mlock.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/mempolicy.h>
  14. #include <linux/syscalls.h>
  15. #include <linux/sched.h>
  16. #include <linux/module.h>
  17. #include <linux/rmap.h>
  18. #include <linux/mmzone.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. int can_do_mlock(void)
  22. {
  23. if (capable(CAP_IPC_LOCK))
  24. return 1;
  25. if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
  26. return 1;
  27. return 0;
  28. }
  29. EXPORT_SYMBOL(can_do_mlock);
  30. /*
  31. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  32. * in vmscan and, possibly, the fault path; and to support semi-accurate
  33. * statistics.
  34. *
  35. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  36. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  37. * The unevictable list is an LRU sibling list to the [in]active lists.
  38. * PageUnevictable is set to indicate the unevictable state.
  39. *
  40. * When lazy mlocking via vmscan, it is important to ensure that the
  41. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  42. * may have mlocked a page that is being munlocked. So lazy mlock must take
  43. * the mmap_sem for read, and verify that the vma really is locked
  44. * (see mm/rmap.c).
  45. */
  46. /*
  47. * LRU accounting for clear_page_mlock()
  48. */
  49. void __clear_page_mlock(struct page *page)
  50. {
  51. VM_BUG_ON(!PageLocked(page));
  52. if (!page->mapping) { /* truncated ? */
  53. return;
  54. }
  55. dec_zone_page_state(page, NR_MLOCK);
  56. count_vm_event(UNEVICTABLE_PGCLEARED);
  57. if (!isolate_lru_page(page)) {
  58. putback_lru_page(page);
  59. } else {
  60. /*
  61. * We lost the race. the page already moved to evictable list.
  62. */
  63. if (PageUnevictable(page))
  64. count_vm_event(UNEVICTABLE_PGSTRANDED);
  65. }
  66. }
  67. /*
  68. * Mark page as mlocked if not already.
  69. * If page on LRU, isolate and putback to move to unevictable list.
  70. */
  71. void mlock_vma_page(struct page *page)
  72. {
  73. BUG_ON(!PageLocked(page));
  74. if (!TestSetPageMlocked(page)) {
  75. inc_zone_page_state(page, NR_MLOCK);
  76. count_vm_event(UNEVICTABLE_PGMLOCKED);
  77. if (!isolate_lru_page(page))
  78. putback_lru_page(page);
  79. }
  80. }
  81. /*
  82. * called from munlock()/munmap() path with page supposedly on the LRU.
  83. *
  84. * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
  85. * [in try_to_munlock()] and then attempt to isolate the page. We must
  86. * isolate the page to keep others from messing with its unevictable
  87. * and mlocked state while trying to munlock. However, we pre-clear the
  88. * mlocked state anyway as we might lose the isolation race and we might
  89. * not get another chance to clear PageMlocked. If we successfully
  90. * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
  91. * mapping the page, it will restore the PageMlocked state, unless the page
  92. * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
  93. * perhaps redundantly.
  94. * If we lose the isolation race, and the page is mapped by other VM_LOCKED
  95. * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
  96. * either of which will restore the PageMlocked state by calling
  97. * mlock_vma_page() above, if it can grab the vma's mmap sem.
  98. */
  99. static void munlock_vma_page(struct page *page)
  100. {
  101. BUG_ON(!PageLocked(page));
  102. if (TestClearPageMlocked(page)) {
  103. dec_zone_page_state(page, NR_MLOCK);
  104. if (!isolate_lru_page(page)) {
  105. int ret = try_to_munlock(page);
  106. /*
  107. * did try_to_unlock() succeed or punt?
  108. */
  109. if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
  110. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  111. putback_lru_page(page);
  112. } else {
  113. /*
  114. * We lost the race. let try_to_unmap() deal
  115. * with it. At least we get the page state and
  116. * mlock stats right. However, page is still on
  117. * the noreclaim list. We'll fix that up when
  118. * the page is eventually freed or we scan the
  119. * noreclaim list.
