swap_state.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. /*
  2. * linux/mm/swap_state.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. *
  7. * Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8. */
  9. #include <linux/module.h>
  10. #include <linux/mm.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/init.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/buffer_head.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/pagevec.h>
  19. #include <linux/migrate.h>
  20. #include <linux/page_cgroup.h>
  21. #include <asm/pgtable.h>
  22. /*
  23. * swapper_space is a fiction, retained to simplify the path through
  24. * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
  25. * future use of radix_tree tags in the swap cache.
  26. */
  27. static const struct address_space_operations swap_aops = {
  28. .writepage = swap_writepage,
  29. .sync_page = block_sync_page,
  30. .set_page_dirty = __set_page_dirty_nobuffers,
  31. .migratepage = migrate_page,
  32. };
  33. static struct backing_dev_info swap_backing_dev_info = {
  34. .name = "swap",
  35. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
  36. .unplug_io_fn = swap_unplug_io_fn,
  37. };
  38. struct address_space swapper_space = {
  39. .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  40. .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
  41. .a_ops = &swap_aops,
  42. .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
  43. .backing_dev_info = &swap_backing_dev_info,
  44. };
  45. #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
  46. static struct {
  47. unsigned long add_total;
  48. unsigned long del_total;
  49. unsigned long find_success;
  50. unsigned long find_total;
  51. } swap_cache_info;
  52. void show_swap_cache_info(void)
  53. {
  54. printk("%lu pages in swap cache\n", total_swapcache_pages);
  55. printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
  56. swap_cache_info.add_total, swap_cache_info.del_total,
  57. swap_cache_info.find_success, swap_cache_info.find_total);
  58. printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
  59. printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  60. }
  61. /*
  62. * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
  63. * but sets SwapCache flag and private instead of mapping and index.
  64. */
  65. static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
  66. {
  67. int error;
  68. VM_BUG_ON(!PageLocked(page));
  69. VM_BUG_ON(PageSwapCache(page));
  70. VM_BUG_ON(!PageSwapBacked(page));
  71. page_cache_get(page);
  72. SetPageSwapCache(page);
  73. set_page_private(page, entry.val);
  74. spin_lock_irq(&swapper_space.tree_lock);
  75. error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
  76. if (likely(!error)) {
  77. total_swapcache_pages++;
  78. __inc_zone_page_state(page, NR_FILE_PAGES);
  79. INC_CACHE_INFO(add_total);
  80. }
  81. spin_unlock_irq(&swapper_space.tree_lock);
  82. if (unlikely(error)) {
  83. /*
  84. * Only the context which have set SWAP_HAS_CACHE flag
  85. * would call add_to_swap_cache().
  86. * So add_to_swap_cache() doesn't returns -EEXIST.
  87. */
  88. VM_BUG_ON(error == -EEXIST);
  89. set_page_private(page, 0UL);
  90. ClearPageSwapCache(page);
  91. page_cache_release(page);
  92. }
  93. return error;
  94. }
  95. int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
  96. {
  97. int error;
  98. error = radix_tree_preload(gfp_mask);
  99. if (!error) {
  100. error = __add_to_swap_cache(page, entry);
  101. radix_tree_preload_end();
  102. }
  103. return error;
  104. }
  105. /*
  106. * This must be called only on pages that have
  107. * been verified to be in the swap cache.
  108. */
  109. void __delete_from_swap_cache(struct page *page)
  110. {
  111. VM_BUG_ON(!PageLocked(page));
  112. VM_BUG_ON(!PageSwapCache(page));
  113. VM_BUG_ON(PageWriteback(page));
  114. radix_tree_delete(&swapper_space.page_tree, page_private(page));
  115. set_page_private(page, 0);
  116. ClearPageSwapCache(page);
  117. total_swapcache_pages--;
  118. __dec_zone_page_state(page, NR_FILE_PAGES);
  119. INC_CACHE_INFO(del_total);
  120. }
  121. /**
  122. * add_to_swap - allocate swap space for a page
  123. * @page: page we want to move to swap
  124. *
  125. * Allocate swap space for the page and add the page to the
  126. * swap cache. Caller needs to hold the page lock.
