memory.c 92 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <asm/io.h>
  55. #include <asm/pgalloc.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/tlb.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/pgtable.h>
  60. #include "internal.h"
  61. #ifndef CONFIG_NEED_MULTIPLE_NODES
  62. /* use the per-pgdat data instead for discontigmem - mbligh */
  63. unsigned long max_mapnr;
  64. struct page *mem_map;
  65. EXPORT_SYMBOL(max_mapnr);
  66. EXPORT_SYMBOL(mem_map);
  67. #endif
  68. unsigned long num_physpages;
  69. /*
  70. * A number of key systems in x86 including ioremap() rely on the assumption
  71. * that high_memory defines the upper bound on direct map memory, then end
  72. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  73. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  74. * and ZONE_HIGHMEM.
  75. */
  76. void * high_memory;
  77. EXPORT_SYMBOL(num_physpages);
  78. EXPORT_SYMBOL(high_memory);
  79. /*
  80. * Randomize the address space (stacks, mmaps, brk, etc.).
  81. *
  82. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  83. * as ancient (libc5 based) binaries can segfault. )
  84. */
  85. int randomize_va_space __read_mostly =
  86. #ifdef CONFIG_COMPAT_BRK
  87. 1;
  88. #else
  89. 2;
  90. #endif
  91. static int __init disable_randmaps(char *s)
  92. {
  93. randomize_va_space = 0;
  94. return 1;
  95. }
  96. __setup("norandmaps", disable_randmaps);
  97. unsigned long zero_pfn __read_mostly;
  98. unsigned long highest_memmap_pfn __read_mostly;
  99. /*
  100. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  101. */
  102. static int __init init_zero_pfn(void)
  103. {
  104. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  105. return 0;
  106. }
  107. core_initcall(init_zero_pfn);
  108. /*
  109. * If a p?d_bad entry is found while walking page tables, report
  110. * the error, before resetting entry to p?d_none. Usually (but
  111. * very seldom) called out from the p?d_none_or_clear_bad macros.
  112. */
  113. void pgd_clear_bad(pgd_t *pgd)
  114. {
  115. pgd_ERROR(*pgd);
  116. pgd_clear(pgd);
  117. }
  118. void pud_clear_bad(pud_t *pud)
  119. {
  120. pud_ERROR(*pud);
  121. pud_clear(pud);
  122. }
  123. void pmd_clear_bad(pmd_t *pmd)
  124. {
  125. pmd_ERROR(*pmd);
  126. pmd_clear(pmd);
  127. }
  128. /*
  129. * Note: this doesn't free the actual pages themselves. That
  130. * has been handled earlier when unmapping all the memory regions.
  131. */
  132. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  133. unsigned long addr)
  134. {
  135. pgtable_t token = pmd_pgtable(*pmd);
  136. pmd_clear(pmd);
  137. pte_free_tlb(tlb, token, addr);
  138. tlb->mm->nr_ptes--;
  139. }
  140. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  141. unsigned long addr, unsigned long end,
  142. unsigned long floor, unsigned long ceiling)
  143. {
  144. pmd_t *pmd;
  145. unsigned long next;
  146. unsigned long start;
  147. start = addr;
  148. pmd = pmd_offset(pud, addr);
  149. do {
  150. next = pmd_addr_end(addr, end);
  151. if (pmd_none_or_clear_bad(pmd))
  152. continue;
  153. free_pte_range(tlb, pmd, addr);
  154. } while (pmd++, addr = next, addr != end);
  155. start &= PUD_MASK;
  156. if (start < floor)
  157. return;
  158. if (ceiling) {
  159. ceiling &= PUD_MASK;
  160. if (!ceiling)
  161. return;
  162. }
  163. if (end - 1 > ceiling - 1)
  164. return;
  165. pmd = pmd_offset(pud, start);
  166. pud_clear(pud);
  167. pmd_free_tlb(tlb, pmd, start);
  168. }
  169. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  170. unsigned long addr, unsigned long end,
  171. unsigned long floor, unsigned long ceiling)
  172. {
  173. pud_t *pud;
  174. unsigned long next;
  175. unsigned long start;
  176. start = addr;
  177. pud = pud_offset(pgd, addr);
  178. do {
  179. next = pud_addr_end(addr, end);
  180. if (pud_none_or_clear_bad(pud))
  181. continue;
  182. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  183. } while (pud++, addr = next, addr != end);
  184. start &= PGDIR_MASK;
  185. if (start < floor)
  186. return;
  187. if (ceiling) {
  188. ceiling &= PGDIR_MASK;
  189. if (!ceiling)
  190. return;
  191. }
  192. if (end - 1 > ceiling - 1)
  193. return;
  194. pud = pud_offset(pgd, start);
  195. pgd_clear(pgd);
  196. pud_free_tlb(tlb, pud, start);
  197. }
  198. /*
  199. * This function frees user-level page tables of a process.
  200. *
  201. * Must be called with pagetable lock held.
  202. */
  203. void free_pgd_range(struct mmu_gather *tlb,
  204. unsigned long addr, unsigned long end,
  205. unsigned long floor, unsigned long ceiling)
  206. {
  207. pgd_t *pgd;
  208. unsigned long next;
  209. unsigned long start;
  210. /*
  211. * The next few lines have given us lots of grief...
  212. *
  213. * Why are we testing PMD* at this top level? Because often
  214. * there will be no work to do at all, and we'd prefer not to
  215. * go all the way down to the bottom just to discover that.
  216. *
  217. * Why all these "- 1"s? Because 0 represents both the bottom
  218. * of the address space and the top of it (using -1 for the
  219. * top wouldn't help much: the masks would do the wrong thing).
  220. * The rule is that addr 0 and floor 0 refer to the bottom of
  221. * the address space, but end 0 and ceiling 0 refer to the top
  222. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  223. * that end 0 case should be mythical).
  224. *
  225. * Wherever addr is brought up or ceiling brought down, we must
  226. * be careful to reject "the opposite 0" before it confuses the
  227. * subsequent tests. But what about where end is brought down
  228. * by PMD_SIZE below? no, end can't go down to 0 there.
  229. *
  230. * Whereas we round start (addr) and ceiling down, by different
  231. * masks at different levels, in order to test whether a table
  232. * now has no other vmas using it, so can be freed, we don't
  233. * bother to round floor or end up - the tests don't need that.
  234. */
  235. addr &= PMD_MASK;
  236. if (addr < floor) {
  237. addr += PMD_SIZE;
  238. if (!addr)
  239. return;
  240. }
  241. if (ceiling) {
  242. ceiling &= PMD_MASK;
  243. if (!ceiling)
  244. return;
  245. }
  246. if (end - 1 > ceiling - 1)
  247. end -= PMD_SIZE;
  248. if (addr > end - 1)
  249. return;
  250. start = addr;
  251. pgd = pgd_offset(tlb->mm, addr);
  252. do {
  253. next = pgd_addr_end(addr, end);
  254. if (pgd_none_or_clear_bad(pgd))
  255. continue;
  256. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  257. } while (pgd++, addr = next, addr != end);
  258. }
  259. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  260. unsigned long floor, unsigned long ceiling)
  261. {
  262. while (vma) {
  263. struct vm_area_struct *next = vma->vm_next;
  264. unsigned long addr = vma->vm_start;
  265. /*
  266. * Hide vma from rmap and truncate_pagecache before freeing
  267. * pgtables
  268. */
  269. anon_vma_unlink(vma);
  270. unlink_file_vma(vma);
  271. if (is_vm_hugetlb_page(vma)) {
  272. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  273. floor, next? next->vm_start: ceiling);
  274. } else {
  275. /*
  276. * Optimization: gather nearby vmas into one call down
  277. */
  278. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  279. && !is_vm_hugetlb_page(next)) {
  280. vma = next;
  281. next = vma->vm_next;
  282. anon_vma_unlink(vma);
  283. unlink_file_vma(vma);
  284. }
  285. free_pgd_range(tlb, addr, vma->vm_end,
  286. floor, next? next->vm_start: ceiling);
  287. }
  288. vma = next;
  289. }
  290. }
  291. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  292. {
  293. pgtable_t new = pte_alloc_one(mm, address);
  294. if (!new)
  295. return -ENOMEM;
  296. /*
  297. * Ensure all pte setup (eg. pte page lock and page clearing) are
  298. * visible before the pte is made visible to other CPUs by being
  299. * put into page tables.
  300. *
  301. * The other side of the story is the pointer chasing in the page
  302. * table walking code (when walking the page table without locking;
  303. * ie. most of the time). Fortunately, these data accesses consist
  304. * of a chain of data-dependent loads, meaning most CPUs (alpha
  305. * being the notable exception) will already guarantee loads are
  306. * seen in-order. See the alpha page table accessors for the
  307. * smp_read_barrier_depends() barriers in page table walking code.
