af_iucv.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/iucv.h>
  28. #include <net/iucv/af_iucv.h>
  29. #define VERSION "1.1"
  30. static char iucv_userid[80];
  31. static const struct proto_ops iucv_sock_ops;
  32. static struct proto iucv_proto = {
  33. .name = "AF_IUCV",
  34. .owner = THIS_MODULE,
  35. .obj_size = sizeof(struct iucv_sock),
  36. };
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk->sk_sleep, &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk->sk_sleep, &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. /* Call Back functions */
  80. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  81. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  82. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  83. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  84. u8 ipuser[16]);
  85. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  86. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  87. static struct iucv_sock_list iucv_sk_list = {
  88. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  89. .autobind_name = ATOMIC_INIT(0)
  90. };
  91. static struct iucv_handler af_iucv_handler = {
  92. .path_pending = iucv_callback_connreq,
  93. .path_complete = iucv_callback_connack,
  94. .path_severed = iucv_callback_connrej,
  95. .message_pending = iucv_callback_rx,
  96. .message_complete = iucv_callback_txdone,
  97. .path_quiesced = iucv_callback_shutdown,
  98. };
  99. static inline void high_nmcpy(unsigned char *dst, char *src)
  100. {
  101. memcpy(dst, src, 8);
  102. }
  103. static inline void low_nmcpy(unsigned char *dst, char *src)
  104. {
  105. memcpy(&dst[8], src, 8);
  106. }
  107. static int afiucv_pm_prepare(struct device *dev)
  108. {
  109. #ifdef CONFIG_PM_DEBUG
  110. printk(KERN_WARNING "afiucv_pm_prepare\n");
  111. #endif
  112. return 0;
  113. }
  114. static void afiucv_pm_complete(struct device *dev)
  115. {
  116. #ifdef CONFIG_PM_DEBUG
  117. printk(KERN_WARNING "afiucv_pm_complete\n");
  118. #endif
  119. return;
  120. }
  121. /**
  122. * afiucv_pm_freeze() - Freeze PM callback
  123. * @dev: AFIUCV dummy device
  124. *
  125. * Sever all established IUCV communication pathes
  126. */
  127. static int afiucv_pm_freeze(struct device *dev)
  128. {
  129. struct iucv_sock *iucv;
  130. struct sock *sk;
  131. struct hlist_node *node;
  132. int err = 0;
  133. #ifdef CONFIG_PM_DEBUG
  134. printk(KERN_WARNING "afiucv_pm_freeze\n");
  135. #endif
  136. read_lock(&iucv_sk_list.lock);
  137. sk_for_each(sk, node, &iucv_sk_list.head) {
  138. iucv = iucv_sk(sk);
  139. skb_queue_purge(&iucv->send_skb_q);
  140. skb_queue_purge(&iucv->backlog_skb_q);
  141. switch (sk->sk_state) {
  142. case IUCV_SEVERED:
  143. case IUCV_DISCONN:
  144. case IUCV_CLOSING:
  145. case IUCV_CONNECTED:
  146. if (iucv->path) {
  147. err = iucv_path_sever(iucv->path, NULL);
  148. iucv_path_free(iucv->path);
  149. iucv->path = NULL;
  150. }
  151. break;
  152. case IUCV_OPEN:
  153. case IUCV_BOUND:
  154. case IUCV_LISTEN:
  155. case IUCV_CLOSED:
  156. default:
  157. break;
  158. }
  159. }
  160. read_unlock(&iucv_sk_list.lock);
  161. return err;
  162. }
  163. /**
  164. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  165. * @dev: AFIUCV dummy device
  166. *
  167. * socket clean up after freeze
  168. */
  169. static int afiucv_pm_restore_thaw(struct device *dev)
  170. {
  171. struct iucv_sock *iucv;
  172. struct sock *sk;
  173. struct hlist_node *node;
  174. #ifdef CONFIG_PM_DEBUG
  175. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  176. #endif
  177. read_lock(&iucv_sk_list.lock);
  178. sk_for_each(sk, node, &iucv_sk_list.head) {
  179. iucv = iucv_sk(sk);
  180. switch (sk->sk_state) {
  181. case IUCV_CONNECTED:
  182. sk->sk_err = EPIPE;
  183. sk->sk_state = IUCV_DISCONN;
  184. sk->sk_state_change(sk);
  185. break;
  186. case IUCV_DISCONN:
  187. case IUCV_SEVERED:
  188. case IUCV_CLOSING:
  189. case IUCV_LISTEN:
  190. case IUCV_BOUND:
  191. case IUCV_OPEN:
  192. default:
  193. break;
  194. }
  195. }
  196. read_unlock(&iucv_sk_list.lock);
  197. return 0;
  198. }
  199. static struct dev_pm_ops afiucv_pm_ops = {
  200. .prepare = afiucv_pm_prepare,
  201. .complete = afiucv_pm_complete,
  202. .freeze = afiucv_pm_freeze,
  203. .thaw = afiucv_pm_restore_thaw,
  204. .restore = afiucv_pm_restore_thaw,
  205. };
  206. static struct device_driver af_iucv_driver = {
  207. .owner = THIS_MODULE,
  208. .name = "afiucv",
  209. .bus = &iucv_bus,
  210. .pm = &afiucv_pm_ops,
  211. };
  212. /* dummy device used as trigger for PM functions */
  213. static struct device *af_iucv_dev;
  214. /**
  215. * iucv_msg_length() - Returns the length of an iucv message.
  216. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  217. *
  218. * The function returns the length of the specified iucv message @msg of data
  219. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  220. *
  221. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  222. * data:
  223. * PRMDATA[0..6] socket data (max 7 bytes);
  224. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  225. *
  226. * The socket data length is computed by substracting the socket data length
  227. * value from 0xFF.
  228. * If the socket data len is greater 7, then PRMDATA can be used for special
  229. * notifications (see iucv_sock_shutdown); and further,
  230. * if the socket data len is > 7, the function returns 8.
  231. *
  232. * Use this function to allocate socket buffers to store iucv message data.
  233. */
  234. static inline size_t iucv_msg_length(struct iucv_message *msg)
  235. {
  236. size_t datalen;
  237. if (msg->flags & IUCV_IPRMDATA) {
  238. datalen = 0xff - msg->rmmsg[7];
  239. return (datalen < 8) ? datalen : 8;
  240. }
  241. return msg->length;
  242. }
  243. /**
  244. * iucv_sock_in_state() - check for specific states
  245. * @sk: sock structure
  246. * @state: first iucv sk state
  247. * @state: second iucv sk state
  248. *
  249. * Returns true if the socket in either in the first or second state.