  127. */
  128. int add_to_swap(struct page *page)
  129. {
  130. swp_entry_t entry;
  131. int err;
  132. VM_BUG_ON(!PageLocked(page));
  133. VM_BUG_ON(!PageUptodate(page));
  134. entry = get_swap_page();
  135. if (!entry.val)
  136. return 0;
  137. /*
  138. * Radix-tree node allocations from PF_MEMALLOC contexts could
  139. * completely exhaust the page allocator. __GFP_NOMEMALLOC
  140. * stops emergency reserves from being allocated.
  141. *
  142. * TODO: this could cause a theoretical memory reclaim
  143. * deadlock in the swap out path.
  144. */
  145. /*
  146. * Add it to the swap cache and mark it dirty
  147. */
  148. err = add_to_swap_cache(page, entry,
  149. __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
  150. if (!err) { /* Success */
  151. SetPageDirty(page);
  152. return 1;
  153. } else { /* -ENOMEM radix-tree allocation failure */
  154. /*
  155. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  156. * clear SWAP_HAS_CACHE flag.
  157. */
  158. swapcache_free(entry, NULL);
  159. return 0;
  160. }
  161. }
  162. /*
  163. * This must be called only on pages that have
  164. * been verified to be in the swap cache and locked.
  165. * It will never put the page into the free list,
  166. * the caller has a reference on the page.
  167. */
  168. void delete_from_swap_cache(struct page *page)
  169. {
  170. swp_entry_t entry;
  171. entry.val = page_private(page);
  172. spin_lock_irq(&swapper_space.tree_lock);
  173. __delete_from_swap_cache(page);
  174. spin_unlock_irq(&swapper_space.tree_lock);
  175. swapcache_free(entry, page);
  176. page_cache_release(page);
  177. }
  178. /*
  179. * If we are the only user, then try to free up the swap cache.
  180. *
  181. * Its ok to check for PageSwapCache without the page lock
  182. * here because we are going to recheck again inside
  183. * try_to_free_swap() _with_ the lock.
  184. * - Marcelo
  185. */
  186. static inline void free_swap_cache(struct page *page)
  187. {
  188. if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
  189. try_to_free_swap(page);
  190. unlock_page(page);
  191. }
  192. }
  193. /*
  194. * Perform a free_page(), also freeing any swap cache associated with
  195. * this page if it is the last user of the page.
  196. */
  197. void free_page_and_swap_cache(struct page *page)
  198. {
  199. free_swap_cache(page);
  200. page_cache_release(page);
  201. }
  202. /*
  203. * Passed an array of pages, drop them all from swapcache and then release
  204. * them. They are removed from the LRU and freed if this is their last use.
  205. */
  206. void free_pages_and_swap_cache(struct page **pages, int nr)
  207. {
  208. struct page **pagep = pages;
  209. lru_add_drain();
  210. while (nr) {
  211. int todo = min(nr, PAGEVEC_SIZE);
  212. int i;
  213. for (i = 0; i < todo; i++)
  214. free_swap_cache(pagep[i]);
  215. release_pages(pagep, todo, 0);
  216. pagep += todo;
  217. nr -= todo;
  218. }
  219. }
  220. /*
  221. * Lookup a swap entry in the swap cache. A found page will be returned
  222. * unlocked and with its refcount incremented - we rely on the kernel
  223. * lock getting page table operations atomic even if we drop the page
  224. * lock before returning.
  225. */
  226. struct page * lookup_swap_cache(swp_entry_t entry)
  227. {
  228. struct page *page;
  229. page = find_get_page(&swapper_space, entry.val);
  230. if (page)
  231. INC_CACHE_INFO(find_success);
  232. INC_CACHE_INFO(find_total);
  233. return page;
  234. }
  235. /*
  236. * Locate a page of swap in physical memory, reserving swap cache space
  237. * and reading the disk if it is not already cached.
