udp.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314
  1. /*
  2. * UDP over IPv6
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * Based on linux/ipv4/udp.c
  9. *
  10. * Fixes:
  11. * Hideaki YOSHIFUJI : sin6_scope_id support
  12. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  13. * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
  14. * a single port at the same time.
  15. * Kazunori MIYAZAWA @USAGI: change process style to use ip6_append_data
  16. * YOSHIFUJI Hideaki @USAGI: convert /proc/net/udp6 to seq_file.
  17. *
  18. * This program is free software; you can redistribute it and/or
  19. * modify it under the terms of the GNU General Public License
  20. * as published by the Free Software Foundation; either version
  21. * 2 of the License, or (at your option) any later version.
  22. */
  23. #include <linux/errno.h>
  24. #include <linux/types.h>
  25. #include <linux/socket.h>
  26. #include <linux/sockios.h>
  27. #include <linux/net.h>
  28. #include <linux/in6.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/if_arp.h>
  31. #include <linux/ipv6.h>
  32. #include <linux/icmpv6.h>
  33. #include <linux/init.h>
  34. #include <linux/module.h>
  35. #include <linux/skbuff.h>
  36. #include <asm/uaccess.h>
  37. #include <net/ndisc.h>
  38. #include <net/protocol.h>
  39. #include <net/transp_v6.h>
  40. #include <net/ip6_route.h>
  41. #include <net/raw.h>
  42. #include <net/tcp_states.h>
  43. #include <net/ip6_checksum.h>
  44. #include <net/xfrm.h>
  45. #include <linux/proc_fs.h>
  46. #include <linux/seq_file.h>
  47. #include "udp_impl.h"
  48. int ipv6_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2)
  49. {
  50. const struct in6_addr *sk_rcv_saddr6 = &inet6_sk(sk)->rcv_saddr;
  51. const struct in6_addr *sk2_rcv_saddr6 = inet6_rcv_saddr(sk2);
  52. __be32 sk_rcv_saddr = inet_sk(sk)->rcv_saddr;
  53. __be32 sk2_rcv_saddr = inet_rcv_saddr(sk2);
  54. int sk_ipv6only = ipv6_only_sock(sk);
  55. int sk2_ipv6only = inet_v6_ipv6only(sk2);
  56. int addr_type = ipv6_addr_type(sk_rcv_saddr6);
  57. int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
  58. /* if both are mapped, treat as IPv4 */
  59. if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED)
  60. return (!sk2_ipv6only &&
  61. (!sk_rcv_saddr || !sk2_rcv_saddr ||
  62. sk_rcv_saddr == sk2_rcv_saddr));
  63. if (addr_type2 == IPV6_ADDR_ANY &&
  64. !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
  65. return 1;
  66. if (addr_type == IPV6_ADDR_ANY &&
  67. !(sk_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
  68. return 1;
  69. if (sk2_rcv_saddr6 &&
  70. ipv6_addr_equal(sk_rcv_saddr6, sk2_rcv_saddr6))
  71. return 1;
  72. return 0;
  73. }
  74. int udp_v6_get_port(struct sock *sk, unsigned short snum)
  75. {
  76. return udp_lib_get_port(sk, snum, ipv6_rcv_saddr_equal);
  77. }
  78. static inline int compute_score(struct sock *sk, struct net *net,
  79. unsigned short hnum,
  80. struct in6_addr *saddr, __be16 sport,
  81. struct in6_addr *daddr, __be16 dport,
  82. int dif)
  83. {
  84. int score = -1;
  85. if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
  86. sk->sk_family == PF_INET6) {
  87. struct ipv6_pinfo *np = inet6_sk(sk);
  88. struct inet_sock *inet = inet_sk(sk);
  89. score = 0;
  90. if (inet->dport) {
  91. if (inet->dport != sport)
  92. return -1;
  93. score++;
  94. }
  95. if (!ipv6_addr_any(&np->rcv_saddr)) {
  96. if (!ipv6_addr_equal(&np->rcv_saddr, daddr))
  97. return -1;
  98. score++;
  99. }
  100. if (!ipv6_addr_any(&np->daddr)) {
  101. if (!ipv6_addr_equal(&np->daddr, saddr))
  102. return -1;
  103. score++;
  104. }
  105. if (sk->sk_bound_dev_if) {
  106. if (sk->sk_bound_dev_if != dif)
  107. return -1;
  108. score++;
  109. }
  110. }
  111. return score;
  112. }
  113. static struct sock *__udp6_lib_lookup(struct net *net,
  114. struct in6_addr *saddr, __be16 sport,
  115. struct in6_addr *daddr, __be16 dport,
  116. int dif, struct udp_table *udptable)
  117. {
  118. struct sock *sk, *result;
  119. struct hlist_nulls_node *node;
  120. unsigned short hnum = ntohs(dport);
  121. unsigned int hash = udp_hashfn(net, hnum);
  122. struct udp_hslot *hslot = &udptable->hash[hash];
  123. int score, badness;
  124. rcu_read_lock();
  125. begin:
  126. result = NULL;
  127. badness = -1;
  128. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  129. score = compute_score(sk, net, hnum, saddr, sport, daddr, dport, dif);
  130. if (score > badness) {
  131. result = sk;
  132. badness = score;
  133. }
  134. }
  135. /*
  136. * if the nulls value we got at the end of this lookup is
  137. * not the expected one, we must restart lookup.
  138. * We probably met an item that was moved to another chain.
