ctatc.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include "cttimer.h"
  25. #include <linux/delay.h>
  26. #include <sound/pcm.h>
  27. #include <sound/control.h>
  28. #include <sound/asoundef.h>
  29. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  30. #define DAIONUM 7
  31. #define MAX_MULTI_CHN 8
  32. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  33. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  34. | ((IEC958_AES1_CON_MIXER \
  35. | IEC958_AES1_CON_ORIGINAL) << 8) \
  36. | (0x10 << 16) \
  37. | ((IEC958_AES3_CON_FS_48000) << 24))
  38. static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = {
  39. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
  40. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
  41. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
  42. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
  43. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000,
  44. "UAA", CTUAA),
  45. { } /* terminator */
  46. };
  47. static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = {
  48. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  49. "SB0760", CTSB0760),
  50. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  51. "SB0880", CTSB0880),
  52. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  53. "SB0880", CTSB0880),
  54. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  55. "SB0880", CTSB0880),
  56. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000,
  57. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX",
  58. CTHENDRIX),
  59. { } /* terminator */
  60. };
  61. static const char *ct_subsys_name[NUM_CTCARDS] = {
  62. /* 20k1 models */
  63. [CTSB055X] = "SB055x",
  64. [CTSB073X] = "SB073x",
  65. [CTUAA] = "UAA",
  66. [CT20K1_UNKNOWN] = "Unknown",
  67. /* 20k2 models */
  68. [CTSB0760] = "SB076x",
  69. [CTHENDRIX] = "Hendrix",
  70. [CTSB0880] = "SB0880",
  71. [CT20K2_UNKNOWN] = "Unknown",
  72. };
  73. static struct {
  74. int (*create)(struct ct_atc *atc,
  75. enum CTALSADEVS device, const char *device_name);
  76. int (*destroy)(void *alsa_dev);
  77. const char *public_name;
  78. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  79. [FRONT] = { .create = ct_alsa_pcm_create,
  80. .destroy = NULL,
  81. .public_name = "Front/WaveIn"},
  82. [SURROUND] = { .create = ct_alsa_pcm_create,
  83. .destroy = NULL,
  84. .public_name = "Surround"},
  85. [CLFE] = { .create = ct_alsa_pcm_create,
  86. .destroy = NULL,
  87. .public_name = "Center/LFE"},
  88. [SIDE] = { .create = ct_alsa_pcm_create,
  89. .destroy = NULL,
  90. .public_name = "Side"},
  91. [IEC958] = { .create = ct_alsa_pcm_create,
  92. .destroy = NULL,
  93. .public_name = "IEC958 Non-audio"},
  94. [MIXER] = { .create = ct_alsa_mix_create,
  95. .destroy = NULL,
  96. .public_name = "Mixer"}
  97. };
  98. typedef int (*create_t)(void *, void **);
  99. typedef int (*destroy_t)(void *);
  100. static struct {
  101. int (*create)(void *hw, void **rmgr);
  102. int (*destroy)(void *mgr);
  103. } rsc_mgr_funcs[NUM_RSCTYP] = {
  104. [SRC] = { .create = (create_t)src_mgr_create,
  105. .destroy = (destroy_t)src_mgr_destroy },
  106. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  107. .destroy = (destroy_t)srcimp_mgr_destroy },
  108. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  109. .destroy = (destroy_t)amixer_mgr_destroy },
  110. [SUM] = { .create = (create_t)sum_mgr_create,
  111. .destroy = (destroy_t)sum_mgr_destroy },
  112. [DAIO] = { .create = (create_t)daio_mgr_create,
  113. .destroy = (destroy_t)daio_mgr_destroy }
  114. };
  115. static int
  116. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  117. /* *
  118. * Only mono and interleaved modes are supported now.
  119. * Always allocates a contiguous channel block.
  120. * */
  121. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  122. {
  123. struct snd_pcm_runtime *runtime;
  124. struct ct_vm *vm;
  125. if (!apcm->substream)
  126. return 0;
  127. runtime = apcm->substream->runtime;
  128. vm = atc->vm;
  129. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  130. if (!apcm->vm_block)
  131. return -ENOENT;
  132. return 0;
  133. }
  134. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  135. {
  136. struct ct_vm *vm;
  137. if (!apcm->vm_block)
  138. return;
  139. vm = atc->vm;
  140. vm->unmap(vm, apcm->vm_block);
  141. apcm->vm_block = NULL;
  142. }
  143. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  144. {
  145. struct ct_vm *vm;
  146. void *kvirt_addr;
  147. unsigned long phys_addr;
  148. vm = atc->vm;
  149. kvirt_addr = vm->get_ptp_virt(vm, index);
  150. if (kvirt_addr == NULL)
  151. phys_addr = (~0UL);
  152. else
  153. phys_addr = virt_to_phys(kvirt_addr);
  154. return phys_addr;
  155. }
  156. static unsigned int convert_format(snd_pcm_format_t snd_format)
  157. {
  158. switch (snd_format) {
  159. case SNDRV_PCM_FORMAT_U8:
  160. return SRC_SF_U8;
  161. case SNDRV_PCM_FORMAT_S16_LE:
  162. return SRC_SF_S16;
  163. case SNDRV_PCM_FORMAT_S24_3LE:
  164. return SRC_SF_S24;
  165. case SNDRV_PCM_FORMAT_S32_LE:
  166. return SRC_SF_S32;
  167. case SNDRV_PCM_FORMAT_FLOAT_LE:
  168. return SRC_SF_F32;
  169. default:
  170. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  171. snd_format);
  172. return SRC_SF_S16;
  173. }
  174. }
  175. static unsigned int
  176. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  177. {
  178. unsigned int pitch;
  179. int b;
  180. /* get pitch and convert to fixed-point 8.24 format. */
  181. pitch = (input_rate / output_rate) << 24;
  182. input_rate %= output_rate;
  183. input_rate /= 100;
  184. output_rate /= 100;
  185. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  186. b--;
  187. if (b >= 0) {
  188. input_rate <<= (31 - b);
  189. input_rate /= output_rate;
  190. b = 24 - (31 - b);
  191. if (b >= 0)
  192. input_rate <<= b;
  193. else
  194. input_rate >>= -b;
  195. pitch |= input_rate;
  196. }
  197. return pitch;