  250. */
  251. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  252. {
  253. return (sk->sk_state == state || sk->sk_state == state2);
  254. }
  255. /**
  256. * iucv_below_msglim() - function to check if messages can be sent
  257. * @sk: sock structure
  258. *
  259. * Returns true if the send queue length is lower than the message limit.
  260. * Always returns true if the socket is not connected (no iucv path for
  261. * checking the message limit).
  262. */
  263. static inline int iucv_below_msglim(struct sock *sk)
  264. {
  265. struct iucv_sock *iucv = iucv_sk(sk);
  266. if (sk->sk_state != IUCV_CONNECTED)
  267. return 1;
  268. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  269. }
  270. /**
  271. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  272. */
  273. static void iucv_sock_wake_msglim(struct sock *sk)
  274. {
  275. read_lock(&sk->sk_callback_lock);
  276. if (sk_has_sleeper(sk))
  277. wake_up_interruptible_all(sk->sk_sleep);
  278. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  279. read_unlock(&sk->sk_callback_lock);
  280. }
  281. /* Timers */
  282. static void iucv_sock_timeout(unsigned long arg)
  283. {
  284. struct sock *sk = (struct sock *)arg;
  285. bh_lock_sock(sk);
  286. sk->sk_err = ETIMEDOUT;
  287. sk->sk_state_change(sk);
  288. bh_unlock_sock(sk);
  289. iucv_sock_kill(sk);
  290. sock_put(sk);
  291. }
  292. static void iucv_sock_clear_timer(struct sock *sk)
  293. {
  294. sk_stop_timer(sk, &sk->sk_timer);
  295. }
  296. static struct sock *__iucv_get_sock_by_name(char *nm)
  297. {
  298. struct sock *sk;
  299. struct hlist_node *node;
  300. sk_for_each(sk, node, &iucv_sk_list.head)
  301. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  302. return sk;
  303. return NULL;
  304. }
  305. static void iucv_sock_destruct(struct sock *sk)
  306. {
  307. skb_queue_purge(&sk->sk_receive_queue);
  308. skb_queue_purge(&sk->sk_write_queue);
  309. }
  310. /* Cleanup Listen */
  311. static void iucv_sock_cleanup_listen(struct sock *parent)
  312. {
  313. struct sock *sk;
  314. /* Close non-accepted connections */
  315. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  316. iucv_sock_close(sk);
  317. iucv_sock_kill(sk);
  318. }
  319. parent->sk_state = IUCV_CLOSED;
  320. }
  321. /* Kill socket (only if zapped and orphaned) */
  322. static void iucv_sock_kill(struct sock *sk)
  323. {
  324. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  325. return;
  326. iucv_sock_unlink(&iucv_sk_list, sk);
  327. sock_set_flag(sk, SOCK_DEAD);
  328. sock_put(sk);
  329. }
  330. /* Close an IUCV socket */
  331. static void iucv_sock_close(struct sock *sk)
  332. {
  333. unsigned char user_data[16];
  334. struct iucv_sock *iucv = iucv_sk(sk);
  335. int err;
  336. unsigned long timeo;
  337. iucv_sock_clear_timer(sk);
  338. lock_sock(sk);
  339. switch (sk->sk_state) {
  340. case IUCV_LISTEN:
  341. iucv_sock_cleanup_listen(sk);
  342. break;
  343. case IUCV_CONNECTED:
  344. case IUCV_DISCONN:
  345. err = 0;
  346. sk->sk_state = IUCV_CLOSING;
  347. sk->sk_state_change(sk);
  348. if (!skb_queue_empty(&iucv->send_skb_q)) {
  349. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  350. timeo = sk->sk_lingertime;
  351. else
  352. timeo = IUCV_DISCONN_TIMEOUT;
  353. err = iucv_sock_wait(sk,
  354. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  355. timeo);
  356. }
  357. case IUCV_CLOSING: /* fall through */
  358. sk->sk_state = IUCV_CLOSED;
  359. sk->sk_state_change(sk);
  360. if (iucv->path) {
  361. low_nmcpy(user_data, iucv->src_name);
  362. high_nmcpy(user_data, iucv->dst_name);
  363. ASCEBC(user_data, sizeof(user_data));
  364. err = iucv_path_sever(iucv->path, user_data);
  365. iucv_path_free(iucv->path);
  366. iucv->path = NULL;
  367. }
  368. sk->sk_err = ECONNRESET;
  369. sk->sk_state_change(sk);
  370. skb_queue_purge(&iucv->send_skb_q);
  371. skb_queue_purge(&iucv->backlog_skb_q);
  372. break;
  373. default:
  374. sock_set_flag(sk, SOCK_ZAPPED);
  375. /* nothing to do here */
  376. break;
  377. }
  378. /* mark socket for deletion by iucv_sock_kill() */
  379. sock_set_flag(sk, SOCK_ZAPPED);
  380. release_sock(sk);
  381. }
  382. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  383. {
  384. if (parent)
  385. sk->sk_type = parent->sk_type;
  386. }
  387. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  388. {
  389. struct sock *sk;
  390. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  391. if (!sk)
  392. return NULL;
  393. sock_init_data(sock, sk);
  394. INIT_LIST_HEAD(&iucv_sk(sk)->accept_q);
  395. spin_lock_init(&iucv_sk(sk)->accept_q_lock);
  396. skb_queue_head_init(&iucv_sk(sk)->send_skb_q);
  397. INIT_LIST_HEAD(&iucv_sk(sk)->message_q.list);
  398. spin_lock_init(&iucv_sk(sk)->message_q.lock);
  399. skb_queue_head_init(&iucv_sk(sk)->backlog_skb_q);
  400. iucv_sk(sk)->send_tag = 0;
  401. iucv_sk(sk)->flags = 0;
  402. iucv_sk(sk)->msglimit = IUCV_QUEUELEN_DEFAULT;
  403. iucv_sk(sk)->path = NULL;
  404. memset(&iucv_sk(sk)->src_user_id , 0, 32);
  405. sk->sk_destruct = iucv_sock_destruct;
  406. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  407. sk->sk_allocation = GFP_DMA;
  408. sock_reset_flag(sk, SOCK_ZAPPED);
  409. sk->sk_protocol = proto;
  410. sk->sk_state = IUCV_OPEN;
  411. setup_timer(&sk->sk_timer, iucv_sock_timeout, (unsigned long)sk);
  412. iucv_sock_link(&iucv_sk_list, sk);
  413. return sk;
  414. }
  415. /* Create an IUCV socket */
  416. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol)
  417. {
  418. struct sock *sk;
  419. if (protocol && protocol != PF_IUCV)
  420. return -EPROTONOSUPPORT;
  421. sock->state = SS_UNCONNECTED;
  422. switch (sock->type) {
  423. case SOCK_STREAM:
  424. sock->ops = &iucv_sock_ops;
  425. break;
