slub.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemtrace.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. /*
  31. * Lock order:
  32. * 1. slab_lock(page)
  33. * 2. slab->list_lock
  34. *
  35. * The slab_lock protects operations on the object of a particular
  36. * slab and its metadata in the page struct. If the slab lock
  37. * has been taken then no allocations nor frees can be performed
  38. * on the objects in the slab nor can the slab be added or removed
  39. * from the partial or full lists since this would mean modifying
  40. * the page_struct of the slab.
  41. *
  42. * The list_lock protects the partial and full list on each node and
  43. * the partial slab counter. If taken then no new slabs may be added or
  44. * removed from the lists nor make the number of partial slabs be modified.
  45. * (Note that the total number of slabs is an atomic value that may be
  46. * modified without taking the list lock).
  47. *
  48. * The list_lock is a centralized lock and thus we avoid taking it as
  49. * much as possible. As long as SLUB does not have to handle partial
  50. * slabs, operations can continue without any centralized lock. F.e.
  51. * allocating a long series of objects that fill up slabs does not require
  52. * the list lock.
  53. *
  54. * The lock order is sometimes inverted when we are trying to get a slab
  55. * off a list. We take the list_lock and then look for a page on the list
  56. * to use. While we do that objects in the slabs may be freed. We can
  57. * only operate on the slab if we have also taken the slab_lock. So we use
  58. * a slab_trylock() on the slab. If trylock was successful then no frees
  59. * can occur anymore and we can use the slab for allocations etc. If the
  60. * slab_trylock() does not succeed then frees are in progress in the slab and
  61. * we must stay away from it for a while since we may cause a bouncing
  62. * cacheline if we try to acquire the lock. So go onto the next slab.
  63. * If all pages are busy then we may allocate a new slab instead of reusing
  64. * a partial slab. A new slab has noone operating on it and thus there is
  65. * no danger of cacheline contention.
  66. *
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #ifdef CONFIG_SLUB_DEBUG
  108. #define SLABDEBUG 1
  109. #else
  110. #define SLABDEBUG 0
  111. #endif
  112. /*
  113. * Issues still to be resolved:
  114. *
  115. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  116. *
  117. * - Variable sizing of the per node arrays
  118. */
  119. /* Enable to test recovery from slab corruption on boot */
  120. #undef SLUB_RESILIENCY_TEST
  121. /*
  122. * Mininum number of partial slabs. These will be left on the partial
  123. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  124. */
  125. #define MIN_PARTIAL 5
  126. /*
  127. * Maximum number of desirable partial slabs.
  128. * The existence of more partial slabs makes kmem_cache_shrink
  129. * sort the partial list by the number of objects in the.
  130. */
  131. #define MAX_PARTIAL 10
  132. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  133. SLAB_POISON | SLAB_STORE_USER)
  134. /*
  135. * Debugging flags that require metadata to be stored in the slab. These get
  136. * disabled when slub_debug=O is used and a cache's min order increases with
  137. * metadata.
  138. */
  139. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  140. /*
  141. * Set of flags that will prevent slab merging
  142. */
  143. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  144. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
  145. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  146. SLAB_CACHE_DMA | SLAB_NOTRACK)
  147. #ifndef ARCH_KMALLOC_MINALIGN
  148. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  149. #endif
  150. #ifndef ARCH_SLAB_MINALIGN
  151. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  152. #endif
  153. #define OO_SHIFT 16
  154. #define OO_MASK ((1 << OO_SHIFT) - 1)
  155. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  156. /* Internal SLUB flags */
  157. #define __OBJECT_POISON 0x80000000 /* Poison object */
  158. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  159. static int kmem_size = sizeof(struct kmem_cache);
  160. #ifdef CONFIG_SMP
  161. static struct notifier_block slab_notifier;
  162. #endif
  163. static enum {
  164. DOWN, /* No slab functionality available */
  165. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  166. UP, /* Everything works but does not show up in sysfs */
  167. SYSFS /* Sysfs up */
  168. } slab_state = DOWN;
  169. /* A list of all slab caches on the system */
  170. static DECLARE_RWSEM(slub_lock);
  171. static LIST_HEAD(slab_caches);
  172. /*
  173. * Tracking user of a slab.
  174. */
  175. struct track {
  176. unsigned long addr; /* Called from address */
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SLUB_DEBUG
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void sysfs_slab_remove(struct kmem_cache *);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void sysfs_slab_remove(struct kmem_cache *s)
  191. {
  192. kfree(s);
  193. }
  194. #endif
  195. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  196. {
  197. #ifdef CONFIG_SLUB_STATS
  198. c->stat[si]++;
  199. #endif
  200. }
  201. /********************************************************************
  202. * Core slab cache functions
  203. *******************************************************************/
  204. int slab_is_available(void)
  205. {
  206. return slab_state >= UP;
  207. }
  208. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  209. {
  210. #ifdef CONFIG_NUMA
  211. return s->node[node];
  212. #else
  213. return &s->local_node;
  214. #endif
  215. }
  216. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  217. {
  218. #ifdef CONFIG_SMP
  219. return s->cpu_slab[cpu];
  220. #else
  221. return &s->cpu_slab;
  222. #endif
  223. }
  224. /* Verify that a pointer has an address that is valid within a slab page */
  225. static inline int check_valid_pointer(struct kmem_cache *s,
  226. struct page *page, const void *object)
  227. {
  228. void *base;
  229. if (!object)
  230. return 1;
  231. base = page_address(page);
  232. if (object < base || object >= base + page->objects * s->size ||
  233. (object - base) % s->size) {
  234. return 0;
  235. }
  236. return 1;
  237. }
  238. /*
  239. * Slow version of get and set free pointer.
  240. *
  241. * This version requires touching the cache lines of kmem_cache which
  242. * we avoid to do in the fast alloc free paths. There we obtain the offset
  243. * from the page struct.
  244. */
  245. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  246. {
  247. return *(void **)(object + s->offset);
  248. }
  249. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  250. {
  251. *(void **)(object + s->offset) = fp;
  252. }
  253. /* Loop over all objects in a slab */
  254. #define for_each_object(__p, __s, __addr, __objects) \
  255. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  256. __p += (__s)->size)
  257. /* Scan freelist */
  258. #define for_each_free_object(__p, __s, __free) \
  259. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  260. /* Determine object index from a given position */
  261. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  262. {
  263. return (p - addr) / s->size;
  264. }
  265. static inline struct kmem_cache_order_objects oo_make(int order,
  266. unsigned long size)
  267. {
  268. struct kmem_cache_order_objects x = {
  269. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  270. };
  271. return x;
  272. }
  273. static inline int oo_order(struct kmem_cache_order_objects x)
  274. {
  275. return x.x >> OO_SHIFT;
  276. }
  277. static inline int oo_objects(struct kmem_cache_order_objects x)
  278. {
  279. return x.x & OO_MASK;
  280. }
  281. #ifdef CONFIG_SLUB_DEBUG
  282. /*
  283. * Debug settings:
  284. */
  285. #ifdef CONFIG_SLUB_DEBUG_ON
  286. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  287. #else
  288. static int slub_debug;
  289. #endif
  290. static char *slub_debug_slabs;
  291. static int disable_higher_order_debug;
  292. /*
  293. * Object debugging
  294. */
  295. static void print_section(char *text, u8 *addr, unsigned int length)
  296. {
  297. int i, offset;
  298. int newline = 1;
  299. char ascii[17];
  300. ascii[16] = 0;
  301. for (i = 0; i < length; i++) {
  302. if (newline) {
  303. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  304. newline = 0;
  305. }
  306. printk(KERN_CONT " %02x", addr[i]);
  307. offset = i % 16;
  308. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  309. if (offset == 15) {
  310. printk(KERN_CONT " %s\n", ascii);
  311. newline = 1;
  312. }
  313. }
  314. if (!newline) {
  315. i %= 16;
  316. while (i < 16) {
  317. printk(KERN_CONT " ");
  318. ascii[i] = ' ';
  319. i++;
  320. }
  321. printk(KERN_CONT " %s\n", ascii);
  322. }
  323. }
  324. static struct track *get_track(struct kmem_cache *s, void *object,
  325. enum track_item alloc)
  326. {
  327. struct track *p;
  328. if (s->offset)
  329. p = object + s->offset + sizeof(void *);
  330. else
  331. p = object + s->inuse;
  332. return p + alloc;
  333. }
  334. static void set_track(struct kmem_cache *s, void *object,
  335. enum track_item alloc, unsigned long addr)
  336. {
  337. struct track *p = get_track(s, object, alloc);
  338. if (addr) {
  339. p->addr = addr;
  340. p->cpu = smp_processor_id();
  341. p->pid = current->pid;
  342. p->when = jiffies;
  343. } else
  344. memset(p, 0, sizeof(struct track));
  345. }
  346. static void init_tracking(struct kmem_cache *s, void *object)
  347. {
  348. if (!(s->flags & SLAB_STORE_USER))
  349. return;
  350. set_track(s, object, TRACK_FREE, 0UL);
  351. set_track(s, object, TRACK_ALLOC, 0UL);
  352. }
  353. static void print_track(const char *s, struct track *t)
  354. {
  355. if (!t->addr)
  356. return;
  357. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  358. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  359. }
  360. static void print_tracking(struct kmem_cache *s, void *object)
  361. {
  362. if (!(s->flags & SLAB_STORE_USER))
  363. return;
  364. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  365. print_track("Freed", get_track(s, object, TRACK_FREE));
  366. }
  367. static void print_page_info(struct page *page)
  368. {
  369. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  370. page, page->objects, page->inuse, page->freelist, page->flags);
  371. }
  372. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  373. {
  374. va_list args;
  375. char buf[100];
  376. va_start(args, fmt);
  377. vsnprintf(buf, sizeof(buf), fmt, args);
  378. va_end(args);
  379. printk(KERN_ERR "========================================"
  380. "=====================================\n");
  381. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  382. printk(KERN_ERR "----------------------------------------"
  383. "-------------------------------------\n\n");
  384. }
  385. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  386. {
  387. va_list args;
  388. char buf[100];
  389. va_start(args, fmt);
  390. vsnprintf(buf, sizeof(buf), fmt, args);
  391. va_end(args);
  392. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  393. }
  394. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  395. {
  396. unsigned int off; /* Offset of last byte */
  397. u8 *addr = page_address(page);
  398. print_tracking(s, p);
  399. print_page_info(page);
  400. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  401. p, p - addr, get_freepointer(s, p));
  402. if (p > addr + 16)
  403. print_section("Bytes b4", p - 16, 16);
  404. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  405. if (s->flags & SLAB_RED_ZONE)
  406. print_section("Redzone", p + s->objsize,
  407. s->inuse - s->objsize);
  408. if (s->offset)
  409. off = s->offset + sizeof(void *);
  410. else
  411. off = s->inuse;
  412. if (s->flags & SLAB_STORE_USER)
  413. off += 2 * sizeof(struct track);
  414. if (off != s->size)
  415. /* Beginning of the filler is the free pointer */
  416. print_section("Padding", p + off, s->size - off);
  417. dump_stack();
  418. }
  419. static void object_err(struct kmem_cache *s, struct page *page,
  420. u8 *object, char *reason)
  421. {
  422. slab_bug(s, "%s", reason);
  423. print_trailer(s, page, object);
  424. }
  425. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  426. {
  427. va_list args;
  428. char buf[100];
  429. va_start(args, fmt);
  430. vsnprintf(buf, sizeof(buf), fmt, args);
  431. va_end(args);
  432. slab_bug(s, "%s", buf);
  433. print_page_info(page);
  434. dump_stack();
  435. }
  436. static void init_object(struct kmem_cache *s, void *object, int active)
  437. {
  438. u8 *p = object;
  439. if (s->flags & __OBJECT_POISON) {
  440. memset(p, POISON_FREE, s->objsize - 1);
  441. p[s->objsize - 1] = POISON_END;
  442. }
  443. if (s->flags & SLAB_RED_ZONE)
  444. memset(p + s->objsize,
  445. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  446. s->inuse - s->objsize);
  447. }
  448. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  449. {
  450. while (bytes) {
  451. if (*start != (u8)value)
  452. return start;
  453. start++;
  454. bytes--;
  455. }
  456. return NULL;
  457. }
  458. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  459. void *from, void *to)
  460. {
  461. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  462. memset(from, data, to - from);
  463. }
  464. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  465. u8 *object, char *what,
  466. u8 *start, unsigned int value, unsigned int bytes)
  467. {
  468. u8 *fault;
  469. u8 *end;
  470. fault = check_bytes(start, value, bytes);
  471. if (!fault)
  472. return 1;
  473. end = start + bytes;
  474. while (end > fault && end[-1] == value)
  475. end--;
  476. slab_bug(s, "%s overwritten", what);
  477. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  478. fault, end - 1, fault[0], value);
  479. print_trailer(s, page, object);
  480. restore_bytes(s, what, value, fault, end);
  481. return 0;
  482. }
  483. /*
  484. * Object layout:
  485. *
  486. * object address
  487. * Bytes of the object to be managed.
  488. * If the freepointer may overlay the object then the free
  489. * pointer is the first word of the object.
  490. *
  491. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  492. * 0xa5 (POISON_END)
  493. *
  494. * object + s->objsize
  495. * Padding to reach word boundary. This is also used for Redzoning.
  496. * Padding is extended by another word if Redzoning is enabled and
  497. * objsize == inuse.
  498. *
  499. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  500. * 0xcc (RED_ACTIVE) for objects in use.
  501. *
  502. * object + s->inuse
  503. * Meta data starts here.
  504. *
  505. * A. Free pointer (if we cannot overwrite object on free)
  506. * B. Tracking data for SLAB_STORE_USER
  507. * C. Padding to reach required alignment boundary or at mininum
  508. * one word if debugging is on to be able to detect writes
  509. * before the word boundary.
  510. *
  511. * Padding is done using 0x5a (POISON_INUSE)
  512. *
  513. * object + s->size
  514. * Nothing is used beyond s->size.
  515. *
  516. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  517. * ignored. And therefore no slab options that rely on these boundaries
  518. * may be used with merged slabcaches.
  519. */
  520. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  521. {
  522. unsigned long off = s->inuse; /* The end of info */
  523. if (s->offset)
  524. /* Freepointer is placed after the object. */
  525. off += sizeof(void *);
  526. if (s->flags & SLAB_STORE_USER)
  527. /* We also have user information there */
  528. off += 2 * sizeof(struct track);
  529. if (s->size == off)
  530. return 1;
  531. return check_bytes_and_report(s, page, p, "Object padding",
  532. p + off, POISON_INUSE, s->size - off);
  533. }
  534. /* Check the pad bytes at the end of a slab page */
  535. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  536. {
  537. u8 *start;
  538. u8 *fault;
  539. u8 *end;
  540. int length;
  541. int remainder;
  542. if (!(s->flags & SLAB_POISON))
  543. return 1;
  544. start = page_address(page);
  545. length = (PAGE_SIZE << compound_order(page));
  546. end = start + length;
  547. remainder = length % s->size;
  548. if (!remainder)
  549. return 1;
  550. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  551. if (!fault)
  552. return 1;
  553. while (end > fault && end[-1] == POISON_INUSE)
  554. end--;
  555. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  556. print_section("Padding", end - remainder, remainder);
  557. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  558. return 0;
  559. }
  560. static int check_object(struct kmem_cache *s, struct page *page,
  561. void *object, int active)
  562. {
  563. u8 *p = object;
  564. u8 *endobject = object + s->objsize;
  565. if (s->flags & SLAB_RED_ZONE) {
  566. unsigned int red =
  567. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  568. if (!check_bytes_and_report(s, page, object, "Redzone",
  569. endobject, red, s->inuse - s->objsize))
  570. return 0;
  571. } else {
  572. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  573. check_bytes_and_report(s, page, p, "Alignment padding",
  574. endobject, POISON_INUSE, s->inuse - s->objsize);
  575. }
  576. }
  577. if (s->flags & SLAB_POISON) {
  578. if (!active && (s->flags & __OBJECT_POISON) &&
  579. (!check_bytes_and_report(s, page, p, "Poison", p,
  580. POISON_FREE, s->objsize - 1) ||
  581. !check_bytes_and_report(s, page, p, "Poison",
  582. p + s->objsize - 1, POISON_END, 1)))
  583. return 0;
  584. /*
  585. * check_pad_bytes cleans up on its own.
  586. */
  587. check_pad_bytes(s, page, p);
  588. }
  589. if (!s->offset && active)
  590. /*
  591. * Object and freepointer overlap. Cannot check
  592. * freepointer while object is allocated.
  593. */
  594. return 1;
  595. /* Check free pointer validity */
  596. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  597. object_err(s, page, p, "Freepointer corrupt");
  598. /*
  599. * No choice but to zap it and thus lose the remainder
  600. * of the free objects in this slab. May cause
  601. * another error because the object count is now wrong.