  198. }
  199. static int select_rom(unsigned int pitch)
  200. {
  201. if (pitch > 0x00428f5c && pitch < 0x01b851ec) {
  202. /* 0.26 <= pitch <= 1.72 */
  203. return 1;
  204. } else if (pitch == 0x01d66666 || pitch == 0x01d66667) {
  205. /* pitch == 1.8375 */
  206. return 2;
  207. } else if (pitch == 0x02000000) {
  208. /* pitch == 2 */
  209. return 3;
  210. } else if (pitch >= 0x0 && pitch <= 0x08000000) {
  211. /* 0 <= pitch <= 8 */
  212. return 0;
  213. } else {
  214. return -ENOENT;
  215. }
  216. }
  217. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  218. {
  219. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  220. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  221. struct src_desc desc = {0};
  222. struct amixer_desc mix_dsc = {0};
  223. struct src *src;
  224. struct amixer *amixer;
  225. int err;
  226. int n_amixer = apcm->substream->runtime->channels, i = 0;
  227. int device = apcm->substream->pcm->device;
  228. unsigned int pitch;
  229. /* first release old resources */
  230. atc_pcm_release_resources(atc, apcm);
  231. /* Get SRC resource */
  232. desc.multi = apcm->substream->runtime->channels;
  233. desc.msr = atc->msr;
  234. desc.mode = MEMRD;
  235. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  236. if (err)
  237. goto error1;
  238. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  239. (atc->rsr * atc->msr));
  240. src = apcm->src;
  241. src->ops->set_pitch(src, pitch);
  242. src->ops->set_rom(src, select_rom(pitch));
  243. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  244. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  245. /* Get AMIXER resource */
  246. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  247. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  248. if (!apcm->amixers) {
  249. err = -ENOMEM;
  250. goto error1;
  251. }
  252. mix_dsc.msr = atc->msr;
  253. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  254. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  255. (struct amixer **)&apcm->amixers[i]);
  256. if (err)
  257. goto error1;
  258. apcm->n_amixer++;
  259. }
  260. /* Set up device virtual mem map */
  261. err = ct_map_audio_buffer(atc, apcm);
  262. if (err < 0)
  263. goto error1;
  264. /* Connect resources */
  265. src = apcm->src;
  266. for (i = 0; i < n_amixer; i++) {
  267. amixer = apcm->amixers[i];
  268. mutex_lock(&atc->atc_mutex);
  269. amixer->ops->setup(amixer, &src->rsc,
  270. INIT_VOL, atc->pcm[i+device*2]);
  271. mutex_unlock(&atc->atc_mutex);
  272. src = src->ops->next_interleave(src);
  273. if (!src)
  274. src = apcm->src;
  275. }
  276. ct_timer_prepare(apcm->timer);
  277. return 0;
  278. error1:
  279. atc_pcm_release_resources(atc, apcm);
  280. return err;
  281. }
  282. static int
  283. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  284. {
  285. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  286. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  287. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  288. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  289. struct srcimp *srcimp;
  290. int i;
  291. if (apcm->srcimps) {
  292. for (i = 0; i < apcm->n_srcimp; i++) {
  293. srcimp = apcm->srcimps[i];
  294. srcimp->ops->unmap(srcimp);
  295. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  296. apcm->srcimps[i] = NULL;
  297. }
  298. kfree(apcm->srcimps);
  299. apcm->srcimps = NULL;
  300. }
  301. if (apcm->srccs) {
  302. for (i = 0; i < apcm->n_srcc; i++) {
  303. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  304. apcm->srccs[i] = NULL;
  305. }
  306. kfree(apcm->srccs);
  307. apcm->srccs = NULL;
  308. }
  309. if (apcm->amixers) {
  310. for (i = 0; i < apcm->n_amixer; i++) {
  311. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  312. apcm->amixers[i] = NULL;
  313. }
  314. kfree(apcm->amixers);
  315. apcm->amixers = NULL;
  316. }
  317. if (apcm->mono) {
  318. sum_mgr->put_sum(sum_mgr, apcm->mono);
  319. apcm->mono = NULL;
  320. }
  321. if (apcm->src) {
  322. src_mgr->put_src(src_mgr, apcm->src);
  323. apcm->src = NULL;
  324. }
  325. if (apcm->vm_block) {
  326. /* Undo device virtual mem map */
  327. ct_unmap_audio_buffer(atc, apcm);
  328. apcm->vm_block = NULL;
  329. }
  330. return 0;
  331. }
  332. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  333. {
  334. unsigned int max_cisz;
  335. struct src *src = apcm->src;
  336. if (apcm->started)
  337. return 0;
  338. apcm->started = 1;
  339. max_cisz = src->multi * src->rsc.msr;
  340. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  341. src->ops->set_sa(src, apcm->vm_block->addr);
  342. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  343. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  344. src->ops->set_cisz(src, max_cisz);
  345. src->ops->set_bm(src, 1);
  346. src->ops->set_state(src, SRC_STATE_INIT);
  347. src->ops->commit_write(src);
  348. ct_timer_start(apcm->timer);
  349. return 0;
  350. }
  351. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  352. {
  353. struct src *src;
  354. int i;
  355. ct_timer_stop(apcm->timer);
  356. src = apcm->src;
  357. src->ops->set_bm(src, 0);
  358. src->ops->set_state(src, SRC_STATE_OFF);
  359. src->ops->commit_write(src);
  360. if (apcm->srccs) {
  361. for (i = 0; i < apcm->n_srcc; i++) {
  362. src = apcm->srccs[i];
  363. src->ops->set_bm(src, 0);
  364. src->ops->set_state(src, SRC_STATE_OFF);
  365. src->ops->commit_write(src);
  366. }
  367. }
  368. apcm->started = 0;
  369. return 0;
  370. }
  371. static int
  372. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  373. {
  374. struct src *src = apcm->src;
  375. u32 size, max_cisz;
  376. int position;
  377. if (!src)
  378. return 0;
  379. position = src->ops->get_ca(src);
  380. size = apcm->vm_block->size;
  381. max_cisz = src->multi * src->rsc.msr;
  382. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  383. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  384. }