  426. case SOCK_SEQPACKET:
  427. /* currently, proto ops can handle both sk types */
  428. sock->ops = &iucv_sock_ops;
  429. break;
  430. default:
  431. return -ESOCKTNOSUPPORT;
  432. }
  433. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  434. if (!sk)
  435. return -ENOMEM;
  436. iucv_sock_init(sk, NULL);
  437. return 0;
  438. }
  439. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  440. {
  441. write_lock_bh(&l->lock);
  442. sk_add_node(sk, &l->head);
  443. write_unlock_bh(&l->lock);
  444. }
  445. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  446. {
  447. write_lock_bh(&l->lock);
  448. sk_del_node_init(sk);
  449. write_unlock_bh(&l->lock);
  450. }
  451. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  452. {
  453. unsigned long flags;
  454. struct iucv_sock *par = iucv_sk(parent);
  455. sock_hold(sk);
  456. spin_lock_irqsave(&par->accept_q_lock, flags);
  457. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  458. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  459. iucv_sk(sk)->parent = parent;
  460. parent->sk_ack_backlog++;
  461. }
  462. void iucv_accept_unlink(struct sock *sk)
  463. {
  464. unsigned long flags;
  465. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  466. spin_lock_irqsave(&par->accept_q_lock, flags);
  467. list_del_init(&iucv_sk(sk)->accept_q);
  468. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  469. iucv_sk(sk)->parent->sk_ack_backlog--;
  470. iucv_sk(sk)->parent = NULL;
  471. sock_put(sk);
  472. }
  473. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  474. {
  475. struct iucv_sock *isk, *n;
  476. struct sock *sk;
  477. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  478. sk = (struct sock *) isk;
  479. lock_sock(sk);
  480. if (sk->sk_state == IUCV_CLOSED) {
  481. iucv_accept_unlink(sk);
  482. release_sock(sk);
  483. continue;
  484. }
  485. if (sk->sk_state == IUCV_CONNECTED ||
  486. sk->sk_state == IUCV_SEVERED ||
  487. sk->sk_state == IUCV_DISCONN || /* due to PM restore */
  488. !newsock) {
  489. iucv_accept_unlink(sk);
  490. if (newsock)
  491. sock_graft(sk, newsock);
  492. if (sk->sk_state == IUCV_SEVERED)
  493. sk->sk_state = IUCV_DISCONN;
  494. release_sock(sk);
  495. return sk;
  496. }
  497. release_sock(sk);
  498. }
  499. return NULL;
  500. }
  501. /* Bind an unbound socket */
  502. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  503. int addr_len)
  504. {
  505. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  506. struct sock *sk = sock->sk;
  507. struct iucv_sock *iucv;
  508. int err;
  509. /* Verify the input sockaddr */
  510. if (!addr || addr->sa_family != AF_IUCV)
  511. return -EINVAL;
  512. lock_sock(sk);
  513. if (sk->sk_state != IUCV_OPEN) {
  514. err = -EBADFD;
  515. goto done;
  516. }
  517. write_lock_bh(&iucv_sk_list.lock);
  518. iucv = iucv_sk(sk);
  519. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  520. err = -EADDRINUSE;
  521. goto done_unlock;
  522. }
  523. if (iucv->path) {
  524. err = 0;
  525. goto done_unlock;
  526. }
  527. /* Bind the socket */
  528. memcpy(iucv->src_name, sa->siucv_name, 8);
  529. /* Copy the user id */
  530. memcpy(iucv->src_user_id, iucv_userid, 8);
  531. sk->sk_state = IUCV_BOUND;
  532. err = 0;
  533. done_unlock:
  534. /* Release the socket list lock */
  535. write_unlock_bh(&iucv_sk_list.lock);
  536. done:
  537. release_sock(sk);
  538. return err;
  539. }
  540. /* Automatically bind an unbound socket */
  541. static int iucv_sock_autobind(struct sock *sk)
  542. {
  543. struct iucv_sock *iucv = iucv_sk(sk);
  544. char query_buffer[80];
  545. char name[12];
  546. int err = 0;
  547. /* Set the userid and name */
  548. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  549. if (unlikely(err))
  550. return -EPROTO;
  551. memcpy(iucv->src_user_id, query_buffer, 8);
  552. write_lock_bh(&iucv_sk_list.lock);
  553. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  554. while (__iucv_get_sock_by_name(name)) {
  555. sprintf(name, "%08x",
  556. atomic_inc_return(&iucv_sk_list.autobind_name));
  557. }
  558. write_unlock_bh(&iucv_sk_list.lock);
  559. memcpy(&iucv->src_name, name, 8);
  560. return err;
  561. }
  562. /* Connect an unconnected socket */
  563. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  564. int alen, int flags)
  565. {
  566. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  567. struct sock *sk = sock->sk;
  568. struct iucv_sock *iucv;
  569. unsigned char user_data[16];
  570. int err;
  571. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  572. return -EINVAL;
  573. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  574. return -EBADFD;
  575. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  576. return -EINVAL;
  577. if (sk->sk_state == IUCV_OPEN) {
  578. err = iucv_sock_autobind(sk);
  579. if (unlikely(err))
  580. return err;
  581. }
  582. lock_sock(sk);
  583. /* Set the destination information */
  584. memcpy(iucv_sk(sk)->dst_user_id, sa->siucv_user_id, 8);
  585. memcpy(iucv_sk(sk)->dst_name, sa->siucv_name, 8);
  586. high_nmcpy(user_data, sa->siucv_name);
  587. low_nmcpy(user_data, iucv_sk(sk)->src_name);
  588. ASCEBC(user_data, sizeof(user_data));
  589. iucv = iucv_sk(sk);
  590. /* Create path. */
  591. iucv->path = iucv_path_alloc(iucv->msglimit,
  592. IUCV_IPRMDATA, GFP_KERNEL);
  593. if (!iucv->path) {
  594. err = -ENOMEM;
  595. goto done;
  596. }
  597. err = iucv_path_connect(iucv->path, &af_iucv_handler,
  598. sa->siucv_user_id, NULL, user_data, sk);
  599. if (err) {
  600. iucv_path_free(iucv->path);
  601. iucv->path = NULL;
  602. switch (err) {
  603. case 0x0b: /* Target communicator is not logged on */
  604. err = -ENETUNREACH;
  605. break;
  606. case 0x0d: /* Max connections for this guest exceeded */