  602. */
  603. set_freepointer(s, p, NULL);
  604. return 0;
  605. }
  606. return 1;
  607. }
  608. static int check_slab(struct kmem_cache *s, struct page *page)
  609. {
  610. int maxobj;
  611. VM_BUG_ON(!irqs_disabled());
  612. if (!PageSlab(page)) {
  613. slab_err(s, page, "Not a valid slab page");
  614. return 0;
  615. }
  616. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  617. if (page->objects > maxobj) {
  618. slab_err(s, page, "objects %u > max %u",
  619. s->name, page->objects, maxobj);
  620. return 0;
  621. }
  622. if (page->inuse > page->objects) {
  623. slab_err(s, page, "inuse %u > max %u",
  624. s->name, page->inuse, page->objects);
  625. return 0;
  626. }
  627. /* Slab_pad_check fixes things up after itself */
  628. slab_pad_check(s, page);
  629. return 1;
  630. }
  631. /*
  632. * Determine if a certain object on a page is on the freelist. Must hold the
  633. * slab lock to guarantee that the chains are in a consistent state.
  634. */
  635. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  636. {
  637. int nr = 0;
  638. void *fp = page->freelist;
  639. void *object = NULL;
  640. unsigned long max_objects;
  641. while (fp && nr <= page->objects) {
  642. if (fp == search)
  643. return 1;
  644. if (!check_valid_pointer(s, page, fp)) {
  645. if (object) {
  646. object_err(s, page, object,
  647. "Freechain corrupt");
  648. set_freepointer(s, object, NULL);
  649. break;
  650. } else {
  651. slab_err(s, page, "Freepointer corrupt");
  652. page->freelist = NULL;
  653. page->inuse = page->objects;
  654. slab_fix(s, "Freelist cleared");
  655. return 0;
  656. }
  657. break;
  658. }
  659. object = fp;
  660. fp = get_freepointer(s, object);
  661. nr++;
  662. }
  663. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  664. if (max_objects > MAX_OBJS_PER_PAGE)
  665. max_objects = MAX_OBJS_PER_PAGE;
  666. if (page->objects != max_objects) {
  667. slab_err(s, page, "Wrong number of objects. Found %d but "
  668. "should be %d", page->objects, max_objects);
  669. page->objects = max_objects;
  670. slab_fix(s, "Number of objects adjusted.");
  671. }
  672. if (page->inuse != page->objects - nr) {
  673. slab_err(s, page, "Wrong object count. Counter is %d but "
  674. "counted were %d", page->inuse, page->objects - nr);
  675. page->inuse = page->objects - nr;
  676. slab_fix(s, "Object count adjusted.");
  677. }
  678. return search == NULL;
  679. }
  680. static void trace(struct kmem_cache *s, struct page *page, void *object,
  681. int alloc)
  682. {
  683. if (s->flags & SLAB_TRACE) {
  684. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  685. s->name,
  686. alloc ? "alloc" : "free",
  687. object, page->inuse,
  688. page->freelist);
  689. if (!alloc)
  690. print_section("Object", (void *)object, s->objsize);
  691. dump_stack();
  692. }
  693. }
  694. /*
  695. * Tracking of fully allocated slabs for debugging purposes.
  696. */
  697. static void add_full(struct kmem_cache_node *n, struct page *page)
  698. {
  699. spin_lock(&n->list_lock);
  700. list_add(&page->lru, &n->full);
  701. spin_unlock(&n->list_lock);
  702. }
  703. static void remove_full(struct kmem_cache *s, struct page *page)
  704. {
  705. struct kmem_cache_node *n;
  706. if (!(s->flags & SLAB_STORE_USER))
  707. return;
  708. n = get_node(s, page_to_nid(page));
  709. spin_lock(&n->list_lock);
  710. list_del(&page->lru);
  711. spin_unlock(&n->list_lock);
  712. }
  713. /* Tracking of the number of slabs for debugging purposes */
  714. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  715. {
  716. struct kmem_cache_node *n = get_node(s, node);
  717. return atomic_long_read(&n->nr_slabs);
  718. }
  719. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  720. {
  721. return atomic_long_read(&n->nr_slabs);
  722. }
  723. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  724. {
  725. struct kmem_cache_node *n = get_node(s, node);
  726. /*
  727. * May be called early in order to allocate a slab for the
  728. * kmem_cache_node structure. Solve the chicken-egg
  729. * dilemma by deferring the increment of the count during
  730. * bootstrap (see early_kmem_cache_node_alloc).
  731. */
  732. if (!NUMA_BUILD || n) {
  733. atomic_long_inc(&n->nr_slabs);
  734. atomic_long_add(objects, &n->total_objects);
  735. }
  736. }
  737. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  738. {
  739. struct kmem_cache_node *n = get_node(s, node);
  740. atomic_long_dec(&n->nr_slabs);
  741. atomic_long_sub(objects, &n->total_objects);
  742. }
  743. /* Object debug checks for alloc/free paths */
  744. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  745. void *object)
  746. {
  747. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  748. return;
  749. init_object(s, object, 0);
  750. init_tracking(s, object);
  751. }
  752. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  753. void *object, unsigned long addr)
  754. {
  755. if (!check_slab(s, page))
  756. goto bad;
  757. if (!on_freelist(s, page, object)) {
  758. object_err(s, page, object, "Object already allocated");
  759. goto bad;
  760. }
  761. if (!check_valid_pointer(s, page, object)) {
  762. object_err(s, page, object, "Freelist Pointer check fails");
  763. goto bad;
  764. }
  765. if (!check_object(s, page, object, 0))
  766. goto bad;
  767. /* Success perform special debug activities for allocs */
  768. if (s->flags & SLAB_STORE_USER)
  769. set_track(s, object, TRACK_ALLOC, addr);
  770. trace(s, page, object, 1);
  771. init_object(s, object, 1);
  772. return 1;
  773. bad:
  774. if (PageSlab(page)) {
  775. /*
  776. * If this is a slab page then lets do the best we can
  777. * to avoid issues in the future. Marking all objects
  778. * as used avoids touching the remaining objects.
  779. */
  780. slab_fix(s, "Marking all objects used");
  781. page->inuse = page->objects;
  782. page->freelist = NULL;
  783. }
  784. return 0;
  785. }
  786. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  787. void *object, unsigned long addr)
  788. {
  789. if (!check_slab(s, page))
  790. goto fail;
  791. if (!check_valid_pointer(s, page, object)) {
  792. slab_err(s, page, "Invalid object pointer 0x%p", object);
  793. goto fail;
  794. }
  795. if (on_freelist(s, page, object)) {
  796. object_err(s, page, object, "Object already free");
  797. goto fail;
  798. }
  799. if (!check_object(s, page, object, 1))
  800. return 0;
  801. if (unlikely(s != page->slab)) {
  802. if (!PageSlab(page)) {
  803. slab_err(s, page, "Attempt to free object(0x%p) "
  804. "outside of slab", object);
  805. } else if (!page->slab) {
  806. printk(KERN_ERR
  807. "SLUB <none>: no slab for object 0x%p.\n",
  808. object);
  809. dump_stack();
  810. } else
  811. object_err(s, page, object,
  812. "page slab pointer corrupt.");
  813. goto fail;
  814. }
  815. /* Special debug activities for freeing objects */
  816. if (!PageSlubFrozen(page) && !page->freelist)
  817. remove_full(s, page);
  818. if (s->flags & SLAB_STORE_USER)
  819. set_track(s, object, TRACK_FREE, addr);
  820. trace(s, page, object, 0);
  821. init_object(s, object, 0);
  822. return 1;
  823. fail:
  824. slab_fix(s, "Object at 0x%p not freed", object);
  825. return 0;
  826. }
  827. static int __init setup_slub_debug(char *str)
  828. {
  829. slub_debug = DEBUG_DEFAULT_FLAGS;
  830. if (*str++ != '=' || !*str)
  831. /*
  832. * No options specified. Switch on full debugging.
  833. */
  834. goto out;
  835. if (*str == ',')
  836. /*
  837. * No options but restriction on slabs. This means full
  838. * debugging for slabs matching a pattern.
  839. */
  840. goto check_slabs;
  841. if (tolower(*str) == 'o') {
  842. /*
  843. * Avoid enabling debugging on caches if its minimum order
  844. * would increase as a result.
  845. */
  846. disable_higher_order_debug = 1;
  847. goto out;
  848. }
  849. slub_debug = 0;
  850. if (*str == '-')
  851. /*
  852. * Switch off all debugging measures.
  853. */
  854. goto out;
  855. /*
  856. * Determine which debug features should be switched on
  857. */
  858. for (; *str && *str != ','; str++) {
  859. switch (tolower(*str)) {
  860. case 'f':
  861. slub_debug |= SLAB_DEBUG_FREE;
  862. break;
  863. case 'z':
  864. slub_debug |= SLAB_RED_ZONE;
  865. break;
  866. case 'p':
  867. slub_debug |= SLAB_POISON;
  868. break;
  869. case 'u':
  870. slub_debug |= SLAB_STORE_USER;
  871. break;
  872. case 't':
  873. slub_debug |= SLAB_TRACE;
  874. break;
  875. default:
  876. printk(KERN_ERR "slub_debug option '%c' "
  877. "unknown. skipped\n", *str);
  878. }
  879. }
  880. check_slabs:
  881. if (*str == ',')
  882. slub_debug_slabs = str + 1;
  883. out:
  884. return 1;
  885. }
  886. __setup("slub_debug", setup_slub_debug);
  887. static unsigned long kmem_cache_flags(unsigned long objsize,
  888. unsigned long flags, const char *name,
  889. void (*ctor)(void *))
  890. {
  891. /*
  892. * Enable debugging if selected on the kernel commandline.
  893. */
  894. if (slub_debug && (!slub_debug_slabs ||
  895. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  896. flags |= slub_debug;
  897. return flags;
  898. }
  899. #else
  900. static inline void setup_object_debug(struct kmem_cache *s,
  901. struct page *page, void *object) {}
  902. static inline int alloc_debug_processing(struct kmem_cache *s,
  903. struct page *page, void *object, unsigned long addr) { return 0; }
  904. static inline int free_debug_processing(struct kmem_cache *s,
  905. struct page *page, void *object, unsigned long addr) { return 0; }
  906. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  907. { return 1; }
  908. static inline int check_object(struct kmem_cache *s, struct page *page,
  909. void *object, int active) { return 1; }
  910. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  911. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  912. unsigned long flags, const char *name,
  913. void (*ctor)(void *))
  914. {
  915. return flags;
  916. }
  917. #define slub_debug 0
  918. #define disable_higher_order_debug 0
  919. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  920. { return 0; }
  921. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  922. { return 0; }
  923. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  924. int objects) {}
  925. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  926. int objects) {}
  927. #endif
  928. /*
  929. * Slab allocation and freeing
  930. */
  931. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  932. struct kmem_cache_order_objects oo)
  933. {
  934. int order = oo_order(oo);
  935. flags |= __GFP_NOTRACK;
  936. if (node == -1)
  937. return alloc_pages(flags, order);
  938. else
  939. return alloc_pages_node(node, flags, order);
  940. }
  941. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  942. {
  943. struct page *page;
  944. struct kmem_cache_order_objects oo = s->oo;
  945. gfp_t alloc_gfp;
  946. flags |= s->allocflags;
  947. /*
  948. * Let the initial higher-order allocation fail under memory pressure
  949. * so we fall-back to the minimum order allocation.
  950. */
  951. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  952. page = alloc_slab_page(alloc_gfp, node, oo);
  953. if (unlikely(!page)) {
  954. oo = s->min;
  955. /*
  956. * Allocation may have failed due to fragmentation.
  957. * Try a lower order alloc if possible
  958. */
  959. page = alloc_slab_page(flags, node, oo);
  960. if (!page)
  961. return NULL;
  962. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  963. }
  964. if (kmemcheck_enabled
  965. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  966. int pages = 1 << oo_order(oo);
  967. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  968. /*
  969. * Objects from caches that have a constructor don't get
  970. * cleared when they're allocated, so we need to do it here.
  971. */
  972. if (s->ctor)
  973. kmemcheck_mark_uninitialized_pages(page, pages);
  974. else
  975. kmemcheck_mark_unallocated_pages(page, pages);
  976. }
  977. page->objects = oo_objects(oo);
  978. mod_zone_page_state(page_zone(page),
  979. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  980. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  981. 1 << oo_order(oo));
  982. return page;
  983. }
  984. static void setup_object(struct kmem_cache *s, struct page *page,
  985. void *object)
  986. {
  987. setup_object_debug(s, page, object);
  988. if (unlikely(s->ctor))
  989. s->ctor(object);
  990. }
  991. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  992. {
  993. struct page *page;
  994. void *start;
  995. void *last;
  996. void *p;
  997. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  998. page = allocate_slab(s,
  999. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1000. if (!page)
  1001. goto out;
  1002. inc_slabs_node(s, page_to_nid(page), page->objects);
  1003. page->slab = s;
  1004. page->flags |= 1 << PG_slab;
  1005. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  1006. SLAB_STORE_USER | SLAB_TRACE))
  1007. __SetPageSlubDebug(page);
  1008. start = page_address(page);
  1009. if (unlikely(s->flags & SLAB_POISON))
  1010. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1011. last = start;
  1012. for_each_object(p, s, start, page->objects) {
  1013. setup_object(s, page, last);
  1014. set_freepointer(s, last, p);
  1015. last = p;
  1016. }
  1017. setup_object(s, page, last);
  1018. set_freepointer(s, last, NULL);
  1019. page->freelist = start;
  1020. page->inuse = 0;
  1021. out:
  1022. return page;
  1023. }
  1024. static void __free_slab(struct kmem_cache *s, struct page *page)
  1025. {
  1026. int order = compound_order(page);
  1027. int pages = 1 << order;
  1028. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  1029. void *p;
  1030. slab_pad_check(s, page);
  1031. for_each_object(p, s, page_address(page),
  1032. page->objects)
  1033. check_object(s, page, p, 0);
  1034. __ClearPageSlubDebug(page);
  1035. }
  1036. kmemcheck_free_shadow(page, compound_order(page));
  1037. mod_zone_page_state(page_zone(page),
  1038. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1039. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1040. -pages);
  1041. __ClearPageSlab(page);
  1042. reset_page_mapcount(page);
  1043. if (current->reclaim_state)
  1044. current->reclaim_state->reclaimed_slab += pages;
  1045. __free_pages(page, order);
  1046. }
  1047. static void rcu_free_slab(struct rcu_head *h)
  1048. {
  1049. struct page *page;
  1050. page = container_of((struct list_head *)h, struct page, lru);
  1051. __free_slab(page->slab, page);
  1052. }
  1053. static void free_slab(struct kmem_cache *s, struct page *page)
  1054. {
  1055. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1056. /*
  1057. * RCU free overloads the RCU head over the LRU
  1058. */
  1059. struct rcu_head *head = (void *)&page->lru;
  1060. call_rcu(head, rcu_free_slab);
  1061. } else
  1062. __free_slab(s, page);
  1063. }
  1064. static void discard_slab(struct kmem_cache *s, struct page *page)
  1065. {
  1066. dec_slabs_node(s, page_to_nid(page), page->objects);
  1067. free_slab(s, page);
  1068. }
  1069. /*
  1070. * Per slab locking using the pagelock
  1071. */
  1072. static __always_inline void slab_lock(struct page *page)
  1073. {
  1074. bit_spin_lock(PG_locked, &page->flags);
  1075. }
  1076. static __always_inline void slab_unlock(struct page *page)
  1077. {
  1078. __bit_spin_unlock(PG_locked, &page->flags);
  1079. }
  1080. static __always_inline int slab_trylock(struct page *page)
  1081. {
  1082. int rc = 1;
  1083. rc = bit_spin_trylock(PG_locked, &page->flags);
  1084. return rc;
  1085. }
  1086. /*
  1087. * Management of partially allocated slabs
  1088. */
  1089. static void add_partial(struct kmem_cache_node *n,
  1090. struct page *page, int tail)
  1091. {
  1092. spin_lock(&n->list_lock);
  1093. n->nr_partial++;
  1094. if (tail)
  1095. list_add_tail(&page->lru, &n->partial);
  1096. else
  1097. list_add(&page->lru, &n->partial);
  1098. spin_unlock(&n->list_lock);
  1099. }
  1100. static void remove_partial(struct kmem_cache *s, struct page *page)
  1101. {
  1102. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1103. spin_lock(&n->list_lock);
  1104. list_del(&page->lru);
  1105. n->nr_partial--;
  1106. spin_unlock(&n->list_lock);
  1107. }
  1108. /*
  1109. * Lock slab and remove from the partial list.