  385. struct src_node_conf_t {
  386. unsigned int pitch;
  387. unsigned int msr:8;
  388. unsigned int mix_msr:8;
  389. unsigned int imp_msr:8;
  390. unsigned int vo:1;
  391. };
  392. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  393. struct src_node_conf_t *conf, int *n_srcc)
  394. {
  395. unsigned int pitch;
  396. /* get pitch and convert to fixed-point 8.24 format. */
  397. pitch = atc_get_pitch((atc->rsr * atc->msr),
  398. apcm->substream->runtime->rate);
  399. *n_srcc = 0;
  400. if (1 == atc->msr) {
  401. *n_srcc = apcm->substream->runtime->channels;
  402. conf[0].pitch = pitch;
  403. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  404. conf[0].vo = 1;
  405. } else if (2 == atc->msr) {
  406. if (0x8000000 < pitch) {
  407. /* Need two-stage SRCs, SRCIMPs and
  408. * AMIXERs for converting format */
  409. conf[0].pitch = (atc->msr << 24);
  410. conf[0].msr = conf[0].mix_msr = 1;
  411. conf[0].imp_msr = atc->msr;
  412. conf[0].vo = 0;
  413. conf[1].pitch = atc_get_pitch(atc->rsr,
  414. apcm->substream->runtime->rate);
  415. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  416. conf[1].vo = 1;
  417. *n_srcc = apcm->substream->runtime->channels * 2;
  418. } else if (0x1000000 < pitch) {
  419. /* Need one-stage SRCs, SRCIMPs and
  420. * AMIXERs for converting format */
  421. conf[0].pitch = pitch;
  422. conf[0].msr = conf[0].mix_msr
  423. = conf[0].imp_msr = atc->msr;
  424. conf[0].vo = 1;
  425. *n_srcc = apcm->substream->runtime->channels;
  426. }
  427. }
  428. }
  429. static int
  430. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  431. {
  432. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  433. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  434. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  435. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  436. struct src_desc src_dsc = {0};
  437. struct src *src;
  438. struct srcimp_desc srcimp_dsc = {0};
  439. struct srcimp *srcimp;
  440. struct amixer_desc mix_dsc = {0};
  441. struct sum_desc sum_dsc = {0};
  442. unsigned int pitch;
  443. int multi, err, i;
  444. int n_srcimp, n_amixer, n_srcc, n_sum;
  445. struct src_node_conf_t src_node_conf[2] = {{0} };
  446. /* first release old resources */
  447. atc_pcm_release_resources(atc, apcm);
  448. /* The numbers of converting SRCs and SRCIMPs should be determined
  449. * by pitch value. */
  450. multi = apcm->substream->runtime->channels;
  451. /* get pitch and convert to fixed-point 8.24 format. */
  452. pitch = atc_get_pitch((atc->rsr * atc->msr),
  453. apcm->substream->runtime->rate);
  454. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  455. n_sum = (1 == multi) ? 1 : 0;
  456. n_amixer = n_sum * 2 + n_srcc;
  457. n_srcimp = n_srcc;
  458. if ((multi > 1) && (0x8000000 >= pitch)) {
  459. /* Need extra AMIXERs and SRCIMPs for special treatment
  460. * of interleaved recording of conjugate channels */
  461. n_amixer += multi * atc->msr;
  462. n_srcimp += multi * atc->msr;
  463. } else {
  464. n_srcimp += multi;
  465. }
  466. if (n_srcc) {
  467. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  468. if (!apcm->srccs)
  469. return -ENOMEM;
  470. }
  471. if (n_amixer) {
  472. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  473. if (!apcm->amixers) {
  474. err = -ENOMEM;
  475. goto error1;
  476. }
  477. }
  478. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  479. if (!apcm->srcimps) {
  480. err = -ENOMEM;
  481. goto error1;
  482. }
  483. /* Allocate SRCs for sample rate conversion if needed */
  484. src_dsc.multi = 1;
  485. src_dsc.mode = ARCRW;
  486. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  487. src_dsc.msr = src_node_conf[i/multi].msr;
  488. err = src_mgr->get_src(src_mgr, &src_dsc,
  489. (struct src **)&apcm->srccs[i]);
  490. if (err)
  491. goto error1;
  492. src = apcm->srccs[i];
  493. pitch = src_node_conf[i/multi].pitch;
  494. src->ops->set_pitch(src, pitch);
  495. src->ops->set_rom(src, select_rom(pitch));
  496. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  497. apcm->n_srcc++;
  498. }
  499. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  500. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  501. if (i < (n_sum*2))
  502. mix_dsc.msr = atc->msr;
  503. else if (i < (n_sum*2+n_srcc))
  504. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  505. else
  506. mix_dsc.msr = 1;
  507. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  508. (struct amixer **)&apcm->amixers[i]);
  509. if (err)
  510. goto error1;
  511. apcm->n_amixer++;
  512. }
  513. /* Allocate a SUM resource to mix all input channels together */
  514. sum_dsc.msr = atc->msr;
  515. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  516. if (err)
  517. goto error1;
  518. pitch = atc_get_pitch((atc->rsr * atc->msr),
  519. apcm->substream->runtime->rate);
  520. /* Allocate SRCIMP resources */
  521. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  522. if (i < (n_srcc))
  523. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  524. else if (1 == multi)
  525. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  526. else
  527. srcimp_dsc.msr = 1;
  528. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  529. if (err)
  530. goto error1;
  531. apcm->srcimps[i] = srcimp;
  532. apcm->n_srcimp++;
  533. }
  534. /* Allocate a SRC for writing data to host memory */
  535. src_dsc.multi = apcm->substream->runtime->channels;
  536. src_dsc.msr = 1;
  537. src_dsc.mode = MEMWR;
  538. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  539. if (err)
  540. goto error1;
  541. src = apcm->src;
  542. src->ops->set_pitch(src, pitch);
  543. /* Set up device virtual mem map */
  544. err = ct_map_audio_buffer(atc, apcm);
  545. if (err < 0)
  546. goto error1;
  547. return 0;
  548. error1:
  549. atc_pcm_release_resources(atc, apcm);
  550. return err;
  551. }