  607. case 0x0e: /* Max connections for target guest exceeded */
  608. err = -EAGAIN;
  609. break;
  610. case 0x0f: /* Missing IUCV authorization */
  611. err = -EACCES;
  612. break;
  613. default:
  614. err = -ECONNREFUSED;
  615. break;
  616. }
  617. goto done;
  618. }
  619. if (sk->sk_state != IUCV_CONNECTED) {
  620. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  621. IUCV_DISCONN),
  622. sock_sndtimeo(sk, flags & O_NONBLOCK));
  623. }
  624. if (sk->sk_state == IUCV_DISCONN) {
  625. err = -ECONNREFUSED;
  626. }
  627. if (err) {
  628. iucv_path_sever(iucv->path, NULL);
  629. iucv_path_free(iucv->path);
  630. iucv->path = NULL;
  631. }
  632. done:
  633. release_sock(sk);
  634. return err;
  635. }
  636. /* Move a socket into listening state. */
  637. static int iucv_sock_listen(struct socket *sock, int backlog)
  638. {
  639. struct sock *sk = sock->sk;
  640. int err;
  641. lock_sock(sk);
  642. err = -EINVAL;
  643. if (sk->sk_state != IUCV_BOUND)
  644. goto done;
  645. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  646. goto done;
  647. sk->sk_max_ack_backlog = backlog;
  648. sk->sk_ack_backlog = 0;
  649. sk->sk_state = IUCV_LISTEN;
  650. err = 0;
  651. done:
  652. release_sock(sk);
  653. return err;
  654. }
  655. /* Accept a pending connection */
  656. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  657. int flags)
  658. {
  659. DECLARE_WAITQUEUE(wait, current);
  660. struct sock *sk = sock->sk, *nsk;
  661. long timeo;
  662. int err = 0;
  663. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  664. if (sk->sk_state != IUCV_LISTEN) {
  665. err = -EBADFD;
  666. goto done;
  667. }
  668. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  669. /* Wait for an incoming connection */
  670. add_wait_queue_exclusive(sk->sk_sleep, &wait);
  671. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  672. set_current_state(TASK_INTERRUPTIBLE);
  673. if (!timeo) {
  674. err = -EAGAIN;
  675. break;
  676. }
  677. release_sock(sk);
  678. timeo = schedule_timeout(timeo);
  679. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  680. if (sk->sk_state != IUCV_LISTEN) {
  681. err = -EBADFD;
  682. break;
  683. }
  684. if (signal_pending(current)) {
  685. err = sock_intr_errno(timeo);
  686. break;
  687. }
  688. }
  689. set_current_state(TASK_RUNNING);
  690. remove_wait_queue(sk->sk_sleep, &wait);
  691. if (err)
  692. goto done;
  693. newsock->state = SS_CONNECTED;
  694. done:
  695. release_sock(sk);
  696. return err;
  697. }
  698. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  699. int *len, int peer)
  700. {
  701. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  702. struct sock *sk = sock->sk;
  703. addr->sa_family = AF_IUCV;
  704. *len = sizeof(struct sockaddr_iucv);
  705. if (peer) {
  706. memcpy(siucv->siucv_user_id, iucv_sk(sk)->dst_user_id, 8);
  707. memcpy(siucv->siucv_name, &iucv_sk(sk)->dst_name, 8);
  708. } else {
  709. memcpy(siucv->siucv_user_id, iucv_sk(sk)->src_user_id, 8);
  710. memcpy(siucv->siucv_name, iucv_sk(sk)->src_name, 8);
  711. }
  712. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  713. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  714. memset(siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  715. return 0;
  716. }
  717. /**
  718. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  719. * @path: IUCV path
  720. * @msg: Pointer to a struct iucv_message
  721. * @skb: The socket data to send, skb->len MUST BE <= 7
  722. *
  723. * Send the socket data in the parameter list in the iucv message
  724. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  725. * list and the socket data len at index 7 (last byte).
  726. * See also iucv_msg_length().
  727. *
  728. * Returns the error code from the iucv_message_send() call.
  729. */
  730. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  731. struct sk_buff *skb)
  732. {
  733. u8 prmdata[8];
  734. memcpy(prmdata, (void *) skb->data, skb->len);
  735. prmdata[7] = 0xff - (u8) skb->len;
  736. return iucv_message_send(path, msg, IUCV_IPRMDATA, 0,
  737. (void *) prmdata, 8);
  738. }
  739. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  740. struct msghdr *msg, size_t len)
  741. {
  742. struct sock *sk = sock->sk;
  743. struct iucv_sock *iucv = iucv_sk(sk);
  744. struct sk_buff *skb;
  745. struct iucv_message txmsg;
  746. struct cmsghdr *cmsg;
  747. int cmsg_done;
  748. long timeo;
  749. char user_id[9];
  750. char appl_id[9];
  751. int err;
  752. int noblock = msg->msg_flags & MSG_DONTWAIT;
  753. err = sock_error(sk);
  754. if (err)
  755. return err;
  756. if (msg->msg_flags & MSG_OOB)
  757. return -EOPNOTSUPP;
  758. /* SOCK_SEQPACKET: we do not support segmented records */
  759. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  760. return -EOPNOTSUPP;
  761. lock_sock(sk);
  762. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  763. err = -EPIPE;
  764. goto out;
  765. }
  766. /* Return if the socket is not in connected state */
  767. if (sk->sk_state != IUCV_CONNECTED) {
  768. err = -ENOTCONN;
  769. goto out;
  770. }
  771. /* initialize defaults */
  772. cmsg_done = 0; /* check for duplicate headers */
  773. txmsg.class = 0;
  774. /* iterate over control messages */
  775. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  776. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  777. if (!CMSG_OK(msg, cmsg)) {
  778. err = -EINVAL;
  779. goto out;
  780. }
  781. if (cmsg->cmsg_level != SOL_IUCV)
  782. continue;
  783. if (cmsg->cmsg_type & cmsg_done) {
  784. err = -EINVAL;
  785. goto out;
  786. }
  787. cmsg_done |= cmsg->cmsg_type;
  788. switch (cmsg->cmsg_type) {
  789. case SCM_IUCV_TRGCLS:
  790. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  791. err = -EINVAL;