  1110. *
  1111. * Must hold list_lock.
  1112. */
  1113. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1114. struct page *page)
  1115. {
  1116. if (slab_trylock(page)) {
  1117. list_del(&page->lru);
  1118. n->nr_partial--;
  1119. __SetPageSlubFrozen(page);
  1120. return 1;
  1121. }
  1122. return 0;
  1123. }
  1124. /*
  1125. * Try to allocate a partial slab from a specific node.
  1126. */
  1127. static struct page *get_partial_node(struct kmem_cache_node *n)
  1128. {
  1129. struct page *page;
  1130. /*
  1131. * Racy check. If we mistakenly see no partial slabs then we
  1132. * just allocate an empty slab. If we mistakenly try to get a
  1133. * partial slab and there is none available then get_partials()
  1134. * will return NULL.
  1135. */
  1136. if (!n || !n->nr_partial)
  1137. return NULL;
  1138. spin_lock(&n->list_lock);
  1139. list_for_each_entry(page, &n->partial, lru)
  1140. if (lock_and_freeze_slab(n, page))
  1141. goto out;
  1142. page = NULL;
  1143. out:
  1144. spin_unlock(&n->list_lock);
  1145. return page;
  1146. }
  1147. /*
  1148. * Get a page from somewhere. Search in increasing NUMA distances.
  1149. */
  1150. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1151. {
  1152. #ifdef CONFIG_NUMA
  1153. struct zonelist *zonelist;
  1154. struct zoneref *z;
  1155. struct zone *zone;
  1156. enum zone_type high_zoneidx = gfp_zone(flags);
  1157. struct page *page;
  1158. /*
  1159. * The defrag ratio allows a configuration of the tradeoffs between
  1160. * inter node defragmentation and node local allocations. A lower
  1161. * defrag_ratio increases the tendency to do local allocations
  1162. * instead of attempting to obtain partial slabs from other nodes.
  1163. *
  1164. * If the defrag_ratio is set to 0 then kmalloc() always
  1165. * returns node local objects. If the ratio is higher then kmalloc()
  1166. * may return off node objects because partial slabs are obtained
  1167. * from other nodes and filled up.
  1168. *
  1169. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1170. * defrag_ratio = 1000) then every (well almost) allocation will
  1171. * first attempt to defrag slab caches on other nodes. This means
  1172. * scanning over all nodes to look for partial slabs which may be
  1173. * expensive if we do it every time we are trying to find a slab
  1174. * with available objects.
  1175. */
  1176. if (!s->remote_node_defrag_ratio ||
  1177. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1178. return NULL;
  1179. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1180. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1181. struct kmem_cache_node *n;
  1182. n = get_node(s, zone_to_nid(zone));
  1183. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1184. n->nr_partial > s->min_partial) {
  1185. page = get_partial_node(n);
  1186. if (page)
  1187. return page;
  1188. }
  1189. }
  1190. #endif
  1191. return NULL;
  1192. }
  1193. /*
  1194. * Get a partial page, lock it and return it.
  1195. */
  1196. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1197. {
  1198. struct page *page;
  1199. int searchnode = (node == -1) ? numa_node_id() : node;
  1200. page = get_partial_node(get_node(s, searchnode));
  1201. if (page || (flags & __GFP_THISNODE))
  1202. return page;
  1203. return get_any_partial(s, flags);
  1204. }
  1205. /*
  1206. * Move a page back to the lists.
  1207. *
  1208. * Must be called with the slab lock held.
  1209. *
  1210. * On exit the slab lock will have been dropped.
  1211. */
  1212. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1213. {
  1214. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1215. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1216. __ClearPageSlubFrozen(page);
  1217. if (page->inuse) {
  1218. if (page->freelist) {
  1219. add_partial(n, page, tail);
  1220. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1221. } else {
  1222. stat(c, DEACTIVATE_FULL);
  1223. if (SLABDEBUG && PageSlubDebug(page) &&
  1224. (s->flags & SLAB_STORE_USER))
  1225. add_full(n, page);
  1226. }
  1227. slab_unlock(page);
  1228. } else {
  1229. stat(c, DEACTIVATE_EMPTY);
  1230. if (n->nr_partial < s->min_partial) {
  1231. /*
  1232. * Adding an empty slab to the partial slabs in order
  1233. * to avoid page allocator overhead. This slab needs
  1234. * to come after the other slabs with objects in
  1235. * so that the others get filled first. That way the
  1236. * size of the partial list stays small.
  1237. *
  1238. * kmem_cache_shrink can reclaim any empty slabs from
  1239. * the partial list.
  1240. */
  1241. add_partial(n, page, 1);
  1242. slab_unlock(page);
  1243. } else {
  1244. slab_unlock(page);
  1245. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1246. discard_slab(s, page);
  1247. }
  1248. }
  1249. }
  1250. /*
  1251. * Remove the cpu slab
  1252. */
  1253. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1254. {
  1255. struct page *page = c->page;
  1256. int tail = 1;
  1257. if (page->freelist)
  1258. stat(c, DEACTIVATE_REMOTE_FREES);
  1259. /*
  1260. * Merge cpu freelist into slab freelist. Typically we get here
  1261. * because both freelists are empty. So this is unlikely
  1262. * to occur.
  1263. */
  1264. while (unlikely(c->freelist)) {
  1265. void **object;
  1266. tail = 0; /* Hot objects. Put the slab first */
  1267. /* Retrieve object from cpu_freelist */
  1268. object = c->freelist;
  1269. c->freelist = c->freelist[c->offset];
  1270. /* And put onto the regular freelist */
  1271. object[c->offset] = page->freelist;
  1272. page->freelist = object;
  1273. page->inuse--;
  1274. }
  1275. c->page = NULL;
  1276. unfreeze_slab(s, page, tail);
  1277. }
  1278. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1279. {
  1280. stat(c, CPUSLAB_FLUSH);
  1281. slab_lock(c->page);
  1282. deactivate_slab(s, c);
  1283. }
  1284. /*
  1285. * Flush cpu slab.
  1286. *
  1287. * Called from IPI handler with interrupts disabled.
  1288. */
  1289. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1290. {
  1291. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1292. if (likely(c && c->page))
  1293. flush_slab(s, c);
  1294. }
  1295. static void flush_cpu_slab(void *d)
  1296. {
  1297. struct kmem_cache *s = d;
  1298. __flush_cpu_slab(s, smp_processor_id());
  1299. }
  1300. static void flush_all(struct kmem_cache *s)
  1301. {
  1302. on_each_cpu(flush_cpu_slab, s, 1);
  1303. }
  1304. /*
  1305. * Check if the objects in a per cpu structure fit numa
  1306. * locality expectations.
  1307. */
  1308. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1309. {
  1310. #ifdef CONFIG_NUMA
  1311. if (node != -1 && c->node != node)
  1312. return 0;
  1313. #endif
  1314. return 1;
  1315. }
  1316. static int count_free(struct page *page)
  1317. {
  1318. return page->objects - page->inuse;
  1319. }
  1320. static unsigned long count_partial(struct kmem_cache_node *n,
  1321. int (*get_count)(struct page *))
  1322. {
  1323. unsigned long flags;
  1324. unsigned long x = 0;
  1325. struct page *page;
  1326. spin_lock_irqsave(&n->list_lock, flags);
  1327. list_for_each_entry(page, &n->partial, lru)
  1328. x += get_count(page);
  1329. spin_unlock_irqrestore(&n->list_lock, flags);
  1330. return x;
  1331. }
  1332. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1333. {
  1334. #ifdef CONFIG_SLUB_DEBUG
  1335. return atomic_long_read(&n->total_objects);
  1336. #else
  1337. return 0;
  1338. #endif
  1339. }
  1340. static noinline void
  1341. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1342. {
  1343. int node;
  1344. printk(KERN_WARNING
  1345. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1346. nid, gfpflags);
  1347. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1348. "default order: %d, min order: %d\n", s->name, s->objsize,
  1349. s->size, oo_order(s->oo), oo_order(s->min));
  1350. if (oo_order(s->min) > get_order(s->objsize))
  1351. printk(KERN_WARNING " %s debugging increased min order, use "
  1352. "slub_debug=O to disable.\n", s->name);
  1353. for_each_online_node(node) {
  1354. struct kmem_cache_node *n = get_node(s, node);
  1355. unsigned long nr_slabs;
  1356. unsigned long nr_objs;
  1357. unsigned long nr_free;
  1358. if (!n)
  1359. continue;
  1360. nr_free = count_partial(n, count_free);
  1361. nr_slabs = node_nr_slabs(n);
  1362. nr_objs = node_nr_objs(n);
  1363. printk(KERN_WARNING
  1364. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1365. node, nr_slabs, nr_objs, nr_free);
  1366. }
  1367. }
  1368. /*
  1369. * Slow path. The lockless freelist is empty or we need to perform
  1370. * debugging duties.
  1371. *
  1372. * Interrupts are disabled.
  1373. *
  1374. * Processing is still very fast if new objects have been freed to the
  1375. * regular freelist. In that case we simply take over the regular freelist
  1376. * as the lockless freelist and zap the regular freelist.
  1377. *
  1378. * If that is not working then we fall back to the partial lists. We take the
  1379. * first element of the freelist as the object to allocate now and move the
  1380. * rest of the freelist to the lockless freelist.
  1381. *
  1382. * And if we were unable to get a new slab from the partial slab lists then
  1383. * we need to allocate a new slab. This is the slowest path since it involves
  1384. * a call to the page allocator and the setup of a new slab.
  1385. */
  1386. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1387. unsigned long addr, struct kmem_cache_cpu *c)
  1388. {
  1389. void **object;
  1390. struct page *new;
  1391. /* We handle __GFP_ZERO in the caller */
  1392. gfpflags &= ~__GFP_ZERO;
  1393. if (!c->page)
  1394. goto new_slab;
  1395. slab_lock(c->page);
  1396. if (unlikely(!node_match(c, node)))
  1397. goto another_slab;
  1398. stat(c, ALLOC_REFILL);
  1399. load_freelist:
  1400. object = c->page->freelist;
  1401. if (unlikely(!object))
  1402. goto another_slab;
  1403. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1404. goto debug;
  1405. c->freelist = object[c->offset];
  1406. c->page->inuse = c->page->objects;
  1407. c->page->freelist = NULL;
  1408. c->node = page_to_nid(c->page);
  1409. unlock_out:
  1410. slab_unlock(c->page);
  1411. stat(c, ALLOC_SLOWPATH);
  1412. return object;
  1413. another_slab:
  1414. deactivate_slab(s, c);
  1415. new_slab:
  1416. new = get_partial(s, gfpflags, node);
  1417. if (new) {
  1418. c->page = new;
  1419. stat(c, ALLOC_FROM_PARTIAL);
  1420. goto load_freelist;
  1421. }
  1422. if (gfpflags & __GFP_WAIT)
  1423. local_irq_enable();
  1424. new = new_slab(s, gfpflags, node);
  1425. if (gfpflags & __GFP_WAIT)
  1426. local_irq_disable();
  1427. if (new) {
  1428. c = get_cpu_slab(s, smp_processor_id());
  1429. stat(c, ALLOC_SLAB);
  1430. if (c->page)
  1431. flush_slab(s, c);
  1432. slab_lock(new);
  1433. __SetPageSlubFrozen(new);
  1434. c->page = new;
  1435. goto load_freelist;
  1436. }
  1437. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1438. slab_out_of_memory(s, gfpflags, node);
  1439. return NULL;
  1440. debug:
  1441. if (!alloc_debug_processing(s, c->page, object, addr))
  1442. goto another_slab;
  1443. c->page->inuse++;
  1444. c->page->freelist = object[c->offset];
  1445. c->node = -1;
  1446. goto unlock_out;
  1447. }
  1448. /*
  1449. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1450. * have the fastpath folded into their functions. So no function call
  1451. * overhead for requests that can be satisfied on the fastpath.
  1452. *
  1453. * The fastpath works by first checking if the lockless freelist can be used.
  1454. * If not then __slab_alloc is called for slow processing.
  1455. *
  1456. * Otherwise we can simply pick the next object from the lockless free list.
  1457. */
  1458. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1459. gfp_t gfpflags, int node, unsigned long addr)
  1460. {
  1461. void **object;
  1462. struct kmem_cache_cpu *c;
  1463. unsigned long flags;
  1464. unsigned int objsize;
  1465. gfpflags &= gfp_allowed_mask;
  1466. lockdep_trace_alloc(gfpflags);
  1467. might_sleep_if(gfpflags & __GFP_WAIT);
  1468. if (should_failslab(s->objsize, gfpflags))
  1469. return NULL;
  1470. local_irq_save(flags);
  1471. c = get_cpu_slab(s, smp_processor_id());
  1472. objsize = c->objsize;
  1473. if (unlikely(!c->freelist || !node_match(c, node)))
  1474. object = __slab_alloc(s, gfpflags, node, addr, c);
  1475. else {
  1476. object = c->freelist;
  1477. c->freelist = object[c->offset];
  1478. stat(c, ALLOC_FASTPATH);
  1479. }
  1480. local_irq_restore(flags);
  1481. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1482. memset(object, 0, objsize);
  1483. kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
  1484. kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
  1485. return object;
  1486. }
  1487. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1488. {
  1489. void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
  1490. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1491. return ret;
  1492. }
  1493. EXPORT_SYMBOL(kmem_cache_alloc);
  1494. #ifdef CONFIG_KMEMTRACE
  1495. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1496. {
  1497. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1498. }
  1499. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1500. #endif
  1501. #ifdef CONFIG_NUMA
  1502. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1503. {
  1504. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1505. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1506. s->objsize, s->size, gfpflags, node);
  1507. return ret;
  1508. }
  1509. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1510. #endif
  1511. #ifdef CONFIG_KMEMTRACE
  1512. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1513. gfp_t gfpflags,
  1514. int node)
  1515. {
  1516. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1517. }
  1518. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1519. #endif
  1520. /*
  1521. * Slow patch handling. This may still be called frequently since objects
  1522. * have a longer lifetime than the cpu slabs in most processing loads.
  1523. *
  1524. * So we still attempt to reduce cache line usage. Just take the slab
  1525. * lock and free the item. If there is no additional partial page
  1526. * handling required then we can return immediately.
  1527. */
  1528. static void __slab_free(struct kmem_cache *s, struct page *page,
  1529. void *x, unsigned long addr, unsigned int offset)
  1530. {
  1531. void *prior;
  1532. void **object = (void *)x;
  1533. struct kmem_cache_cpu *c;
  1534. c = get_cpu_slab(s, raw_smp_processor_id());
  1535. stat(c, FREE_SLOWPATH);
  1536. slab_lock(page);
  1537. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1538. goto debug;
  1539. checks_ok:
  1540. prior = object[offset] = page->freelist;
  1541. page->freelist = object;
  1542. page->inuse--;
  1543. if (unlikely(PageSlubFrozen(page))) {
  1544. stat(c, FREE_FROZEN);
  1545. goto out_unlock;
  1546. }
  1547. if (unlikely(!page->inuse))
  1548. goto slab_empty;
  1549. /*
  1550. * Objects left in the slab. If it was not on the partial list before
  1551. * then add it.
  1552. */
  1553. if (unlikely(!prior)) {
  1554. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1555. stat(c, FREE_ADD_PARTIAL);
  1556. }
  1557. out_unlock:
  1558. slab_unlock(page);
  1559. return;
  1560. slab_empty:
  1561. if (prior) {
  1562. /*
  1563. * Slab still on the partial list.
  1564. */
  1565. remove_partial(s, page);
  1566. stat(c, FREE_REMOVE_PARTIAL);
  1567. }
  1568. slab_unlock(page);
  1569. stat(c, FREE_SLAB);
  1570. discard_slab(s, page);
  1571. return;
  1572. debug:
  1573. if (!free_debug_processing(s, page, x, addr))
  1574. goto out_unlock;
  1575. goto checks_ok;
  1576. }
  1577. /*
  1578. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1579. * can perform fastpath freeing without additional function calls.
  1580. *
  1581. * The fastpath is only possible if we are freeing to the current cpu slab
  1582. * of this processor. This typically the case if we have just allocated
  1583. * the item before.
  1584. *
  1585. * If fastpath is not possible then fall back to __slab_free where we deal
  1586. * with all sorts of special processing.