  552. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  553. {
  554. struct src *src;
  555. struct amixer *amixer;
  556. struct srcimp *srcimp;
  557. struct ct_mixer *mixer = atc->mixer;
  558. struct sum *mono;
  559. struct rsc *out_ports[8] = {NULL};
  560. int err, i, j, n_sum, multi;
  561. unsigned int pitch;
  562. int mix_base = 0, imp_base = 0;
  563. atc_pcm_release_resources(atc, apcm);
  564. /* Get needed resources. */
  565. err = atc_pcm_capture_get_resources(atc, apcm);
  566. if (err)
  567. return err;
  568. /* Connect resources */
  569. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  570. &out_ports[0], &out_ports[1]);
  571. multi = apcm->substream->runtime->channels;
  572. if (1 == multi) {
  573. mono = apcm->mono;
  574. for (i = 0; i < 2; i++) {
  575. amixer = apcm->amixers[i];
  576. amixer->ops->setup(amixer, out_ports[i],
  577. MONO_SUM_SCALE, mono);
  578. }
  579. out_ports[0] = &mono->rsc;
  580. n_sum = 1;
  581. mix_base = n_sum * 2;
  582. }
  583. for (i = 0; i < apcm->n_srcc; i++) {
  584. src = apcm->srccs[i];
  585. srcimp = apcm->srcimps[imp_base+i];
  586. amixer = apcm->amixers[mix_base+i];
  587. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  588. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  589. out_ports[i%multi] = &amixer->rsc;
  590. }
  591. pitch = atc_get_pitch((atc->rsr * atc->msr),
  592. apcm->substream->runtime->rate);
  593. if ((multi > 1) && (pitch <= 0x8000000)) {
  594. /* Special connection for interleaved
  595. * recording with conjugate channels */
  596. for (i = 0; i < multi; i++) {
  597. out_ports[i]->ops->master(out_ports[i]);
  598. for (j = 0; j < atc->msr; j++) {
  599. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  600. amixer->ops->set_input(amixer, out_ports[i]);
  601. amixer->ops->set_scale(amixer, INIT_VOL);
  602. amixer->ops->set_sum(amixer, NULL);
  603. amixer->ops->commit_raw_write(amixer);
  604. out_ports[i]->ops->next_conj(out_ports[i]);
  605. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  606. srcimp->ops->map(srcimp, apcm->src,
  607. &amixer->rsc);
  608. }
  609. }
  610. } else {
  611. for (i = 0; i < multi; i++) {
  612. srcimp = apcm->srcimps[apcm->n_srcc+i];
  613. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  614. }
  615. }
  616. ct_timer_prepare(apcm->timer);
  617. return 0;
  618. }
  619. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  620. {
  621. struct src *src;
  622. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  623. int i, multi;
  624. if (apcm->started)
  625. return 0;
  626. apcm->started = 1;
  627. multi = apcm->substream->runtime->channels;
  628. /* Set up converting SRCs */
  629. for (i = 0; i < apcm->n_srcc; i++) {
  630. src = apcm->srccs[i];
  631. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  632. src_mgr->src_disable(src_mgr, src);
  633. }
  634. /* Set up recording SRC */
  635. src = apcm->src;
  636. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  637. src->ops->set_sa(src, apcm->vm_block->addr);
  638. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  639. src->ops->set_ca(src, apcm->vm_block->addr);
  640. src_mgr->src_disable(src_mgr, src);
  641. /* Disable relevant SRCs firstly */
  642. src_mgr->commit_write(src_mgr);
  643. /* Enable SRCs respectively */
  644. for (i = 0; i < apcm->n_srcc; i++) {
  645. src = apcm->srccs[i];
  646. src->ops->set_state(src, SRC_STATE_RUN);
  647. src->ops->commit_write(src);
  648. src_mgr->src_enable_s(src_mgr, src);
  649. }
  650. src = apcm->src;
  651. src->ops->set_bm(src, 1);
  652. src->ops->set_state(src, SRC_STATE_RUN);
  653. src->ops->commit_write(src);
  654. src_mgr->src_enable_s(src_mgr, src);
  655. /* Enable relevant SRCs synchronously */
  656. src_mgr->commit_write(src_mgr);
  657. ct_timer_start(apcm->timer);
  658. return 0;
  659. }
  660. static int
  661. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  662. {
  663. struct src *src = apcm->src;
  664. if (!src)
  665. return 0;
  666. return src->ops->get_ca(src) - apcm->vm_block->addr;
  667. }
  668. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  669. struct ct_atc_pcm *apcm)
  670. {
  671. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  672. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  673. struct src_desc desc = {0};
  674. struct amixer_desc mix_dsc = {0};
  675. struct src *src;
  676. int err;
  677. int n_amixer = apcm->substream->runtime->channels, i;
  678. unsigned int pitch, rsr = atc->pll_rate;
  679. /* first release old resources */
  680. atc_pcm_release_resources(atc, apcm);
  681. /* Get SRC resource */
  682. desc.multi = apcm->substream->runtime->channels;
  683. desc.msr = 1;
  684. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  685. desc.msr <<= 1;
  686. desc.mode = MEMRD;
  687. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  688. if (err)
  689. goto error1;
  690. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  691. src = apcm->src;
  692. src->ops->set_pitch(src, pitch);
  693. src->ops->set_rom(src, select_rom(pitch));
  694. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  695. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  696. src->ops->set_bp(src, 1);
  697. /* Get AMIXER resource */
  698. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  699. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  700. if (!apcm->amixers) {
  701. err = -ENOMEM;
  702. goto error1;
  703. }
  704. mix_dsc.msr = desc.msr;
  705. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  706. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  707. (struct amixer **)&apcm->amixers[i]);
  708. if (err)
  709. goto error1;
  710. apcm->n_amixer++;
  711. }
  712. /* Set up device virtual mem map */
  713. err = ct_map_audio_buffer(atc, apcm);
  714. if (err < 0)
  715. goto error1;
  716. return 0;
  717. error1:
  718. atc_pcm_release_resources(atc, apcm);
  719. return err;
  720. }
  721. static int atc_pll_init(struct ct_atc *atc, int rate)
