  1792. .select_adc_source = hw_adc_input_select,
  1793. .have_digit_io_switch = hw_have_digit_io_switch,
  1794. #ifdef CONFIG_PM
  1795. .suspend = hw_suspend,
  1796. .resume = hw_resume,
  1797. #endif
  1798. .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
  1799. .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
  1800. .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
  1801. .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
  1802. .src_set_state = src_set_state,
  1803. .src_set_bm = src_set_bm,
  1804. .src_set_rsr = src_set_rsr,
  1805. .src_set_sf = src_set_sf,
  1806. .src_set_wr = src_set_wr,
  1807. .src_set_pm = src_set_pm,
  1808. .src_set_rom = src_set_rom,
  1809. .src_set_vo = src_set_vo,
  1810. .src_set_st = src_set_st,
  1811. .src_set_ie = src_set_ie,
  1812. .src_set_ilsz = src_set_ilsz,
  1813. .src_set_bp = src_set_bp,
  1814. .src_set_cisz = src_set_cisz,
  1815. .src_set_ca = src_set_ca,
  1816. .src_set_sa = src_set_sa,
  1817. .src_set_la = src_set_la,
  1818. .src_set_pitch = src_set_pitch,
  1819. .src_set_dirty = src_set_dirty,
  1820. .src_set_clear_zbufs = src_set_clear_zbufs,
  1821. .src_set_dirty_all = src_set_dirty_all,
  1822. .src_commit_write = src_commit_write,
  1823. .src_get_ca = src_get_ca,
  1824. .src_get_dirty = src_get_dirty,
  1825. .src_dirty_conj_mask = src_dirty_conj_mask,
  1826. .src_mgr_enbs_src = src_mgr_enbs_src,
  1827. .src_mgr_enb_src = src_mgr_enb_src,
  1828. .src_mgr_dsb_src = src_mgr_dsb_src,
  1829. .src_mgr_commit_write = src_mgr_commit_write,
  1830. .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
  1831. .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
  1832. .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
  1833. .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
  1834. .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
  1835. .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
  1836. .srcimp_mgr_commit_write = srcimp_mgr_commit_write,
  1837. .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
  1838. .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
  1839. .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
  1840. .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
  1841. .amixer_set_mode = amixer_set_mode,
  1842. .amixer_set_iv = amixer_set_iv,
  1843. .amixer_set_x = amixer_set_x,
  1844. .amixer_set_y = amixer_set_y,
  1845. .amixer_set_sadr = amixer_set_sadr,
  1846. .amixer_set_se = amixer_set_se,
  1847. .amixer_set_dirty = amixer_set_dirty,
  1848. .amixer_set_dirty_all = amixer_set_dirty_all,
  1849. .amixer_commit_write = amixer_commit_write,
  1850. .amixer_get_y = amixer_get_y,
  1851. .amixer_get_dirty = amixer_get_dirty,
  1852. .dai_get_ctrl_blk = dai_get_ctrl_blk,
  1853. .dai_put_ctrl_blk = dai_put_ctrl_blk,
  1854. .dai_srt_set_srco = dai_srt_set_srcr,
  1855. .dai_srt_set_srcm = dai_srt_set_srcl,
  1856. .dai_srt_set_rsr = dai_srt_set_rsr,
  1857. .dai_srt_set_drat = dai_srt_set_drat,
  1858. .dai_srt_set_ec = dai_srt_set_ec,
  1859. .dai_srt_set_et = dai_srt_set_et,
  1860. .dai_commit_write = dai_commit_write,
  1861. .dao_get_ctrl_blk = dao_get_ctrl_blk,
  1862. .dao_put_ctrl_blk = dao_put_ctrl_blk,
  1863. .dao_set_spos = dao_set_spos,
  1864. .dao_commit_write = dao_commit_write,
  1865. .dao_get_spos = dao_get_spos,
  1866. .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
  1867. .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
  1868. .daio_mgr_enb_dai = daio_mgr_enb_dai,
  1869. .daio_mgr_dsb_dai = daio_mgr_dsb_dai,
  1870. .daio_mgr_enb_dao = daio_mgr_enb_dao,
  1871. .daio_mgr_dsb_dao = daio_mgr_dsb_dao,
  1872. .daio_mgr_dao_init = daio_mgr_dao_init,
  1873. .daio_mgr_set_imaparc = daio_mgr_set_imaparc,
  1874. .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
  1875. .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
  1876. .daio_mgr_commit_write = daio_mgr_commit_write,
  1877. .set_timer_irq = set_timer_irq,
  1878. .set_timer_tick = set_timer_tick,
  1879. .get_wc = get_wc,
  1880. };
  1881. int __devinit create_20k1_hw_obj(struct hw **rhw)
  1882. {
  1883. struct hw20k1 *hw20k1;
  1884. *rhw = NULL;
  1885. hw20k1 = kzalloc(sizeof(*hw20k1), GFP_KERNEL);
  1886. if (!hw20k1)
  1887. return -ENOMEM;
  1888. spin_lock_init(&hw20k1->reg_20k1_lock);
  1889. spin_lock_init(&hw20k1->reg_pci_lock);
  1890. hw20k1->hw = ct20k1_preset;
  1891. *rhw = &hw20k1->hw;
  1892. return 0;
  1893. }
  1894. int destroy_20k1_hw_obj(struct hw *hw)
  1895. {
  1896. if (hw->io_base)
  1897. hw_card_shutdown(hw);
  1898. kfree(container_of(hw, struct hw20k1, hw));
  1899. return 0;
  1900. }