  120. */
  121. if (PageUnevictable(page))
  122. count_vm_event(UNEVICTABLE_PGSTRANDED);
  123. else
  124. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  125. }
  126. }
  127. }
  128. /**
  129. * __mlock_vma_pages_range() - mlock a range of pages in the vma.
  130. * @vma: target vma
  131. * @start: start address
  132. * @end: end address
  133. *
  134. * This takes care of making the pages present too.
  135. *
  136. * return 0 on success, negative error code on error.
  137. *
  138. * vma->vm_mm->mmap_sem must be held for at least read.
  139. */
  140. static long __mlock_vma_pages_range(struct vm_area_struct *vma,
  141. unsigned long start, unsigned long end)
  142. {
  143. struct mm_struct *mm = vma->vm_mm;
  144. unsigned long addr = start;
  145. struct page *pages[16]; /* 16 gives a reasonable batch */
  146. int nr_pages = (end - start) / PAGE_SIZE;
  147. int ret = 0;
  148. int gup_flags;
  149. VM_BUG_ON(start & ~PAGE_MASK);
  150. VM_BUG_ON(end & ~PAGE_MASK);
  151. VM_BUG_ON(start < vma->vm_start);
  152. VM_BUG_ON(end > vma->vm_end);
  153. VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
  154. gup_flags = FOLL_TOUCH | FOLL_GET;
  155. if (vma->vm_flags & VM_WRITE)
  156. gup_flags |= FOLL_WRITE;
  157. while (nr_pages > 0) {
  158. int i;
  159. cond_resched();
  160. /*
  161. * get_user_pages makes pages present if we are
  162. * setting mlock. and this extra reference count will
  163. * disable migration of this page. However, page may
  164. * still be truncated out from under us.
  165. */
  166. ret = __get_user_pages(current, mm, addr,
  167. min_t(int, nr_pages, ARRAY_SIZE(pages)),
  168. gup_flags, pages, NULL);
  169. /*
  170. * This can happen for, e.g., VM_NONLINEAR regions before
  171. * a page has been allocated and mapped at a given offset,
  172. * or for addresses that map beyond end of a file.
  173. * We'll mlock the pages if/when they get faulted in.
  174. */
  175. if (ret < 0)
  176. break;
  177. lru_add_drain(); /* push cached pages to LRU */
  178. for (i = 0; i < ret; i++) {
  179. struct page *page = pages[i];
  180. if (page->mapping) {
  181. /*
  182. * That preliminary check is mainly to avoid
  183. * the pointless overhead of lock_page on the
  184. * ZERO_PAGE: which might bounce very badly if
  185. * there is contention. However, we're still
  186. * dirtying its cacheline with get/put_page:
  187. * we'll add another __get_user_pages flag to
  188. * avoid it if that case turns out to matter.
  189. */
  190. lock_page(page);
  191. /*
  192. * Because we lock page here and migration is
  193. * blocked by the elevated reference, we need
  194. * only check for file-cache page truncation.
  195. */
  196. if (page->mapping)
  197. mlock_vma_page(page);
  198. unlock_page(page);
  199. }
  200. put_page(page); /* ref from get_user_pages() */
  201. }
  202. addr += ret * PAGE_SIZE;
  203. nr_pages -= ret;
  204. ret = 0;
  205. }
  206. return ret; /* 0 or negative error code */
  207. }
  208. /*
  209. * convert get_user_pages() return value to posix mlock() error
  210. */
  211. static int __mlock_posix_error_return(long retval)
  212. {
  213. if (retval == -EFAULT)
  214. retval = -ENOMEM;
  215. else if (retval == -ENOMEM)
  216. retval = -EAGAIN;
  217. return retval;
  218. }
  219. /**
  220. * mlock_vma_pages_range() - mlock pages in specified vma range.