  792. goto out;
  793. }
  794. /* set iucv message target class */
  795. memcpy(&txmsg.class,
  796. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  797. break;
  798. default:
  799. err = -EINVAL;
  800. goto out;
  801. break;
  802. }
  803. }
  804. /* allocate one skb for each iucv message:
  805. * this is fine for SOCK_SEQPACKET (unless we want to support
  806. * segmented records using the MSG_EOR flag), but
  807. * for SOCK_STREAM we might want to improve it in future */
  808. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  809. if (!skb)
  810. goto out;
  811. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  812. err = -EFAULT;
  813. goto fail;
  814. }
  815. /* wait if outstanding messages for iucv path has reached */
  816. timeo = sock_sndtimeo(sk, noblock);
  817. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  818. if (err)
  819. goto fail;
  820. /* return -ECONNRESET if the socket is no longer connected */
  821. if (sk->sk_state != IUCV_CONNECTED) {
  822. err = -ECONNRESET;
  823. goto fail;
  824. }
  825. /* increment and save iucv message tag for msg_completion cbk */
  826. txmsg.tag = iucv->send_tag++;
  827. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  828. skb_queue_tail(&iucv->send_skb_q, skb);
  829. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  830. && skb->len <= 7) {
  831. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  832. /* on success: there is no message_complete callback
  833. * for an IPRMDATA msg; remove skb from send queue */
  834. if (err == 0) {
  835. skb_unlink(skb, &iucv->send_skb_q);
  836. kfree_skb(skb);
  837. }
  838. /* this error should never happen since the
  839. * IUCV_IPRMDATA path flag is set... sever path */
  840. if (err == 0x15) {
  841. iucv_path_sever(iucv->path, NULL);
  842. skb_unlink(skb, &iucv->send_skb_q);
  843. err = -EPIPE;
  844. goto fail;
  845. }
  846. } else
  847. err = iucv_message_send(iucv->path, &txmsg, 0, 0,
  848. (void *) skb->data, skb->len);
  849. if (err) {
  850. if (err == 3) {
  851. user_id[8] = 0;
  852. memcpy(user_id, iucv->dst_user_id, 8);
  853. appl_id[8] = 0;
  854. memcpy(appl_id, iucv->dst_name, 8);
  855. pr_err("Application %s on z/VM guest %s"
  856. " exceeds message limit\n",
  857. appl_id, user_id);
  858. err = -EAGAIN;
  859. } else
  860. err = -EPIPE;
  861. skb_unlink(skb, &iucv->send_skb_q);
  862. goto fail;
  863. }
  864. release_sock(sk);
  865. return len;
  866. fail:
  867. kfree_skb(skb);
  868. out:
  869. release_sock(sk);
  870. return err;
  871. }
  872. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  873. *
  874. * Locking: must be called with message_q.lock held
  875. */
  876. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  877. {
  878. int dataleft, size, copied = 0;
  879. struct sk_buff *nskb;
  880. dataleft = len;
  881. while (dataleft) {
  882. if (dataleft >= sk->sk_rcvbuf / 4)
  883. size = sk->sk_rcvbuf / 4;
  884. else
  885. size = dataleft;
  886. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  887. if (!nskb)
  888. return -ENOMEM;
  889. /* copy target class to control buffer of new skb */
  890. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  891. /* copy data fragment */
  892. memcpy(nskb->data, skb->data + copied, size);
  893. copied += size;
  894. dataleft -= size;
  895. skb_reset_transport_header(nskb);
  896. skb_reset_network_header(nskb);
  897. nskb->len = size;
  898. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  899. }
  900. return 0;
  901. }
  902. /* iucv_process_message() - Receive a single outstanding IUCV message
  903. *
  904. * Locking: must be called with message_q.lock held
  905. */
  906. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  907. struct iucv_path *path,
  908. struct iucv_message *msg)
  909. {
  910. int rc;
  911. unsigned int len;
  912. len = iucv_msg_length(msg);
  913. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  914. /* Note: the first 4 bytes are reserved for msg tag */
  915. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  916. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  917. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  918. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  919. skb->data = NULL;
  920. skb->len = 0;
  921. }
  922. } else {
  923. rc = iucv_message_receive(path, msg, msg->flags & IUCV_IPRMDATA,
  924. skb->data, len, NULL);
  925. if (rc) {
  926. kfree_skb(skb);
  927. return;
  928. }
  929. /* we need to fragment iucv messages for SOCK_STREAM only;
  930. * for SOCK_SEQPACKET, it is only relevant if we support
  931. * record segmentation using MSG_EOR (see also recvmsg()) */
  932. if (sk->sk_type == SOCK_STREAM &&
  933. skb->truesize >= sk->sk_rcvbuf / 4) {
  934. rc = iucv_fragment_skb(sk, skb, len);
  935. kfree_skb(skb);
  936. skb = NULL;
  937. if (rc) {
  938. iucv_path_sever(path, NULL);
  939. return;
  940. }
  941. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  942. } else {
  943. skb_reset_transport_header(skb);
  944. skb_reset_network_header(skb);
  945. skb->len = len;
  946. }
  947. }
  948. if (sock_queue_rcv_skb(sk, skb))
  949. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  950. }
  951. /* iucv_process_message_q() - Process outstanding IUCV messages
  952. *
  953. * Locking: must be called with message_q.lock held
  954. */
  955. static void iucv_process_message_q(struct sock *sk)
  956. {
  957. struct iucv_sock *iucv = iucv_sk(sk);
  958. struct sk_buff *skb;
  959. struct sock_msg_q *p, *n;
  960. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  961. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  962. if (!skb)
  963. break;
  964. iucv_process_message(sk, skb, p->path, &p->msg);
  965. list_del(&p->list);
  966. kfree(p);