  1587. */
  1588. static __always_inline void slab_free(struct kmem_cache *s,
  1589. struct page *page, void *x, unsigned long addr)
  1590. {
  1591. void **object = (void *)x;
  1592. struct kmem_cache_cpu *c;
  1593. unsigned long flags;
  1594. kmemleak_free_recursive(x, s->flags);
  1595. local_irq_save(flags);
  1596. c = get_cpu_slab(s, smp_processor_id());
  1597. kmemcheck_slab_free(s, object, c->objsize);
  1598. debug_check_no_locks_freed(object, c->objsize);
  1599. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1600. debug_check_no_obj_freed(object, c->objsize);
  1601. if (likely(page == c->page && c->node >= 0)) {
  1602. object[c->offset] = c->freelist;
  1603. c->freelist = object;
  1604. stat(c, FREE_FASTPATH);
  1605. } else
  1606. __slab_free(s, page, x, addr, c->offset);
  1607. local_irq_restore(flags);
  1608. }
  1609. void kmem_cache_free(struct kmem_cache *s, void *x)
  1610. {
  1611. struct page *page;
  1612. page = virt_to_head_page(x);
  1613. slab_free(s, page, x, _RET_IP_);
  1614. trace_kmem_cache_free(_RET_IP_, x);
  1615. }
  1616. EXPORT_SYMBOL(kmem_cache_free);
  1617. /* Figure out on which slab page the object resides */
  1618. static struct page *get_object_page(const void *x)
  1619. {
  1620. struct page *page = virt_to_head_page(x);
  1621. if (!PageSlab(page))
  1622. return NULL;
  1623. return page;
  1624. }
  1625. /*
  1626. * Object placement in a slab is made very easy because we always start at
  1627. * offset 0. If we tune the size of the object to the alignment then we can
  1628. * get the required alignment by putting one properly sized object after
  1629. * another.
  1630. *
  1631. * Notice that the allocation order determines the sizes of the per cpu
  1632. * caches. Each processor has always one slab available for allocations.
  1633. * Increasing the allocation order reduces the number of times that slabs
  1634. * must be moved on and off the partial lists and is therefore a factor in
  1635. * locking overhead.
  1636. */
  1637. /*
  1638. * Mininum / Maximum order of slab pages. This influences locking overhead
  1639. * and slab fragmentation. A higher order reduces the number of partial slabs
  1640. * and increases the number of allocations possible without having to
  1641. * take the list_lock.
  1642. */
  1643. static int slub_min_order;
  1644. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1645. static int slub_min_objects;
  1646. /*
  1647. * Merge control. If this is set then no merging of slab caches will occur.
  1648. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1649. */
  1650. static int slub_nomerge;
  1651. /*
  1652. * Calculate the order of allocation given an slab object size.
  1653. *
  1654. * The order of allocation has significant impact on performance and other
  1655. * system components. Generally order 0 allocations should be preferred since
  1656. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1657. * be problematic to put into order 0 slabs because there may be too much
  1658. * unused space left. We go to a higher order if more than 1/16th of the slab
  1659. * would be wasted.
  1660. *
  1661. * In order to reach satisfactory performance we must ensure that a minimum
  1662. * number of objects is in one slab. Otherwise we may generate too much
  1663. * activity on the partial lists which requires taking the list_lock. This is
  1664. * less a concern for large slabs though which are rarely used.
  1665. *
  1666. * slub_max_order specifies the order where we begin to stop considering the
  1667. * number of objects in a slab as critical. If we reach slub_max_order then
  1668. * we try to keep the page order as low as possible. So we accept more waste
  1669. * of space in favor of a small page order.
  1670. *
  1671. * Higher order allocations also allow the placement of more objects in a
  1672. * slab and thereby reduce object handling overhead. If the user has
  1673. * requested a higher mininum order then we start with that one instead of
  1674. * the smallest order which will fit the object.
  1675. */
  1676. static inline int slab_order(int size, int min_objects,
  1677. int max_order, int fract_leftover)
  1678. {
  1679. int order;
  1680. int rem;
  1681. int min_order = slub_min_order;
  1682. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1683. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1684. for (order = max(min_order,
  1685. fls(min_objects * size - 1) - PAGE_SHIFT);
  1686. order <= max_order; order++) {
  1687. unsigned long slab_size = PAGE_SIZE << order;
  1688. if (slab_size < min_objects * size)
  1689. continue;
  1690. rem = slab_size % size;
  1691. if (rem <= slab_size / fract_leftover)
  1692. break;
  1693. }
  1694. return order;
  1695. }
  1696. static inline int calculate_order(int size)
  1697. {
  1698. int order;
  1699. int min_objects;
  1700. int fraction;
  1701. int max_objects;
  1702. /*
  1703. * Attempt to find best configuration for a slab. This
  1704. * works by first attempting to generate a layout with
  1705. * the best configuration and backing off gradually.
  1706. *
  1707. * First we reduce the acceptable waste in a slab. Then
  1708. * we reduce the minimum objects required in a slab.
  1709. */
  1710. min_objects = slub_min_objects;
  1711. if (!min_objects)
  1712. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1713. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1714. min_objects = min(min_objects, max_objects);
  1715. while (min_objects > 1) {
  1716. fraction = 16;
  1717. while (fraction >= 4) {
  1718. order = slab_order(size, min_objects,
  1719. slub_max_order, fraction);
  1720. if (order <= slub_max_order)
  1721. return order;
  1722. fraction /= 2;
  1723. }
  1724. min_objects--;
  1725. }
  1726. /*
  1727. * We were unable to place multiple objects in a slab. Now
  1728. * lets see if we can place a single object there.
  1729. */
  1730. order = slab_order(size, 1, slub_max_order, 1);
  1731. if (order <= slub_max_order)
  1732. return order;
  1733. /*
  1734. * Doh this slab cannot be placed using slub_max_order.
  1735. */
  1736. order = slab_order(size, 1, MAX_ORDER, 1);
  1737. if (order < MAX_ORDER)
  1738. return order;
  1739. return -ENOSYS;
  1740. }
  1741. /*
  1742. * Figure out what the alignment of the objects will be.
  1743. */
  1744. static unsigned long calculate_alignment(unsigned long flags,
  1745. unsigned long align, unsigned long size)
  1746. {
  1747. /*
  1748. * If the user wants hardware cache aligned objects then follow that
  1749. * suggestion if the object is sufficiently large.
  1750. *
  1751. * The hardware cache alignment cannot override the specified
  1752. * alignment though. If that is greater then use it.
  1753. */
  1754. if (flags & SLAB_HWCACHE_ALIGN) {
  1755. unsigned long ralign = cache_line_size();
  1756. while (size <= ralign / 2)
  1757. ralign /= 2;
  1758. align = max(align, ralign);
  1759. }
  1760. if (align < ARCH_SLAB_MINALIGN)
  1761. align = ARCH_SLAB_MINALIGN;
  1762. return ALIGN(align, sizeof(void *));
  1763. }
  1764. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1765. struct kmem_cache_cpu *c)
  1766. {
  1767. c->page = NULL;
  1768. c->freelist = NULL;
  1769. c->node = 0;
  1770. c->offset = s->offset / sizeof(void *);
  1771. c->objsize = s->objsize;
  1772. #ifdef CONFIG_SLUB_STATS
  1773. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1774. #endif
  1775. }
  1776. static void
  1777. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1778. {
  1779. n->nr_partial = 0;
  1780. spin_lock_init(&n->list_lock);
  1781. INIT_LIST_HEAD(&n->partial);
  1782. #ifdef CONFIG_SLUB_DEBUG
  1783. atomic_long_set(&n->nr_slabs, 0);
  1784. atomic_long_set(&n->total_objects, 0);
  1785. INIT_LIST_HEAD(&n->full);
  1786. #endif
  1787. }
  1788. #ifdef CONFIG_SMP
  1789. /*
  1790. * Per cpu array for per cpu structures.
  1791. *
  1792. * The per cpu array places all kmem_cache_cpu structures from one processor
  1793. * close together meaning that it becomes possible that multiple per cpu
  1794. * structures are contained in one cacheline. This may be particularly
  1795. * beneficial for the kmalloc caches.
  1796. *
  1797. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1798. * likely able to get per cpu structures for all caches from the array defined
  1799. * here. We must be able to cover all kmalloc caches during bootstrap.
  1800. *
  1801. * If the per cpu array is exhausted then fall back to kmalloc
  1802. * of individual cachelines. No sharing is possible then.
  1803. */
  1804. #define NR_KMEM_CACHE_CPU 100
  1805. static DEFINE_PER_CPU(struct kmem_cache_cpu [NR_KMEM_CACHE_CPU],
  1806. kmem_cache_cpu);
  1807. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1808. static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
  1809. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1810. int cpu, gfp_t flags)
  1811. {
  1812. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1813. if (c)
  1814. per_cpu(kmem_cache_cpu_free, cpu) =
  1815. (void *)c->freelist;
  1816. else {
  1817. /* Table overflow: So allocate ourselves */
  1818. c = kmalloc_node(
  1819. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1820. flags, cpu_to_node(cpu));
  1821. if (!c)
  1822. return NULL;
  1823. }
  1824. init_kmem_cache_cpu(s, c);
  1825. return c;
  1826. }
  1827. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1828. {
  1829. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1830. c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1831. kfree(c);
  1832. return;
  1833. }
  1834. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1835. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1836. }
  1837. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1838. {
  1839. int cpu;
  1840. for_each_online_cpu(cpu) {
  1841. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1842. if (c) {
  1843. s->cpu_slab[cpu] = NULL;
  1844. free_kmem_cache_cpu(c, cpu);
  1845. }
  1846. }
  1847. }
  1848. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1849. {
  1850. int cpu;
  1851. for_each_online_cpu(cpu) {
  1852. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1853. if (c)
  1854. continue;
  1855. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1856. if (!c) {
  1857. free_kmem_cache_cpus(s);
  1858. return 0;
  1859. }
  1860. s->cpu_slab[cpu] = c;
  1861. }
  1862. return 1;
  1863. }
  1864. /*
  1865. * Initialize the per cpu array.
  1866. */
  1867. static void init_alloc_cpu_cpu(int cpu)
  1868. {
  1869. int i;
  1870. if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
  1871. return;
  1872. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1873. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1874. cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
  1875. }
  1876. static void __init init_alloc_cpu(void)
  1877. {
  1878. int cpu;
  1879. for_each_online_cpu(cpu)
  1880. init_alloc_cpu_cpu(cpu);
  1881. }
  1882. #else
  1883. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1884. static inline void init_alloc_cpu(void) {}
  1885. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1886. {
  1887. init_kmem_cache_cpu(s, &s->cpu_slab);
  1888. return 1;
  1889. }
  1890. #endif
  1891. #ifdef CONFIG_NUMA
  1892. /*
  1893. * No kmalloc_node yet so do it by hand. We know that this is the first
  1894. * slab on the node for this slabcache. There are no concurrent accesses
  1895. * possible.
  1896. *
  1897. * Note that this function only works on the kmalloc_node_cache
  1898. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1899. * memory on a fresh node that has no slab structures yet.
  1900. */
  1901. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1902. {
  1903. struct page *page;
  1904. struct kmem_cache_node *n;
  1905. unsigned long flags;
  1906. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1907. page = new_slab(kmalloc_caches, gfpflags, node);
  1908. BUG_ON(!page);
  1909. if (page_to_nid(page) != node) {
  1910. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1911. "node %d\n", node);
  1912. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1913. "in order to be able to continue\n");
  1914. }
  1915. n = page->freelist;
  1916. BUG_ON(!n);
  1917. page->freelist = get_freepointer(kmalloc_caches, n);
  1918. page->inuse++;
  1919. kmalloc_caches->node[node] = n;
  1920. #ifdef CONFIG_SLUB_DEBUG
  1921. init_object(kmalloc_caches, n, 1);
  1922. init_tracking(kmalloc_caches, n);
  1923. #endif
  1924. init_kmem_cache_node(n, kmalloc_caches);
  1925. inc_slabs_node(kmalloc_caches, node, page->objects);
  1926. /*
  1927. * lockdep requires consistent irq usage for each lock
  1928. * so even though there cannot be a race this early in
  1929. * the boot sequence, we still disable irqs.
  1930. */
  1931. local_irq_save(flags);
  1932. add_partial(n, page, 0);
  1933. local_irq_restore(flags);
  1934. }
  1935. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1936. {
  1937. int node;
  1938. for_each_node_state(node, N_NORMAL_MEMORY) {
  1939. struct kmem_cache_node *n = s->node[node];
  1940. if (n && n != &s->local_node)
  1941. kmem_cache_free(kmalloc_caches, n);
  1942. s->node[node] = NULL;
  1943. }
  1944. }
  1945. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1946. {
  1947. int node;
  1948. int local_node;
  1949. if (slab_state >= UP)
  1950. local_node = page_to_nid(virt_to_page(s));
  1951. else
  1952. local_node = 0;
  1953. for_each_node_state(node, N_NORMAL_MEMORY) {
  1954. struct kmem_cache_node *n;
  1955. if (local_node == node)
  1956. n = &s->local_node;
  1957. else {
  1958. if (slab_state == DOWN) {
  1959. early_kmem_cache_node_alloc(gfpflags, node);
  1960. continue;
  1961. }
  1962. n = kmem_cache_alloc_node(kmalloc_caches,
  1963. gfpflags, node);
  1964. if (!n) {
  1965. free_kmem_cache_nodes(s);
  1966. return 0;
  1967. }
  1968. }
  1969. s->node[node] = n;
  1970. init_kmem_cache_node(n, s);
  1971. }
  1972. return 1;
  1973. }
  1974. #else
  1975. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1976. {
  1977. }
  1978. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1979. {
  1980. init_kmem_cache_node(&s->local_node, s);
  1981. return 1;
  1982. }
  1983. #endif
  1984. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1985. {
  1986. if (min < MIN_PARTIAL)
  1987. min = MIN_PARTIAL;
  1988. else if (min > MAX_PARTIAL)
  1989. min = MAX_PARTIAL;
  1990. s->min_partial = min;
  1991. }
  1992. /*
  1993. * calculate_sizes() determines the order and the distribution of data within
  1994. * a slab object.
  1995. */
  1996. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1997. {
  1998. unsigned long flags = s->flags;
  1999. unsigned long size = s->objsize;
  2000. unsigned long align = s->align;
  2001. int order;
  2002. /*
  2003. * Round up object size to the next word boundary. We can only
  2004. * place the free pointer at word boundaries and this determines
  2005. * the possible location of the free pointer.
  2006. */
  2007. size = ALIGN(size, sizeof(void *));
  2008. #ifdef CONFIG_SLUB_DEBUG
  2009. /*
  2010. * Determine if we can poison the object itself. If the user of
  2011. * the slab may touch the object after free or before allocation
  2012. * then we should never poison the object itself.
  2013. */
  2014. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2015. !s->ctor)
  2016. s->flags |= __OBJECT_POISON;
  2017. else
  2018. s->flags &= ~__OBJECT_POISON;
  2019. /*
  2020. * If we are Redzoning then check if there is some space between the
  2021. * end of the object and the free pointer. If not then add an
  2022. * additional word to have some bytes to store Redzone information.
  2023. */
  2024. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2025. size += sizeof(void *);
  2026. #endif
  2027. /*
  2028. * With that we have determined the number of bytes in actual use
  2029. * by the object. This is the potential offset to the free pointer.
  2030. */
  2031. s->inuse = size;
  2032. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2033. s->ctor)) {
  2034. /*
  2035. * Relocate free pointer after the object if it is not
  2036. * permitted to overwrite the first word of the object on
  2037. * kmem_cache_free.
  2038. *
  2039. * This is the case if we do RCU, have a constructor or
  2040. * destructor or are poisoning the objects.
  2041. */
  2042. s->offset = size;
  2043. size += sizeof(void *);
  2044. }
  2045. #ifdef CONFIG_SLUB_DEBUG
  2046. if (flags & SLAB_STORE_USER)
  2047. /*
  2048. * Need to store information about allocs and frees after
  2049. * the object.
  2050. */
  2051. size += 2 * sizeof(struct track);
  2052. if (flags & SLAB_RED_ZONE)
  2053. /*
  2054. * Add some empty padding so that we can catch
  2055. * overwrites from earlier objects rather than let
  2056. * tracking information or the free pointer be
  2057. * corrupted if a user writes before the start
  2058. * of the object.
  2059. */
  2060. size += sizeof(void *);
  2061. #endif
  2062. /*
  2063. * Determine the alignment based on various parameters that the
  2064. * user specified and the dynamic determination of cache line size
  2065. * on bootup.
  2066. */
  2067. align = calculate_alignment(flags, align, s->objsize);
  2068. s->align = align;
  2069. /*
  2070. * SLUB stores one object immediately after another beginning from
  2071. * offset 0. In order to align the objects we have to simply size
  2072. * each object to conform to the alignment.