  139. */
  140. if (get_nulls_value(node) != hash)
  141. goto begin;
  142. if (result) {
  143. if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
  144. result = NULL;
  145. else if (unlikely(compute_score(result, net, hnum, saddr, sport,
  146. daddr, dport, dif) < badness)) {
  147. sock_put(result);
  148. goto begin;
  149. }
  150. }
  151. rcu_read_unlock();
  152. return result;
  153. }
  154. static struct sock *__udp6_lib_lookup_skb(struct sk_buff *skb,
  155. __be16 sport, __be16 dport,
  156. struct udp_table *udptable)
  157. {
  158. struct sock *sk;
  159. struct ipv6hdr *iph = ipv6_hdr(skb);
  160. if (unlikely(sk = skb_steal_sock(skb)))
  161. return sk;
  162. return __udp6_lib_lookup(dev_net(skb_dst(skb)->dev), &iph->saddr, sport,
  163. &iph->daddr, dport, inet6_iif(skb),
  164. udptable);
  165. }
  166. /*
  167. * This should be easy, if there is something there we
  168. * return it, otherwise we block.
  169. */
  170. int udpv6_recvmsg(struct kiocb *iocb, struct sock *sk,
  171. struct msghdr *msg, size_t len,
  172. int noblock, int flags, int *addr_len)
  173. {
  174. struct ipv6_pinfo *np = inet6_sk(sk);
  175. struct inet_sock *inet = inet_sk(sk);
  176. struct sk_buff *skb;
  177. unsigned int ulen, copied;
  178. int peeked;
  179. int err;
  180. int is_udplite = IS_UDPLITE(sk);
  181. int is_udp4;
  182. if (addr_len)
  183. *addr_len=sizeof(struct sockaddr_in6);
  184. if (flags & MSG_ERRQUEUE)
  185. return ipv6_recv_error(sk, msg, len);
  186. try_again:
  187. skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
  188. &peeked, &err);
  189. if (!skb)
  190. goto out;
  191. ulen = skb->len - sizeof(struct udphdr);
  192. copied = len;
  193. if (copied > ulen)
  194. copied = ulen;
  195. else if (copied < ulen)
  196. msg->msg_flags |= MSG_TRUNC;
  197. is_udp4 = (skb->protocol == htons(ETH_P_IP));
  198. /*
  199. * If checksum is needed at all, try to do it while copying the
  200. * data. If the data is truncated, or if we only want a partial
  201. * coverage checksum (UDP-Lite), do it before the copy.
  202. */
  203. if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
  204. if (udp_lib_checksum_complete(skb))
  205. goto csum_copy_err;
  206. }
  207. if (skb_csum_unnecessary(skb))
  208. err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
  209. msg->msg_iov, copied );
  210. else {
  211. err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
  212. if (err == -EINVAL)
  213. goto csum_copy_err;
  214. }
  215. if (err)
  216. goto out_free;
  217. if (!peeked) {
  218. if (is_udp4)
  219. UDP_INC_STATS_USER(sock_net(sk),
  220. UDP_MIB_INDATAGRAMS, is_udplite);
  221. else
  222. UDP6_INC_STATS_USER(sock_net(sk),
  223. UDP_MIB_INDATAGRAMS, is_udplite);
  224. }
  225. sock_recv_timestamp(msg, sk, skb);
  226. /* Copy the address. */
  227. if (msg->msg_name) {
  228. struct sockaddr_in6 *sin6;
  229. sin6 = (struct sockaddr_in6 *) msg->msg_name;
  230. sin6->sin6_family = AF_INET6;
  231. sin6->sin6_port = udp_hdr(skb)->source;
  232. sin6->sin6_flowinfo = 0;
  233. sin6->sin6_scope_id = 0;
  234. if (is_udp4)
  235. ipv6_addr_set(&sin6->sin6_addr, 0, 0,
  236. htonl(0xffff), ip_hdr(skb)->saddr);
  237. else {
  238. ipv6_addr_copy(&sin6->sin6_addr,
  239. &ipv6_hdr(skb)->saddr);
  240. if (ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
  241. sin6->sin6_scope_id = IP6CB(skb)->iif;
  242. }
  243. }
  244. if (is_udp4) {
  245. if (inet->cmsg_flags)
  246. ip_cmsg_recv(msg, skb);
  247. } else {
  248. if (np->rxopt.all)
  249. datagram_recv_ctl(sk, msg, skb);
  250. }
  251. err = copied;
  252. if (flags & MSG_TRUNC)
  253. err = ulen;
  254. out_free:
  255. skb_free_datagram_locked(sk, skb);
  256. out:
  257. return err;
  258. csum_copy_err:
  259. lock_sock(sk);
  260. if (!skb_kill_datagram(sk, skb, flags)) {
  261. if (is_udp4)
  262. UDP_INC_STATS_USER(sock_net(sk),
  263. UDP_MIB_INERRORS, is_udplite);
  264. else
  265. UDP6_INC_STATS_USER(sock_net(sk),
  266. UDP_MIB_INERRORS, is_udplite);
  267. }
  268. release_sock(sk);
  269. if (flags & MSG_DONTWAIT)
  270. return -EAGAIN;
  271. goto try_again;
  272. }
  273. void __udp6_lib_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
  274. u8 type, u8 code, int offset, __be32 info,
  275. struct udp_table *udptable)
  276. {
  277. struct ipv6_pinfo *np;
  278. struct ipv6hdr *hdr = (struct ipv6hdr*)skb->data;
  279. struct in6_addr *saddr = &hdr->saddr;
  280. struct in6_addr *daddr = &hdr->daddr;
  281. struct udphdr *uh = (struct udphdr*)(skb->data+offset);
  282. struct sock *sk;
  283. int err;
  284. sk = __udp6_lib_lookup(dev_net(skb->dev), daddr, uh->dest,
  285. saddr, uh->source, inet6_iif(skb), udptable);
  286. if (sk == NULL)
  287. return;
  288. np = inet6_sk(sk);
  289. if (!icmpv6_err_convert(type, code, &err) && !np->recverr)
  290. goto out;
  291. if (sk->sk_state != TCP_ESTABLISHED && !np->recverr)
  292. goto out;
  293. if (np->recverr)
  294. ipv6_icmp_error(sk, skb, err, uh->dest, ntohl(info), (u8 *)(uh+1));
  295. sk->sk_err = err;
  296. sk->sk_error_report(sk);
  297. out:
  298. sock_put(sk);
  299. }
  300. static __inline__ void udpv6_err(struct sk_buff *skb,
  301. struct inet6_skb_parm *opt, u8 type,
  302. u8 code, int offset, __be32 info )
  303. {
  304. __udp6_lib_err(skb, opt, type, code, offset, info, &udp_table);
  305. }
  306. int udpv6_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
  307. {
  308. struct udp_sock *up = udp_sk(sk);
  309. int rc;
  310. int is_udplite = IS_UDPLITE(sk);
  311. if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb))
  312. goto drop;
  313. /*
  314. * UDP-Lite specific tests, ignored on UDP sockets (see net/ipv4/udp.c).