  221. * @vma - the vma containing the specfied address range
  222. * @start - starting address in @vma to mlock
  223. * @end - end address [+1] in @vma to mlock
  224. *
  225. * For mmap()/mremap()/expansion of mlocked vma.
  226. *
  227. * return 0 on success for "normal" vmas.
  228. *
  229. * return number of pages [> 0] to be removed from locked_vm on success
  230. * of "special" vmas.
  231. */
  232. long mlock_vma_pages_range(struct vm_area_struct *vma,
  233. unsigned long start, unsigned long end)
  234. {
  235. int nr_pages = (end - start) / PAGE_SIZE;
  236. BUG_ON(!(vma->vm_flags & VM_LOCKED));
  237. /*
  238. * filter unlockable vmas
  239. */
  240. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  241. goto no_mlock;
  242. if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
  243. is_vm_hugetlb_page(vma) ||
  244. vma == get_gate_vma(current))) {
  245. __mlock_vma_pages_range(vma, start, end);
  246. /* Hide errors from mmap() and other callers */
  247. return 0;
  248. }
  249. /*
  250. * User mapped kernel pages or huge pages:
  251. * make these pages present to populate the ptes, but
  252. * fall thru' to reset VM_LOCKED--no need to unlock, and
  253. * return nr_pages so these don't get counted against task's
  254. * locked limit. huge pages are already counted against
  255. * locked vm limit.
  256. */
  257. make_pages_present(start, end);
  258. no_mlock:
  259. vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
  260. return nr_pages; /* error or pages NOT mlocked */
  261. }
  262. /*
  263. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  264. * @vma - vma containing range to be munlock()ed.
  265. * @start - start address in @vma of the range
  266. * @end - end of range in @vma.
  267. *
  268. * For mremap(), munmap() and exit().
  269. *
  270. * Called with @vma VM_LOCKED.
  271. *
  272. * Returns with VM_LOCKED cleared. Callers must be prepared to
  273. * deal with this.
  274. *
  275. * We don't save and restore VM_LOCKED here because pages are
  276. * still on lru. In unmap path, pages might be scanned by reclaim
  277. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  278. * free them. This will result in freeing mlocked pages.
  279. */
  280. void munlock_vma_pages_range(struct vm_area_struct *vma,
  281. unsigned long start, unsigned long end)
  282. {
  283. unsigned long addr;
  284. lru_add_drain();
  285. vma->vm_flags &= ~VM_LOCKED;
  286. for (addr = start; addr < end; addr += PAGE_SIZE) {
  287. struct page *page;
  288. /*
  289. * Although FOLL_DUMP is intended for get_dump_page(),
  290. * it just so happens that its special treatment of the
  291. * ZERO_PAGE (returning an error instead of doing get_page)
  292. * suits munlock very well (and if somehow an abnormal page
  293. * has sneaked into the range, we won't oops here: great).
  294. */
  295. page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
  296. if (page && !IS_ERR(page)) {
  297. lock_page(page);
  298. /*
  299. * Like in __mlock_vma_pages_range(),
  300. * because we lock page here and migration is
  301. * blocked by the elevated reference, we need
  302. * only check for file-cache page truncation.
  303. */
  304. if (page->mapping)
  305. munlock_vma_page(page);
  306. unlock_page(page);
  307. put_page(page);
  308. }
  309. cond_resched();
  310. }
  311. }
  312. /*
  313. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  314. *
  315. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  316. * munlock is a no-op. However, for some special vmas, we go ahead and
  317. * populate the ptes via make_pages_present().
  318. *
  319. * For vmas that pass the filters, merge/split as appropriate.