  308. */
  309. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  310. spin_lock(&mm->page_table_lock);
  311. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  312. mm->nr_ptes++;
  313. pmd_populate(mm, pmd, new);
  314. new = NULL;
  315. }
  316. spin_unlock(&mm->page_table_lock);
  317. if (new)
  318. pte_free(mm, new);
  319. return 0;
  320. }
  321. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  322. {
  323. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  324. if (!new)
  325. return -ENOMEM;
  326. smp_wmb(); /* See comment in __pte_alloc */
  327. spin_lock(&init_mm.page_table_lock);
  328. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  329. pmd_populate_kernel(&init_mm, pmd, new);
  330. new = NULL;
  331. }
  332. spin_unlock(&init_mm.page_table_lock);
  333. if (new)
  334. pte_free_kernel(&init_mm, new);
  335. return 0;
  336. }
  337. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  338. {
  339. if (file_rss)
  340. add_mm_counter(mm, file_rss, file_rss);
  341. if (anon_rss)
  342. add_mm_counter(mm, anon_rss, anon_rss);
  343. }
  344. /*
  345. * This function is called to print an error when a bad pte
  346. * is found. For example, we might have a PFN-mapped pte in
  347. * a region that doesn't allow it.
  348. *
  349. * The calling function must still handle the error.
  350. */
  351. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  352. pte_t pte, struct page *page)
  353. {
  354. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  355. pud_t *pud = pud_offset(pgd, addr);
  356. pmd_t *pmd = pmd_offset(pud, addr);
  357. struct address_space *mapping;
  358. pgoff_t index;
  359. static unsigned long resume;
  360. static unsigned long nr_shown;
  361. static unsigned long nr_unshown;
  362. /*
  363. * Allow a burst of 60 reports, then keep quiet for that minute;
  364. * or allow a steady drip of one report per second.
  365. */
  366. if (nr_shown == 60) {
  367. if (time_before(jiffies, resume)) {
  368. nr_unshown++;
  369. return;
  370. }
  371. if (nr_unshown) {
  372. printk(KERN_ALERT
  373. "BUG: Bad page map: %lu messages suppressed\n",
  374. nr_unshown);
  375. nr_unshown = 0;
  376. }
  377. nr_shown = 0;
  378. }
  379. if (nr_shown++ == 0)
  380. resume = jiffies + 60 * HZ;
  381. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  382. index = linear_page_index(vma, addr);
  383. printk(KERN_ALERT
  384. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  385. current->comm,
  386. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  387. if (page) {
  388. printk(KERN_ALERT
  389. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  390. page, (void *)page->flags, page_count(page),
  391. page_mapcount(page), page->mapping, page->index);
  392. }
  393. printk(KERN_ALERT
  394. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  395. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  396. /*
  397. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  398. */
  399. if (vma->vm_ops)
  400. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  401. (unsigned long)vma->vm_ops->fault);
  402. if (vma->vm_file && vma->vm_file->f_op)
  403. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  404. (unsigned long)vma->vm_file->f_op->mmap);
  405. dump_stack();
  406. add_taint(TAINT_BAD_PAGE);
  407. }
  408. static inline int is_cow_mapping(unsigned int flags)
  409. {
  410. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  411. }
  412. #ifndef is_zero_pfn
  413. static inline int is_zero_pfn(unsigned long pfn)
  414. {
  415. return pfn == zero_pfn;
  416. }
  417. #endif
  418. #ifndef my_zero_pfn
  419. static inline unsigned long my_zero_pfn(unsigned long addr)
  420. {
  421. return zero_pfn;
  422. }
  423. #endif
  424. /*
  425. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  426. *
  427. * "Special" mappings do not wish to be associated with a "struct page" (either
  428. * it doesn't exist, or it exists but they don't want to touch it). In this
  429. * case, NULL is returned here. "Normal" mappings do have a struct page.
  430. *
  431. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  432. * pte bit, in which case this function is trivial. Secondly, an architecture
  433. * may not have a spare pte bit, which requires a more complicated scheme,
  434. * described below.
  435. *
  436. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  437. * special mapping (even if there are underlying and valid "struct pages").
  438. * COWed pages of a VM_PFNMAP are always normal.
  439. *
  440. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  441. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  442. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  443. * mapping will always honor the rule
  444. *
  445. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  446. *
  447. * And for normal mappings this is false.
  448. *
  449. * This restricts such mappings to be a linear translation from virtual address
  450. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  451. * as the vma is not a COW mapping; in that case, we know that all ptes are
  452. * special (because none can have been COWed).
  453. *
  454. *
  455. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  456. *
  457. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  458. * page" backing, however the difference is that _all_ pages with a struct
  459. * page (that is, those where pfn_valid is true) are refcounted and considered
  460. * normal pages by the VM. The disadvantage is that pages are refcounted
  461. * (which can be slower and simply not an option for some PFNMAP users). The
  462. * advantage is that we don't have to follow the strict linearity rule of
  463. * PFNMAP mappings in order to support COWable mappings.
  464. *
  465. */
  466. #ifdef __HAVE_ARCH_PTE_SPECIAL
  467. # define HAVE_PTE_SPECIAL 1
  468. #else
  469. # define HAVE_PTE_SPECIAL 0
  470. #endif
  471. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  472. pte_t pte)
  473. {
  474. unsigned long pfn = pte_pfn(pte);
  475. if (HAVE_PTE_SPECIAL) {
  476. if (likely(!pte_special(pte)))
  477. goto check_pfn;
  478. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  479. return NULL;
  480. if (!is_zero_pfn(pfn))
  481. print_bad_pte(vma, addr, pte, NULL);
  482. return NULL;
  483. }
  484. /* !HAVE_PTE_SPECIAL case follows: */
  485. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  486. if (vma->vm_flags & VM_MIXEDMAP) {
  487. if (!pfn_valid(pfn))
  488. return NULL;
  489. goto out;
  490. } else {
  491. unsigned long off;
  492. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  493. if (pfn == vma->vm_pgoff + off)
  494. return NULL;
  495. if (!is_cow_mapping(vma->vm_flags))
  496. return NULL;
  497. }
  498. }
  499. if (is_zero_pfn(pfn))
  500. return NULL;
  501. check_pfn:
  502. if (unlikely(pfn > highest_memmap_pfn)) {
  503. print_bad_pte(vma, addr, pte, NULL);
  504. return NULL;
  505. }
  506. /*
  507. * NOTE! We still have PageReserved() pages in the page tables.
  508. * eg. VDSO mappings can cause them to exist.
  509. */
  510. out:
  511. return pfn_to_page(pfn);
  512. }
  513. /*
  514. * copy one vm_area from one task to the other. Assumes the page tables
  515. * already present in the new task to be cleared in the whole range
  516. * covered by this vma.
  517. */
  518. static inline void
  519. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  520. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  521. unsigned long addr, int *rss)
  522. {
  523. unsigned long vm_flags = vma->vm_flags;
  524. pte_t pte = *src_pte;
  525. struct page *page;
  526. /* pte contains position in swap or file, so copy. */
  527. if (unlikely(!pte_present(pte))) {
  528. if (!pte_file(pte)) {
  529. swp_entry_t entry = pte_to_swp_entry(pte);
  530. swap_duplicate(entry);
  531. /* make sure dst_mm is on swapoff's mmlist. */
  532. if (unlikely(list_empty(&dst_mm->mmlist))) {
  533. spin_lock(&mmlist_lock);
  534. if (list_empty(&dst_mm->mmlist))
  535. list_add(&dst_mm->mmlist,
  536. &src_mm->mmlist);
  537. spin_unlock(&mmlist_lock);
  538. }
  539. if (is_write_migration_entry(entry) &&
  540. is_cow_mapping(vm_flags)) {
  541. /*
  542. * COW mappings require pages in both parent
  543. * and child to be set to read.