  2073. */
  2074. size = ALIGN(size, align);
  2075. s->size = size;
  2076. if (forced_order >= 0)
  2077. order = forced_order;
  2078. else
  2079. order = calculate_order(size);
  2080. if (order < 0)
  2081. return 0;
  2082. s->allocflags = 0;
  2083. if (order)
  2084. s->allocflags |= __GFP_COMP;
  2085. if (s->flags & SLAB_CACHE_DMA)
  2086. s->allocflags |= SLUB_DMA;
  2087. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2088. s->allocflags |= __GFP_RECLAIMABLE;
  2089. /*
  2090. * Determine the number of objects per slab
  2091. */
  2092. s->oo = oo_make(order, size);
  2093. s->min = oo_make(get_order(size), size);
  2094. if (oo_objects(s->oo) > oo_objects(s->max))
  2095. s->max = s->oo;
  2096. return !!oo_objects(s->oo);
  2097. }
  2098. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  2099. const char *name, size_t size,
  2100. size_t align, unsigned long flags,
  2101. void (*ctor)(void *))
  2102. {
  2103. memset(s, 0, kmem_size);
  2104. s->name = name;
  2105. s->ctor = ctor;
  2106. s->objsize = size;
  2107. s->align = align;
  2108. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2109. if (!calculate_sizes(s, -1))
  2110. goto error;
  2111. if (disable_higher_order_debug) {
  2112. /*
  2113. * Disable debugging flags that store metadata if the min slab
  2114. * order increased.
  2115. */
  2116. if (get_order(s->size) > get_order(s->objsize)) {
  2117. s->flags &= ~DEBUG_METADATA_FLAGS;
  2118. s->offset = 0;
  2119. if (!calculate_sizes(s, -1))
  2120. goto error;
  2121. }
  2122. }
  2123. /*
  2124. * The larger the object size is, the more pages we want on the partial
  2125. * list to avoid pounding the page allocator excessively.
  2126. */
  2127. set_min_partial(s, ilog2(s->size));
  2128. s->refcount = 1;
  2129. #ifdef CONFIG_NUMA
  2130. s->remote_node_defrag_ratio = 1000;
  2131. #endif
  2132. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2133. goto error;
  2134. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2135. return 1;
  2136. free_kmem_cache_nodes(s);
  2137. error:
  2138. if (flags & SLAB_PANIC)
  2139. panic("Cannot create slab %s size=%lu realsize=%u "
  2140. "order=%u offset=%u flags=%lx\n",
  2141. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2142. s->offset, flags);
  2143. return 0;
  2144. }
  2145. /*
  2146. * Check if a given pointer is valid
  2147. */
  2148. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2149. {
  2150. struct page *page;
  2151. page = get_object_page(object);
  2152. if (!page || s != page->slab)
  2153. /* No slab or wrong slab */
  2154. return 0;
  2155. if (!check_valid_pointer(s, page, object))
  2156. return 0;
  2157. /*
  2158. * We could also check if the object is on the slabs freelist.
  2159. * But this would be too expensive and it seems that the main
  2160. * purpose of kmem_ptr_valid() is to check if the object belongs
  2161. * to a certain slab.
  2162. */
  2163. return 1;
  2164. }
  2165. EXPORT_SYMBOL(kmem_ptr_validate);
  2166. /*
  2167. * Determine the size of a slab object
  2168. */
  2169. unsigned int kmem_cache_size(struct kmem_cache *s)
  2170. {
  2171. return s->objsize;
  2172. }
  2173. EXPORT_SYMBOL(kmem_cache_size);
  2174. const char *kmem_cache_name(struct kmem_cache *s)
  2175. {
  2176. return s->name;
  2177. }
  2178. EXPORT_SYMBOL(kmem_cache_name);
  2179. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2180. const char *text)
  2181. {
  2182. #ifdef CONFIG_SLUB_DEBUG
  2183. void *addr = page_address(page);
  2184. void *p;
  2185. DECLARE_BITMAP(map, page->objects);
  2186. bitmap_zero(map, page->objects);
  2187. slab_err(s, page, "%s", text);
  2188. slab_lock(page);
  2189. for_each_free_object(p, s, page->freelist)
  2190. set_bit(slab_index(p, s, addr), map);
  2191. for_each_object(p, s, addr, page->objects) {
  2192. if (!test_bit(slab_index(p, s, addr), map)) {
  2193. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2194. p, p - addr);
  2195. print_tracking(s, p);
  2196. }
  2197. }
  2198. slab_unlock(page);
  2199. #endif
  2200. }
  2201. /*
  2202. * Attempt to free all partial slabs on a node.
  2203. */
  2204. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2205. {
  2206. unsigned long flags;
  2207. struct page *page, *h;
  2208. spin_lock_irqsave(&n->list_lock, flags);
  2209. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2210. if (!page->inuse) {
  2211. list_del(&page->lru);
  2212. discard_slab(s, page);
  2213. n->nr_partial--;
  2214. } else {
  2215. list_slab_objects(s, page,
  2216. "Objects remaining on kmem_cache_close()");
  2217. }
  2218. }
  2219. spin_unlock_irqrestore(&n->list_lock, flags);
  2220. }
  2221. /*
  2222. * Release all resources used by a slab cache.
  2223. */
  2224. static inline int kmem_cache_close(struct kmem_cache *s)
  2225. {
  2226. int node;
  2227. flush_all(s);
  2228. /* Attempt to free all objects */
  2229. free_kmem_cache_cpus(s);
  2230. for_each_node_state(node, N_NORMAL_MEMORY) {
  2231. struct kmem_cache_node *n = get_node(s, node);
  2232. free_partial(s, n);
  2233. if (n->nr_partial || slabs_node(s, node))
  2234. return 1;
  2235. }
  2236. free_kmem_cache_nodes(s);
  2237. return 0;
  2238. }
  2239. /*
  2240. * Close a cache and release the kmem_cache structure
  2241. * (must be used for caches created using kmem_cache_create)
  2242. */
  2243. void kmem_cache_destroy(struct kmem_cache *s)
  2244. {
  2245. down_write(&slub_lock);
  2246. s->refcount--;
  2247. if (!s->refcount) {
  2248. list_del(&s->list);
  2249. up_write(&slub_lock);
  2250. if (kmem_cache_close(s)) {
  2251. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2252. "still has objects.\n", s->name, __func__);
  2253. dump_stack();
  2254. }
  2255. if (s->flags & SLAB_DESTROY_BY_RCU)
  2256. rcu_barrier();
  2257. sysfs_slab_remove(s);
  2258. } else
  2259. up_write(&slub_lock);
  2260. }
  2261. EXPORT_SYMBOL(kmem_cache_destroy);
  2262. /********************************************************************
  2263. * Kmalloc subsystem
  2264. *******************************************************************/
  2265. struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
  2266. EXPORT_SYMBOL(kmalloc_caches);
  2267. static int __init setup_slub_min_order(char *str)
  2268. {
  2269. get_option(&str, &slub_min_order);
  2270. return 1;
  2271. }
  2272. __setup("slub_min_order=", setup_slub_min_order);
  2273. static int __init setup_slub_max_order(char *str)
  2274. {
  2275. get_option(&str, &slub_max_order);
  2276. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2277. return 1;
  2278. }
  2279. __setup("slub_max_order=", setup_slub_max_order);
  2280. static int __init setup_slub_min_objects(char *str)
  2281. {
  2282. get_option(&str, &slub_min_objects);
  2283. return 1;
  2284. }
  2285. __setup("slub_min_objects=", setup_slub_min_objects);
  2286. static int __init setup_slub_nomerge(char *str)
  2287. {
  2288. slub_nomerge = 1;
  2289. return 1;
  2290. }
  2291. __setup("slub_nomerge", setup_slub_nomerge);
  2292. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2293. const char *name, int size, gfp_t gfp_flags)
  2294. {
  2295. unsigned int flags = 0;
  2296. if (gfp_flags & SLUB_DMA)
  2297. flags = SLAB_CACHE_DMA;
  2298. /*
  2299. * This function is called with IRQs disabled during early-boot on
  2300. * single CPU so there's no need to take slub_lock here.
  2301. */
  2302. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2303. flags, NULL))
  2304. goto panic;
  2305. list_add(&s->list, &slab_caches);
  2306. if (sysfs_slab_add(s))
  2307. goto panic;
  2308. return s;
  2309. panic:
  2310. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2311. }
  2312. #ifdef CONFIG_ZONE_DMA
  2313. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2314. static void sysfs_add_func(struct work_struct *w)
  2315. {
  2316. struct kmem_cache *s;
  2317. down_write(&slub_lock);
  2318. list_for_each_entry(s, &slab_caches, list) {
  2319. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2320. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2321. sysfs_slab_add(s);
  2322. }
  2323. }
  2324. up_write(&slub_lock);
  2325. }
  2326. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2327. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2328. {
  2329. struct kmem_cache *s;
  2330. char *text;
  2331. size_t realsize;
  2332. unsigned long slabflags;
  2333. s = kmalloc_caches_dma[index];
  2334. if (s)
  2335. return s;
  2336. /* Dynamically create dma cache */
  2337. if (flags & __GFP_WAIT)
  2338. down_write(&slub_lock);
  2339. else {
  2340. if (!down_write_trylock(&slub_lock))
  2341. goto out;
  2342. }
  2343. if (kmalloc_caches_dma[index])
  2344. goto unlock_out;
  2345. realsize = kmalloc_caches[index].objsize;
  2346. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2347. (unsigned int)realsize);
  2348. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2349. /*
  2350. * Must defer sysfs creation to a workqueue because we don't know
  2351. * what context we are called from. Before sysfs comes up, we don't
  2352. * need to do anything because our sysfs initcall will start by
  2353. * adding all existing slabs to sysfs.
  2354. */
  2355. slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
  2356. if (slab_state >= SYSFS)
  2357. slabflags |= __SYSFS_ADD_DEFERRED;
  2358. if (!s || !text || !kmem_cache_open(s, flags, text,
  2359. realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
  2360. kfree(s);
  2361. kfree(text);
  2362. goto unlock_out;
  2363. }
  2364. list_add(&s->list, &slab_caches);
  2365. kmalloc_caches_dma[index] = s;
  2366. if (slab_state >= SYSFS)
  2367. schedule_work(&sysfs_add_work);
  2368. unlock_out:
  2369. up_write(&slub_lock);
  2370. out:
  2371. return kmalloc_caches_dma[index];
  2372. }
  2373. #endif
  2374. /*
  2375. * Conversion table for small slabs sizes / 8 to the index in the
  2376. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2377. * of two cache sizes there. The size of larger slabs can be determined using
  2378. * fls.
  2379. */
  2380. static s8 size_index[24] = {
  2381. 3, /* 8 */
  2382. 4, /* 16 */
  2383. 5, /* 24 */
  2384. 5, /* 32 */
  2385. 6, /* 40 */
  2386. 6, /* 48 */
  2387. 6, /* 56 */
  2388. 6, /* 64 */
  2389. 1, /* 72 */
  2390. 1, /* 80 */
  2391. 1, /* 88 */
  2392. 1, /* 96 */
  2393. 7, /* 104 */
  2394. 7, /* 112 */
  2395. 7, /* 120 */
  2396. 7, /* 128 */
  2397. 2, /* 136 */
  2398. 2, /* 144 */
  2399. 2, /* 152 */
  2400. 2, /* 160 */
  2401. 2, /* 168 */
  2402. 2, /* 176 */
  2403. 2, /* 184 */
  2404. 2 /* 192 */
  2405. };
  2406. static inline int size_index_elem(size_t bytes)
  2407. {
  2408. return (bytes - 1) / 8;
  2409. }
  2410. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2411. {
  2412. int index;
  2413. if (size <= 192) {
  2414. if (!size)
  2415. return ZERO_SIZE_PTR;
  2416. index = size_index[size_index_elem(size)];
  2417. } else
  2418. index = fls(size - 1);
  2419. #ifdef CONFIG_ZONE_DMA
  2420. if (unlikely((flags & SLUB_DMA)))
  2421. return dma_kmalloc_cache(index, flags);
  2422. #endif
  2423. return &kmalloc_caches[index];
  2424. }
  2425. void *__kmalloc(size_t size, gfp_t flags)
  2426. {
  2427. struct kmem_cache *s;
  2428. void *ret;
  2429. if (unlikely(size > SLUB_MAX_SIZE))
  2430. return kmalloc_large(size, flags);
  2431. s = get_slab(size, flags);
  2432. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2433. return s;
  2434. ret = slab_alloc(s, flags, -1, _RET_IP_);
  2435. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2436. return ret;
  2437. }
  2438. EXPORT_SYMBOL(__kmalloc);
  2439. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2440. {
  2441. struct page *page;
  2442. void *ptr = NULL;
  2443. flags |= __GFP_COMP | __GFP_NOTRACK;
  2444. page = alloc_pages_node(node, flags, get_order(size));
  2445. if (page)
  2446. ptr = page_address(page);
  2447. kmemleak_alloc(ptr, size, 1, flags);
  2448. return ptr;
  2449. }
  2450. #ifdef CONFIG_NUMA
  2451. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2452. {
  2453. struct kmem_cache *s;
  2454. void *ret;
  2455. if (unlikely(size > SLUB_MAX_SIZE)) {
  2456. ret = kmalloc_large_node(size, flags, node);
  2457. trace_kmalloc_node(_RET_IP_, ret,
  2458. size, PAGE_SIZE << get_order(size),
  2459. flags, node);
  2460. return ret;
  2461. }
  2462. s = get_slab(size, flags);
  2463. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2464. return s;
  2465. ret = slab_alloc(s, flags, node, _RET_IP_);
  2466. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2467. return ret;
  2468. }
  2469. EXPORT_SYMBOL(__kmalloc_node);
  2470. #endif
  2471. size_t ksize(const void *object)
  2472. {
  2473. struct page *page;
  2474. struct kmem_cache *s;
  2475. if (unlikely(object == ZERO_SIZE_PTR))
  2476. return 0;
  2477. page = virt_to_head_page(object);
  2478. if (unlikely(!PageSlab(page))) {
  2479. WARN_ON(!PageCompound(page));
  2480. return PAGE_SIZE << compound_order(page);
  2481. }
  2482. s = page->slab;
  2483. #ifdef CONFIG_SLUB_DEBUG
  2484. /*
  2485. * Debugging requires use of the padding between object
  2486. * and whatever may come after it.
  2487. */
  2488. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2489. return s->objsize;
  2490. #endif
  2491. /*
  2492. * If we have the need to store the freelist pointer
  2493. * back there or track user information then we can
  2494. * only use the space before that information.
  2495. */
  2496. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2497. return s->inuse;
  2498. /*
  2499. * Else we can use all the padding etc for the allocation
  2500. */
  2501. return s->size;
  2502. }
  2503. EXPORT_SYMBOL(ksize);
  2504. void kfree(const void *x)
  2505. {
  2506. struct page *page;
  2507. void *object = (void *)x;
  2508. trace_kfree(_RET_IP_, x);
  2509. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2510. return;
  2511. page = virt_to_head_page(x);
  2512. if (unlikely(!PageSlab(page))) {
  2513. BUG_ON(!PageCompound(page));
  2514. kmemleak_free(x);
  2515. put_page(page);
  2516. return;
  2517. }
  2518. slab_free(page->slab, page, object, _RET_IP_);
  2519. }
  2520. EXPORT_SYMBOL(kfree);
  2521. /*
  2522. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2523. * the remaining slabs by the number of items in use. The slabs with the
  2524. * most items in use come first. New allocations will then fill those up
  2525. * and thus they can be removed from the partial lists.
  2526. *
  2527. * The slabs with the least items are placed last. This results in them
  2528. * being allocated from last increasing the chance that the last objects
  2529. * are freed in them.
  2530. */
  2531. int kmem_cache_shrink(struct kmem_cache *s)
  2532. {
  2533. int node;
  2534. int i;
  2535. struct kmem_cache_node *n;
  2536. struct page *page;
  2537. struct page *t;
  2538. int objects = oo_objects(s->max);
  2539. struct list_head *slabs_by_inuse =
  2540. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2541. unsigned long flags;
  2542. if (!slabs_by_inuse)
  2543. return -ENOMEM;
  2544. flush_all(s);
  2545. for_each_node_state(node, N_NORMAL_MEMORY) {
  2546. n = get_node(s, node);
  2547. if (!n->nr_partial)
  2548. continue;
  2549. for (i = 0; i < objects; i++)
  2550. INIT_LIST_HEAD(slabs_by_inuse + i);
  2551. spin_lock_irqsave(&n->list_lock, flags);
  2552. /*
  2553. * Build lists indexed by the items in use in each slab.
  2554. *
  2555. * Note that concurrent frees may occur while we hold the
  2556. * list_lock. page->inuse here is the upper limit.
  2557. */
  2558. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2559. if (!page->inuse && slab_trylock(page)) {
  2560. /*
  2561. * Must hold slab lock here because slab_free
  2562. * may have freed the last object and be
  2563. * waiting to release the slab.