  315. */
  316. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  317. if (up->pcrlen == 0) { /* full coverage was set */
  318. LIMIT_NETDEBUG(KERN_WARNING "UDPLITE6: partial coverage"
  319. " %d while full coverage %d requested\n",
  320. UDP_SKB_CB(skb)->cscov, skb->len);
  321. goto drop;
  322. }
  323. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  324. LIMIT_NETDEBUG(KERN_WARNING "UDPLITE6: coverage %d "
  325. "too small, need min %d\n",
  326. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  327. goto drop;
  328. }
  329. }
  330. if (sk->sk_filter) {
  331. if (udp_lib_checksum_complete(skb))
  332. goto drop;
  333. }
  334. if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
  335. /* Note that an ENOMEM error is charged twice */
  336. if (rc == -ENOMEM) {
  337. UDP6_INC_STATS_BH(sock_net(sk),
  338. UDP_MIB_RCVBUFERRORS, is_udplite);
  339. atomic_inc(&sk->sk_drops);
  340. }
  341. goto drop;
  342. }
  343. return 0;
  344. drop:
  345. UDP6_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  346. kfree_skb(skb);
  347. return -1;
  348. }
  349. static struct sock *udp_v6_mcast_next(struct net *net, struct sock *sk,
  350. __be16 loc_port, struct in6_addr *loc_addr,
  351. __be16 rmt_port, struct in6_addr *rmt_addr,
  352. int dif)
  353. {
  354. struct hlist_nulls_node *node;
  355. struct sock *s = sk;
  356. unsigned short num = ntohs(loc_port);
  357. sk_nulls_for_each_from(s, node) {
  358. struct inet_sock *inet = inet_sk(s);
  359. if (!net_eq(sock_net(s), net))
  360. continue;
  361. if (s->sk_hash == num && s->sk_family == PF_INET6) {
  362. struct ipv6_pinfo *np = inet6_sk(s);
  363. if (inet->dport) {
  364. if (inet->dport != rmt_port)
  365. continue;
  366. }
  367. if (!ipv6_addr_any(&np->daddr) &&
  368. !ipv6_addr_equal(&np->daddr, rmt_addr))
  369. continue;
  370. if (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)
  371. continue;
  372. if (!ipv6_addr_any(&np->rcv_saddr)) {
  373. if (!ipv6_addr_equal(&np->rcv_saddr, loc_addr))
  374. continue;
  375. }
  376. if (!inet6_mc_check(s, loc_addr, rmt_addr))
  377. continue;
  378. return s;
  379. }
  380. }
  381. return NULL;
  382. }
  383. /*
  384. * Note: called only from the BH handler context,
  385. * so we don't need to lock the hashes.
  386. */
  387. static int __udp6_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  388. struct in6_addr *saddr, struct in6_addr *daddr,
  389. struct udp_table *udptable)
  390. {
  391. struct sock *sk, *sk2;
  392. const struct udphdr *uh = udp_hdr(skb);
  393. struct udp_hslot *hslot = &udptable->hash[udp_hashfn(net, ntohs(uh->dest))];
  394. int dif;
  395. spin_lock(&hslot->lock);
  396. sk = sk_nulls_head(&hslot->head);
  397. dif = inet6_iif(skb);
  398. sk = udp_v6_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
  399. if (!sk) {
  400. kfree_skb(skb);
  401. goto out;
  402. }
  403. sk2 = sk;
  404. while ((sk2 = udp_v6_mcast_next(net, sk_nulls_next(sk2), uh->dest, daddr,
  405. uh->source, saddr, dif))) {
  406. struct sk_buff *buff = skb_clone(skb, GFP_ATOMIC);
  407. if (buff) {
  408. bh_lock_sock(sk2);
  409. if (!sock_owned_by_user(sk2))
  410. udpv6_queue_rcv_skb(sk2, buff);
  411. else
  412. sk_add_backlog(sk2, buff);
  413. bh_unlock_sock(sk2);
  414. }
  415. }
  416. bh_lock_sock(sk);
  417. if (!sock_owned_by_user(sk))
  418. udpv6_queue_rcv_skb(sk, skb);
  419. else
  420. sk_add_backlog(sk, skb);
  421. bh_unlock_sock(sk);
  422. out:
  423. spin_unlock(&hslot->lock);
  424. return 0;
  425. }
  426. static inline int udp6_csum_init(struct sk_buff *skb, struct udphdr *uh,
  427. int proto)
  428. {
  429. int err;
  430. UDP_SKB_CB(skb)->partial_cov = 0;
  431. UDP_SKB_CB(skb)->cscov = skb->len;
  432. if (proto == IPPROTO_UDPLITE) {
  433. err = udplite_checksum_init(skb, uh);
  434. if (err)
  435. return err;
  436. }
  437. if (uh->check == 0) {
  438. /* RFC 2460 section 8.1 says that we SHOULD log
  439. this error. Well, it is reasonable.