  544. */
  545. make_migration_entry_read(&entry);
  546. pte = swp_entry_to_pte(entry);
  547. set_pte_at(src_mm, addr, src_pte, pte);
  548. }
  549. }
  550. goto out_set_pte;
  551. }
  552. /*
  553. * If it's a COW mapping, write protect it both
  554. * in the parent and the child
  555. */
  556. if (is_cow_mapping(vm_flags)) {
  557. ptep_set_wrprotect(src_mm, addr, src_pte);
  558. pte = pte_wrprotect(pte);
  559. }
  560. /*
  561. * If it's a shared mapping, mark it clean in
  562. * the child
  563. */
  564. if (vm_flags & VM_SHARED)
  565. pte = pte_mkclean(pte);
  566. pte = pte_mkold(pte);
  567. page = vm_normal_page(vma, addr, pte);
  568. if (page) {
  569. get_page(page);
  570. page_dup_rmap(page);
  571. rss[PageAnon(page)]++;
  572. }
  573. out_set_pte:
  574. set_pte_at(dst_mm, addr, dst_pte, pte);
  575. }
  576. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  577. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  578. unsigned long addr, unsigned long end)
  579. {
  580. pte_t *orig_src_pte, *orig_dst_pte;
  581. pte_t *src_pte, *dst_pte;
  582. spinlock_t *src_ptl, *dst_ptl;
  583. int progress = 0;
  584. int rss[2];
  585. again:
  586. rss[1] = rss[0] = 0;
  587. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  588. if (!dst_pte)
  589. return -ENOMEM;
  590. src_pte = pte_offset_map_nested(src_pmd, addr);
  591. src_ptl = pte_lockptr(src_mm, src_pmd);
  592. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  593. orig_src_pte = src_pte;
  594. orig_dst_pte = dst_pte;
  595. arch_enter_lazy_mmu_mode();
  596. do {
  597. /*
  598. * We are holding two locks at this point - either of them
  599. * could generate latencies in another task on another CPU.
  600. */
  601. if (progress >= 32) {
  602. progress = 0;
  603. if (need_resched() ||
  604. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  605. break;
  606. }
  607. if (pte_none(*src_pte)) {
  608. progress++;
  609. continue;
  610. }
  611. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  612. progress += 8;
  613. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  614. arch_leave_lazy_mmu_mode();
  615. spin_unlock(src_ptl);
  616. pte_unmap_nested(orig_src_pte);
  617. add_mm_rss(dst_mm, rss[0], rss[1]);
  618. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  619. cond_resched();
  620. if (addr != end)
  621. goto again;
  622. return 0;
  623. }
  624. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  625. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  626. unsigned long addr, unsigned long end)
  627. {
  628. pmd_t *src_pmd, *dst_pmd;
  629. unsigned long next;
  630. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  631. if (!dst_pmd)
  632. return -ENOMEM;
  633. src_pmd = pmd_offset(src_pud, addr);
  634. do {
  635. next = pmd_addr_end(addr, end);
  636. if (pmd_none_or_clear_bad(src_pmd))
  637. continue;
  638. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  639. vma, addr, next))
  640. return -ENOMEM;
  641. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  642. return 0;
  643. }
  644. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  645. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  646. unsigned long addr, unsigned long end)
  647. {
  648. pud_t *src_pud, *dst_pud;
  649. unsigned long next;
  650. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  651. if (!dst_pud)
  652. return -ENOMEM;
  653. src_pud = pud_offset(src_pgd, addr);
  654. do {
  655. next = pud_addr_end(addr, end);
  656. if (pud_none_or_clear_bad(src_pud))
  657. continue;
  658. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  659. vma, addr, next))
  660. return -ENOMEM;
  661. } while (dst_pud++, src_pud++, addr = next, addr != end);
  662. return 0;
  663. }
  664. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  665. struct vm_area_struct *vma)
  666. {
  667. pgd_t *src_pgd, *dst_pgd;
  668. unsigned long next;
  669. unsigned long addr = vma->vm_start;
  670. unsigned long end = vma->vm_end;
  671. int ret;
  672. /*
  673. * Don't copy ptes where a page fault will fill them correctly.
  674. * Fork becomes much lighter when there are big shared or private
  675. * readonly mappings. The tradeoff is that copy_page_range is more
  676. * efficient than faulting.
  677. */
  678. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  679. if (!vma->anon_vma)
  680. return 0;
  681. }
  682. if (is_vm_hugetlb_page(vma))
  683. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  684. if (unlikely(is_pfn_mapping(vma))) {
  685. /*
  686. * We do not free on error cases below as remove_vma
  687. * gets called on error from higher level routine
  688. */
  689. ret = track_pfn_vma_copy(vma);
  690. if (ret)
  691. return ret;
  692. }
  693. /*
  694. * We need to invalidate the secondary MMU mappings only when
  695. * there could be a permission downgrade on the ptes of the
  696. * parent mm. And a permission downgrade will only happen if
  697. * is_cow_mapping() returns true.
  698. */
  699. if (is_cow_mapping(vma->vm_flags))
  700. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  701. ret = 0;
  702. dst_pgd = pgd_offset(dst_mm, addr);
  703. src_pgd = pgd_offset(src_mm, addr);
  704. do {
  705. next = pgd_addr_end(addr, end);
  706. if (pgd_none_or_clear_bad(src_pgd))
  707. continue;
  708. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  709. vma, addr, next))) {
  710. ret = -ENOMEM;
  711. break;
  712. }
  713. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  714. if (is_cow_mapping(vma->vm_flags))
  715. mmu_notifier_invalidate_range_end(src_mm,
  716. vma->vm_start, end);
  717. return ret;
  718. }
  719. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  720. struct vm_area_struct *vma, pmd_t *pmd,
  721. unsigned long addr, unsigned long end,
  722. long *zap_work, struct zap_details *details)
  723. {
  724. struct mm_struct *mm = tlb->mm;
  725. pte_t *pte;
  726. spinlock_t *ptl;
  727. int file_rss = 0;
  728. int anon_rss = 0;
  729. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  730. arch_enter_lazy_mmu_mode();
  731. do {
  732. pte_t ptent = *pte;
  733. if (pte_none(ptent)) {
  734. (*zap_work)--;
  735. continue;
  736. }
  737. (*zap_work) -= PAGE_SIZE;
  738. if (pte_present(ptent)) {
  739. struct page *page;
  740. page = vm_normal_page(vma, addr, ptent);
  741. if (unlikely(details) && page) {
  742. /*
  743. * unmap_shared_mapping_pages() wants to
  744. * invalidate cache without truncating:
  745. * unmap shared but keep private pages.
  746. */
  747. if (details->check_mapping &&
  748. details->check_mapping != page->mapping)
  749. continue;
  750. /*
  751. * Each page->index must be checked when
  752. * invalidating or truncating nonlinear.
  753. */
  754. if (details->nonlinear_vma &&
  755. (page->index < details->first_index ||
  756. page->index > details->last_index))
  757. continue;
  758. }
  759. ptent = ptep_get_and_clear_full(mm, addr, pte,
  760. tlb->fullmm);
  761. tlb_remove_tlb_entry(tlb, pte, addr);
  762. if (unlikely(!page))
  763. continue;
  764. if (unlikely(details) && details->nonlinear_vma
  765. && linear_page_index(details->nonlinear_vma,
  766. addr) != page->index)
  767. set_pte_at(mm, addr, pte,
  768. pgoff_to_pte(page->index));
  769. if (PageAnon(page))
  770. anon_rss--;
  771. else {
  772. if (pte_dirty(ptent))
  773. set_page_dirty(page);
  774. if (pte_young(ptent) &&
  775. likely(!VM_SequentialReadHint(vma)))
  776. mark_page_accessed(page);
  777. file_rss--;
  778. }
  779. page_remove_rmap(page);
  780. if (unlikely(page_mapcount(page) < 0))
  781. print_bad_pte(vma, addr, ptent, page);
  782. tlb_remove_page(tlb, page);
  783. continue;
  784. }
  785. /*
  786. * If details->check_mapping, we leave swap entries;
  787. * if details->nonlinear_vma, we leave file entries.