  2564. */
  2565. list_del(&page->lru);
  2566. n->nr_partial--;
  2567. slab_unlock(page);
  2568. discard_slab(s, page);
  2569. } else {
  2570. list_move(&page->lru,
  2571. slabs_by_inuse + page->inuse);
  2572. }
  2573. }
  2574. /*
  2575. * Rebuild the partial list with the slabs filled up most
  2576. * first and the least used slabs at the end.
  2577. */
  2578. for (i = objects - 1; i >= 0; i--)
  2579. list_splice(slabs_by_inuse + i, n->partial.prev);
  2580. spin_unlock_irqrestore(&n->list_lock, flags);
  2581. }
  2582. kfree(slabs_by_inuse);
  2583. return 0;
  2584. }
  2585. EXPORT_SYMBOL(kmem_cache_shrink);
  2586. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2587. static int slab_mem_going_offline_callback(void *arg)
  2588. {
  2589. struct kmem_cache *s;
  2590. down_read(&slub_lock);
  2591. list_for_each_entry(s, &slab_caches, list)
  2592. kmem_cache_shrink(s);
  2593. up_read(&slub_lock);
  2594. return 0;
  2595. }
  2596. static void slab_mem_offline_callback(void *arg)
  2597. {
  2598. struct kmem_cache_node *n;
  2599. struct kmem_cache *s;
  2600. struct memory_notify *marg = arg;
  2601. int offline_node;
  2602. offline_node = marg->status_change_nid;
  2603. /*
  2604. * If the node still has available memory. we need kmem_cache_node
  2605. * for it yet.
  2606. */
  2607. if (offline_node < 0)
  2608. return;
  2609. down_read(&slub_lock);
  2610. list_for_each_entry(s, &slab_caches, list) {
  2611. n = get_node(s, offline_node);
  2612. if (n) {
  2613. /*
  2614. * if n->nr_slabs > 0, slabs still exist on the node
  2615. * that is going down. We were unable to free them,
  2616. * and offline_pages() function shoudn't call this
  2617. * callback. So, we must fail.
  2618. */
  2619. BUG_ON(slabs_node(s, offline_node));
  2620. s->node[offline_node] = NULL;
  2621. kmem_cache_free(kmalloc_caches, n);
  2622. }
  2623. }
  2624. up_read(&slub_lock);
  2625. }
  2626. static int slab_mem_going_online_callback(void *arg)
  2627. {
  2628. struct kmem_cache_node *n;
  2629. struct kmem_cache *s;
  2630. struct memory_notify *marg = arg;
  2631. int nid = marg->status_change_nid;
  2632. int ret = 0;
  2633. /*
  2634. * If the node's memory is already available, then kmem_cache_node is
  2635. * already created. Nothing to do.
  2636. */
  2637. if (nid < 0)
  2638. return 0;
  2639. /*
  2640. * We are bringing a node online. No memory is available yet. We must
  2641. * allocate a kmem_cache_node structure in order to bring the node
  2642. * online.
  2643. */
  2644. down_read(&slub_lock);
  2645. list_for_each_entry(s, &slab_caches, list) {
  2646. /*
  2647. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2648. * since memory is not yet available from the node that
  2649. * is brought up.
  2650. */
  2651. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2652. if (!n) {
  2653. ret = -ENOMEM;
  2654. goto out;
  2655. }
  2656. init_kmem_cache_node(n, s);
  2657. s->node[nid] = n;
  2658. }
  2659. out:
  2660. up_read(&slub_lock);
  2661. return ret;
  2662. }
  2663. static int slab_memory_callback(struct notifier_block *self,
  2664. unsigned long action, void *arg)
  2665. {
  2666. int ret = 0;
  2667. switch (action) {
  2668. case MEM_GOING_ONLINE:
  2669. ret = slab_mem_going_online_callback(arg);
  2670. break;
  2671. case MEM_GOING_OFFLINE:
  2672. ret = slab_mem_going_offline_callback(arg);
  2673. break;
  2674. case MEM_OFFLINE:
  2675. case MEM_CANCEL_ONLINE:
  2676. slab_mem_offline_callback(arg);
  2677. break;
  2678. case MEM_ONLINE:
  2679. case MEM_CANCEL_OFFLINE:
  2680. break;
  2681. }
  2682. if (ret)
  2683. ret = notifier_from_errno(ret);
  2684. else
  2685. ret = NOTIFY_OK;
  2686. return ret;
  2687. }
  2688. #endif /* CONFIG_MEMORY_HOTPLUG */
  2689. /********************************************************************
  2690. * Basic setup of slabs
  2691. *******************************************************************/
  2692. void __init kmem_cache_init(void)
  2693. {
  2694. int i;
  2695. int caches = 0;
  2696. init_alloc_cpu();
  2697. #ifdef CONFIG_NUMA
  2698. /*
  2699. * Must first have the slab cache available for the allocations of the
  2700. * struct kmem_cache_node's. There is special bootstrap code in
  2701. * kmem_cache_open for slab_state == DOWN.
  2702. */
  2703. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2704. sizeof(struct kmem_cache_node), GFP_NOWAIT);
  2705. kmalloc_caches[0].refcount = -1;
  2706. caches++;
  2707. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2708. #endif
  2709. /* Able to allocate the per node structures */
  2710. slab_state = PARTIAL;
  2711. /* Caches that are not of the two-to-the-power-of size */
  2712. if (KMALLOC_MIN_SIZE <= 32) {
  2713. create_kmalloc_cache(&kmalloc_caches[1],
  2714. "kmalloc-96", 96, GFP_NOWAIT);
  2715. caches++;
  2716. }
  2717. if (KMALLOC_MIN_SIZE <= 64) {
  2718. create_kmalloc_cache(&kmalloc_caches[2],
  2719. "kmalloc-192", 192, GFP_NOWAIT);
  2720. caches++;
  2721. }
  2722. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2723. create_kmalloc_cache(&kmalloc_caches[i],
  2724. "kmalloc", 1 << i, GFP_NOWAIT);
  2725. caches++;
  2726. }
  2727. /*
  2728. * Patch up the size_index table if we have strange large alignment
  2729. * requirements for the kmalloc array. This is only the case for
  2730. * MIPS it seems. The standard arches will not generate any code here.
  2731. *
  2732. * Largest permitted alignment is 256 bytes due to the way we
  2733. * handle the index determination for the smaller caches.
  2734. *
  2735. * Make sure that nothing crazy happens if someone starts tinkering
  2736. * around with ARCH_KMALLOC_MINALIGN
  2737. */
  2738. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2739. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2740. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2741. int elem = size_index_elem(i);
  2742. if (elem >= ARRAY_SIZE(size_index))
  2743. break;
  2744. size_index[elem] = KMALLOC_SHIFT_LOW;
  2745. }
  2746. if (KMALLOC_MIN_SIZE == 64) {
  2747. /*
  2748. * The 96 byte size cache is not used if the alignment
  2749. * is 64 byte.
  2750. */
  2751. for (i = 64 + 8; i <= 96; i += 8)
  2752. size_index[size_index_elem(i)] = 7;
  2753. } else if (KMALLOC_MIN_SIZE == 128) {
  2754. /*
  2755. * The 192 byte sized cache is not used if the alignment
  2756. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2757. * instead.
  2758. */
  2759. for (i = 128 + 8; i <= 192; i += 8)
  2760. size_index[size_index_elem(i)] = 8;
  2761. }
  2762. slab_state = UP;
  2763. /* Provide the correct kmalloc names now that the caches are up */
  2764. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
  2765. kmalloc_caches[i]. name =
  2766. kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2767. #ifdef CONFIG_SMP
  2768. register_cpu_notifier(&slab_notifier);
  2769. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2770. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2771. #else
  2772. kmem_size = sizeof(struct kmem_cache);
  2773. #endif
  2774. printk(KERN_INFO
  2775. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2776. " CPUs=%d, Nodes=%d\n",
  2777. caches, cache_line_size(),
  2778. slub_min_order, slub_max_order, slub_min_objects,
  2779. nr_cpu_ids, nr_node_ids);
  2780. }
  2781. void __init kmem_cache_init_late(void)
  2782. {
  2783. }
  2784. /*
  2785. * Find a mergeable slab cache
  2786. */
  2787. static int slab_unmergeable(struct kmem_cache *s)
  2788. {
  2789. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2790. return 1;
  2791. if (s->ctor)
  2792. return 1;
  2793. /*
  2794. * We may have set a slab to be unmergeable during bootstrap.
  2795. */
  2796. if (s->refcount < 0)
  2797. return 1;
  2798. return 0;
  2799. }
  2800. static struct kmem_cache *find_mergeable(size_t size,
  2801. size_t align, unsigned long flags, const char *name,
  2802. void (*ctor)(void *))
  2803. {
  2804. struct kmem_cache *s;
  2805. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2806. return NULL;
  2807. if (ctor)
  2808. return NULL;
  2809. size = ALIGN(size, sizeof(void *));
  2810. align = calculate_alignment(flags, align, size);
  2811. size = ALIGN(size, align);
  2812. flags = kmem_cache_flags(size, flags, name, NULL);
  2813. list_for_each_entry(s, &slab_caches, list) {
  2814. if (slab_unmergeable(s))
  2815. continue;
  2816. if (size > s->size)
  2817. continue;
  2818. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2819. continue;
  2820. /*
  2821. * Check if alignment is compatible.
  2822. * Courtesy of Adrian Drzewiecki
  2823. */
  2824. if ((s->size & ~(align - 1)) != s->size)
  2825. continue;
  2826. if (s->size - size >= sizeof(void *))
  2827. continue;
  2828. return s;
  2829. }
  2830. return NULL;
  2831. }
  2832. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2833. size_t align, unsigned long flags, void (*ctor)(void *))
  2834. {
  2835. struct kmem_cache *s;
  2836. if (WARN_ON(!name))
  2837. return NULL;
  2838. down_write(&slub_lock);
  2839. s = find_mergeable(size, align, flags, name, ctor);
  2840. if (s) {
  2841. int cpu;
  2842. s->refcount++;
  2843. /*
  2844. * Adjust the object sizes so that we clear
  2845. * the complete object on kzalloc.
  2846. */
  2847. s->objsize = max(s->objsize, (int)size);
  2848. /*
  2849. * And then we need to update the object size in the
  2850. * per cpu structures
  2851. */
  2852. for_each_online_cpu(cpu)
  2853. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2854. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2855. up_write(&slub_lock);
  2856. if (sysfs_slab_alias(s, name)) {
  2857. down_write(&slub_lock);
  2858. s->refcount--;
  2859. up_write(&slub_lock);
  2860. goto err;
  2861. }
  2862. return s;
  2863. }
  2864. s = kmalloc(kmem_size, GFP_KERNEL);
  2865. if (s) {
  2866. if (kmem_cache_open(s, GFP_KERNEL, name,
  2867. size, align, flags, ctor)) {
  2868. list_add(&s->list, &slab_caches);
  2869. up_write(&slub_lock);
  2870. if (sysfs_slab_add(s)) {
  2871. down_write(&slub_lock);
  2872. list_del(&s->list);
  2873. up_write(&slub_lock);
  2874. kfree(s);
  2875. goto err;
  2876. }
  2877. return s;
  2878. }
  2879. kfree(s);
  2880. }
  2881. up_write(&slub_lock);
  2882. err:
  2883. if (flags & SLAB_PANIC)
  2884. panic("Cannot create slabcache %s\n", name);
  2885. else
  2886. s = NULL;
  2887. return s;
  2888. }
  2889. EXPORT_SYMBOL(kmem_cache_create);
  2890. #ifdef CONFIG_SMP
  2891. /*
  2892. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2893. * necessary.
  2894. */
  2895. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2896. unsigned long action, void *hcpu)
  2897. {
  2898. long cpu = (long)hcpu;
  2899. struct kmem_cache *s;
  2900. unsigned long flags;
  2901. switch (action) {
  2902. case CPU_UP_PREPARE:
  2903. case CPU_UP_PREPARE_FROZEN:
  2904. init_alloc_cpu_cpu(cpu);
  2905. down_read(&slub_lock);
  2906. list_for_each_entry(s, &slab_caches, list)
  2907. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2908. GFP_KERNEL);
  2909. up_read(&slub_lock);
  2910. break;
  2911. case CPU_UP_CANCELED:
  2912. case CPU_UP_CANCELED_FROZEN:
  2913. case CPU_DEAD:
  2914. case CPU_DEAD_FROZEN:
  2915. down_read(&slub_lock);
  2916. list_for_each_entry(s, &slab_caches, list) {
  2917. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2918. local_irq_save(flags);
  2919. __flush_cpu_slab(s, cpu);
  2920. local_irq_restore(flags);
  2921. free_kmem_cache_cpu(c, cpu);
  2922. s->cpu_slab[cpu] = NULL;
  2923. }
  2924. up_read(&slub_lock);
  2925. break;
  2926. default:
  2927. break;
  2928. }
  2929. return NOTIFY_OK;
  2930. }
  2931. static struct notifier_block __cpuinitdata slab_notifier = {
  2932. .notifier_call = slab_cpuup_callback
  2933. };
  2934. #endif
  2935. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2936. {
  2937. struct kmem_cache *s;
  2938. void *ret;
  2939. if (unlikely(size > SLUB_MAX_SIZE))
  2940. return kmalloc_large(size, gfpflags);
  2941. s = get_slab(size, gfpflags);
  2942. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2943. return s;
  2944. ret = slab_alloc(s, gfpflags, -1, caller);
  2945. /* Honor the call site pointer we recieved. */
  2946. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2947. return ret;
  2948. }
  2949. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2950. int node, unsigned long caller)
  2951. {
  2952. struct kmem_cache *s;
  2953. void *ret;
  2954. if (unlikely(size > SLUB_MAX_SIZE))
  2955. return kmalloc_large_node(size, gfpflags, node);
  2956. s = get_slab(size, gfpflags);
  2957. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2958. return s;
  2959. ret = slab_alloc(s, gfpflags, node, caller);
  2960. /* Honor the call site pointer we recieved. */
  2961. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2962. return ret;
  2963. }
  2964. #ifdef CONFIG_SLUB_DEBUG
  2965. static int count_inuse(struct page *page)
  2966. {
  2967. return page->inuse;
  2968. }
  2969. static int count_total(struct page *page)
  2970. {
  2971. return page->objects;
  2972. }
  2973. static int validate_slab(struct kmem_cache *s, struct page *page,
  2974. unsigned long *map)
  2975. {
  2976. void *p;
  2977. void *addr = page_address(page);
  2978. if (!check_slab(s, page) ||
  2979. !on_freelist(s, page, NULL))
  2980. return 0;
  2981. /* Now we know that a valid freelist exists */
  2982. bitmap_zero(map, page->objects);
  2983. for_each_free_object(p, s, page->freelist) {
  2984. set_bit(slab_index(p, s, addr), map);
  2985. if (!check_object(s, page, p, 0))
  2986. return 0;
  2987. }
  2988. for_each_object(p, s, addr, page->objects)
  2989. if (!test_bit(slab_index(p, s, addr), map))
  2990. if (!check_object(s, page, p, 1))
  2991. return 0;
  2992. return 1;
  2993. }
  2994. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2995. unsigned long *map)
  2996. {
  2997. if (slab_trylock(page)) {
  2998. validate_slab(s, page, map);
  2999. slab_unlock(page);
  3000. } else
  3001. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  3002. s->name, page);
  3003. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  3004. if (!PageSlubDebug(page))
  3005. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  3006. "on slab 0x%p\n", s->name, page);
  3007. } else {
  3008. if (PageSlubDebug(page))
  3009. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  3010. "slab 0x%p\n", s->name, page);
  3011. }
  3012. }
  3013. static int validate_slab_node(struct kmem_cache *s,
  3014. struct kmem_cache_node *n, unsigned long *map)
  3015. {
  3016. unsigned long count = 0;
  3017. struct page *page;
  3018. unsigned long flags;
  3019. spin_lock_irqsave(&n->list_lock, flags);
  3020. list_for_each_entry(page, &n->partial, lru) {
  3021. validate_slab_slab(s, page, map);
  3022. count++;
  3023. }
  3024. if (count != n->nr_partial)
  3025. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3026. "counter=%ld\n", s->name, count, n->nr_partial);
  3027. if (!(s->flags & SLAB_STORE_USER))
  3028. goto out;
  3029. list_for_each_entry(page, &n->full, lru) {
  3030. validate_slab_slab(s, page, map);
  3031. count++;
  3032. }
  3033. if (count != atomic_long_read(&n->nr_slabs))
  3034. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3035. "counter=%ld\n", s->name, count,
  3036. atomic_long_read(&n->nr_slabs));
  3037. out:
  3038. spin_unlock_irqrestore(&n->list_lock, flags);
  3039. return count;
  3040. }
  3041. static long validate_slab_cache(struct kmem_cache *s)
  3042. {
  3043. int node;
  3044. unsigned long count = 0;
  3045. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3046. sizeof(unsigned long), GFP_KERNEL);
  3047. if (!map)
  3048. return -ENOMEM;
  3049. flush_all(s);
  3050. for_each_node_state(node, N_NORMAL_MEMORY) {
  3051. struct kmem_cache_node *n = get_node(s, node);
  3052. count += validate_slab_node(s, n, map);
  3053. }
  3054. kfree(map);
  3055. return count;
  3056. }
  3057. #ifdef SLUB_RESILIENCY_TEST
  3058. static void resiliency_test(void)
  3059. {
  3060. u8 *p;
  3061. printk(KERN_ERR "SLUB resiliency testing\n");
  3062. printk(KERN_ERR "-----------------------\n");
  3063. printk(KERN_ERR "A. Corruption after allocation\n");
  3064. p = kzalloc(16, GFP_KERNEL);
  3065. p[16] = 0x12;
  3066. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3067. " 0x12->0x%p\n\n", p + 16);
  3068. validate_slab_cache(kmalloc_caches + 4);
  3069. /* Hmmm... The next two are dangerous */
  3070. p = kzalloc(32, GFP_KERNEL);
  3071. p[32 + sizeof(void *)] = 0x34;
  3072. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3073. " 0x34 -> -0x%p\n", p);
  3074. printk(KERN_ERR
  3075. "If allocated object is overwritten then not detectable\n\n");
  3076. validate_slab_cache(kmalloc_caches + 5);
  3077. p = kzalloc(64, GFP_KERNEL);
  3078. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3079. *p = 0x56;
  3080. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3081. p);
  3082. printk(KERN_ERR
  3083. "If allocated object is overwritten then not detectable\n\n");
  3084. validate_slab_cache(kmalloc_caches + 6);
  3085. printk(KERN_ERR "\nB. Corruption after free\n");
  3086. p = kzalloc(128, GFP_KERNEL);
  3087. kfree(p);
  3088. *p = 0x78;
  3089. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3090. validate_slab_cache(kmalloc_caches + 7);
  3091. p = kzalloc(256, GFP_KERNEL);
  3092. kfree(p);
  3093. p[50] = 0x9a;
  3094. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3095. p);
  3096. validate_slab_cache(kmalloc_caches + 8);
  3097. p = kzalloc(512, GFP_KERNEL);
  3098. kfree(p);
  3099. p[512] = 0xab;
  3100. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3101. validate_slab_cache(kmalloc_caches + 9);
  3102. }
  3103. #else
  3104. static void resiliency_test(void) {};
  3105. #endif
  3106. /*
  3107. * Generate lists of code addresses where slabcache objects are allocated
  3108. * and freed.