  440. */
  441. LIMIT_NETDEBUG(KERN_INFO "IPv6: udp checksum is 0\n");
  442. return 1;
  443. }
  444. if (skb->ip_summed == CHECKSUM_COMPLETE &&
  445. !csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr,
  446. skb->len, proto, skb->csum))
  447. skb->ip_summed = CHECKSUM_UNNECESSARY;
  448. if (!skb_csum_unnecessary(skb))
  449. skb->csum = ~csum_unfold(csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  450. &ipv6_hdr(skb)->daddr,
  451. skb->len, proto, 0));
  452. return 0;
  453. }
  454. int __udp6_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  455. int proto)
  456. {
  457. struct sock *sk;
  458. struct udphdr *uh;
  459. struct net_device *dev = skb->dev;
  460. struct in6_addr *saddr, *daddr;
  461. u32 ulen = 0;
  462. struct net *net = dev_net(skb->dev);
  463. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  464. goto short_packet;
  465. saddr = &ipv6_hdr(skb)->saddr;
  466. daddr = &ipv6_hdr(skb)->daddr;
  467. uh = udp_hdr(skb);
  468. ulen = ntohs(uh->len);
  469. if (ulen > skb->len)
  470. goto short_packet;
  471. if (proto == IPPROTO_UDP) {
  472. /* UDP validates ulen. */
  473. /* Check for jumbo payload */
  474. if (ulen == 0)
  475. ulen = skb->len;
  476. if (ulen < sizeof(*uh))
  477. goto short_packet;
  478. if (ulen < skb->len) {
  479. if (pskb_trim_rcsum(skb, ulen))
  480. goto short_packet;
  481. saddr = &ipv6_hdr(skb)->saddr;
  482. daddr = &ipv6_hdr(skb)->daddr;
  483. uh = udp_hdr(skb);
  484. }
  485. }
  486. if (udp6_csum_init(skb, uh, proto))
  487. goto discard;
  488. /*
  489. * Multicast receive code
  490. */
  491. if (ipv6_addr_is_multicast(daddr))
  492. return __udp6_lib_mcast_deliver(net, skb,
  493. saddr, daddr, udptable);
  494. /* Unicast */
  495. /*
  496. * check socket cache ... must talk to Alan about his plans
  497. * for sock caches... i'll skip this for now.
  498. */
  499. sk = __udp6_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  500. if (sk == NULL) {
  501. if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb))
  502. goto discard;
  503. if (udp_lib_checksum_complete(skb))
  504. goto discard;
  505. UDP6_INC_STATS_BH(net, UDP_MIB_NOPORTS,
  506. proto == IPPROTO_UDPLITE);
  507. icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0, dev);
  508. kfree_skb(skb);
  509. return 0;
  510. }
  511. /* deliver */
  512. bh_lock_sock(sk);
  513. if (!sock_owned_by_user(sk))
  514. udpv6_queue_rcv_skb(sk, skb);
  515. else
  516. sk_add_backlog(sk, skb);
  517. bh_unlock_sock(sk);
  518. sock_put(sk);
  519. return 0;
  520. short_packet:
  521. LIMIT_NETDEBUG(KERN_DEBUG "UDP%sv6: short packet: %d/%u\n",
  522. proto == IPPROTO_UDPLITE ? "-Lite" : "",
  523. ulen, skb->len);
  524. discard:
  525. UDP6_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  526. kfree_skb(skb);
  527. return 0;
  528. }
  529. static __inline__ int udpv6_rcv(struct sk_buff *skb)
  530. {
  531. return __udp6_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  532. }
  533. /*
  534. * Throw away all pending data and cancel the corking. Socket is locked.
  535. */
  536. static void udp_v6_flush_pending_frames(struct sock *sk)
  537. {
  538. struct udp_sock *up = udp_sk(sk);
  539. if (up->pending == AF_INET)
  540. udp_flush_pending_frames(sk);
  541. else if (up->pending) {
  542. up->len = 0;
  543. up->pending = 0;
  544. ip6_flush_pending_frames(sk);
  545. }
  546. }
  547. /**
  548. * udp6_hwcsum_outgoing - handle outgoing HW checksumming
  549. * @sk: socket we are sending on
  550. * @skb: sk_buff containing the filled-in UDP header
  551. * (checksum field must be zeroed out)
  552. */
  553. static void udp6_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
  554. const struct in6_addr *saddr,
  555. const struct in6_addr *daddr, int len)
  556. {
  557. unsigned int offset;
  558. struct udphdr *uh = udp_hdr(skb);
  559. __wsum csum = 0;
  560. if (skb_queue_len(&sk->sk_write_queue) == 1) {
  561. /* Only one fragment on the socket. */
  562. skb->csum_start = skb_transport_header(skb) - skb->head;
  563. skb->csum_offset = offsetof(struct udphdr, check);
  564. uh->check = ~csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, 0);
  565. } else {
  566. /*
  567. * HW-checksum won't work as there are two or more
  568. * fragments on the socket so that all csums of sk_buffs
  569. * should be together
  570. */
  571. offset = skb_transport_offset(skb);
  572. skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
  573. skb->ip_summed = CHECKSUM_NONE;
  574. skb_queue_walk(&sk->sk_write_queue, skb) {
  575. csum = csum_add(csum, skb->csum);
  576. }
  577. uh->check = csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP,
  578. csum);
  579. if (uh->check == 0)
  580. uh->check = CSUM_MANGLED_0;
  581. }
  582. }
  583. /*
  584. * Sending
  585. */