  788. */
  789. if (unlikely(details))
  790. continue;
  791. if (pte_file(ptent)) {
  792. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  793. print_bad_pte(vma, addr, ptent, NULL);
  794. } else if
  795. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  796. print_bad_pte(vma, addr, ptent, NULL);
  797. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  798. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  799. add_mm_rss(mm, file_rss, anon_rss);
  800. arch_leave_lazy_mmu_mode();
  801. pte_unmap_unlock(pte - 1, ptl);
  802. return addr;
  803. }
  804. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  805. struct vm_area_struct *vma, pud_t *pud,
  806. unsigned long addr, unsigned long end,
  807. long *zap_work, struct zap_details *details)
  808. {
  809. pmd_t *pmd;
  810. unsigned long next;
  811. pmd = pmd_offset(pud, addr);
  812. do {
  813. next = pmd_addr_end(addr, end);
  814. if (pmd_none_or_clear_bad(pmd)) {
  815. (*zap_work)--;
  816. continue;
  817. }
  818. next = zap_pte_range(tlb, vma, pmd, addr, next,
  819. zap_work, details);
  820. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  821. return addr;
  822. }
  823. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  824. struct vm_area_struct *vma, pgd_t *pgd,
  825. unsigned long addr, unsigned long end,
  826. long *zap_work, struct zap_details *details)
  827. {
  828. pud_t *pud;
  829. unsigned long next;
  830. pud = pud_offset(pgd, addr);
  831. do {
  832. next = pud_addr_end(addr, end);
  833. if (pud_none_or_clear_bad(pud)) {
  834. (*zap_work)--;
  835. continue;
  836. }
  837. next = zap_pmd_range(tlb, vma, pud, addr, next,
  838. zap_work, details);
  839. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  840. return addr;
  841. }
  842. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  843. struct vm_area_struct *vma,
  844. unsigned long addr, unsigned long end,
  845. long *zap_work, struct zap_details *details)
  846. {
  847. pgd_t *pgd;
  848. unsigned long next;
  849. if (details && !details->check_mapping && !details->nonlinear_vma)
  850. details = NULL;
  851. BUG_ON(addr >= end);
  852. tlb_start_vma(tlb, vma);
  853. pgd = pgd_offset(vma->vm_mm, addr);
  854. do {
  855. next = pgd_addr_end(addr, end);
  856. if (pgd_none_or_clear_bad(pgd)) {
  857. (*zap_work)--;
  858. continue;
  859. }
  860. next = zap_pud_range(tlb, vma, pgd, addr, next,
  861. zap_work, details);
  862. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  863. tlb_end_vma(tlb, vma);
  864. return addr;
  865. }
  866. #ifdef CONFIG_PREEMPT
  867. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  868. #else
  869. /* No preempt: go for improved straight-line efficiency */
  870. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  871. #endif
  872. /**
  873. * unmap_vmas - unmap a range of memory covered by a list of vma's
  874. * @tlbp: address of the caller's struct mmu_gather
  875. * @vma: the starting vma
  876. * @start_addr: virtual address at which to start unmapping
  877. * @end_addr: virtual address at which to end unmapping
  878. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  879. * @details: details of nonlinear truncation or shared cache invalidation
  880. *
  881. * Returns the end address of the unmapping (restart addr if interrupted).
  882. *
  883. * Unmap all pages in the vma list.
  884. *
  885. * We aim to not hold locks for too long (for scheduling latency reasons).
  886. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  887. * return the ending mmu_gather to the caller.
  888. *
  889. * Only addresses between `start' and `end' will be unmapped.
  890. *
  891. * The VMA list must be sorted in ascending virtual address order.
  892. *
  893. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  894. * range after unmap_vmas() returns. So the only responsibility here is to
  895. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  896. * drops the lock and schedules.
  897. */
  898. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  899. struct vm_area_struct *vma, unsigned long start_addr,
  900. unsigned long end_addr, unsigned long *nr_accounted,
  901. struct zap_details *details)
  902. {
  903. long zap_work = ZAP_BLOCK_SIZE;
  904. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  905. int tlb_start_valid = 0;
  906. unsigned long start = start_addr;
  907. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  908. int fullmm = (*tlbp)->fullmm;
  909. struct mm_struct *mm = vma->vm_mm;
  910. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  911. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  912. unsigned long end;
  913. start = max(vma->vm_start, start_addr);
  914. if (start >= vma->vm_end)
  915. continue;
  916. end = min(vma->vm_end, end_addr);
  917. if (end <= vma->vm_start)
  918. continue;
  919. if (vma->vm_flags & VM_ACCOUNT)
  920. *nr_accounted += (end - start) >> PAGE_SHIFT;
  921. if (unlikely(is_pfn_mapping(vma)))
  922. untrack_pfn_vma(vma, 0, 0);
  923. while (start != end) {
  924. if (!tlb_start_valid) {
  925. tlb_start = start;
  926. tlb_start_valid = 1;
  927. }
  928. if (unlikely(is_vm_hugetlb_page(vma))) {
  929. /*
  930. * It is undesirable to test vma->vm_file as it
  931. * should be non-null for valid hugetlb area.
  932. * However, vm_file will be NULL in the error
  933. * cleanup path of do_mmap_pgoff. When
  934. * hugetlbfs ->mmap method fails,
  935. * do_mmap_pgoff() nullifies vma->vm_file
  936. * before calling this function to clean up.
  937. * Since no pte has actually been setup, it is
  938. * safe to do nothing in this case.
  939. */
  940. if (vma->vm_file) {
  941. unmap_hugepage_range(vma, start, end, NULL);
  942. zap_work -= (end - start) /
  943. pages_per_huge_page(hstate_vma(vma));
  944. }
  945. start = end;
  946. } else
  947. start = unmap_page_range(*tlbp, vma,
  948. start, end, &zap_work, details);
  949. if (zap_work > 0) {
  950. BUG_ON(start != end);
  951. break;
  952. }
  953. tlb_finish_mmu(*tlbp, tlb_start, start);
  954. if (need_resched() ||
  955. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  956. if (i_mmap_lock) {
  957. *tlbp = NULL;
  958. goto out;
  959. }
  960. cond_resched();
  961. }
  962. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  963. tlb_start_valid = 0;
  964. zap_work = ZAP_BLOCK_SIZE;
  965. }
  966. }
  967. out:
  968. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  969. return start; /* which is now the end (or restart) address */
  970. }
  971. /**
  972. * zap_page_range - remove user pages in a given range
  973. * @vma: vm_area_struct holding the applicable pages
  974. * @address: starting address of pages to zap
  975. * @size: number of bytes to zap
  976. * @details: details of nonlinear truncation or shared cache invalidation
  977. */
  978. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  979. unsigned long size, struct zap_details *details)
  980. {
  981. struct mm_struct *mm = vma->vm_mm;
  982. struct mmu_gather *tlb;
  983. unsigned long end = address + size;
  984. unsigned long nr_accounted = 0;
  985. lru_add_drain();
  986. tlb = tlb_gather_mmu(mm, 0);
  987. update_hiwater_rss(mm);
  988. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  989. if (tlb)
  990. tlb_finish_mmu(tlb, address, end);
  991. return end;
  992. }
  993. /**
  994. * zap_vma_ptes - remove ptes mapping the vma
  995. * @vma: vm_area_struct holding ptes to be zapped
  996. * @address: starting address of pages to zap
  997. * @size: number of bytes to zap
  998. *
  999. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1000. *
  1001. * The entire address range must be fully contained within the vma.
  1002. *
  1003. * Returns 0 if successful.
  1004. */
  1005. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1006. unsigned long size)
  1007. {
  1008. if (address < vma->vm_start || address + size > vma->vm_end ||
  1009. !(vma->vm_flags & VM_PFNMAP))
  1010. return -1;
  1011. zap_page_range(vma, address, size, NULL);
  1012. return 0;
  1013. }
  1014. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1015. /*
  1016. * Do a quick page-table lookup for a single page.
  1017. */
  1018. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1019. unsigned int flags)
  1020. {
  1021. pgd_t *pgd;
  1022. pud_t *pud;
  1023. pmd_t *pmd;
  1024. pte_t *ptep, pte;
  1025. spinlock_t *ptl;
  1026. struct page *page;
  1027. struct mm_struct *mm = vma->vm_mm;
  1028. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1029. if (!IS_ERR(page)) {
  1030. BUG_ON(flags & FOLL_GET);
  1031. goto out;
  1032. }
  1033. page = NULL;
  1034. pgd = pgd_offset(mm, address);
  1035. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1036. goto no_page_table;
  1037. pud = pud_offset(pgd, address);
  1038. if (pud_none(*pud))
  1039. goto no_page_table;
  1040. if (pud_huge(*pud)) {
  1041. BUG_ON(flags & FOLL_GET);
  1042. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1043. goto out;
  1044. }
  1045. if (unlikely(pud_bad(*pud)))
  1046. goto no_page_table;
  1047. pmd = pmd_offset(pud, address);
  1048. if (pmd_none(*pmd))
  1049. goto no_page_table;
  1050. if (pmd_huge(*pmd)) {
  1051. BUG_ON(flags & FOLL_GET);
  1052. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1053. goto out;
  1054. }
  1055. if (unlikely(pmd_bad(*pmd)))
  1056. goto no_page_table;
  1057. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1058. pte = *ptep;
  1059. if (!pte_present(pte))
  1060. goto no_page;
  1061. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1062. goto unlock;
  1063. page = vm_normal_page(vma, address, pte);
  1064. if (unlikely(!page)) {
  1065. if ((flags & FOLL_DUMP) ||
  1066. !is_zero_pfn(pte_pfn(pte)))
  1067. goto bad_page;
  1068. page = pte_page(pte);
  1069. }
  1070. if (flags & FOLL_GET)
  1071. get_page(page);
  1072. if (flags & FOLL_TOUCH) {
  1073. if ((flags & FOLL_WRITE) &&
  1074. !pte_dirty(pte) && !PageDirty(page))
  1075. set_page_dirty(page);
  1076. /*
  1077. * pte_mkyoung() would be more correct here, but atomic care
  1078. * is needed to avoid losing the dirty bit: it is easier to use
  1079. * mark_page_accessed().