  722. {
  723. struct hw *hw = atc->hw;
  724. int err;
  725. err = hw->pll_init(hw, rate);
  726. atc->pll_rate = err ? 0 : rate;
  727. return err;
  728. }
  729. static int
  730. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  731. {
  732. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  733. unsigned int rate = apcm->substream->runtime->rate;
  734. unsigned int status;
  735. int err = 0;
  736. unsigned char iec958_con_fs;
  737. switch (rate) {
  738. case 48000:
  739. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  740. break;
  741. case 44100:
  742. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  743. break;
  744. case 32000:
  745. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  746. break;
  747. default:
  748. return -ENOENT;
  749. }
  750. mutex_lock(&atc->atc_mutex);
  751. dao->ops->get_spos(dao, &status);
  752. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  753. status &= ((~IEC958_AES3_CON_FS) << 24);
  754. status |= (iec958_con_fs << 24);
  755. dao->ops->set_spos(dao, status);
  756. dao->ops->commit_write(dao);
  757. }
  758. if ((rate != atc->pll_rate) && (32000 != rate))
  759. err = atc_pll_init(atc, rate);
  760. mutex_unlock(&atc->atc_mutex);
  761. return err;
  762. }
  763. static int
  764. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  765. {
  766. struct src *src;
  767. struct amixer *amixer;
  768. struct dao *dao;
  769. int err;
  770. int i;
  771. atc_pcm_release_resources(atc, apcm);
  772. /* Configure SPDIFOO and PLL to passthrough mode;
  773. * determine pll_rate. */
  774. err = spdif_passthru_playback_setup(atc, apcm);
  775. if (err)
  776. return err;
  777. /* Get needed resources. */
  778. err = spdif_passthru_playback_get_resources(atc, apcm);
  779. if (err)
  780. return err;
  781. /* Connect resources */
  782. src = apcm->src;
  783. for (i = 0; i < apcm->n_amixer; i++) {
  784. amixer = apcm->amixers[i];
  785. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  786. src = src->ops->next_interleave(src);
  787. if (!src)
  788. src = apcm->src;
  789. }
  790. /* Connect to SPDIFOO */
  791. mutex_lock(&atc->atc_mutex);
  792. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  793. amixer = apcm->amixers[0];
  794. dao->ops->set_left_input(dao, &amixer->rsc);
  795. amixer = apcm->amixers[1];
  796. dao->ops->set_right_input(dao, &amixer->rsc);
  797. mutex_unlock(&atc->atc_mutex);
  798. ct_timer_prepare(apcm->timer);
  799. return 0;
  800. }
  801. static int atc_select_line_in(struct ct_atc *atc)
  802. {
  803. struct hw *hw = atc->hw;
  804. struct ct_mixer *mixer = atc->mixer;
  805. struct src *src;
  806. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  807. return 0;
  808. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  809. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  810. hw->select_adc_source(hw, ADC_LINEIN);
  811. src = atc->srcs[2];
  812. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  813. src = atc->srcs[3];
  814. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  815. return 0;
  816. }
  817. static int atc_select_mic_in(struct ct_atc *atc)
  818. {
  819. struct hw *hw = atc->hw;
  820. struct ct_mixer *mixer = atc->mixer;
  821. struct src *src;
  822. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  823. return 0;
  824. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  825. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  826. hw->select_adc_source(hw, ADC_MICIN);
  827. src = atc->srcs[2];
  828. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  829. src = atc->srcs[3];
  830. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  831. return 0;
  832. }
  833. static int atc_have_digit_io_switch(struct ct_atc *atc)
  834. {
  835. struct hw *hw = atc->hw;
  836. return hw->have_digit_io_switch(hw);
  837. }
  838. static int atc_select_digit_io(struct ct_atc *atc)
  839. {
  840. struct hw *hw = atc->hw;
  841. if (hw->is_adc_source_selected(hw, ADC_NONE))
  842. return 0;
  843. hw->select_adc_source(hw, ADC_NONE);
  844. return 0;
  845. }
  846. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  847. {
  848. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  849. if (state)
  850. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  851. else
  852. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  853. daio_mgr->commit_write(daio_mgr);
  854. return 0;
  855. }
  856. static int
  857. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  858. {
  859. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  860. return dao->ops->get_spos(dao, status);
  861. }
  862. static int
  863. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  864. {
  865. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  866. dao->ops->set_spos(dao, status);
  867. dao->ops->commit_write(dao);
  868. return 0;
  869. }
  870. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  871. {
  872. return atc_daio_unmute(atc, state, LINEO1);
  873. }
  874. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  875. {
  876. return atc_daio_unmute(atc, state, LINEO2);
  877. }
  878. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  879. {
  880. return atc_daio_unmute(atc, state, LINEO3);
  881. }
  882. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  883. {
  884. return atc_daio_unmute(atc, state, LINEO4);
  885. }
  886. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  887. {
  888. return atc_daio_unmute(atc, state, LINEIM);
  889. }
  890. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  891. {
  892. return atc_daio_unmute(atc, state, SPDIFOO);
  893. }
  894. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  895. {
  896. return atc_daio_unmute(atc, state, SPDIFIO);
  897. }
  898. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  899. {
  900. return atc_dao_get_status(atc, status, SPDIFOO);
  901. }
  902. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  903. {