  967. if (!skb_queue_empty(&iucv->backlog_skb_q))
  968. break;
  969. }
  970. }
  971. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  972. struct msghdr *msg, size_t len, int flags)
  973. {
  974. int noblock = flags & MSG_DONTWAIT;
  975. struct sock *sk = sock->sk;
  976. struct iucv_sock *iucv = iucv_sk(sk);
  977. unsigned int copied, rlen;
  978. struct sk_buff *skb, *rskb, *cskb;
  979. int err = 0;
  980. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  981. skb_queue_empty(&iucv->backlog_skb_q) &&
  982. skb_queue_empty(&sk->sk_receive_queue) &&
  983. list_empty(&iucv->message_q.list))
  984. return 0;
  985. if (flags & (MSG_OOB))
  986. return -EOPNOTSUPP;
  987. /* receive/dequeue next skb:
  988. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  989. skb = skb_recv_datagram(sk, flags, noblock, &err);
  990. if (!skb) {
  991. if (sk->sk_shutdown & RCV_SHUTDOWN)
  992. return 0;
  993. return err;
  994. }
  995. rlen = skb->len; /* real length of skb */
  996. copied = min_t(unsigned int, rlen, len);
  997. cskb = skb;
  998. if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
  999. if (!(flags & MSG_PEEK))
  1000. skb_queue_head(&sk->sk_receive_queue, skb);
  1001. return -EFAULT;
  1002. }
  1003. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1004. if (sk->sk_type == SOCK_SEQPACKET) {
  1005. if (copied < rlen)
  1006. msg->msg_flags |= MSG_TRUNC;
  1007. /* each iucv message contains a complete record */
  1008. msg->msg_flags |= MSG_EOR;
  1009. }
  1010. /* create control message to store iucv msg target class:
  1011. * get the trgcls from the control buffer of the skb due to
  1012. * fragmentation of original iucv message. */
  1013. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1014. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1015. if (err) {
  1016. if (!(flags & MSG_PEEK))
  1017. skb_queue_head(&sk->sk_receive_queue, skb);
  1018. return err;
  1019. }
  1020. /* Mark read part of skb as used */
  1021. if (!(flags & MSG_PEEK)) {
  1022. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1023. if (sk->sk_type == SOCK_STREAM) {
  1024. skb_pull(skb, copied);
  1025. if (skb->len) {
  1026. skb_queue_head(&sk->sk_receive_queue, skb);
  1027. goto done;
  1028. }
  1029. }
  1030. kfree_skb(skb);
  1031. /* Queue backlog skbs */
  1032. spin_lock_bh(&iucv->message_q.lock);
  1033. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1034. while (rskb) {
  1035. if (sock_queue_rcv_skb(sk, rskb)) {
  1036. skb_queue_head(&iucv->backlog_skb_q,
  1037. rskb);
  1038. break;
  1039. } else {
  1040. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1041. }
  1042. }
  1043. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1044. if (!list_empty(&iucv->message_q.list))
  1045. iucv_process_message_q(sk);
  1046. }
  1047. spin_unlock_bh(&iucv->message_q.lock);
  1048. }
  1049. done:
  1050. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1051. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1052. copied = rlen;
  1053. return copied;
  1054. }
  1055. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1056. {
  1057. struct iucv_sock *isk, *n;
  1058. struct sock *sk;
  1059. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1060. sk = (struct sock *) isk;
  1061. if (sk->sk_state == IUCV_CONNECTED)
  1062. return POLLIN | POLLRDNORM;
  1063. }
  1064. return 0;
  1065. }
  1066. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1067. poll_table *wait)
  1068. {
  1069. struct sock *sk = sock->sk;
  1070. unsigned int mask = 0;
  1071. sock_poll_wait(file, sk->sk_sleep, wait);
  1072. if (sk->sk_state == IUCV_LISTEN)
  1073. return iucv_accept_poll(sk);
  1074. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1075. mask |= POLLERR;
  1076. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1077. mask |= POLLRDHUP;
  1078. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1079. mask |= POLLHUP;
  1080. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1081. (sk->sk_shutdown & RCV_SHUTDOWN))
  1082. mask |= POLLIN | POLLRDNORM;
  1083. if (sk->sk_state == IUCV_CLOSED)
  1084. mask |= POLLHUP;
  1085. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  1086. mask |= POLLIN;
  1087. if (sock_writeable(sk))
  1088. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1089. else
  1090. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1091. return mask;
  1092. }
  1093. static int iucv_sock_shutdown(struct socket *sock, int how)
  1094. {
  1095. struct sock *sk = sock->sk;
  1096. struct iucv_sock *iucv = iucv_sk(sk);
  1097. struct iucv_message txmsg;
  1098. int err = 0;
  1099. how++;
  1100. if ((how & ~SHUTDOWN_MASK) || !how)
  1101. return -EINVAL;
  1102. lock_sock(sk);
  1103. switch (sk->sk_state) {
  1104. case IUCV_DISCONN:
  1105. case IUCV_CLOSING:
  1106. case IUCV_SEVERED:
  1107. case IUCV_CLOSED:
  1108. err = -ENOTCONN;
  1109. goto fail;
  1110. default:
  1111. sk->sk_shutdown |= how;
  1112. break;
  1113. }
  1114. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1115. txmsg.class = 0;
  1116. txmsg.tag = 0;
  1117. err = iucv_message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0,
  1118. (void *) iprm_shutdown, 8);
  1119. if (err) {
  1120. switch (err) {
  1121. case 1:
  1122. err = -ENOTCONN;
  1123. break;
  1124. case 2:
  1125. err = -ECONNRESET;
  1126. break;
  1127. default:
  1128. err = -ENOTCONN;
  1129. break;
  1130. }
  1131. }
  1132. }
  1133. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1134. err = iucv_path_quiesce(iucv_sk(sk)->path, NULL);
  1135. if (err)
  1136. err = -ENOTCONN;
  1137. skb_queue_purge(&sk->sk_receive_queue);
  1138. }
  1139. /* Wake up anyone sleeping in poll */
  1140. sk->sk_state_change(sk);
  1141. fail:
  1142. release_sock(sk);
  1143. return err;
  1144. }