  1080. */
  1081. mark_page_accessed(page);
  1082. }
  1083. unlock:
  1084. pte_unmap_unlock(ptep, ptl);
  1085. out:
  1086. return page;
  1087. bad_page:
  1088. pte_unmap_unlock(ptep, ptl);
  1089. return ERR_PTR(-EFAULT);
  1090. no_page:
  1091. pte_unmap_unlock(ptep, ptl);
  1092. if (!pte_none(pte))
  1093. return page;
  1094. no_page_table:
  1095. /*
  1096. * When core dumping an enormous anonymous area that nobody
  1097. * has touched so far, we don't want to allocate unnecessary pages or
  1098. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1099. * then get_dump_page() will return NULL to leave a hole in the dump.
  1100. * But we can only make this optimization where a hole would surely
  1101. * be zero-filled if handle_mm_fault() actually did handle it.
  1102. */
  1103. if ((flags & FOLL_DUMP) &&
  1104. (!vma->vm_ops || !vma->vm_ops->fault))
  1105. return ERR_PTR(-EFAULT);
  1106. return page;
  1107. }
  1108. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1109. unsigned long start, int nr_pages, unsigned int gup_flags,
  1110. struct page **pages, struct vm_area_struct **vmas)
  1111. {
  1112. int i;
  1113. unsigned long vm_flags;
  1114. if (nr_pages <= 0)
  1115. return 0;
  1116. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1117. /*
  1118. * Require read or write permissions.
  1119. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1120. */
  1121. vm_flags = (gup_flags & FOLL_WRITE) ?
  1122. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1123. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1124. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1125. i = 0;
  1126. do {
  1127. struct vm_area_struct *vma;
  1128. vma = find_extend_vma(mm, start);
  1129. if (!vma && in_gate_area(tsk, start)) {
  1130. unsigned long pg = start & PAGE_MASK;
  1131. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1132. pgd_t *pgd;
  1133. pud_t *pud;
  1134. pmd_t *pmd;
  1135. pte_t *pte;
  1136. /* user gate pages are read-only */
  1137. if (gup_flags & FOLL_WRITE)
  1138. return i ? : -EFAULT;
  1139. if (pg > TASK_SIZE)
  1140. pgd = pgd_offset_k(pg);
  1141. else
  1142. pgd = pgd_offset_gate(mm, pg);
  1143. BUG_ON(pgd_none(*pgd));
  1144. pud = pud_offset(pgd, pg);
  1145. BUG_ON(pud_none(*pud));
  1146. pmd = pmd_offset(pud, pg);
  1147. if (pmd_none(*pmd))
  1148. return i ? : -EFAULT;
  1149. pte = pte_offset_map(pmd, pg);
  1150. if (pte_none(*pte)) {
  1151. pte_unmap(pte);
  1152. return i ? : -EFAULT;
  1153. }
  1154. if (pages) {
  1155. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1156. pages[i] = page;
  1157. if (page)
  1158. get_page(page);
  1159. }
  1160. pte_unmap(pte);
  1161. if (vmas)
  1162. vmas[i] = gate_vma;
  1163. i++;
  1164. start += PAGE_SIZE;
  1165. nr_pages--;
  1166. continue;
  1167. }
  1168. if (!vma ||
  1169. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1170. !(vm_flags & vma->vm_flags))
  1171. return i ? : -EFAULT;
  1172. if (is_vm_hugetlb_page(vma)) {
  1173. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1174. &start, &nr_pages, i, gup_flags);
  1175. continue;
  1176. }
  1177. do {
  1178. struct page *page;
  1179. unsigned int foll_flags = gup_flags;
  1180. /*
  1181. * If we have a pending SIGKILL, don't keep faulting
  1182. * pages and potentially allocating memory.
  1183. */
  1184. if (unlikely(fatal_signal_pending(current)))
  1185. return i ? i : -ERESTARTSYS;
  1186. cond_resched();
  1187. while (!(page = follow_page(vma, start, foll_flags))) {
  1188. int ret;
  1189. ret = handle_mm_fault(mm, vma, start,
  1190. (foll_flags & FOLL_WRITE) ?
  1191. FAULT_FLAG_WRITE : 0);
  1192. if (ret & VM_FAULT_ERROR) {
  1193. if (ret & VM_FAULT_OOM)
  1194. return i ? i : -ENOMEM;
  1195. if (ret &
  1196. (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
  1197. return i ? i : -EFAULT;
  1198. BUG();
  1199. }
  1200. if (ret & VM_FAULT_MAJOR)
  1201. tsk->maj_flt++;
  1202. else
  1203. tsk->min_flt++;
  1204. /*
  1205. * The VM_FAULT_WRITE bit tells us that
  1206. * do_wp_page has broken COW when necessary,
  1207. * even if maybe_mkwrite decided not to set
  1208. * pte_write. We can thus safely do subsequent
  1209. * page lookups as if they were reads. But only
  1210. * do so when looping for pte_write is futile:
  1211. * in some cases userspace may also be wanting
  1212. * to write to the gotten user page, which a
  1213. * read fault here might prevent (a readonly
  1214. * page might get reCOWed by userspace write).
  1215. */
  1216. if ((ret & VM_FAULT_WRITE) &&
  1217. !(vma->vm_flags & VM_WRITE))
  1218. foll_flags &= ~FOLL_WRITE;
  1219. cond_resched();
  1220. }
  1221. if (IS_ERR(page))
  1222. return i ? i : PTR_ERR(page);
  1223. if (pages) {
  1224. pages[i] = page;
  1225. flush_anon_page(vma, page, start);
  1226. flush_dcache_page(page);
  1227. }
  1228. if (vmas)
  1229. vmas[i] = vma;
  1230. i++;
  1231. start += PAGE_SIZE;
  1232. nr_pages--;
  1233. } while (nr_pages && start < vma->vm_end);
  1234. } while (nr_pages);
  1235. return i;
  1236. }
  1237. /**
  1238. * get_user_pages() - pin user pages in memory
  1239. * @tsk: task_struct of target task
  1240. * @mm: mm_struct of target mm
  1241. * @start: starting user address
  1242. * @nr_pages: number of pages from start to pin
  1243. * @write: whether pages will be written to by the caller
  1244. * @force: whether to force write access even if user mapping is
  1245. * readonly. This will result in the page being COWed even
  1246. * in MAP_SHARED mappings. You do not want this.
  1247. * @pages: array that receives pointers to the pages pinned.
  1248. * Should be at least nr_pages long. Or NULL, if caller
  1249. * only intends to ensure the pages are faulted in.
  1250. * @vmas: array of pointers to vmas corresponding to each page.
  1251. * Or NULL if the caller does not require them.
  1252. *
  1253. * Returns number of pages pinned. This may be fewer than the number
  1254. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1255. * were pinned, returns -errno. Each page returned must be released
  1256. * with a put_page() call when it is finished with. vmas will only
  1257. * remain valid while mmap_sem is held.
  1258. *
  1259. * Must be called with mmap_sem held for read or write.
  1260. *
  1261. * get_user_pages walks a process's page tables and takes a reference to
  1262. * each struct page that each user address corresponds to at a given
  1263. * instant. That is, it takes the page that would be accessed if a user
  1264. * thread accesses the given user virtual address at that instant.
  1265. *
  1266. * This does not guarantee that the page exists in the user mappings when
  1267. * get_user_pages returns, and there may even be a completely different
  1268. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1269. * and subsequently re faulted). However it does guarantee that the page
  1270. * won't be freed completely. And mostly callers simply care that the page
  1271. * contains data that was valid *at some point in time*. Typically, an IO
  1272. * or similar operation cannot guarantee anything stronger anyway because
  1273. * locks can't be held over the syscall boundary.
  1274. *
  1275. * If write=0, the page must not be written to. If the page is written to,
  1276. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1277. * after the page is finished with, and before put_page is called.
  1278. *
  1279. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1280. * handle on the memory by some means other than accesses via the user virtual
  1281. * addresses. The pages may be submitted for DMA to devices or accessed via
  1282. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1283. * use the correct cache flushing APIs.
  1284. *
  1285. * See also get_user_pages_fast, for performance critical applications.
  1286. */
  1287. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1288. unsigned long start, int nr_pages, int write, int force,
  1289. struct page **pages, struct vm_area_struct **vmas)
  1290. {
  1291. int flags = FOLL_TOUCH;
  1292. if (pages)
  1293. flags |= FOLL_GET;
  1294. if (write)
  1295. flags |= FOLL_WRITE;
  1296. if (force)
  1297. flags |= FOLL_FORCE;
  1298. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1299. }
  1300. EXPORT_SYMBOL(get_user_pages);
  1301. /**
  1302. * get_dump_page() - pin user page in memory while writing it to core dump
  1303. * @addr: user address
  1304. *
  1305. * Returns struct page pointer of user page pinned for dump,
  1306. * to be freed afterwards by page_cache_release() or put_page().