  3109. */
  3110. struct location {
  3111. unsigned long count;
  3112. unsigned long addr;
  3113. long long sum_time;
  3114. long min_time;
  3115. long max_time;
  3116. long min_pid;
  3117. long max_pid;
  3118. DECLARE_BITMAP(cpus, NR_CPUS);
  3119. nodemask_t nodes;
  3120. };
  3121. struct loc_track {
  3122. unsigned long max;
  3123. unsigned long count;
  3124. struct location *loc;
  3125. };
  3126. static void free_loc_track(struct loc_track *t)
  3127. {
  3128. if (t->max)
  3129. free_pages((unsigned long)t->loc,
  3130. get_order(sizeof(struct location) * t->max));
  3131. }
  3132. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3133. {
  3134. struct location *l;
  3135. int order;
  3136. order = get_order(sizeof(struct location) * max);
  3137. l = (void *)__get_free_pages(flags, order);
  3138. if (!l)
  3139. return 0;
  3140. if (t->count) {
  3141. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3142. free_loc_track(t);
  3143. }
  3144. t->max = max;
  3145. t->loc = l;
  3146. return 1;
  3147. }
  3148. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3149. const struct track *track)
  3150. {
  3151. long start, end, pos;
  3152. struct location *l;
  3153. unsigned long caddr;
  3154. unsigned long age = jiffies - track->when;
  3155. start = -1;
  3156. end = t->count;
  3157. for ( ; ; ) {
  3158. pos = start + (end - start + 1) / 2;
  3159. /*
  3160. * There is nothing at "end". If we end up there
  3161. * we need to add something to before end.
  3162. */
  3163. if (pos == end)
  3164. break;
  3165. caddr = t->loc[pos].addr;
  3166. if (track->addr == caddr) {
  3167. l = &t->loc[pos];
  3168. l->count++;
  3169. if (track->when) {
  3170. l->sum_time += age;
  3171. if (age < l->min_time)
  3172. l->min_time = age;
  3173. if (age > l->max_time)
  3174. l->max_time = age;
  3175. if (track->pid < l->min_pid)
  3176. l->min_pid = track->pid;
  3177. if (track->pid > l->max_pid)
  3178. l->max_pid = track->pid;
  3179. cpumask_set_cpu(track->cpu,
  3180. to_cpumask(l->cpus));
  3181. }
  3182. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3183. return 1;
  3184. }
  3185. if (track->addr < caddr)
  3186. end = pos;
  3187. else
  3188. start = pos;
  3189. }
  3190. /*
  3191. * Not found. Insert new tracking element.
  3192. */
  3193. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3194. return 0;
  3195. l = t->loc + pos;
  3196. if (pos < t->count)
  3197. memmove(l + 1, l,
  3198. (t->count - pos) * sizeof(struct location));
  3199. t->count++;
  3200. l->count = 1;
  3201. l->addr = track->addr;
  3202. l->sum_time = age;
  3203. l->min_time = age;
  3204. l->max_time = age;
  3205. l->min_pid = track->pid;
  3206. l->max_pid = track->pid;
  3207. cpumask_clear(to_cpumask(l->cpus));
  3208. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3209. nodes_clear(l->nodes);
  3210. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3211. return 1;
  3212. }
  3213. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3214. struct page *page, enum track_item alloc)
  3215. {
  3216. void *addr = page_address(page);
  3217. DECLARE_BITMAP(map, page->objects);
  3218. void *p;
  3219. bitmap_zero(map, page->objects);
  3220. for_each_free_object(p, s, page->freelist)
  3221. set_bit(slab_index(p, s, addr), map);
  3222. for_each_object(p, s, addr, page->objects)
  3223. if (!test_bit(slab_index(p, s, addr), map))
  3224. add_location(t, s, get_track(s, p, alloc));
  3225. }
  3226. static int list_locations(struct kmem_cache *s, char *buf,
  3227. enum track_item alloc)
  3228. {
  3229. int len = 0;
  3230. unsigned long i;
  3231. struct loc_track t = { 0, 0, NULL };
  3232. int node;
  3233. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3234. GFP_TEMPORARY))
  3235. return sprintf(buf, "Out of memory\n");
  3236. /* Push back cpu slabs */
  3237. flush_all(s);
  3238. for_each_node_state(node, N_NORMAL_MEMORY) {
  3239. struct kmem_cache_node *n = get_node(s, node);
  3240. unsigned long flags;
  3241. struct page *page;
  3242. if (!atomic_long_read(&n->nr_slabs))
  3243. continue;
  3244. spin_lock_irqsave(&n->list_lock, flags);
  3245. list_for_each_entry(page, &n->partial, lru)
  3246. process_slab(&t, s, page, alloc);
  3247. list_for_each_entry(page, &n->full, lru)
  3248. process_slab(&t, s, page, alloc);
  3249. spin_unlock_irqrestore(&n->list_lock, flags);
  3250. }
  3251. for (i = 0; i < t.count; i++) {
  3252. struct location *l = &t.loc[i];
  3253. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3254. break;
  3255. len += sprintf(buf + len, "%7ld ", l->count);
  3256. if (l->addr)
  3257. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3258. else
  3259. len += sprintf(buf + len, "<not-available>");
  3260. if (l->sum_time != l->min_time) {
  3261. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3262. l->min_time,
  3263. (long)div_u64(l->sum_time, l->count),
  3264. l->max_time);
  3265. } else
  3266. len += sprintf(buf + len, " age=%ld",
  3267. l->min_time);
  3268. if (l->min_pid != l->max_pid)
  3269. len += sprintf(buf + len, " pid=%ld-%ld",
  3270. l->min_pid, l->max_pid);
  3271. else
  3272. len += sprintf(buf + len, " pid=%ld",
  3273. l->min_pid);
  3274. if (num_online_cpus() > 1 &&
  3275. !cpumask_empty(to_cpumask(l->cpus)) &&
  3276. len < PAGE_SIZE - 60) {
  3277. len += sprintf(buf + len, " cpus=");
  3278. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3279. to_cpumask(l->cpus));
  3280. }
  3281. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3282. len < PAGE_SIZE - 60) {
  3283. len += sprintf(buf + len, " nodes=");
  3284. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3285. l->nodes);
  3286. }
  3287. len += sprintf(buf + len, "\n");
  3288. }
  3289. free_loc_track(&t);
  3290. if (!t.count)
  3291. len += sprintf(buf, "No data\n");
  3292. return len;
  3293. }
  3294. enum slab_stat_type {
  3295. SL_ALL, /* All slabs */
  3296. SL_PARTIAL, /* Only partially allocated slabs */
  3297. SL_CPU, /* Only slabs used for cpu caches */
  3298. SL_OBJECTS, /* Determine allocated objects not slabs */
  3299. SL_TOTAL /* Determine object capacity not slabs */
  3300. };
  3301. #define SO_ALL (1 << SL_ALL)
  3302. #define SO_PARTIAL (1 << SL_PARTIAL)
  3303. #define SO_CPU (1 << SL_CPU)
  3304. #define SO_OBJECTS (1 << SL_OBJECTS)
  3305. #define SO_TOTAL (1 << SL_TOTAL)
  3306. static ssize_t show_slab_objects(struct kmem_cache *s,
  3307. char *buf, unsigned long flags)
  3308. {
  3309. unsigned long total = 0;
  3310. int node;
  3311. int x;
  3312. unsigned long *nodes;
  3313. unsigned long *per_cpu;
  3314. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3315. if (!nodes)
  3316. return -ENOMEM;
  3317. per_cpu = nodes + nr_node_ids;
  3318. if (flags & SO_CPU) {
  3319. int cpu;
  3320. for_each_possible_cpu(cpu) {
  3321. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3322. if (!c || c->node < 0)
  3323. continue;
  3324. if (c->page) {
  3325. if (flags & SO_TOTAL)
  3326. x = c->page->objects;
  3327. else if (flags & SO_OBJECTS)
  3328. x = c->page->inuse;
  3329. else
  3330. x = 1;
  3331. total += x;
  3332. nodes[c->node] += x;
  3333. }
  3334. per_cpu[c->node]++;
  3335. }
  3336. }
  3337. if (flags & SO_ALL) {
  3338. for_each_node_state(node, N_NORMAL_MEMORY) {
  3339. struct kmem_cache_node *n = get_node(s, node);
  3340. if (flags & SO_TOTAL)
  3341. x = atomic_long_read(&n->total_objects);
  3342. else if (flags & SO_OBJECTS)
  3343. x = atomic_long_read(&n->total_objects) -
  3344. count_partial(n, count_free);
  3345. else
  3346. x = atomic_long_read(&n->nr_slabs);
  3347. total += x;
  3348. nodes[node] += x;
  3349. }
  3350. } else if (flags & SO_PARTIAL) {
  3351. for_each_node_state(node, N_NORMAL_MEMORY) {
  3352. struct kmem_cache_node *n = get_node(s, node);
  3353. if (flags & SO_TOTAL)
  3354. x = count_partial(n, count_total);
  3355. else if (flags & SO_OBJECTS)
  3356. x = count_partial(n, count_inuse);
  3357. else
  3358. x = n->nr_partial;
  3359. total += x;
  3360. nodes[node] += x;
  3361. }
  3362. }
  3363. x = sprintf(buf, "%lu", total);
  3364. #ifdef CONFIG_NUMA
  3365. for_each_node_state(node, N_NORMAL_MEMORY)
  3366. if (nodes[node])
  3367. x += sprintf(buf + x, " N%d=%lu",
  3368. node, nodes[node]);
  3369. #endif
  3370. kfree(nodes);
  3371. return x + sprintf(buf + x, "\n");
  3372. }
  3373. static int any_slab_objects(struct kmem_cache *s)
  3374. {
  3375. int node;
  3376. for_each_online_node(node) {
  3377. struct kmem_cache_node *n = get_node(s, node);
  3378. if (!n)
  3379. continue;
  3380. if (atomic_long_read(&n->total_objects))
  3381. return 1;
  3382. }
  3383. return 0;
  3384. }
  3385. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3386. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3387. struct slab_attribute {
  3388. struct attribute attr;
  3389. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3390. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3391. };
  3392. #define SLAB_ATTR_RO(_name) \
  3393. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3394. #define SLAB_ATTR(_name) \
  3395. static struct slab_attribute _name##_attr = \
  3396. __ATTR(_name, 0644, _name##_show, _name##_store)
  3397. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3398. {
  3399. return sprintf(buf, "%d\n", s->size);
  3400. }
  3401. SLAB_ATTR_RO(slab_size);
  3402. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3403. {
  3404. return sprintf(buf, "%d\n", s->align);
  3405. }
  3406. SLAB_ATTR_RO(align);
  3407. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3408. {
  3409. return sprintf(buf, "%d\n", s->objsize);
  3410. }
  3411. SLAB_ATTR_RO(object_size);
  3412. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3413. {
  3414. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3415. }
  3416. SLAB_ATTR_RO(objs_per_slab);
  3417. static ssize_t order_store(struct kmem_cache *s,
  3418. const char *buf, size_t length)
  3419. {
  3420. unsigned long order;
  3421. int err;
  3422. err = strict_strtoul(buf, 10, &order);
  3423. if (err)
  3424. return err;
  3425. if (order > slub_max_order || order < slub_min_order)
  3426. return -EINVAL;
  3427. calculate_sizes(s, order);
  3428. return length;
  3429. }
  3430. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3431. {
  3432. return sprintf(buf, "%d\n", oo_order(s->oo));
  3433. }
  3434. SLAB_ATTR(order);
  3435. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3436. {
  3437. return sprintf(buf, "%lu\n", s->min_partial);
  3438. }
  3439. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3440. size_t length)
  3441. {
  3442. unsigned long min;
  3443. int err;
  3444. err = strict_strtoul(buf, 10, &min);
  3445. if (err)
  3446. return err;
  3447. set_min_partial(s, min);
  3448. return length;
  3449. }
  3450. SLAB_ATTR(min_partial);
  3451. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3452. {
  3453. if (s->ctor) {
  3454. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3455. return n + sprintf(buf + n, "\n");
  3456. }
  3457. return 0;
  3458. }
  3459. SLAB_ATTR_RO(ctor);
  3460. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3461. {
  3462. return sprintf(buf, "%d\n", s->refcount - 1);
  3463. }
  3464. SLAB_ATTR_RO(aliases);
  3465. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3466. {
  3467. return show_slab_objects(s, buf, SO_ALL);
  3468. }
  3469. SLAB_ATTR_RO(slabs);
  3470. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3471. {
  3472. return show_slab_objects(s, buf, SO_PARTIAL);
  3473. }
  3474. SLAB_ATTR_RO(partial);
  3475. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3476. {
  3477. return show_slab_objects(s, buf, SO_CPU);
  3478. }
  3479. SLAB_ATTR_RO(cpu_slabs);
  3480. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3481. {
  3482. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3483. }
  3484. SLAB_ATTR_RO(objects);
  3485. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3486. {
  3487. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3488. }
  3489. SLAB_ATTR_RO(objects_partial);
  3490. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3491. {
  3492. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3493. }
  3494. SLAB_ATTR_RO(total_objects);
  3495. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3496. {
  3497. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3498. }
  3499. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3500. const char *buf, size_t length)
  3501. {
  3502. s->flags &= ~SLAB_DEBUG_FREE;
  3503. if (buf[0] == '1')
  3504. s->flags |= SLAB_DEBUG_FREE;
  3505. return length;
  3506. }
  3507. SLAB_ATTR(sanity_checks);
  3508. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3509. {
  3510. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3511. }
  3512. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3513. size_t length)
  3514. {
  3515. s->flags &= ~SLAB_TRACE;
  3516. if (buf[0] == '1')
  3517. s->flags |= SLAB_TRACE;
  3518. return length;
  3519. }
  3520. SLAB_ATTR(trace);
  3521. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3522. {
  3523. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3524. }
  3525. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3526. const char *buf, size_t length)
  3527. {
  3528. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3529. if (buf[0] == '1')
  3530. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3531. return length;
  3532. }
  3533. SLAB_ATTR(reclaim_account);
  3534. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3535. {
  3536. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3537. }
  3538. SLAB_ATTR_RO(hwcache_align);
  3539. #ifdef CONFIG_ZONE_DMA
  3540. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3541. {
  3542. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3543. }
  3544. SLAB_ATTR_RO(cache_dma);
  3545. #endif
  3546. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3547. {
  3548. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3549. }
  3550. SLAB_ATTR_RO(destroy_by_rcu);
  3551. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3552. {
  3553. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3554. }
  3555. static ssize_t red_zone_store(struct kmem_cache *s,
  3556. const char *buf, size_t length)
  3557. {
  3558. if (any_slab_objects(s))
  3559. return -EBUSY;
  3560. s->flags &= ~SLAB_RED_ZONE;
  3561. if (buf[0] == '1')
  3562. s->flags |= SLAB_RED_ZONE;
  3563. calculate_sizes(s, -1);
  3564. return length;
  3565. }
  3566. SLAB_ATTR(red_zone);
  3567. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3568. {
  3569. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3570. }
  3571. static ssize_t poison_store(struct kmem_cache *s,
  3572. const char *buf, size_t length)
  3573. {
  3574. if (any_slab_objects(s))
