packet_history.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487
  1. /*
  2. * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
  3. * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
  4. *
  5. * An implementation of the DCCP protocol
  6. *
  7. * This code has been developed by the University of Waikato WAND
  8. * research group. For further information please see http://www.wand.net.nz/
  9. * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
  10. *
  11. * This code also uses code from Lulea University, rereleased as GPL by its
  12. * authors:
  13. * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
  14. *
  15. * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
  16. * and to make it work as a loadable module in the DCCP stack written by
  17. * Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
  18. *
  19. * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the GNU General Public License as published by
  23. * the Free Software Foundation; either version 2 of the License, or
  24. * (at your option) any later version.
  25. *
  26. * This program is distributed in the hope that it will be useful,
  27. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  28. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  29. * GNU General Public License for more details.
  30. *
  31. * You should have received a copy of the GNU General Public License
  32. * along with this program; if not, write to the Free Software
  33. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  34. */
  35. #include <linux/string.h>
  36. #include <linux/slab.h>
  37. #include "packet_history.h"
  38. #include "../../dccp.h"
  39. /**
  40. * tfrc_tx_hist_entry - Simple singly-linked TX history list
  41. * @next: next oldest entry (LIFO order)
  42. * @seqno: sequence number of this entry
  43. * @stamp: send time of packet with sequence number @seqno
  44. */
  45. struct tfrc_tx_hist_entry {
  46. struct tfrc_tx_hist_entry *next;
  47. u64 seqno;
  48. ktime_t stamp;
  49. };
  50. /*
  51. * Transmitter History Routines
  52. */
  53. static struct kmem_cache *tfrc_tx_hist_slab;
  54. int __init tfrc_tx_packet_history_init(void)
  55. {
  56. tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
  57. sizeof(struct tfrc_tx_hist_entry),
  58. 0, SLAB_HWCACHE_ALIGN, NULL);
  59. return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
  60. }
  61. void tfrc_tx_packet_history_exit(void)
  62. {
  63. if (tfrc_tx_hist_slab != NULL) {
  64. kmem_cache_destroy(tfrc_tx_hist_slab);
  65. tfrc_tx_hist_slab = NULL;
  66. }
  67. }
  68. static struct tfrc_tx_hist_entry *
  69. tfrc_tx_hist_find_entry(struct tfrc_tx_hist_entry *head, u64 seqno)
  70. {
  71. while (head != NULL && head->seqno != seqno)
  72. head = head->next;
  73. return head;
  74. }
  75. int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
  76. {
  77. struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
  78. if (entry == NULL)
  79. return -ENOBUFS;
  80. entry->seqno = seqno;
  81. entry->stamp = ktime_get_real();
  82. entry->next = *headp;
  83. *headp = entry;
  84. return 0;
  85. }
  86. void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
  87. {
  88. struct tfrc_tx_hist_entry *head = *headp;
  89. while (head != NULL) {
  90. struct tfrc_tx_hist_entry *next = head->next;
  91. kmem_cache_free(tfrc_tx_hist_slab, head);
  92. head = next;
  93. }
  94. *headp = NULL;
  95. }
  96. u32 tfrc_tx_hist_rtt(struct tfrc_tx_hist_entry *head, const u64 seqno,
  97. const ktime_t now)
  98. {
  99. u32 rtt = 0;
  100. struct tfrc_tx_hist_entry *packet = tfrc_tx_hist_find_entry(head, seqno);
  101. if (packet != NULL) {
  102. rtt = ktime_us_delta(now, packet->stamp);
  103. /*
  104. * Garbage-collect older (irrelevant) entries:
  105. */
  106. tfrc_tx_hist_purge(&packet->next);
  107. }
  108. return rtt;
  109. }
  110. /*
  111. * Receiver History Routines
  112. */
  113. static struct kmem_cache *tfrc_rx_hist_slab;
  114. int __init tfrc_rx_packet_history_init(void)
  115. {
  116. tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
  117. sizeof(struct tfrc_rx_hist_entry),
  118. 0, SLAB_HWCACHE_ALIGN, NULL);
  119. return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
  120. }
  121. void tfrc_rx_packet_history_exit(void)
  122. {
  123. if (tfrc_rx_hist_slab != NULL) {
  124. kmem_cache_destroy(tfrc_rx_hist_slab);
  125. tfrc_rx_hist_slab = NULL;
  126. }
  127. }
  128. static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
  129. const struct sk_buff *skb,
  130. const u64 ndp)
  131. {
  132. const struct dccp_hdr *dh = dccp_hdr(skb);
  133. entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
  134. entry->tfrchrx_ccval = dh->dccph_ccval;
  135. entry->tfrchrx_type = dh->dccph_type;
  136. entry->tfrchrx_ndp = ndp;
  137. entry->tfrchrx_tstamp = ktime_get_real();
  138. }
  139. void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
  140. const struct sk_buff *skb,
  141. const u64 ndp)
  142. {
  143. struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
  144. tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
  145. }
  146. /* has the packet contained in skb been seen before? */
  147. int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
  148. {
  149. const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
  150. int i;
  151. if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
  152. return 1;
  153. for (i = 1; i <= h->loss_count; i++)
  154. if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
  155. return 1;
  156. return 0;
  157. }
  158. static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
  159. {
  160. const u8 idx_a = tfrc_rx_hist_index(h, a),
  161. idx_b = tfrc_rx_hist_index(h, b);
  162. struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
  163. h->ring[idx_a] = h->ring[idx_b];
  164. h->ring[idx_b] = tmp;
  165. }
  166. /*
  167. * Private helper functions for loss detection.