  1307. *
  1308. * Returns NULL on any kind of failure - a hole must then be inserted into
  1309. * the corefile, to preserve alignment with its headers; and also returns
  1310. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1311. * allowing a hole to be left in the corefile to save diskspace.
  1312. *
  1313. * Called without mmap_sem, but after all other threads have been killed.
  1314. */
  1315. #ifdef CONFIG_ELF_CORE
  1316. struct page *get_dump_page(unsigned long addr)
  1317. {
  1318. struct vm_area_struct *vma;
  1319. struct page *page;
  1320. if (__get_user_pages(current, current->mm, addr, 1,
  1321. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1322. return NULL;
  1323. flush_cache_page(vma, addr, page_to_pfn(page));
  1324. return page;
  1325. }
  1326. #endif /* CONFIG_ELF_CORE */
  1327. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1328. spinlock_t **ptl)
  1329. {
  1330. pgd_t * pgd = pgd_offset(mm, addr);
  1331. pud_t * pud = pud_alloc(mm, pgd, addr);
  1332. if (pud) {
  1333. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1334. if (pmd)
  1335. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1336. }
  1337. return NULL;
  1338. }
  1339. /*
  1340. * This is the old fallback for page remapping.
  1341. *
  1342. * For historical reasons, it only allows reserved pages. Only
  1343. * old drivers should use this, and they needed to mark their
  1344. * pages reserved for the old functions anyway.
  1345. */
  1346. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1347. struct page *page, pgprot_t prot)
  1348. {
  1349. struct mm_struct *mm = vma->vm_mm;
  1350. int retval;
  1351. pte_t *pte;
  1352. spinlock_t *ptl;
  1353. retval = -EINVAL;
  1354. if (PageAnon(page))
  1355. goto out;
  1356. retval = -ENOMEM;
  1357. flush_dcache_page(page);
  1358. pte = get_locked_pte(mm, addr, &ptl);
  1359. if (!pte)
  1360. goto out;
  1361. retval = -EBUSY;
  1362. if (!pte_none(*pte))
  1363. goto out_unlock;
  1364. /* Ok, finally just insert the thing.. */
  1365. get_page(page);
  1366. inc_mm_counter(mm, file_rss);
  1367. page_add_file_rmap(page);
  1368. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1369. retval = 0;
  1370. pte_unmap_unlock(pte, ptl);
  1371. return retval;
  1372. out_unlock:
  1373. pte_unmap_unlock(pte, ptl);
  1374. out:
  1375. return retval;
  1376. }
  1377. /**
  1378. * vm_insert_page - insert single page into user vma
  1379. * @vma: user vma to map to
  1380. * @addr: target user address of this page
  1381. * @page: source kernel page
  1382. *
  1383. * This allows drivers to insert individual pages they've allocated
  1384. * into a user vma.
  1385. *
  1386. * The page has to be a nice clean _individual_ kernel allocation.
  1387. * If you allocate a compound page, you need to have marked it as
  1388. * such (__GFP_COMP), or manually just split the page up yourself
  1389. * (see split_page()).
  1390. *
  1391. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1392. * took an arbitrary page protection parameter. This doesn't allow
  1393. * that. Your vma protection will have to be set up correctly, which
  1394. * means that if you want a shared writable mapping, you'd better
  1395. * ask for a shared writable mapping!
  1396. *
  1397. * The page does not need to be reserved.
  1398. */
  1399. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1400. struct page *page)
  1401. {
  1402. if (addr < vma->vm_start || addr >= vma->vm_end)
  1403. return -EFAULT;
  1404. if (!page_count(page))
  1405. return -EINVAL;
  1406. vma->vm_flags |= VM_INSERTPAGE;
  1407. return insert_page(vma, addr, page, vma->vm_page_prot);
  1408. }
  1409. EXPORT_SYMBOL(vm_insert_page);
  1410. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1411. unsigned long pfn, pgprot_t prot)
  1412. {
  1413. struct mm_struct *mm = vma->vm_mm;
  1414. int retval;
  1415. pte_t *pte, entry;
  1416. spinlock_t *ptl;
  1417. retval = -ENOMEM;
  1418. pte = get_locked_pte(mm, addr, &ptl);
  1419. if (!pte)
  1420. goto out;
  1421. retval = -EBUSY;
  1422. if (!pte_none(*pte))
  1423. goto out_unlock;
  1424. /* Ok, finally just insert the thing.. */
  1425. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1426. set_pte_at(mm, addr, pte, entry);
  1427. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1428. retval = 0;
  1429. out_unlock:
  1430. pte_unmap_unlock(pte, ptl);
  1431. out:
  1432. return retval;
  1433. }
  1434. /**
  1435. * vm_insert_pfn - insert single pfn into user vma
  1436. * @vma: user vma to map to
  1437. * @addr: target user address of this page
  1438. * @pfn: source kernel pfn
  1439. *
  1440. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1441. * they've allocated into a user vma. Same comments apply.
  1442. *
  1443. * This function should only be called from a vm_ops->fault handler, and
  1444. * in that case the handler should return NULL.
  1445. *
  1446. * vma cannot be a COW mapping.
  1447. *
  1448. * As this is called only for pages that do not currently exist, we
  1449. * do not need to flush old virtual caches or the TLB.
  1450. */
  1451. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1452. unsigned long pfn)
  1453. {
  1454. int ret;
  1455. pgprot_t pgprot = vma->vm_page_prot;
  1456. /*
  1457. * Technically, architectures with pte_special can avoid all these
  1458. * restrictions (same for remap_pfn_range). However we would like
  1459. * consistency in testing and feature parity among all, so we should
  1460. * try to keep these invariants in place for everybody.
  1461. */
  1462. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1463. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1464. (VM_PFNMAP|VM_MIXEDMAP));
  1465. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1466. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1467. if (addr < vma->vm_start || addr >= vma->vm_end)
  1468. return -EFAULT;
  1469. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1470. return -EINVAL;
  1471. ret = insert_pfn(vma, addr, pfn, pgprot);
  1472. if (ret)
  1473. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1474. return ret;
  1475. }
  1476. EXPORT_SYMBOL(vm_insert_pfn);
  1477. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1478. unsigned long pfn)
  1479. {
  1480. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1481. if (addr < vma->vm_start || addr >= vma->vm_end)
  1482. return -EFAULT;
  1483. /*
  1484. * If we don't have pte special, then we have to use the pfn_valid()
  1485. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1486. * refcount the page if pfn_valid is true (hence insert_page rather
  1487. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1488. * without pte special, it would there be refcounted as a normal page.
  1489. */
  1490. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1491. struct page *page;
  1492. page = pfn_to_page(pfn);
  1493. return insert_page(vma, addr, page, vma->vm_page_prot);
  1494. }
  1495. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1496. }
  1497. EXPORT_SYMBOL(vm_insert_mixed);
  1498. /*
  1499. * maps a range of physical memory into the requested pages. the old
  1500. * mappings are removed. any references to nonexistent pages results
  1501. * in null mappings (currently treated as "copy-on-access")
  1502. */
  1503. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1504. unsigned long addr, unsigned long end,
  1505. unsigned long pfn, pgprot_t prot)
  1506. {
  1507. pte_t *pte;
  1508. spinlock_t *ptl;
  1509. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1510. if (!pte)
  1511. return -ENOMEM;
  1512. arch_enter_lazy_mmu_mode();
  1513. do {
  1514. BUG_ON(!pte_none(*pte));
  1515. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1516. pfn++;
  1517. } while (pte++, addr += PAGE_SIZE, addr != end);
  1518. arch_leave_lazy_mmu_mode();
  1519. pte_unmap_unlock(pte - 1, ptl);
  1520. return 0;
  1521. }
  1522. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1523. unsigned long addr, unsigned long end,
  1524. unsigned long pfn, pgprot_t prot)
  1525. {
  1526. pmd_t *pmd;
  1527. unsigned long next;
  1528. pfn -= addr >> PAGE_SHIFT;
  1529. pmd = pmd_alloc(mm, pud, addr);
  1530. if (!pmd)
  1531. return -ENOMEM;
  1532. do {
  1533. next = pmd_addr_end(addr, end);
  1534. if (remap_pte_range(mm, pmd, addr, next,
  1535. pfn + (addr >> PAGE_SHIFT), prot))
  1536. return -ENOMEM;
  1537. } while (pmd++, addr = next, addr != end);
  1538. return 0;
  1539. }
  1540. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1541. unsigned long addr, unsigned long end,
  1542. unsigned long pfn, pgprot_t prot)
  1543. {
  1544. pud_t *pud;
  1545. unsigned long next;
  1546. pfn -= addr >> PAGE_SHIFT;
  1547. pud = pud_alloc(mm, pgd, addr);
  1548. if (!pud)
  1549. return -ENOMEM;
  1550. do {
  1551. next = pud_addr_end(addr, end);
  1552. if (remap_pmd_range(mm, pud, addr, next,
  1553. pfn + (addr >> PAGE_SHIFT), prot))
  1554. return -ENOMEM;
  1555. } while (pud++, addr = next, addr != end);
  1556. return 0;
  1557. }
  1558. /**
  1559. * remap_pfn_range - remap kernel memory to userspace
  1560. * @vma: user vma to map to
  1561. * @addr: target user address to start at
  1562. * @pfn: physical address of kernel memory
  1563. * @size: size of map area
  1564. * @prot: page protection flags for this mapping
  1565. *
  1566. * Note: this is only safe if the mm semaphore is held when called.