  3575. return -EBUSY;
  3576. s->flags &= ~SLAB_POISON;
  3577. if (buf[0] == '1')
  3578. s->flags |= SLAB_POISON;
  3579. calculate_sizes(s, -1);
  3580. return length;
  3581. }
  3582. SLAB_ATTR(poison);
  3583. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3584. {
  3585. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3586. }
  3587. static ssize_t store_user_store(struct kmem_cache *s,
  3588. const char *buf, size_t length)
  3589. {
  3590. if (any_slab_objects(s))
  3591. return -EBUSY;
  3592. s->flags &= ~SLAB_STORE_USER;
  3593. if (buf[0] == '1')
  3594. s->flags |= SLAB_STORE_USER;
  3595. calculate_sizes(s, -1);
  3596. return length;
  3597. }
  3598. SLAB_ATTR(store_user);
  3599. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3600. {
  3601. return 0;
  3602. }
  3603. static ssize_t validate_store(struct kmem_cache *s,
  3604. const char *buf, size_t length)
  3605. {
  3606. int ret = -EINVAL;
  3607. if (buf[0] == '1') {
  3608. ret = validate_slab_cache(s);
  3609. if (ret >= 0)
  3610. ret = length;
  3611. }
  3612. return ret;
  3613. }
  3614. SLAB_ATTR(validate);
  3615. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3616. {
  3617. return 0;
  3618. }
  3619. static ssize_t shrink_store(struct kmem_cache *s,
  3620. const char *buf, size_t length)
  3621. {
  3622. if (buf[0] == '1') {
  3623. int rc = kmem_cache_shrink(s);
  3624. if (rc)
  3625. return rc;
  3626. } else
  3627. return -EINVAL;
  3628. return length;
  3629. }
  3630. SLAB_ATTR(shrink);
  3631. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3632. {
  3633. if (!(s->flags & SLAB_STORE_USER))
  3634. return -ENOSYS;
  3635. return list_locations(s, buf, TRACK_ALLOC);
  3636. }
  3637. SLAB_ATTR_RO(alloc_calls);
  3638. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3639. {
  3640. if (!(s->flags & SLAB_STORE_USER))
  3641. return -ENOSYS;
  3642. return list_locations(s, buf, TRACK_FREE);
  3643. }
  3644. SLAB_ATTR_RO(free_calls);
  3645. #ifdef CONFIG_NUMA
  3646. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3647. {
  3648. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3649. }
  3650. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3651. const char *buf, size_t length)
  3652. {
  3653. unsigned long ratio;
  3654. int err;
  3655. err = strict_strtoul(buf, 10, &ratio);
  3656. if (err)
  3657. return err;
  3658. if (ratio <= 100)
  3659. s->remote_node_defrag_ratio = ratio * 10;
  3660. return length;
  3661. }
  3662. SLAB_ATTR(remote_node_defrag_ratio);
  3663. #endif
  3664. #ifdef CONFIG_SLUB_STATS
  3665. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3666. {
  3667. unsigned long sum = 0;
  3668. int cpu;
  3669. int len;
  3670. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3671. if (!data)
  3672. return -ENOMEM;
  3673. for_each_online_cpu(cpu) {
  3674. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3675. data[cpu] = x;
  3676. sum += x;
  3677. }
  3678. len = sprintf(buf, "%lu", sum);
  3679. #ifdef CONFIG_SMP
  3680. for_each_online_cpu(cpu) {
  3681. if (data[cpu] && len < PAGE_SIZE - 20)
  3682. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3683. }
  3684. #endif
  3685. kfree(data);
  3686. return len + sprintf(buf + len, "\n");
  3687. }
  3688. #define STAT_ATTR(si, text) \
  3689. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3690. { \
  3691. return show_stat(s, buf, si); \
  3692. } \
  3693. SLAB_ATTR_RO(text); \
  3694. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3695. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3696. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3697. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3698. STAT_ATTR(FREE_FROZEN, free_frozen);
  3699. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3700. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3701. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3702. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3703. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3704. STAT_ATTR(FREE_SLAB, free_slab);
  3705. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3706. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3707. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3708. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3709. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3710. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3711. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3712. #endif
  3713. static struct attribute *slab_attrs[] = {
  3714. &slab_size_attr.attr,
  3715. &object_size_attr.attr,
  3716. &objs_per_slab_attr.attr,
  3717. &order_attr.attr,
  3718. &min_partial_attr.attr,
  3719. &objects_attr.attr,
  3720. &objects_partial_attr.attr,
  3721. &total_objects_attr.attr,
  3722. &slabs_attr.attr,
  3723. &partial_attr.attr,
  3724. &cpu_slabs_attr.attr,
  3725. &ctor_attr.attr,
  3726. &aliases_attr.attr,
  3727. &align_attr.attr,
  3728. &sanity_checks_attr.attr,
  3729. &trace_attr.attr,
  3730. &hwcache_align_attr.attr,
  3731. &reclaim_account_attr.attr,
  3732. &destroy_by_rcu_attr.attr,
  3733. &red_zone_attr.attr,
  3734. &poison_attr.attr,
  3735. &store_user_attr.attr,
  3736. &validate_attr.attr,
  3737. &shrink_attr.attr,
  3738. &alloc_calls_attr.attr,
  3739. &free_calls_attr.attr,
  3740. #ifdef CONFIG_ZONE_DMA
  3741. &cache_dma_attr.attr,
  3742. #endif
  3743. #ifdef CONFIG_NUMA
  3744. &remote_node_defrag_ratio_attr.attr,
  3745. #endif
  3746. #ifdef CONFIG_SLUB_STATS
  3747. &alloc_fastpath_attr.attr,
  3748. &alloc_slowpath_attr.attr,
  3749. &free_fastpath_attr.attr,
  3750. &free_slowpath_attr.attr,
  3751. &free_frozen_attr.attr,
  3752. &free_add_partial_attr.attr,
  3753. &free_remove_partial_attr.attr,
  3754. &alloc_from_partial_attr.attr,
  3755. &alloc_slab_attr.attr,
  3756. &alloc_refill_attr.attr,
  3757. &free_slab_attr.attr,
  3758. &cpuslab_flush_attr.attr,
  3759. &deactivate_full_attr.attr,
  3760. &deactivate_empty_attr.attr,
  3761. &deactivate_to_head_attr.attr,
  3762. &deactivate_to_tail_attr.attr,
  3763. &deactivate_remote_frees_attr.attr,
  3764. &order_fallback_attr.attr,
  3765. #endif
  3766. NULL
  3767. };
  3768. static struct attribute_group slab_attr_group = {
  3769. .attrs = slab_attrs,
  3770. };
  3771. static ssize_t slab_attr_show(struct kobject *kobj,
  3772. struct attribute *attr,
  3773. char *buf)
  3774. {
  3775. struct slab_attribute *attribute;
  3776. struct kmem_cache *s;
  3777. int err;
  3778. attribute = to_slab_attr(attr);
  3779. s = to_slab(kobj);
  3780. if (!attribute->show)
  3781. return -EIO;
  3782. err = attribute->show(s, buf);
  3783. return err;
  3784. }
  3785. static ssize_t slab_attr_store(struct kobject *kobj,
  3786. struct attribute *attr,
  3787. const char *buf, size_t len)
  3788. {
  3789. struct slab_attribute *attribute;
  3790. struct kmem_cache *s;
  3791. int err;
  3792. attribute = to_slab_attr(attr);
  3793. s = to_slab(kobj);
  3794. if (!attribute->store)
  3795. return -EIO;
  3796. err = attribute->store(s, buf, len);
  3797. return err;
  3798. }
  3799. static void kmem_cache_release(struct kobject *kobj)
  3800. {
  3801. struct kmem_cache *s = to_slab(kobj);
  3802. kfree(s);
  3803. }
  3804. static struct sysfs_ops slab_sysfs_ops = {
  3805. .show = slab_attr_show,
  3806. .store = slab_attr_store,
  3807. };
  3808. static struct kobj_type slab_ktype = {
  3809. .sysfs_ops = &slab_sysfs_ops,
  3810. .release = kmem_cache_release
  3811. };
  3812. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3813. {
  3814. struct kobj_type *ktype = get_ktype(kobj);
  3815. if (ktype == &slab_ktype)
  3816. return 1;
  3817. return 0;
  3818. }
  3819. static struct kset_uevent_ops slab_uevent_ops = {
  3820. .filter = uevent_filter,
  3821. };
  3822. static struct kset *slab_kset;
  3823. #define ID_STR_LENGTH 64
  3824. /* Create a unique string id for a slab cache:
  3825. *
  3826. * Format :[flags-]size
  3827. */
  3828. static char *create_unique_id(struct kmem_cache *s)
  3829. {
  3830. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3831. char *p = name;
  3832. BUG_ON(!name);
  3833. *p++ = ':';
  3834. /*
  3835. * First flags affecting slabcache operations. We will only
  3836. * get here for aliasable slabs so we do not need to support
  3837. * too many flags. The flags here must cover all flags that
  3838. * are matched during merging to guarantee that the id is
  3839. * unique.
  3840. */
  3841. if (s->flags & SLAB_CACHE_DMA)
  3842. *p++ = 'd';
  3843. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3844. *p++ = 'a';
  3845. if (s->flags & SLAB_DEBUG_FREE)
  3846. *p++ = 'F';
  3847. if (!(s->flags & SLAB_NOTRACK))
  3848. *p++ = 't';
  3849. if (p != name + 1)
  3850. *p++ = '-';
  3851. p += sprintf(p, "%07d", s->size);
  3852. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3853. return name;
  3854. }
  3855. static int sysfs_slab_add(struct kmem_cache *s)
  3856. {
  3857. int err;
  3858. const char *name;
  3859. int unmergeable;
  3860. if (slab_state < SYSFS)
  3861. /* Defer until later */
  3862. return 0;
  3863. unmergeable = slab_unmergeable(s);
  3864. if (unmergeable) {
  3865. /*
  3866. * Slabcache can never be merged so we can use the name proper.
  3867. * This is typically the case for debug situations. In that
  3868. * case we can catch duplicate names easily.
  3869. */
  3870. sysfs_remove_link(&slab_kset->kobj, s->name);
  3871. name = s->name;
  3872. } else {
  3873. /*
  3874. * Create a unique name for the slab as a target
  3875. * for the symlinks.
  3876. */
  3877. name = create_unique_id(s);
  3878. }
  3879. s->kobj.kset = slab_kset;
  3880. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3881. if (err) {
  3882. kobject_put(&s->kobj);
  3883. return err;
  3884. }
  3885. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3886. if (err) {
  3887. kobject_del(&s->kobj);
  3888. kobject_put(&s->kobj);
  3889. return err;
  3890. }
  3891. kobject_uevent(&s->kobj, KOBJ_ADD);
  3892. if (!unmergeable) {
  3893. /* Setup first alias */
  3894. sysfs_slab_alias(s, s->name);
  3895. kfree(name);
  3896. }
  3897. return 0;
  3898. }
  3899. static void sysfs_slab_remove(struct kmem_cache *s)
  3900. {
  3901. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3902. kobject_del(&s->kobj);
  3903. kobject_put(&s->kobj);
  3904. }
  3905. /*
  3906. * Need to buffer aliases during bootup until sysfs becomes
  3907. * available lest we lose that information.
  3908. */
  3909. struct saved_alias {
  3910. struct kmem_cache *s;
  3911. const char *name;
  3912. struct saved_alias *next;
  3913. };
  3914. static struct saved_alias *alias_list;
  3915. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3916. {
  3917. struct saved_alias *al;
  3918. if (slab_state == SYSFS) {
  3919. /*
  3920. * If we have a leftover link then remove it.
  3921. */
  3922. sysfs_remove_link(&slab_kset->kobj, name);
  3923. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3924. }
  3925. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3926. if (!al)
  3927. return -ENOMEM;
  3928. al->s = s;
  3929. al->name = name;
  3930. al->next = alias_list;
  3931. alias_list = al;
  3932. return 0;
  3933. }
  3934. static int __init slab_sysfs_init(void)
  3935. {
  3936. struct kmem_cache *s;
  3937. int err;
  3938. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3939. if (!slab_kset) {
  3940. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3941. return -ENOSYS;
  3942. }
  3943. slab_state = SYSFS;
  3944. list_for_each_entry(s, &slab_caches, list) {
  3945. err = sysfs_slab_add(s);
  3946. if (err)
  3947. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3948. " to sysfs\n", s->name);
  3949. }
  3950. while (alias_list) {
  3951. struct saved_alias *al = alias_list;
  3952. alias_list = alias_list->next;
  3953. err = sysfs_slab_alias(al->s, al->name);
  3954. if (err)
  3955. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3956. " %s to sysfs\n", s->name);
  3957. kfree(al);
  3958. }
  3959. resiliency_test();
  3960. return 0;
  3961. }
  3962. __initcall(slab_sysfs_init);
  3963. #endif
  3964. /*
  3965. * The /proc/slabinfo ABI
  3966. */
  3967. #ifdef CONFIG_SLABINFO
  3968. static void print_slabinfo_header(struct seq_file *m)
  3969. {
  3970. seq_puts(m, "slabinfo - version: 2.1\n");
  3971. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3972. "<objperslab> <pagesperslab>");
  3973. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3974. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3975. seq_putc(m, '\n');
  3976. }
  3977. static void *s_start(struct seq_file *m, loff_t *pos)
  3978. {
  3979. loff_t n = *pos;
  3980. down_read(&slub_lock);
  3981. if (!n)
  3982. print_slabinfo_header(m);
  3983. return seq_list_start(&slab_caches, *pos);
  3984. }
  3985. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3986. {
  3987. return seq_list_next(p, &slab_caches, pos);
  3988. }
  3989. static void s_stop(struct seq_file *m, void *p)
  3990. {
  3991. up_read(&slub_lock);
  3992. }
  3993. static int s_show(struct seq_file *m, void *p)
  3994. {
  3995. unsigned long nr_partials = 0;
  3996. unsigned long nr_slabs = 0;
  3997. unsigned long nr_inuse = 0;
  3998. unsigned long nr_objs = 0;
  3999. unsigned long nr_free = 0;
  4000. struct kmem_cache *s;
  4001. int node;
  4002. s = list_entry(p, struct kmem_cache, list);
  4003. for_each_online_node(node) {
  4004. struct kmem_cache_node *n = get_node(s, node);
  4005. if (!n)
  4006. continue;
  4007. nr_partials += n->nr_partial;
  4008. nr_slabs += atomic_long_read(&n->nr_slabs);
  4009. nr_objs += atomic_long_read(&n->total_objects);
  4010. nr_free += count_partial(n, count_free);
  4011. }
  4012. nr_inuse = nr_objs - nr_free;
  4013. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4014. nr_objs, s->size, oo_objects(s->oo),
  4015. (1 << oo_order(s->oo)));
  4016. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4017. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4018. 0UL);
  4019. seq_putc(m, '\n');
  4020. return 0;
  4021. }
  4022. static const struct seq_operations slabinfo_op = {
  4023. .start = s_start,
  4024. .next = s_next,
  4025. .stop = s_stop,
  4026. .show = s_show,
  4027. };
  4028. static int slabinfo_open(struct inode *inode, struct file *file)
  4029. {
  4030. return seq_open(file, &slabinfo_op);
  4031. }
  4032. static const struct file_operations proc_slabinfo_operations = {
  4033. .open = slabinfo_open,
  4034. .read = seq_read,
  4035. .llseek = seq_lseek,
  4036. .release = seq_release,
  4037. };
  4038. static int __init slab_proc_init(void)
  4039. {
  4040. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  4041. return 0;
  4042. }
  4043. module_init(slab_proc_init);
  4044. #endif /* CONFIG_SLABINFO */