  586. static int udp_v6_push_pending_frames(struct sock *sk)
  587. {
  588. struct sk_buff *skb;
  589. struct udphdr *uh;
  590. struct udp_sock *up = udp_sk(sk);
  591. struct inet_sock *inet = inet_sk(sk);
  592. struct flowi *fl = &inet->cork.fl;
  593. int err = 0;
  594. int is_udplite = IS_UDPLITE(sk);
  595. __wsum csum = 0;
  596. /* Grab the skbuff where UDP header space exists. */
  597. if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
  598. goto out;
  599. /*
  600. * Create a UDP header
  601. */
  602. uh = udp_hdr(skb);
  603. uh->source = fl->fl_ip_sport;
  604. uh->dest = fl->fl_ip_dport;
  605. uh->len = htons(up->len);
  606. uh->check = 0;
  607. if (is_udplite)
  608. csum = udplite_csum_outgoing(sk, skb);
  609. else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  610. udp6_hwcsum_outgoing(sk, skb, &fl->fl6_src, &fl->fl6_dst,
  611. up->len);
  612. goto send;
  613. } else
  614. csum = udp_csum_outgoing(sk, skb);
  615. /* add protocol-dependent pseudo-header */
  616. uh->check = csum_ipv6_magic(&fl->fl6_src, &fl->fl6_dst,
  617. up->len, fl->proto, csum );
  618. if (uh->check == 0)
  619. uh->check = CSUM_MANGLED_0;
  620. send:
  621. err = ip6_push_pending_frames(sk);
  622. if (err) {
  623. if (err == -ENOBUFS && !inet6_sk(sk)->recverr) {
  624. UDP6_INC_STATS_USER(sock_net(sk),
  625. UDP_MIB_SNDBUFERRORS, is_udplite);
  626. err = 0;
  627. }
  628. } else
  629. UDP6_INC_STATS_USER(sock_net(sk),
  630. UDP_MIB_OUTDATAGRAMS, is_udplite);
  631. out:
  632. up->len = 0;
  633. up->pending = 0;
  634. return err;
  635. }
  636. int udpv6_sendmsg(struct kiocb *iocb, struct sock *sk,
  637. struct msghdr *msg, size_t len)
  638. {
  639. struct ipv6_txoptions opt_space;
  640. struct udp_sock *up = udp_sk(sk);
  641. struct inet_sock *inet = inet_sk(sk);
  642. struct ipv6_pinfo *np = inet6_sk(sk);
  643. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) msg->msg_name;
  644. struct in6_addr *daddr, *final_p = NULL, final;
  645. struct ipv6_txoptions *opt = NULL;
  646. struct ip6_flowlabel *flowlabel = NULL;
  647. struct flowi fl;
  648. struct dst_entry *dst;
  649. int addr_len = msg->msg_namelen;
  650. int ulen = len;
  651. int hlimit = -1;
  652. int tclass = -1;
  653. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  654. int err;
  655. int connected = 0;
  656. int is_udplite = IS_UDPLITE(sk);
  657. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  658. /* destination address check */
  659. if (sin6) {
  660. if (addr_len < offsetof(struct sockaddr, sa_data))
  661. return -EINVAL;
  662. switch (sin6->sin6_family) {
  663. case AF_INET6:
  664. if (addr_len < SIN6_LEN_RFC2133)
  665. return -EINVAL;
  666. daddr = &sin6->sin6_addr;
  667. break;
  668. case AF_INET:
  669. goto do_udp_sendmsg;
  670. case AF_UNSPEC:
  671. msg->msg_name = sin6 = NULL;
  672. msg->msg_namelen = addr_len = 0;
  673. daddr = NULL;
  674. break;
  675. default:
  676. return -EINVAL;
  677. }
  678. } else if (!up->pending) {
  679. if (sk->sk_state != TCP_ESTABLISHED)
  680. return -EDESTADDRREQ;
  681. daddr = &np->daddr;
  682. } else
  683. daddr = NULL;
  684. if (daddr) {
  685. if (ipv6_addr_v4mapped(daddr)) {
  686. struct sockaddr_in sin;
  687. sin.sin_family = AF_INET;
  688. sin.sin_port = sin6 ? sin6->sin6_port : inet->dport;
  689. sin.sin_addr.s_addr = daddr->s6_addr32[3];
  690. msg->msg_name = &sin;
  691. msg->msg_namelen = sizeof(sin);
  692. do_udp_sendmsg:
  693. if (__ipv6_only_sock(sk))
  694. return -ENETUNREACH;
  695. return udp_sendmsg(iocb, sk, msg, len);
  696. }
  697. }
  698. if (up->pending == AF_INET)
  699. return udp_sendmsg(iocb, sk, msg, len);
  700. /* Rough check on arithmetic overflow,
  701. better check is made in ip6_append_data().
  702. */
  703. if (len > INT_MAX - sizeof(struct udphdr))
  704. return -EMSGSIZE;
  705. if (up->pending) {
  706. /*
  707. * There are pending frames.
  708. * The socket lock must be held while it's corked.
  709. */
  710. lock_sock(sk);
  711. if (likely(up->pending)) {
  712. if (unlikely(up->pending != AF_INET6)) {
  713. release_sock(sk);
  714. return -EAFNOSUPPORT;
  715. }
  716. dst = NULL;
  717. goto do_append_data;
  718. }
  719. release_sock(sk);
  720. }
  721. ulen += sizeof(struct udphdr);
  722. memset(&fl, 0, sizeof(fl));
  723. if (sin6) {
  724. if (sin6->sin6_port == 0)
  725. return -EINVAL;
  726. fl.fl_ip_dport = sin6->sin6_port;
  727. daddr = &sin6->sin6_addr;
  728. if (np->sndflow) {
  729. fl.fl6_flowlabel = sin6->sin6_flowinfo&IPV6_FLOWINFO_MASK;
  730. if (fl.fl6_flowlabel&IPV6_FLOWLABEL_MASK) {
  731. flowlabel = fl6_sock_lookup(sk, fl.fl6_flowlabel);
  732. if (flowlabel == NULL)
  733. return -EINVAL;
  734. daddr = &flowlabel->dst;
  735. }
  736. }
  737. /*
  738. * Otherwise it will be difficult to maintain
  739. * sk->sk_dst_cache.