  168. *
  169. * In the descriptions, `Si' refers to the sequence number of entry number i,
  170. * whose NDP count is `Ni' (lower case is used for variables).
  171. * Note: All __xxx_loss functions expect that a test against duplicates has been
  172. * performed already: the seqno of the skb must not be less than the seqno
  173. * of loss_prev; and it must not equal that of any valid history entry.
  174. */
  175. static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
  176. {
  177. u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
  178. s1 = DCCP_SKB_CB(skb)->dccpd_seq;
  179. if (!dccp_loss_free(s0, s1, n1)) { /* gap between S0 and S1 */
  180. h->loss_count = 1;
  181. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
  182. }
  183. }
  184. static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
  185. {
  186. u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
  187. s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
  188. s2 = DCCP_SKB_CB(skb)->dccpd_seq;
  189. if (likely(dccp_delta_seqno(s1, s2) > 0)) { /* S1 < S2 */
  190. h->loss_count = 2;
  191. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
  192. return;
  193. }
  194. /* S0 < S2 < S1 */
  195. if (dccp_loss_free(s0, s2, n2)) {
  196. u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
  197. if (dccp_loss_free(s2, s1, n1)) {
  198. /* hole is filled: S0, S2, and S1 are consecutive */
  199. h->loss_count = 0;
  200. h->loss_start = tfrc_rx_hist_index(h, 1);
  201. } else
  202. /* gap between S2 and S1: just update loss_prev */
  203. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
  204. } else { /* gap between S0 and S2 */
  205. /*
  206. * Reorder history to insert S2 between S0 and S1
  207. */
  208. tfrc_rx_hist_swap(h, 0, 3);
  209. h->loss_start = tfrc_rx_hist_index(h, 3);
  210. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
  211. h->loss_count = 2;
  212. }
  213. }
  214. /* return 1 if a new loss event has been identified */
  215. static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
  216. {
  217. u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
  218. s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
  219. s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
  220. s3 = DCCP_SKB_CB(skb)->dccpd_seq;
  221. if (likely(dccp_delta_seqno(s2, s3) > 0)) { /* S2 < S3 */
  222. h->loss_count = 3;
  223. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
  224. return 1;
  225. }
  226. /* S3 < S2 */
  227. if (dccp_delta_seqno(s1, s3) > 0) { /* S1 < S3 < S2 */
  228. /*
  229. * Reorder history to insert S3 between S1 and S2
  230. */
  231. tfrc_rx_hist_swap(h, 2, 3);
  232. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
  233. h->loss_count = 3;
  234. return 1;
  235. }
  236. /* S0 < S3 < S1 */
  237. if (dccp_loss_free(s0, s3, n3)) {
  238. u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
  239. if (dccp_loss_free(s3, s1, n1)) {
  240. /* hole between S0 and S1 filled by S3 */
  241. u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
  242. if (dccp_loss_free(s1, s2, n2)) {
  243. /* entire hole filled by S0, S3, S1, S2 */
  244. h->loss_start = tfrc_rx_hist_index(h, 2);
  245. h->loss_count = 0;
  246. } else {
  247. /* gap remains between S1 and S2 */
  248. h->loss_start = tfrc_rx_hist_index(h, 1);
  249. h->loss_count = 1;
  250. }
  251. } else /* gap exists between S3 and S1, loss_count stays at 2 */
  252. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
  253. return 0;
  254. }
  255. /*
  256. * The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
  257. * Reorder history to insert S3 between S0 and S1.
  258. */
  259. tfrc_rx_hist_swap(h, 0, 3);
  260. h->loss_start = tfrc_rx_hist_index(h, 3);
  261. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
  262. h->loss_count = 3;
  263. return 1;
  264. }
  265. /* recycle RX history records to continue loss detection if necessary */
  266. static void __three_after_loss(struct tfrc_rx_hist *h)
  267. {
  268. /*
  269. * At this stage we know already that there is a gap between S0 and S1
  270. * (since S0 was the highest sequence number received before detecting
  271. * the loss). To recycle the loss record, it is thus only necessary to
  272. * check for other possible gaps between S1/S2 and between S2/S3.