  238. * A failure return means that either the page allocation failed or that
  239. * the swap entry is no longer in use.
  240. */
  241. struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  242. struct vm_area_struct *vma, unsigned long addr)
  243. {
  244. struct page *found_page, *new_page = NULL;
  245. int err;
  246. do {
  247. /*
  248. * First check the swap cache. Since this is normally
  249. * called after lookup_swap_cache() failed, re-calling
  250. * that would confuse statistics.
  251. */
  252. found_page = find_get_page(&swapper_space, entry.val);
  253. if (found_page)
  254. break;
  255. /*
  256. * Get a new page to read into from swap.
  257. */
  258. if (!new_page) {
  259. new_page = alloc_page_vma(gfp_mask, vma, addr);
  260. if (!new_page)
  261. break; /* Out of memory */
  262. }
  263. /*
  264. * call radix_tree_preload() while we can wait.
  265. */
  266. err = radix_tree_preload(gfp_mask & GFP_KERNEL);
  267. if (err)
  268. break;
  269. /*
  270. * Swap entry may have been freed since our caller observed it.
  271. */
  272. err = swapcache_prepare(entry);
  273. if (err == -EEXIST) { /* seems racy */
  274. radix_tree_preload_end();
  275. continue;
  276. }
  277. if (err) { /* swp entry is obsolete ? */
  278. radix_tree_preload_end();
  279. break;
  280. }
  281. /* May fail (-ENOMEM) if radix-tree node allocation failed. */
  282. __set_page_locked(new_page);
  283. SetPageSwapBacked(new_page);
  284. err = __add_to_swap_cache(new_page, entry);
  285. if (likely(!err)) {
  286. radix_tree_preload_end();
  287. /*
  288. * Initiate read into locked page and return.
  289. */
  290. lru_cache_add_anon(new_page);
  291. swap_readpage(new_page);
  292. return new_page;
  293. }
  294. radix_tree_preload_end();
  295. ClearPageSwapBacked(new_page);
  296. __clear_page_locked(new_page);
  297. /*
  298. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  299. * clear SWAP_HAS_CACHE flag.
  300. */
  301. swapcache_free(entry, NULL);
  302. } while (err != -ENOMEM);
  303. if (new_page)
  304. page_cache_release(new_page);
  305. return found_page;
  306. }
  307. /**
  308. * swapin_readahead - swap in pages in hope we need them soon
  309. * @entry: swap entry of this memory
  310. * @gfp_mask: memory allocation flags
  311. * @vma: user vma this address belongs to
  312. * @addr: target address for mempolicy
  313. *
  314. * Returns the struct page for entry and addr, after queueing swapin.
  315. *
  316. * Primitive swap readahead code. We simply read an aligned block of
  317. * (1 << page_cluster) entries in the swap area. This method is chosen
  318. * because it doesn't cost us any seek time. We also make sure to queue
  319. * the 'original' request together with the readahead ones...
  320. *
  321. * This has been extended to use the NUMA policies from the mm triggering
  322. * the readahead.
  323. *
  324. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  325. */
  326. struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
  327. struct vm_area_struct *vma, unsigned long addr)
  328. {
  329. int nr_pages;
  330. struct page *page;
  331. unsigned long offset;
  332. unsigned long end_offset;
  333. /*
  334. * Get starting offset for readaround, and number of pages to read.
  335. * Adjust starting address by readbehind (for NUMA interleave case)?
  336. * No, it's very unlikely that swap layout would follow vma layout,
  337. * more likely that neighbouring swap pages came from the same node:
  338. * so use the same "addr" to choose the same node for each swap read.
  339. */
  340. nr_pages = valid_swaphandles(entry, &offset);
  341. for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
  342. /* Ok, do the async read-ahead now */
  343. page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
  344. gfp_mask, vma, addr);
  345. if (!page)
  346. break;
  347. page_cache_release(page);
  348. }
  349. lru_add_drain(); /* Push any new pages onto the LRU now */
  350. return read_swap_cache_async(entry, gfp_mask, vma, addr);
  351. }