  1145. static int iucv_sock_release(struct socket *sock)
  1146. {
  1147. struct sock *sk = sock->sk;
  1148. int err = 0;
  1149. if (!sk)
  1150. return 0;
  1151. iucv_sock_close(sk);
  1152. /* Unregister with IUCV base support */
  1153. if (iucv_sk(sk)->path) {
  1154. iucv_path_sever(iucv_sk(sk)->path, NULL);
  1155. iucv_path_free(iucv_sk(sk)->path);
  1156. iucv_sk(sk)->path = NULL;
  1157. }
  1158. sock_orphan(sk);
  1159. iucv_sock_kill(sk);
  1160. return err;
  1161. }
  1162. /* getsockopt and setsockopt */
  1163. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1164. char __user *optval, unsigned int optlen)
  1165. {
  1166. struct sock *sk = sock->sk;
  1167. struct iucv_sock *iucv = iucv_sk(sk);
  1168. int val;
  1169. int rc;
  1170. if (level != SOL_IUCV)
  1171. return -ENOPROTOOPT;
  1172. if (optlen < sizeof(int))
  1173. return -EINVAL;
  1174. if (get_user(val, (int __user *) optval))
  1175. return -EFAULT;
  1176. rc = 0;
  1177. lock_sock(sk);
  1178. switch (optname) {
  1179. case SO_IPRMDATA_MSG:
  1180. if (val)
  1181. iucv->flags |= IUCV_IPRMDATA;
  1182. else
  1183. iucv->flags &= ~IUCV_IPRMDATA;
  1184. break;
  1185. case SO_MSGLIMIT:
  1186. switch (sk->sk_state) {
  1187. case IUCV_OPEN:
  1188. case IUCV_BOUND:
  1189. if (val < 1 || val > (u16)(~0))
  1190. rc = -EINVAL;
  1191. else
  1192. iucv->msglimit = val;
  1193. break;
  1194. default:
  1195. rc = -EINVAL;
  1196. break;
  1197. }
  1198. break;
  1199. default:
  1200. rc = -ENOPROTOOPT;
  1201. break;
  1202. }
  1203. release_sock(sk);
  1204. return rc;
  1205. }
  1206. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1207. char __user *optval, int __user *optlen)
  1208. {
  1209. struct sock *sk = sock->sk;
  1210. struct iucv_sock *iucv = iucv_sk(sk);
  1211. int val, len;
  1212. if (level != SOL_IUCV)
  1213. return -ENOPROTOOPT;
  1214. if (get_user(len, optlen))
  1215. return -EFAULT;
  1216. if (len < 0)
  1217. return -EINVAL;
  1218. len = min_t(unsigned int, len, sizeof(int));
  1219. switch (optname) {
  1220. case SO_IPRMDATA_MSG:
  1221. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1222. break;
  1223. case SO_MSGLIMIT:
  1224. lock_sock(sk);
  1225. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1226. : iucv->msglimit; /* default */
  1227. release_sock(sk);
  1228. break;
  1229. default:
  1230. return -ENOPROTOOPT;
  1231. }
  1232. if (put_user(len, optlen))
  1233. return -EFAULT;
  1234. if (copy_to_user(optval, &val, len))
  1235. return -EFAULT;
  1236. return 0;
  1237. }
  1238. /* Callback wrappers - called from iucv base support */
  1239. static int iucv_callback_connreq(struct iucv_path *path,
  1240. u8 ipvmid[8], u8 ipuser[16])
  1241. {
  1242. unsigned char user_data[16];
  1243. unsigned char nuser_data[16];
  1244. unsigned char src_name[8];
  1245. struct hlist_node *node;
  1246. struct sock *sk, *nsk;
  1247. struct iucv_sock *iucv, *niucv;
  1248. int err;
  1249. memcpy(src_name, ipuser, 8);
  1250. EBCASC(src_name, 8);
  1251. /* Find out if this path belongs to af_iucv. */
  1252. read_lock(&iucv_sk_list.lock);
  1253. iucv = NULL;
  1254. sk = NULL;
  1255. sk_for_each(sk, node, &iucv_sk_list.head)
  1256. if (sk->sk_state == IUCV_LISTEN &&
  1257. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1258. /*
  1259. * Found a listening socket with
  1260. * src_name == ipuser[0-7].
  1261. */
  1262. iucv = iucv_sk(sk);
  1263. break;
  1264. }
  1265. read_unlock(&iucv_sk_list.lock);
  1266. if (!iucv)
  1267. /* No socket found, not one of our paths. */
  1268. return -EINVAL;
  1269. bh_lock_sock(sk);
  1270. /* Check if parent socket is listening */
  1271. low_nmcpy(user_data, iucv->src_name);
  1272. high_nmcpy(user_data, iucv->dst_name);
  1273. ASCEBC(user_data, sizeof(user_data));
  1274. if (sk->sk_state != IUCV_LISTEN) {
  1275. err = iucv_path_sever(path, user_data);
  1276. iucv_path_free(path);
  1277. goto fail;
  1278. }
  1279. /* Check for backlog size */
  1280. if (sk_acceptq_is_full(sk)) {
  1281. err = iucv_path_sever(path, user_data);
  1282. iucv_path_free(path);
  1283. goto fail;
  1284. }
  1285. /* Create the new socket */
  1286. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1287. if (!nsk) {
  1288. err = iucv_path_sever(path, user_data);
  1289. iucv_path_free(path);
  1290. goto fail;
  1291. }
  1292. niucv = iucv_sk(nsk);
  1293. iucv_sock_init(nsk, sk);
  1294. /* Set the new iucv_sock */
  1295. memcpy(niucv->dst_name, ipuser + 8, 8);
  1296. EBCASC(niucv->dst_name, 8);
  1297. memcpy(niucv->dst_user_id, ipvmid, 8);
  1298. memcpy(niucv->src_name, iucv->src_name, 8);
  1299. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1300. niucv->path = path;
  1301. /* Call iucv_accept */
  1302. high_nmcpy(nuser_data, ipuser + 8);
  1303. memcpy(nuser_data + 8, niucv->src_name, 8);
  1304. ASCEBC(nuser_data + 8, 8);
  1305. /* set message limit for path based on msglimit of accepting socket */
  1306. niucv->msglimit = iucv->msglimit;
  1307. path->msglim = iucv->msglimit;
  1308. err = iucv_path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1309. if (err) {
  1310. err = iucv_path_sever(path, user_data);
  1311. iucv_path_free(path);
  1312. iucv_sock_kill(nsk);
  1313. goto fail;
  1314. }
  1315. iucv_accept_enqueue(sk, nsk);
  1316. /* Wake up accept */
  1317. nsk->sk_state = IUCV_CONNECTED;
  1318. sk->sk_data_ready(sk, 1);
  1319. err = 0;
  1320. fail:
  1321. bh_unlock_sock(sk);
  1322. return 0;
  1323. }
  1324. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1325. {
  1326. struct sock *sk = path->private;
  1327. sk->sk_state = IUCV_CONNECTED;
  1328. sk->sk_state_change(sk);
  1329. }
  1330. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1331. {
  1332. struct sock *sk = path->private;
  1333. struct iucv_sock *iucv = iucv_sk(sk);