  273. */
  274. u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
  275. s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
  276. s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
  277. u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
  278. n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
  279. if (dccp_loss_free(s1, s2, n2)) {
  280. if (dccp_loss_free(s2, s3, n3)) {
  281. /* no gap between S2 and S3: entire hole is filled */
  282. h->loss_start = tfrc_rx_hist_index(h, 3);
  283. h->loss_count = 0;
  284. } else {
  285. /* gap between S2 and S3 */
  286. h->loss_start = tfrc_rx_hist_index(h, 2);
  287. h->loss_count = 1;
  288. }
  289. } else { /* gap between S1 and S2 */
  290. h->loss_start = tfrc_rx_hist_index(h, 1);
  291. h->loss_count = 2;
  292. }
  293. }
  294. /**
  295. * tfrc_rx_handle_loss - Loss detection and further processing
  296. * @h: The non-empty RX history object
  297. * @lh: Loss Intervals database to update
  298. * @skb: Currently received packet
  299. * @ndp: The NDP count belonging to @skb
  300. * @calc_first_li: Caller-dependent computation of first loss interval in @lh
  301. * @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
  302. * Chooses action according to pending loss, updates LI database when a new
  303. * loss was detected, and does required post-processing. Returns 1 when caller
  304. * should send feedback, 0 otherwise.
  305. * Since it also takes care of reordering during loss detection and updates the
  306. * records accordingly, the caller should not perform any more RX history
  307. * operations when loss_count is greater than 0 after calling this function.
  308. */
  309. int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
  310. struct tfrc_loss_hist *lh,
  311. struct sk_buff *skb, const u64 ndp,
  312. u32 (*calc_first_li)(struct sock *), struct sock *sk)
  313. {
  314. int is_new_loss = 0;
  315. if (h->loss_count == 0) {
  316. __do_track_loss(h, skb, ndp);
  317. } else if (h->loss_count == 1) {
  318. __one_after_loss(h, skb, ndp);
  319. } else if (h->loss_count != 2) {
  320. DCCP_BUG("invalid loss_count %d", h->loss_count);
  321. } else if (__two_after_loss(h, skb, ndp)) {
  322. /*
  323. * Update Loss Interval database and recycle RX records
  324. */
  325. is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
  326. __three_after_loss(h);
  327. }
  328. return is_new_loss;
  329. }
  330. int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
  331. {
  332. int i;
  333. for (i = 0; i <= TFRC_NDUPACK; i++) {
  334. h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
  335. if (h->ring[i] == NULL)
  336. goto out_free;
  337. }
  338. h->loss_count = h->loss_start = 0;
  339. return 0;
  340. out_free:
  341. while (i-- != 0) {
  342. kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
  343. h->ring[i] = NULL;
  344. }
  345. return -ENOBUFS;
  346. }
  347. void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
  348. {
  349. int i;
  350. for (i = 0; i <= TFRC_NDUPACK; ++i)
  351. if (h->ring[i] != NULL) {
  352. kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
  353. h->ring[i] = NULL;
  354. }
  355. }
  356. /**
  357. * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
  358. */
  359. static inline struct tfrc_rx_hist_entry *
  360. tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
  361. {
  362. return h->ring[0];
  363. }
  364. /**
  365. * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
  366. */
  367. static inline struct tfrc_rx_hist_entry *
  368. tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
  369. {
  370. return h->ring[h->rtt_sample_prev];
  371. }
  372. /**
  373. * tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
  374. * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
  375. * to compute a sample with given data - calling function should check this.
  376. */
  377. u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
  378. {
  379. u32 sample = 0,
  380. delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
  381. tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
  382. if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
  383. if (h->rtt_sample_prev == 2) { /* previous candidate stored */
  384. sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
  385. tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
  386. if (sample)
  387. sample = 4 / sample *
  388. ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
  389. tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
  390. else /*
  391. * FIXME: This condition is in principle not
  392. * possible but occurs when CCID is used for
  393. * two-way data traffic. I have tried to trace
  394. * it, but the cause does not seem to be here.
  395. */
  396. DCCP_BUG("please report to dccp@vger.kernel.org"
  397. " => prev = %u, last = %u",
  398. tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
  399. tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
  400. } else if (delta_v < 1) {
  401. h->rtt_sample_prev = 1;
  402. goto keep_ref_for_next_time;
  403. }
  404. } else if (delta_v == 4) /* optimal match */
  405. sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
  406. else { /* suboptimal match */
  407. h->rtt_sample_prev = 2;
  408. goto keep_ref_for_next_time;
  409. }
  410. if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
  411. DCCP_WARN("RTT sample %u too large, using max\n", sample);
  412. sample = DCCP_SANE_RTT_MAX;
  413. }
  414. h->rtt_sample_prev = 0; /* use current entry as next reference */
  415. keep_ref_for_next_time:
  416. return sample;
  417. }