  320. */
  321. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  322. unsigned long start, unsigned long end, unsigned int newflags)
  323. {
  324. struct mm_struct *mm = vma->vm_mm;
  325. pgoff_t pgoff;
  326. int nr_pages;
  327. int ret = 0;
  328. int lock = newflags & VM_LOCKED;
  329. if (newflags == vma->vm_flags ||
  330. (vma->vm_flags & (VM_IO | VM_PFNMAP)))
  331. goto out; /* don't set VM_LOCKED, don't count */
  332. if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
  333. is_vm_hugetlb_page(vma) ||
  334. vma == get_gate_vma(current)) {
  335. if (lock)
  336. make_pages_present(start, end);
  337. goto out; /* don't set VM_LOCKED, don't count */
  338. }
  339. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  340. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  341. vma->vm_file, pgoff, vma_policy(vma));
  342. if (*prev) {
  343. vma = *prev;
  344. goto success;
  345. }
  346. if (start != vma->vm_start) {
  347. ret = split_vma(mm, vma, start, 1);
  348. if (ret)
  349. goto out;
  350. }
  351. if (end != vma->vm_end) {
  352. ret = split_vma(mm, vma, end, 0);
  353. if (ret)
  354. goto out;
  355. }
  356. success:
  357. /*
  358. * Keep track of amount of locked VM.
  359. */
  360. nr_pages = (end - start) >> PAGE_SHIFT;
  361. if (!lock)
  362. nr_pages = -nr_pages;
  363. mm->locked_vm += nr_pages;
  364. /*
  365. * vm_flags is protected by the mmap_sem held in write mode.
  366. * It's okay if try_to_unmap_one unmaps a page just after we
  367. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  368. */
  369. if (lock) {
  370. vma->vm_flags = newflags;
  371. ret = __mlock_vma_pages_range(vma, start, end);
  372. if (ret < 0)
  373. ret = __mlock_posix_error_return(ret);
  374. } else {
  375. munlock_vma_pages_range(vma, start, end);
  376. }
  377. out:
  378. *prev = vma;
  379. return ret;
  380. }
  381. static int do_mlock(unsigned long start, size_t len, int on)
  382. {
  383. unsigned long nstart, end, tmp;
  384. struct vm_area_struct * vma, * prev;
  385. int error;
  386. len = PAGE_ALIGN(len);
  387. end = start + len;
  388. if (end < start)
  389. return -EINVAL;
  390. if (end == start)
  391. return 0;
  392. vma = find_vma_prev(current->mm, start, &prev);
  393. if (!vma || vma->vm_start > start)
  394. return -ENOMEM;
  395. if (start > vma->vm_start)
  396. prev = vma;
  397. for (nstart = start ; ; ) {
  398. unsigned int newflags;
  399. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  400. newflags = vma->vm_flags | VM_LOCKED;
  401. if (!on)
  402. newflags &= ~VM_LOCKED;
  403. tmp = vma->vm_end;
  404. if (tmp > end)
  405. tmp = end;
  406. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  407. if (error)
  408. break;
  409. nstart = tmp;
  410. if (nstart < prev->vm_end)
  411. nstart = prev->vm_end;
  412. if (nstart >= end)
  413. break;
  414. vma = prev->vm_next;
  415. if (!vma || vma->vm_start != nstart) {
  416. error = -ENOMEM;
  417. break;
  418. }
  419. }
  420. return error;
  421. }
  422. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  423. {
  424. unsigned long locked;
  425. unsigned long lock_limit;
  426. int error = -ENOMEM;
  427. if (!can_do_mlock())
  428. return -EPERM;
  429. lru_add_drain_all(); /* flush pagevec */
  430. down_write(&current->mm->mmap_sem);
  431. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  432. start &= PAGE_MASK;
  433. locked = len >> PAGE_SHIFT;
  434. locked += current->mm->locked_vm;
  435. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  436. lock_limit >>= PAGE_SHIFT;
  437. /* check against resource limits */
  438. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  439. error = do_mlock(start, len, 1);
  440. up_write(&current->mm->mmap_sem);
  441. return error;
  442. }