  1334. struct sk_buff *skb;
  1335. struct sock_msg_q *save_msg;
  1336. int len;
  1337. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1338. iucv_message_reject(path, msg);
  1339. return;
  1340. }
  1341. spin_lock(&iucv->message_q.lock);
  1342. if (!list_empty(&iucv->message_q.list) ||
  1343. !skb_queue_empty(&iucv->backlog_skb_q))
  1344. goto save_message;
  1345. len = atomic_read(&sk->sk_rmem_alloc);
  1346. len += iucv_msg_length(msg) + sizeof(struct sk_buff);
  1347. if (len > sk->sk_rcvbuf)
  1348. goto save_message;
  1349. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1350. if (!skb)
  1351. goto save_message;
  1352. iucv_process_message(sk, skb, path, msg);
  1353. goto out_unlock;
  1354. save_message:
  1355. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1356. if (!save_msg)
  1357. return;
  1358. save_msg->path = path;
  1359. save_msg->msg = *msg;
  1360. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1361. out_unlock:
  1362. spin_unlock(&iucv->message_q.lock);
  1363. }
  1364. static void iucv_callback_txdone(struct iucv_path *path,
  1365. struct iucv_message *msg)
  1366. {
  1367. struct sock *sk = path->private;
  1368. struct sk_buff *this = NULL;
  1369. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1370. struct sk_buff *list_skb = list->next;
  1371. unsigned long flags;
  1372. if (!skb_queue_empty(list)) {
  1373. spin_lock_irqsave(&list->lock, flags);
  1374. while (list_skb != (struct sk_buff *)list) {
  1375. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1376. this = list_skb;
  1377. break;
  1378. }
  1379. list_skb = list_skb->next;
  1380. }
  1381. if (this)
  1382. __skb_unlink(this, list);
  1383. spin_unlock_irqrestore(&list->lock, flags);
  1384. if (this) {
  1385. kfree_skb(this);
  1386. /* wake up any process waiting for sending */
  1387. iucv_sock_wake_msglim(sk);
  1388. }
  1389. }
  1390. BUG_ON(!this);
  1391. if (sk->sk_state == IUCV_CLOSING) {
  1392. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1393. sk->sk_state = IUCV_CLOSED;
  1394. sk->sk_state_change(sk);
  1395. }
  1396. }
  1397. }
  1398. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1399. {
  1400. struct sock *sk = path->private;
  1401. if (!list_empty(&iucv_sk(sk)->accept_q))
  1402. sk->sk_state = IUCV_SEVERED;
  1403. else
  1404. sk->sk_state = IUCV_DISCONN;
  1405. sk->sk_state_change(sk);
  1406. }
  1407. /* called if the other communication side shuts down its RECV direction;
  1408. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1409. */
  1410. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1411. {
  1412. struct sock *sk = path->private;
  1413. bh_lock_sock(sk);
  1414. if (sk->sk_state != IUCV_CLOSED) {
  1415. sk->sk_shutdown |= SEND_SHUTDOWN;
  1416. sk->sk_state_change(sk);
  1417. }
  1418. bh_unlock_sock(sk);
  1419. }
  1420. static const struct proto_ops iucv_sock_ops = {
  1421. .family = PF_IUCV,
  1422. .owner = THIS_MODULE,
  1423. .release = iucv_sock_release,
  1424. .bind = iucv_sock_bind,
  1425. .connect = iucv_sock_connect,
  1426. .listen = iucv_sock_listen,
  1427. .accept = iucv_sock_accept,
  1428. .getname = iucv_sock_getname,
  1429. .sendmsg = iucv_sock_sendmsg,
  1430. .recvmsg = iucv_sock_recvmsg,
  1431. .poll = iucv_sock_poll,
  1432. .ioctl = sock_no_ioctl,
  1433. .mmap = sock_no_mmap,
  1434. .socketpair = sock_no_socketpair,
  1435. .shutdown = iucv_sock_shutdown,
  1436. .setsockopt = iucv_sock_setsockopt,
  1437. .getsockopt = iucv_sock_getsockopt,
  1438. };
  1439. static struct net_proto_family iucv_sock_family_ops = {
  1440. .family = AF_IUCV,
  1441. .owner = THIS_MODULE,
  1442. .create = iucv_sock_create,
  1443. };
  1444. static int __init afiucv_init(void)
  1445. {
  1446. int err;
  1447. if (!MACHINE_IS_VM) {
  1448. pr_err("The af_iucv module cannot be loaded"
  1449. " without z/VM\n");
  1450. err = -EPROTONOSUPPORT;
  1451. goto out;
  1452. }
  1453. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  1454. if (unlikely(err)) {
  1455. WARN_ON(err);
  1456. err = -EPROTONOSUPPORT;
  1457. goto out;
  1458. }
  1459. err = iucv_register(&af_iucv_handler, 0);
  1460. if (err)
  1461. goto out;
  1462. err = proto_register(&iucv_proto, 0);
  1463. if (err)
  1464. goto out_iucv;
  1465. err = sock_register(&iucv_sock_family_ops);
  1466. if (err)
  1467. goto out_proto;
  1468. /* establish dummy device */
  1469. err = driver_register(&af_iucv_driver);
  1470. if (err)
  1471. goto out_sock;
  1472. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  1473. if (!af_iucv_dev) {
  1474. err = -ENOMEM;
  1475. goto out_driver;
  1476. }
  1477. dev_set_name(af_iucv_dev, "af_iucv");
  1478. af_iucv_dev->bus = &iucv_bus;
  1479. af_iucv_dev->parent = iucv_root;
  1480. af_iucv_dev->release = (void (*)(struct device *))kfree;
  1481. af_iucv_dev->driver = &af_iucv_driver;
  1482. err = device_register(af_iucv_dev);
  1483. if (err)
  1484. goto out_driver;
  1485. return 0;
  1486. out_driver:
  1487. driver_unregister(&af_iucv_driver);
  1488. out_sock:
  1489. sock_unregister(PF_IUCV);
  1490. out_proto:
  1491. proto_unregister(&iucv_proto);
  1492. out_iucv:
  1493. iucv_unregister(&af_iucv_handler, 0);
  1494. out:
  1495. return err;
  1496. }
  1497. static void __exit afiucv_exit(void)
  1498. {
  1499. device_unregister(af_iucv_dev);
  1500. driver_unregister(&af_iucv_driver);
  1501. sock_unregister(PF_IUCV);
  1502. proto_unregister(&iucv_proto);
  1503. iucv_unregister(&af_iucv_handler, 0);
  1504. }
  1505. module_init(afiucv_init);
  1506. module_exit(afiucv_exit);
  1507. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  1508. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  1509. MODULE_VERSION(VERSION);
  1510. MODULE_LICENSE("GPL");
  1511. MODULE_ALIAS_NETPROTO(PF_IUCV);