  1567. */
  1568. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1569. unsigned long pfn, unsigned long size, pgprot_t prot)
  1570. {
  1571. pgd_t *pgd;
  1572. unsigned long next;
  1573. unsigned long end = addr + PAGE_ALIGN(size);
  1574. struct mm_struct *mm = vma->vm_mm;
  1575. int err;
  1576. /*
  1577. * Physically remapped pages are special. Tell the
  1578. * rest of the world about it:
  1579. * VM_IO tells people not to look at these pages
  1580. * (accesses can have side effects).
  1581. * VM_RESERVED is specified all over the place, because
  1582. * in 2.4 it kept swapout's vma scan off this vma; but
  1583. * in 2.6 the LRU scan won't even find its pages, so this
  1584. * flag means no more than count its pages in reserved_vm,
  1585. * and omit it from core dump, even when VM_IO turned off.
  1586. * VM_PFNMAP tells the core MM that the base pages are just
  1587. * raw PFN mappings, and do not have a "struct page" associated
  1588. * with them.
  1589. *
  1590. * There's a horrible special case to handle copy-on-write
  1591. * behaviour that some programs depend on. We mark the "original"
  1592. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1593. */
  1594. if (addr == vma->vm_start && end == vma->vm_end) {
  1595. vma->vm_pgoff = pfn;
  1596. vma->vm_flags |= VM_PFN_AT_MMAP;
  1597. } else if (is_cow_mapping(vma->vm_flags))
  1598. return -EINVAL;
  1599. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1600. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1601. if (err) {
  1602. /*
  1603. * To indicate that track_pfn related cleanup is not
  1604. * needed from higher level routine calling unmap_vmas
  1605. */
  1606. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1607. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1608. return -EINVAL;
  1609. }
  1610. BUG_ON(addr >= end);
  1611. pfn -= addr >> PAGE_SHIFT;
  1612. pgd = pgd_offset(mm, addr);
  1613. flush_cache_range(vma, addr, end);
  1614. do {
  1615. next = pgd_addr_end(addr, end);
  1616. err = remap_pud_range(mm, pgd, addr, next,
  1617. pfn + (addr >> PAGE_SHIFT), prot);
  1618. if (err)
  1619. break;
  1620. } while (pgd++, addr = next, addr != end);
  1621. if (err)
  1622. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1623. return err;
  1624. }
  1625. EXPORT_SYMBOL(remap_pfn_range);
  1626. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1627. unsigned long addr, unsigned long end,
  1628. pte_fn_t fn, void *data)
  1629. {
  1630. pte_t *pte;
  1631. int err;
  1632. pgtable_t token;
  1633. spinlock_t *uninitialized_var(ptl);
  1634. pte = (mm == &init_mm) ?
  1635. pte_alloc_kernel(pmd, addr) :
  1636. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1637. if (!pte)
  1638. return -ENOMEM;
  1639. BUG_ON(pmd_huge(*pmd));
  1640. arch_enter_lazy_mmu_mode();
  1641. token = pmd_pgtable(*pmd);
  1642. do {
  1643. err = fn(pte++, token, addr, data);
  1644. if (err)
  1645. break;
  1646. } while (addr += PAGE_SIZE, addr != end);
  1647. arch_leave_lazy_mmu_mode();
  1648. if (mm != &init_mm)
  1649. pte_unmap_unlock(pte-1, ptl);
  1650. return err;
  1651. }
  1652. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1653. unsigned long addr, unsigned long end,
  1654. pte_fn_t fn, void *data)
  1655. {
  1656. pmd_t *pmd;
  1657. unsigned long next;
  1658. int err;
  1659. BUG_ON(pud_huge(*pud));
  1660. pmd = pmd_alloc(mm, pud, addr);
  1661. if (!pmd)
  1662. return -ENOMEM;
  1663. do {
  1664. next = pmd_addr_end(addr, end);
  1665. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1666. if (err)
  1667. break;
  1668. } while (pmd++, addr = next, addr != end);
  1669. return err;
  1670. }
  1671. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1672. unsigned long addr, unsigned long end,
  1673. pte_fn_t fn, void *data)
  1674. {
  1675. pud_t *pud;
  1676. unsigned long next;
  1677. int err;
  1678. pud = pud_alloc(mm, pgd, addr);
  1679. if (!pud)
  1680. return -ENOMEM;
  1681. do {
  1682. next = pud_addr_end(addr, end);
  1683. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1684. if (err)
  1685. break;
  1686. } while (pud++, addr = next, addr != end);
  1687. return err;
  1688. }
  1689. /*
  1690. * Scan a region of virtual memory, filling in page tables as necessary
  1691. * and calling a provided function on each leaf page table.
  1692. */
  1693. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1694. unsigned long size, pte_fn_t fn, void *data)
  1695. {
  1696. pgd_t *pgd;
  1697. unsigned long next;
  1698. unsigned long start = addr, end = addr + size;
  1699. int err;
  1700. BUG_ON(addr >= end);
  1701. mmu_notifier_invalidate_range_start(mm, start, end);
  1702. pgd = pgd_offset(mm, addr);
  1703. do {
  1704. next = pgd_addr_end(addr, end);
  1705. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1706. if (err)
  1707. break;
  1708. } while (pgd++, addr = next, addr != end);
  1709. mmu_notifier_invalidate_range_end(mm, start, end);
  1710. return err;
  1711. }
  1712. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1713. /*
  1714. * handle_pte_fault chooses page fault handler according to an entry
  1715. * which was read non-atomically. Before making any commitment, on
  1716. * those architectures or configurations (e.g. i386 with PAE) which
  1717. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1718. * must check under lock before unmapping the pte and proceeding
  1719. * (but do_wp_page is only called after already making such a check;
  1720. * and do_anonymous_page and do_no_page can safely check later on).
  1721. */
  1722. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1723. pte_t *page_table, pte_t orig_pte)
  1724. {
  1725. int same = 1;
  1726. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1727. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1728. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1729. spin_lock(ptl);
  1730. same = pte_same(*page_table, orig_pte);
  1731. spin_unlock(ptl);
  1732. }
  1733. #endif
  1734. pte_unmap(page_table);
  1735. return same;
  1736. }
  1737. /*
  1738. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1739. * servicing faults for write access. In the normal case, do always want
  1740. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1741. * that do not have writing enabled, when used by access_process_vm.
  1742. */
  1743. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1744. {
  1745. if (likely(vma->vm_flags & VM_WRITE))
  1746. pte = pte_mkwrite(pte);
  1747. return pte;
  1748. }
  1749. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1750. {
  1751. /*
  1752. * If the source page was a PFN mapping, we don't have
  1753. * a "struct page" for it. We do a best-effort copy by
  1754. * just copying from the original user address. If that
  1755. * fails, we just zero-fill it. Live with it.
  1756. */
  1757. if (unlikely(!src)) {
  1758. void *kaddr = kmap_atomic(dst, KM_USER0);
  1759. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1760. /*
  1761. * This really shouldn't fail, because the page is there
  1762. * in the page tables. But it might just be unreadable,
  1763. * in which case we just give up and fill the result with
  1764. * zeroes.
  1765. */
  1766. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1767. memset(kaddr, 0, PAGE_SIZE);
  1768. kunmap_atomic(kaddr, KM_USER0);
  1769. flush_dcache_page(dst);
  1770. } else
  1771. copy_user_highpage(dst, src, va, vma);
  1772. }
  1773. /*
  1774. * This routine handles present pages, when users try to write
  1775. * to a shared page. It is done by copying the page to a new address
  1776. * and decrementing the shared-page counter for the old page.
  1777. *
  1778. * Note that this routine assumes that the protection checks have been
  1779. * done by the caller (the low-level page fault routine in most cases).
  1780. * Thus we can safely just mark it writable once we've done any necessary
  1781. * COW.
  1782. *
  1783. * We also mark the page dirty at this point even though the page will
  1784. * change only once the write actually happens. This avoids a few races,
  1785. * and potentially makes it more efficient.