  443. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  444. {
  445. int ret;
  446. down_write(&current->mm->mmap_sem);
  447. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  448. start &= PAGE_MASK;
  449. ret = do_mlock(start, len, 0);
  450. up_write(&current->mm->mmap_sem);
  451. return ret;
  452. }
  453. static int do_mlockall(int flags)
  454. {
  455. struct vm_area_struct * vma, * prev = NULL;
  456. unsigned int def_flags = 0;
  457. if (flags & MCL_FUTURE)
  458. def_flags = VM_LOCKED;
  459. current->mm->def_flags = def_flags;
  460. if (flags == MCL_FUTURE)
  461. goto out;
  462. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  463. unsigned int newflags;
  464. newflags = vma->vm_flags | VM_LOCKED;
  465. if (!(flags & MCL_CURRENT))
  466. newflags &= ~VM_LOCKED;
  467. /* Ignore errors */
  468. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  469. }
  470. out:
  471. return 0;
  472. }
  473. SYSCALL_DEFINE1(mlockall, int, flags)
  474. {
  475. unsigned long lock_limit;
  476. int ret = -EINVAL;
  477. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  478. goto out;
  479. ret = -EPERM;
  480. if (!can_do_mlock())
  481. goto out;
  482. lru_add_drain_all(); /* flush pagevec */
  483. down_write(&current->mm->mmap_sem);
  484. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  485. lock_limit >>= PAGE_SHIFT;
  486. ret = -ENOMEM;
  487. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  488. capable(CAP_IPC_LOCK))
  489. ret = do_mlockall(flags);
  490. up_write(&current->mm->mmap_sem);
  491. out:
  492. return ret;
  493. }
  494. SYSCALL_DEFINE0(munlockall)
  495. {
  496. int ret;
  497. down_write(&current->mm->mmap_sem);
  498. ret = do_mlockall(0);
  499. up_write(&current->mm->mmap_sem);
  500. return ret;
  501. }
  502. /*
  503. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  504. * shm segments) get accounted against the user_struct instead.
  505. */
  506. static DEFINE_SPINLOCK(shmlock_user_lock);
  507. int user_shm_lock(size_t size, struct user_struct *user)
  508. {
  509. unsigned long lock_limit, locked;
  510. int allowed = 0;
  511. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  512. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  513. if (lock_limit == RLIM_INFINITY)
  514. allowed = 1;
  515. lock_limit >>= PAGE_SHIFT;
  516. spin_lock(&shmlock_user_lock);
  517. if (!allowed &&
  518. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  519. goto out;
  520. get_uid(user);
  521. user->locked_shm += locked;
  522. allowed = 1;
  523. out:
  524. spin_unlock(&shmlock_user_lock);
  525. return allowed;
  526. }
  527. void user_shm_unlock(size_t size, struct user_struct *user)
  528. {
  529. spin_lock(&shmlock_user_lock);
  530. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  531. spin_unlock(&shmlock_user_lock);
  532. free_uid(user);
  533. }
  534. int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
  535. size_t size)
  536. {
  537. unsigned long lim, vm, pgsz;
  538. int error = -ENOMEM;
  539. pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
  540. down_write(&mm->mmap_sem);
  541. lim = rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
  542. vm = mm->total_vm + pgsz;
  543. if (lim < vm)
  544. goto out;
  545. lim = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
  546. vm = mm->locked_vm + pgsz;
  547. if (lim < vm)
  548. goto out;
  549. mm->total_vm += pgsz;
  550. mm->locked_vm += pgsz;
  551. error = 0;
  552. out:
  553. up_write(&mm->mmap_sem);
  554. return error;
  555. }
  556. void refund_locked_memory(struct mm_struct *mm, size_t size)
  557. {
  558. unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
  559. down_write(&mm->mmap_sem);
  560. mm->total_vm -= pgsz;
  561. mm->locked_vm -= pgsz;
  562. up_write(&mm->mmap_sem);
  563. }