  740. */
  741. if (sk->sk_state == TCP_ESTABLISHED &&
  742. ipv6_addr_equal(daddr, &np->daddr))
  743. daddr = &np->daddr;
  744. if (addr_len >= sizeof(struct sockaddr_in6) &&
  745. sin6->sin6_scope_id &&
  746. ipv6_addr_type(daddr)&IPV6_ADDR_LINKLOCAL)
  747. fl.oif = sin6->sin6_scope_id;
  748. } else {
  749. if (sk->sk_state != TCP_ESTABLISHED)
  750. return -EDESTADDRREQ;
  751. fl.fl_ip_dport = inet->dport;
  752. daddr = &np->daddr;
  753. fl.fl6_flowlabel = np->flow_label;
  754. connected = 1;
  755. }
  756. if (!fl.oif)
  757. fl.oif = sk->sk_bound_dev_if;
  758. if (!fl.oif)
  759. fl.oif = np->sticky_pktinfo.ipi6_ifindex;
  760. if (msg->msg_controllen) {
  761. opt = &opt_space;
  762. memset(opt, 0, sizeof(struct ipv6_txoptions));
  763. opt->tot_len = sizeof(*opt);
  764. err = datagram_send_ctl(sock_net(sk), msg, &fl, opt, &hlimit, &tclass);
  765. if (err < 0) {
  766. fl6_sock_release(flowlabel);
  767. return err;
  768. }
  769. if ((fl.fl6_flowlabel&IPV6_FLOWLABEL_MASK) && !flowlabel) {
  770. flowlabel = fl6_sock_lookup(sk, fl.fl6_flowlabel);
  771. if (flowlabel == NULL)
  772. return -EINVAL;
  773. }
  774. if (!(opt->opt_nflen|opt->opt_flen))
  775. opt = NULL;
  776. connected = 0;
  777. }
  778. if (opt == NULL)
  779. opt = np->opt;
  780. if (flowlabel)
  781. opt = fl6_merge_options(&opt_space, flowlabel, opt);
  782. opt = ipv6_fixup_options(&opt_space, opt);
  783. fl.proto = sk->sk_protocol;
  784. if (!ipv6_addr_any(daddr))
  785. ipv6_addr_copy(&fl.fl6_dst, daddr);
  786. else
  787. fl.fl6_dst.s6_addr[15] = 0x1; /* :: means loopback (BSD'ism) */
  788. if (ipv6_addr_any(&fl.fl6_src) && !ipv6_addr_any(&np->saddr))
  789. ipv6_addr_copy(&fl.fl6_src, &np->saddr);
  790. fl.fl_ip_sport = inet->sport;
  791. /* merge ip6_build_xmit from ip6_output */
  792. if (opt && opt->srcrt) {
  793. struct rt0_hdr *rt0 = (struct rt0_hdr *) opt->srcrt;
  794. ipv6_addr_copy(&final, &fl.fl6_dst);
  795. ipv6_addr_copy(&fl.fl6_dst, rt0->addr);
  796. final_p = &final;
  797. connected = 0;
  798. }
  799. if (!fl.oif && ipv6_addr_is_multicast(&fl.fl6_dst)) {
  800. fl.oif = np->mcast_oif;
  801. connected = 0;
  802. }
  803. security_sk_classify_flow(sk, &fl);
  804. err = ip6_sk_dst_lookup(sk, &dst, &fl);
  805. if (err)
  806. goto out;
  807. if (final_p)
  808. ipv6_addr_copy(&fl.fl6_dst, final_p);
  809. err = __xfrm_lookup(sock_net(sk), &dst, &fl, sk, XFRM_LOOKUP_WAIT);
  810. if (err < 0) {
  811. if (err == -EREMOTE)
  812. err = ip6_dst_blackhole(sk, &dst, &fl);
  813. if (err < 0)
  814. goto out;
  815. }
  816. if (hlimit < 0) {
  817. if (ipv6_addr_is_multicast(&fl.fl6_dst))
  818. hlimit = np->mcast_hops;
  819. else
  820. hlimit = np->hop_limit;
  821. if (hlimit < 0)
  822. hlimit = ip6_dst_hoplimit(dst);
  823. }
  824. if (tclass < 0)
  825. tclass = np->tclass;
  826. if (msg->msg_flags&MSG_CONFIRM)
  827. goto do_confirm;
  828. back_from_confirm:
  829. lock_sock(sk);
  830. if (unlikely(up->pending)) {
  831. /* The socket is already corked while preparing it. */
  832. /* ... which is an evident application bug. --ANK */
  833. release_sock(sk);
  834. LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
  835. err = -EINVAL;
  836. goto out;
  837. }
  838. up->pending = AF_INET6;
  839. do_append_data:
  840. up->len += ulen;
  841. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  842. err = ip6_append_data(sk, getfrag, msg->msg_iov, ulen,
  843. sizeof(struct udphdr), hlimit, tclass, opt, &fl,
  844. (struct rt6_info*)dst,
  845. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
  846. if (err)
  847. udp_v6_flush_pending_frames(sk);
  848. else if (!corkreq)
  849. err = udp_v6_push_pending_frames(sk);
  850. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  851. up->pending = 0;
  852. if (dst) {
  853. if (connected) {
  854. ip6_dst_store(sk, dst,
  855. ipv6_addr_equal(&fl.fl6_dst, &np->daddr) ?
  856. &np->daddr : NULL,
  857. #ifdef CONFIG_IPV6_SUBTREES
  858. ipv6_addr_equal(&fl.fl6_src, &np->saddr) ?
  859. &np->saddr :
  860. #endif
  861. NULL);
  862. } else {
  863. dst_release(dst);
  864. }
  865. dst = NULL;
  866. }
  867. if (err > 0)
  868. err = np->recverr ? net_xmit_errno(err) : 0;
  869. release_sock(sk);
  870. out:
  871. dst_release(dst);
  872. fl6_sock_release(flowlabel);
  873. if (!err)
  874. return len;
  875. /*
  876. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  877. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  878. * we don't have a good statistic (IpOutDiscards but it can be too many
  879. * things). We could add another new stat but at least for now that
  880. * seems like overkill.