  904. return atc_dao_set_status(atc, status, SPDIFOO);
  905. }
  906. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  907. {
  908. struct dao_desc da_dsc = {0};
  909. struct dao *dao;
  910. int err;
  911. struct ct_mixer *mixer = atc->mixer;
  912. struct rsc *rscs[2] = {NULL};
  913. unsigned int spos = 0;
  914. mutex_lock(&atc->atc_mutex);
  915. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  916. da_dsc.msr = state ? 1 : atc->msr;
  917. da_dsc.passthru = state ? 1 : 0;
  918. err = dao->ops->reinit(dao, &da_dsc);
  919. if (state) {
  920. spos = IEC958_DEFAULT_CON;
  921. } else {
  922. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  923. &rscs[0], &rscs[1]);
  924. dao->ops->set_left_input(dao, rscs[0]);
  925. dao->ops->set_right_input(dao, rscs[1]);
  926. /* Restore PLL to atc->rsr if needed. */
  927. if (atc->pll_rate != atc->rsr)
  928. err = atc_pll_init(atc, atc->rsr);
  929. }
  930. dao->ops->set_spos(dao, spos);
  931. dao->ops->commit_write(dao);
  932. mutex_unlock(&atc->atc_mutex);
  933. return err;
  934. }
  935. static int atc_release_resources(struct ct_atc *atc)
  936. {
  937. int i;
  938. struct daio_mgr *daio_mgr = NULL;
  939. struct dao *dao = NULL;
  940. struct dai *dai = NULL;
  941. struct daio *daio = NULL;
  942. struct sum_mgr *sum_mgr = NULL;
  943. struct src_mgr *src_mgr = NULL;
  944. struct srcimp_mgr *srcimp_mgr = NULL;
  945. struct srcimp *srcimp = NULL;
  946. struct ct_mixer *mixer = NULL;
  947. /* disconnect internal mixer objects */
  948. if (atc->mixer) {
  949. mixer = atc->mixer;
  950. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  951. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  952. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  953. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  954. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  955. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  956. }
  957. if (atc->daios) {
  958. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  959. for (i = 0; i < atc->n_daio; i++) {
  960. daio = atc->daios[i];
  961. if (daio->type < LINEIM) {
  962. dao = container_of(daio, struct dao, daio);
  963. dao->ops->clear_left_input(dao);
  964. dao->ops->clear_right_input(dao);
  965. } else {
  966. dai = container_of(daio, struct dai, daio);
  967. /* some thing to do for dai ... */
  968. }
  969. daio_mgr->put_daio(daio_mgr, daio);
  970. }
  971. kfree(atc->daios);
  972. atc->daios = NULL;
  973. }
  974. if (atc->pcm) {
  975. sum_mgr = atc->rsc_mgrs[SUM];
  976. for (i = 0; i < atc->n_pcm; i++)
  977. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  978. kfree(atc->pcm);
  979. atc->pcm = NULL;
  980. }
  981. if (atc->srcs) {
  982. src_mgr = atc->rsc_mgrs[SRC];
  983. for (i = 0; i < atc->n_src; i++)
  984. src_mgr->put_src(src_mgr, atc->srcs[i]);
  985. kfree(atc->srcs);
  986. atc->srcs = NULL;
  987. }
  988. if (atc->srcimps) {
  989. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  990. for (i = 0; i < atc->n_srcimp; i++) {
  991. srcimp = atc->srcimps[i];
  992. srcimp->ops->unmap(srcimp);
  993. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  994. }
  995. kfree(atc->srcimps);
  996. atc->srcimps = NULL;
  997. }
  998. return 0;
  999. }
  1000. static int ct_atc_destroy(struct ct_atc *atc)
  1001. {
  1002. int i = 0;
  1003. if (!atc)
  1004. return 0;
  1005. if (atc->timer) {
  1006. ct_timer_free(atc->timer);
  1007. atc->timer = NULL;
  1008. }
  1009. atc_release_resources(atc);
  1010. /* Destroy internal mixer objects */
  1011. if (atc->mixer)
  1012. ct_mixer_destroy(atc->mixer);
  1013. for (i = 0; i < NUM_RSCTYP; i++) {
  1014. if (rsc_mgr_funcs[i].destroy && atc->rsc_mgrs[i])
  1015. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  1016. }
  1017. if (atc->hw)
  1018. destroy_hw_obj((struct hw *)atc->hw);
  1019. /* Destroy device virtual memory manager object */
  1020. if (atc->vm) {
  1021. ct_vm_destroy(atc->vm);
  1022. atc->vm = NULL;
  1023. }
  1024. kfree(atc);
  1025. return 0;
  1026. }
  1027. static int atc_dev_free(struct snd_device *dev)
  1028. {
  1029. struct ct_atc *atc = dev->device_data;
  1030. return ct_atc_destroy(atc);
  1031. }
  1032. static int __devinit atc_identify_card(struct ct_atc *atc)
  1033. {
  1034. const struct snd_pci_quirk *p;
  1035. const struct snd_pci_quirk *list;
  1036. switch (atc->chip_type) {
  1037. case ATC20K1:
  1038. atc->chip_name = "20K1";
  1039. list = subsys_20k1_list;
  1040. break;
  1041. case ATC20K2:
  1042. atc->chip_name = "20K2";
  1043. list = subsys_20k2_list;
  1044. break;
  1045. default:
  1046. return -ENOENT;
  1047. }
  1048. p = snd_pci_quirk_lookup(atc->pci, list);
  1049. if (p) {
  1050. if (p->value < 0) {
  1051. printk(KERN_ERR "ctxfi: "
  1052. "Device %04x:%04x is black-listed\n",
  1053. atc->pci->subsystem_vendor,
  1054. atc->pci->subsystem_device);
  1055. return -ENOENT;
  1056. }
  1057. atc->model = p->value;
  1058. } else {
  1059. if (atc->chip_type == ATC20K1)
  1060. atc->model = CT20K1_UNKNOWN;
  1061. else
  1062. atc->model = CT20K2_UNKNOWN;
  1063. }
  1064. atc->model_name = ct_subsys_name[atc->model];
  1065. snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
  1066. atc->chip_name, atc->model_name,
  1067. atc->pci->subsystem_vendor,
  1068. atc->pci->subsystem_device);
  1069. return 0;
  1070. }
  1071. int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
  1072. {
  1073. enum CTALSADEVS i;
  1074. int err;
  1075. alsa_dev_funcs[MIXER].public_name = atc->chip_name;
  1076. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1077. if (!alsa_dev_funcs[i].create)
  1078. continue;
  1079. err = alsa_dev_funcs[i].create(atc, i,
  1080. alsa_dev_funcs[i].public_name);
  1081. if (err) {
  1082. printk(KERN_ERR "ctxfi: "
  1083. "Creating alsa device %d failed!\n", i);
  1084. return err;
  1085. }
  1086. }
  1087. return 0;
  1088. }
  1089. static int __devinit atc_create_hw_devs(struct ct_atc *atc)