  881. */
  882. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  883. UDP6_INC_STATS_USER(sock_net(sk),
  884. UDP_MIB_SNDBUFERRORS, is_udplite);
  885. }
  886. return err;
  887. do_confirm:
  888. dst_confirm(dst);
  889. if (!(msg->msg_flags&MSG_PROBE) || len)
  890. goto back_from_confirm;
  891. err = 0;
  892. goto out;
  893. }
  894. void udpv6_destroy_sock(struct sock *sk)
  895. {
  896. lock_sock(sk);
  897. udp_v6_flush_pending_frames(sk);
  898. release_sock(sk);
  899. inet6_destroy_sock(sk);
  900. }
  901. /*
  902. * Socket option code for UDP
  903. */
  904. int udpv6_setsockopt(struct sock *sk, int level, int optname,
  905. char __user *optval, unsigned int optlen)
  906. {
  907. if (level == SOL_UDP || level == SOL_UDPLITE)
  908. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  909. udp_v6_push_pending_frames);
  910. return ipv6_setsockopt(sk, level, optname, optval, optlen);
  911. }
  912. #ifdef CONFIG_COMPAT
  913. int compat_udpv6_setsockopt(struct sock *sk, int level, int optname,
  914. char __user *optval, unsigned int optlen)
  915. {
  916. if (level == SOL_UDP || level == SOL_UDPLITE)
  917. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  918. udp_v6_push_pending_frames);
  919. return compat_ipv6_setsockopt(sk, level, optname, optval, optlen);
  920. }
  921. #endif
  922. int udpv6_getsockopt(struct sock *sk, int level, int optname,
  923. char __user *optval, int __user *optlen)
  924. {
  925. if (level == SOL_UDP || level == SOL_UDPLITE)
  926. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  927. return ipv6_getsockopt(sk, level, optname, optval, optlen);
  928. }
  929. #ifdef CONFIG_COMPAT
  930. int compat_udpv6_getsockopt(struct sock *sk, int level, int optname,
  931. char __user *optval, int __user *optlen)
  932. {
  933. if (level == SOL_UDP || level == SOL_UDPLITE)
  934. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  935. return compat_ipv6_getsockopt(sk, level, optname, optval, optlen);
  936. }
  937. #endif
  938. static int udp6_ufo_send_check(struct sk_buff *skb)
  939. {
  940. struct ipv6hdr *ipv6h;
  941. struct udphdr *uh;
  942. if (!pskb_may_pull(skb, sizeof(*uh)))
  943. return -EINVAL;
  944. ipv6h = ipv6_hdr(skb);
  945. uh = udp_hdr(skb);
  946. uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, skb->len,
  947. IPPROTO_UDP, 0);
  948. skb->csum_start = skb_transport_header(skb) - skb->head;
  949. skb->csum_offset = offsetof(struct udphdr, check);
  950. skb->ip_summed = CHECKSUM_PARTIAL;
  951. return 0;
  952. }
  953. static struct sk_buff *udp6_ufo_fragment(struct sk_buff *skb, int features)
  954. {
  955. struct sk_buff *segs = ERR_PTR(-EINVAL);
  956. unsigned int mss;
  957. unsigned int unfrag_ip6hlen, unfrag_len;
  958. struct frag_hdr *fptr;
  959. u8 *mac_start, *prevhdr;
  960. u8 nexthdr;
  961. u8 frag_hdr_sz = sizeof(struct frag_hdr);
  962. int offset;
  963. __wsum csum;
  964. mss = skb_shinfo(skb)->gso_size;
  965. if (unlikely(skb->len <= mss))
  966. goto out;
  967. if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
  968. /* Packet is from an untrusted source, reset gso_segs. */
  969. int type = skb_shinfo(skb)->gso_type;
  970. if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
  971. !(type & (SKB_GSO_UDP))))
  972. goto out;
  973. skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
  974. segs = NULL;
  975. goto out;
  976. }
  977. /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
  978. * do checksum of UDP packets sent as multiple IP fragments.
  979. */
  980. offset = skb->csum_start - skb_headroom(skb);
  981. csum = skb_checksum(skb, offset, skb->len- offset, 0);
  982. offset += skb->csum_offset;
  983. *(__sum16 *)(skb->data + offset) = csum_fold(csum);
  984. skb->ip_summed = CHECKSUM_NONE;
  985. /* Check if there is enough headroom to insert fragment header. */
  986. if ((skb_headroom(skb) < frag_hdr_sz) &&
  987. pskb_expand_head(skb, frag_hdr_sz, 0, GFP_ATOMIC))
  988. goto out;
  989. /* Find the unfragmentable header and shift it left by frag_hdr_sz
  990. * bytes to insert fragment header.