  1090. {
  1091. struct hw *hw;
  1092. struct card_conf info = {0};
  1093. int i, err;
  1094. err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
  1095. if (err) {
  1096. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1097. return err;
  1098. }
  1099. atc->hw = hw;
  1100. /* Initialize card hardware. */
  1101. info.rsr = atc->rsr;
  1102. info.msr = atc->msr;
  1103. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1104. err = hw->card_init(hw, &info);
  1105. if (err < 0)
  1106. return err;
  1107. for (i = 0; i < NUM_RSCTYP; i++) {
  1108. if (!rsc_mgr_funcs[i].create)
  1109. continue;
  1110. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1111. if (err) {
  1112. printk(KERN_ERR "ctxfi: "
  1113. "Failed to create rsc_mgr %d!!!\n", i);
  1114. return err;
  1115. }
  1116. }
  1117. return 0;
  1118. }
  1119. static int atc_get_resources(struct ct_atc *atc)
  1120. {
  1121. struct daio_desc da_desc = {0};
  1122. struct daio_mgr *daio_mgr;
  1123. struct src_desc src_dsc = {0};
  1124. struct src_mgr *src_mgr;
  1125. struct srcimp_desc srcimp_dsc = {0};
  1126. struct srcimp_mgr *srcimp_mgr;
  1127. struct sum_desc sum_dsc = {0};
  1128. struct sum_mgr *sum_mgr;
  1129. int err, i;
  1130. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1131. if (!atc->daios)
  1132. return -ENOMEM;
  1133. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1134. if (!atc->srcs)
  1135. return -ENOMEM;
  1136. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1137. if (!atc->srcimps)
  1138. return -ENOMEM;
  1139. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1140. if (!atc->pcm)
  1141. return -ENOMEM;
  1142. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1143. da_desc.msr = atc->msr;
  1144. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1145. da_desc.type = i;
  1146. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1147. (struct daio **)&atc->daios[i]);
  1148. if (err) {
  1149. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1150. "resource %d!!!\n", i);
  1151. return err;
  1152. }
  1153. atc->n_daio++;
  1154. }
  1155. if (atc->model == CTSB073X)
  1156. da_desc.type = SPDIFI1;
  1157. else
  1158. da_desc.type = SPDIFIO;
  1159. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1160. (struct daio **)&atc->daios[i]);
  1161. if (err) {
  1162. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1163. return err;
  1164. }
  1165. atc->n_daio++;
  1166. src_mgr = atc->rsc_mgrs[SRC];
  1167. src_dsc.multi = 1;
  1168. src_dsc.msr = atc->msr;
  1169. src_dsc.mode = ARCRW;
  1170. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1171. err = src_mgr->get_src(src_mgr, &src_dsc,
  1172. (struct src **)&atc->srcs[i]);
  1173. if (err)
  1174. return err;
  1175. atc->n_src++;
  1176. }
  1177. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1178. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1179. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1180. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1181. (struct srcimp **)&atc->srcimps[i]);
  1182. if (err)
  1183. return err;
  1184. atc->n_srcimp++;
  1185. }
  1186. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1187. for (i = 0; i < (2*1); i++) {
  1188. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1189. (struct srcimp **)&atc->srcimps[2*1+i]);
  1190. if (err)
  1191. return err;
  1192. atc->n_srcimp++;
  1193. }
  1194. sum_mgr = atc->rsc_mgrs[SUM];
  1195. sum_dsc.msr = atc->msr;
  1196. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1197. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1198. (struct sum **)&atc->pcm[i]);
  1199. if (err)
  1200. return err;
  1201. atc->n_pcm++;
  1202. }
  1203. return 0;
  1204. }
  1205. static void
  1206. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1207. struct src **srcs, struct srcimp **srcimps)
  1208. {
  1209. struct rsc *rscs[2] = {NULL};
  1210. struct src *src;
  1211. struct srcimp *srcimp;
  1212. int i = 0;
  1213. rscs[0] = &dai->daio.rscl;
  1214. rscs[1] = &dai->daio.rscr;
  1215. for (i = 0; i < 2; i++) {
  1216. src = srcs[i];
  1217. srcimp = srcimps[i];
  1218. srcimp->ops->map(srcimp, src, rscs[i]);
  1219. src_mgr->src_disable(src_mgr, src);
  1220. }
  1221. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1222. src = srcs[0];
  1223. src->ops->set_pm(src, 1);
  1224. for (i = 0; i < 2; i++) {
  1225. src = srcs[i];
  1226. src->ops->set_state(src, SRC_STATE_RUN);
  1227. src->ops->commit_write(src);
  1228. src_mgr->src_enable_s(src_mgr, src);
  1229. }
  1230. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1231. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1232. dai->ops->set_enb_src(dai, 1);
  1233. dai->ops->set_enb_srt(dai, 1);
  1234. dai->ops->commit_write(dai);
  1235. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1236. }
  1237. static void atc_connect_resources(struct ct_atc *atc)
  1238. {
  1239. struct dai *dai;
  1240. struct dao *dao;
  1241. struct src *src;
  1242. struct sum *sum;
  1243. struct ct_mixer *mixer;
  1244. struct rsc *rscs[2] = {NULL};
  1245. int i, j;
  1246. mixer = atc->mixer;
  1247. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1248. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1249. dao = container_of(atc->daios[j], struct dao, daio);
  1250. dao->ops->set_left_input(dao, rscs[0]);
  1251. dao->ops->set_right_input(dao, rscs[1]);
  1252. }
  1253. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1254. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1255. (struct src **)&atc->srcs[2],
  1256. (struct srcimp **)&atc->srcimps[2]);
  1257. src = atc->srcs[2];
  1258. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1259. src = atc->srcs[3];
  1260. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1261. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1262. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1263. (struct src **)&atc->srcs[0],
  1264. (struct srcimp **)&atc->srcimps[0]);
  1265. src = atc->srcs[0];
  1266. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1267. src = atc->srcs[1];
  1268. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1269. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1270. sum = atc->pcm[j];
  1271. mixer->set_input_left(mixer, i, &sum->rsc);
  1272. sum = atc->pcm[j+1];
  1273. mixer->set_input_right(mixer, i, &sum->rsc);
  1274. }
  1275. }
  1276. #ifdef CONFIG_PM
  1277. static int atc_suspend(struct ct_atc *atc, pm_message_t state)
  1278. {
  1279. int i;
  1280. struct hw *hw = atc->hw;
  1281. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D3hot);
  1282. for (i = FRONT; i < NUM_PCMS; i++) {
  1283. if (!atc->pcms[i])
  1284. continue;
  1285. snd_pcm_suspend_all(atc->pcms[i]);
  1286. }
  1287. atc_release_resources(atc);
  1288. hw->suspend(hw, state);
  1289. return 0;
  1290. }
  1291. static int atc_hw_resume(struct ct_atc *atc)
  1292. {
  1293. struct hw *hw = atc->hw;
  1294. struct card_conf info = {0};
  1295. /* Re-initialize card hardware. */
  1296. info.rsr = atc->rsr;
  1297. info.msr = atc->msr;
  1298. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1299. return hw->resume(hw, &info);
  1300. }
  1301. static int atc_resources_resume(struct ct_atc *atc)
  1302. {
  1303. struct ct_mixer *mixer;
  1304. int err = 0;
  1305. /* Get resources */
  1306. err = atc_get_resources(atc);
  1307. if (err < 0) {
  1308. atc_release_resources(atc);
  1309. return err;
  1310. }
  1311. /* Build topology */
  1312. atc_connect_resources(atc);
  1313. mixer = atc->mixer;
  1314. mixer->resume(mixer);
  1315. return 0;
  1316. }
  1317. static int atc_resume(struct ct_atc *atc)
  1318. {
  1319. int err = 0;
  1320. /* Do hardware resume. */
  1321. err = atc_hw_resume(atc);
  1322. if (err < 0) {
  1323. printk(KERN_ERR "ctxfi: pci_enable_device failed, "
  1324. "disabling device\n");
  1325. snd_card_disconnect(atc->card);
  1326. return err;
  1327. }
  1328. err = atc_resources_resume(atc);
  1329. if (err < 0)
  1330. return err;
  1331. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D0);
  1332. return 0;
  1333. }
  1334. #endif
  1335. static struct ct_atc atc_preset __devinitdata = {
  1336. .map_audio_buffer = ct_map_audio_buffer,
  1337. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1338. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1339. .pcm_release_resources = atc_pcm_release_resources,
  1340. .pcm_playback_start = atc_pcm_playback_start,
  1341. .pcm_playback_stop = atc_pcm_stop,
  1342. .pcm_playback_position = atc_pcm_playback_position,
  1343. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1344. .pcm_capture_start = atc_pcm_capture_start,
  1345. .pcm_capture_stop = atc_pcm_stop,
  1346. .pcm_capture_position = atc_pcm_capture_position,
  1347. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1348. .get_ptp_phys = atc_get_ptp_phys,
  1349. .select_line_in = atc_select_line_in,
  1350. .select_mic_in = atc_select_mic_in,
  1351. .select_digit_io = atc_select_digit_io,
  1352. .line_front_unmute = atc_line_front_unmute,
  1353. .line_surround_unmute = atc_line_surround_unmute,
  1354. .line_clfe_unmute = atc_line_clfe_unmute,
  1355. .line_rear_unmute = atc_line_rear_unmute,
  1356. .line_in_unmute = atc_line_in_unmute,
  1357. .spdif_out_unmute = atc_spdif_out_unmute,
  1358. .spdif_in_unmute = atc_spdif_in_unmute,
  1359. .spdif_out_get_status = atc_spdif_out_get_status,
  1360. .spdif_out_set_status = atc_spdif_out_set_status,
  1361. .spdif_out_passthru = atc_spdif_out_passthru,
  1362. .have_digit_io_switch = atc_have_digit_io_switch,
  1363. #ifdef CONFIG_PM
  1364. .suspend = atc_suspend,
  1365. .resume = atc_resume,
  1366. #endif
  1367. };
  1368. /**
  1369. * ct_atc_create - create and initialize a hardware manager
  1370. * @card: corresponding alsa card object
  1371. * @pci: corresponding kernel pci device object
  1372. * @ratc: return created object address in it
  1373. *
  1374. * Creates and initializes a hardware manager.
  1375. *
  1376. * Creates kmallocated ct_atc structure. Initializes hardware.
  1377. * Returns 0 if suceeds, or negative error code if fails.
  1378. */
  1379. int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1380. unsigned int rsr, unsigned int msr,
  1381. int chip_type, struct ct_atc **ratc)
  1382. {
  1383. struct ct_atc *atc;
  1384. static struct snd_device_ops ops = {
  1385. .dev_free = atc_dev_free,
  1386. };
  1387. int err;
  1388. *ratc = NULL;
  1389. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1390. if (!atc)
  1391. return -ENOMEM;
  1392. /* Set operations */
  1393. *atc = atc_preset;
  1394. atc->card = card;
  1395. atc->pci = pci;
  1396. atc->rsr = rsr;
  1397. atc->msr = msr;
  1398. atc->chip_type = chip_type;
  1399. mutex_init(&atc->atc_mutex);
  1400. /* Find card model */
  1401. err = atc_identify_card(atc);
  1402. if (err < 0) {
  1403. printk(KERN_ERR "ctatc: Card not recognised\n");
  1404. goto error1;
  1405. }
  1406. /* Set up device virtual memory management object */
  1407. err = ct_vm_create(&atc->vm);
  1408. if (err < 0)
  1409. goto error1;
  1410. /* Create all atc hw devices */
  1411. err = atc_create_hw_devs(atc);
  1412. if (err < 0)
  1413. goto error1;
  1414. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1415. if (err) {
  1416. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1417. goto error1;
  1418. }
  1419. /* Get resources */
  1420. err = atc_get_resources(atc);
  1421. if (err < 0)
  1422. goto error1;
  1423. /* Build topology */
  1424. atc_connect_resources(atc);
  1425. atc->timer = ct_timer_new(atc);
  1426. if (!atc->timer)
  1427. goto error1;
  1428. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1429. if (err < 0)
  1430. goto error1;
  1431. snd_card_set_dev(card, &pci->dev);
  1432. *ratc = atc;
  1433. return 0;
  1434. error1:
  1435. ct_atc_destroy(atc);
  1436. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1437. return err;
  1438. }