  991. */
  992. unfrag_ip6hlen = ip6_find_1stfragopt(skb, &prevhdr);
  993. nexthdr = *prevhdr;
  994. *prevhdr = NEXTHDR_FRAGMENT;
  995. unfrag_len = skb_network_header(skb) - skb_mac_header(skb) +
  996. unfrag_ip6hlen;
  997. mac_start = skb_mac_header(skb);
  998. memmove(mac_start-frag_hdr_sz, mac_start, unfrag_len);
  999. skb->mac_header -= frag_hdr_sz;
  1000. skb->network_header -= frag_hdr_sz;
  1001. fptr = (struct frag_hdr *)(skb_network_header(skb) + unfrag_ip6hlen);
  1002. fptr->nexthdr = nexthdr;
  1003. fptr->reserved = 0;
  1004. ipv6_select_ident(fptr);
  1005. /* Fragment the skb. ipv6 header and the remaining fields of the
  1006. * fragment header are updated in ipv6_gso_segment()
  1007. */
  1008. segs = skb_segment(skb, features);
  1009. out:
  1010. return segs;
  1011. }
  1012. static const struct inet6_protocol udpv6_protocol = {
  1013. .handler = udpv6_rcv,
  1014. .err_handler = udpv6_err,
  1015. .gso_send_check = udp6_ufo_send_check,
  1016. .gso_segment = udp6_ufo_fragment,
  1017. .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL,
  1018. };
  1019. /* ------------------------------------------------------------------------ */
  1020. #ifdef CONFIG_PROC_FS
  1021. static void udp6_sock_seq_show(struct seq_file *seq, struct sock *sp, int bucket)
  1022. {
  1023. struct inet_sock *inet = inet_sk(sp);
  1024. struct ipv6_pinfo *np = inet6_sk(sp);
  1025. struct in6_addr *dest, *src;
  1026. __u16 destp, srcp;
  1027. dest = &np->daddr;
  1028. src = &np->rcv_saddr;
  1029. destp = ntohs(inet->dport);
  1030. srcp = ntohs(inet->sport);
  1031. seq_printf(seq,
  1032. "%4d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X "
  1033. "%02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d\n",
  1034. bucket,
  1035. src->s6_addr32[0], src->s6_addr32[1],
  1036. src->s6_addr32[2], src->s6_addr32[3], srcp,
  1037. dest->s6_addr32[0], dest->s6_addr32[1],
  1038. dest->s6_addr32[2], dest->s6_addr32[3], destp,
  1039. sp->sk_state,
  1040. sk_wmem_alloc_get(sp),
  1041. sk_rmem_alloc_get(sp),
  1042. 0, 0L, 0,
  1043. sock_i_uid(sp), 0,
  1044. sock_i_ino(sp),
  1045. atomic_read(&sp->sk_refcnt), sp,
  1046. atomic_read(&sp->sk_drops));
  1047. }
  1048. int udp6_seq_show(struct seq_file *seq, void *v)
  1049. {
  1050. if (v == SEQ_START_TOKEN)
  1051. seq_printf(seq,
  1052. " sl "
  1053. "local_address "
  1054. "remote_address "
  1055. "st tx_queue rx_queue tr tm->when retrnsmt"
  1056. " uid timeout inode ref pointer drops\n");
  1057. else
  1058. udp6_sock_seq_show(seq, v, ((struct udp_iter_state *)seq->private)->bucket);
  1059. return 0;
  1060. }
  1061. static struct udp_seq_afinfo udp6_seq_afinfo = {
  1062. .name = "udp6",
  1063. .family = AF_INET6,
  1064. .udp_table = &udp_table,
  1065. .seq_fops = {
  1066. .owner = THIS_MODULE,
  1067. },
  1068. .seq_ops = {
  1069. .show = udp6_seq_show,
  1070. },
  1071. };
  1072. int udp6_proc_init(struct net *net)
  1073. {
  1074. return udp_proc_register(net, &udp6_seq_afinfo);
  1075. }
  1076. void udp6_proc_exit(struct net *net) {
  1077. udp_proc_unregister(net, &udp6_seq_afinfo);
  1078. }
  1079. #endif /* CONFIG_PROC_FS */
  1080. /* ------------------------------------------------------------------------ */
  1081. struct proto udpv6_prot = {
  1082. .name = "UDPv6",
  1083. .owner = THIS_MODULE,
  1084. .close = udp_lib_close,
  1085. .connect = ip6_datagram_connect,
  1086. .disconnect = udp_disconnect,
  1087. .ioctl = udp_ioctl,
  1088. .destroy = udpv6_destroy_sock,
  1089. .setsockopt = udpv6_setsockopt,
  1090. .getsockopt = udpv6_getsockopt,
  1091. .sendmsg = udpv6_sendmsg,
  1092. .recvmsg = udpv6_recvmsg,
  1093. .backlog_rcv = udpv6_queue_rcv_skb,
  1094. .hash = udp_lib_hash,
  1095. .unhash = udp_lib_unhash,
  1096. .get_port = udp_v6_get_port,
  1097. .memory_allocated = &udp_memory_allocated,
  1098. .sysctl_mem = sysctl_udp_mem,
  1099. .sysctl_wmem = &sysctl_udp_wmem_min,
  1100. .sysctl_rmem = &sysctl_udp_rmem_min,
  1101. .obj_size = sizeof(struct udp6_sock),
  1102. .slab_flags = SLAB_DESTROY_BY_RCU,
  1103. .h.udp_table = &udp_table,
  1104. #ifdef CONFIG_COMPAT
  1105. .compat_setsockopt = compat_udpv6_setsockopt,
  1106. .compat_getsockopt = compat_udpv6_getsockopt,
  1107. #endif
  1108. };
  1109. static struct inet_protosw udpv6_protosw = {
  1110. .type = SOCK_DGRAM,
  1111. .protocol = IPPROTO_UDP,
  1112. .prot = &udpv6_prot,
  1113. .ops = &inet6_dgram_ops,
  1114. .capability =-1,
  1115. .no_check = UDP_CSUM_DEFAULT,
  1116. .flags = INET_PROTOSW_PERMANENT,
  1117. };
  1118. int __init udpv6_init(void)
  1119. {
  1120. int ret;
  1121. ret = inet6_add_protocol(&udpv6_protocol, IPPROTO_UDP);
  1122. if (ret)
  1123. goto out;
  1124. ret = inet6_register_protosw(&udpv6_protosw);
  1125. if (ret)
  1126. goto out_udpv6_protocol;
  1127. out:
  1128. return ret;
  1129. out_udpv6_protocol:
  1130. inet6_del_protocol(&udpv6_protocol, IPPROTO_UDP);
  1131. goto out;
  1132. }
  1133. void udpv6_exit(void)
  1134. {
  1135. inet6_unregister_protosw(&udpv6_protosw);
  1136. inet6_del_protocol(&udpv6_protocol, IPPROTO_UDP);
  1137. }