  1786. *
  1787. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1788. * but allow concurrent faults), with pte both mapped and locked.
  1789. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1790. */
  1791. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1792. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1793. spinlock_t *ptl, pte_t orig_pte)
  1794. {
  1795. struct page *old_page, *new_page;
  1796. pte_t entry;
  1797. int reuse = 0, ret = 0;
  1798. int page_mkwrite = 0;
  1799. struct page *dirty_page = NULL;
  1800. old_page = vm_normal_page(vma, address, orig_pte);
  1801. if (!old_page) {
  1802. /*
  1803. * VM_MIXEDMAP !pfn_valid() case
  1804. *
  1805. * We should not cow pages in a shared writeable mapping.
  1806. * Just mark the pages writable as we can't do any dirty
  1807. * accounting on raw pfn maps.
  1808. */
  1809. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1810. (VM_WRITE|VM_SHARED))
  1811. goto reuse;
  1812. goto gotten;
  1813. }
  1814. /*
  1815. * Take out anonymous pages first, anonymous shared vmas are
  1816. * not dirty accountable.
  1817. */
  1818. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1819. if (!trylock_page(old_page)) {
  1820. page_cache_get(old_page);
  1821. pte_unmap_unlock(page_table, ptl);
  1822. lock_page(old_page);
  1823. page_table = pte_offset_map_lock(mm, pmd, address,
  1824. &ptl);
  1825. if (!pte_same(*page_table, orig_pte)) {
  1826. unlock_page(old_page);
  1827. page_cache_release(old_page);
  1828. goto unlock;
  1829. }
  1830. page_cache_release(old_page);
  1831. }
  1832. reuse = reuse_swap_page(old_page);
  1833. unlock_page(old_page);
  1834. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1835. (VM_WRITE|VM_SHARED))) {
  1836. /*
  1837. * Only catch write-faults on shared writable pages,
  1838. * read-only shared pages can get COWed by
  1839. * get_user_pages(.write=1, .force=1).
  1840. */
  1841. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1842. struct vm_fault vmf;
  1843. int tmp;
  1844. vmf.virtual_address = (void __user *)(address &
  1845. PAGE_MASK);
  1846. vmf.pgoff = old_page->index;
  1847. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1848. vmf.page = old_page;
  1849. /*
  1850. * Notify the address space that the page is about to
  1851. * become writable so that it can prohibit this or wait
  1852. * for the page to get into an appropriate state.
  1853. *
  1854. * We do this without the lock held, so that it can
  1855. * sleep if it needs to.
  1856. */
  1857. page_cache_get(old_page);
  1858. pte_unmap_unlock(page_table, ptl);
  1859. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1860. if (unlikely(tmp &
  1861. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1862. ret = tmp;
  1863. goto unwritable_page;
  1864. }
  1865. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1866. lock_page(old_page);
  1867. if (!old_page->mapping) {
  1868. ret = 0; /* retry the fault */
  1869. unlock_page(old_page);
  1870. goto unwritable_page;
  1871. }
  1872. } else
  1873. VM_BUG_ON(!PageLocked(old_page));
  1874. /*
  1875. * Since we dropped the lock we need to revalidate
  1876. * the PTE as someone else may have changed it. If
  1877. * they did, we just return, as we can count on the
  1878. * MMU to tell us if they didn't also make it writable.
  1879. */
  1880. page_table = pte_offset_map_lock(mm, pmd, address,
  1881. &ptl);
  1882. if (!pte_same(*page_table, orig_pte)) {
  1883. unlock_page(old_page);
  1884. page_cache_release(old_page);
  1885. goto unlock;
  1886. }
  1887. page_mkwrite = 1;
  1888. }
  1889. dirty_page = old_page;
  1890. get_page(dirty_page);
  1891. reuse = 1;
  1892. }
  1893. if (reuse) {
  1894. reuse:
  1895. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1896. entry = pte_mkyoung(orig_pte);
  1897. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1898. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1899. update_mmu_cache(vma, address, entry);
  1900. ret |= VM_FAULT_WRITE;
  1901. goto unlock;
  1902. }
  1903. /*
  1904. * Ok, we need to copy. Oh, well..
  1905. */
  1906. page_cache_get(old_page);
  1907. gotten:
  1908. pte_unmap_unlock(page_table, ptl);
  1909. if (unlikely(anon_vma_prepare(vma)))
  1910. goto oom;
  1911. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1912. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1913. if (!new_page)
  1914. goto oom;
  1915. } else {
  1916. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1917. if (!new_page)
  1918. goto oom;
  1919. cow_user_page(new_page, old_page, address, vma);
  1920. }
  1921. __SetPageUptodate(new_page);
  1922. /*
  1923. * Don't let another task, with possibly unlocked vma,
  1924. * keep the mlocked page.
  1925. */
  1926. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1927. lock_page(old_page); /* for LRU manipulation */
  1928. clear_page_mlock(old_page);
  1929. unlock_page(old_page);
  1930. }
  1931. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1932. goto oom_free_new;
  1933. /*
  1934. * Re-check the pte - we dropped the lock
  1935. */
  1936. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1937. if (likely(pte_same(*page_table, orig_pte))) {
  1938. if (old_page) {
  1939. if (!PageAnon(old_page)) {
  1940. dec_mm_counter(mm, file_rss);
  1941. inc_mm_counter(mm, anon_rss);
  1942. }
  1943. } else
  1944. inc_mm_counter(mm, anon_rss);
  1945. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1946. entry = mk_pte(new_page, vma->vm_page_prot);
  1947. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1948. /*
  1949. * Clear the pte entry and flush it first, before updating the
  1950. * pte with the new entry. This will avoid a race condition
  1951. * seen in the presence of one thread doing SMC and another
  1952. * thread doing COW.
  1953. */
  1954. ptep_clear_flush(vma, address, page_table);
  1955. page_add_new_anon_rmap(new_page, vma, address);
  1956. /*
  1957. * We call the notify macro here because, when using secondary
  1958. * mmu page tables (such as kvm shadow page tables), we want the
  1959. * new page to be mapped directly into the secondary page table.
  1960. */
  1961. set_pte_at_notify(mm, address, page_table, entry);
  1962. update_mmu_cache(vma, address, entry);
  1963. if (old_page) {
  1964. /*
  1965. * Only after switching the pte to the new page may
  1966. * we remove the mapcount here. Otherwise another
  1967. * process may come and find the rmap count decremented
  1968. * before the pte is switched to the new page, and
  1969. * "reuse" the old page writing into it while our pte
  1970. * here still points into it and can be read by other
  1971. * threads.
  1972. *
  1973. * The critical issue is to order this
  1974. * page_remove_rmap with the ptp_clear_flush above.
  1975. * Those stores are ordered by (if nothing else,)
  1976. * the barrier present in the atomic_add_negative
  1977. * in page_remove_rmap.
  1978. *
  1979. * Then the TLB flush in ptep_clear_flush ensures that
  1980. * no process can access the old page before the
  1981. * decremented mapcount is visible. And the old page
  1982. * cannot be reused until after the decremented
  1983. * mapcount is visible. So transitively, TLBs to
  1984. * old page will be flushed before it can be reused.
  1985. */
  1986. page_remove_rmap(old_page);
  1987. }
  1988. /* Free the old page.. */
  1989. new_page = old_page;
  1990. ret |= VM_FAULT_WRITE;
  1991. } else
  1992. mem_cgroup_uncharge_page(new_page);
  1993. if (new_page)
  1994. page_cache_release(new_page);
  1995. if (old_page)
  1996. page_cache_release(old_page);
  1997. unlock:
  1998. pte_unmap_unlock(page_table, ptl);
  1999. if (dirty_page) {
  2000. /*
  2001. * Yes, Virginia, this is actually required to prevent a race
  2002. * with clear_page_dirty_for_io() from clearing the page dirty
  2003. * bit after it clear all dirty ptes, but before a racing
  2004. * do_wp_page installs a dirty pte.
  2005. *
  2006. * do_no_page is protected similarly.
  2007. */
  2008. if (!page_mkwrite) {
  2009. wait_on_page_locked(dirty_page);
  2010. set_page_dirty_balance(dirty_page, page_mkwrite);
  2011. }
  2012. put_page(dirty_page);
  2013. if (page_mkwrite) {
  2014. struct address_space *mapping = dirty_page->mapping;
  2015. set_page_dirty(dirty_page);
  2016. unlock_page(dirty_page);
  2017. page_cache_release(dirty_page);
  2018. if (mapping) {
  2019. /*
  2020. * Some device drivers do not set page.mapping
  2021. * but still dirty their pages
  2022. */
  2023. balance_dirty_pages_ratelimited(mapping);
  2024. }
  2025. }
  2026. /* file_update_time outside page_lock */
  2027. if (vma->vm_file)
  2028. file_update_time(vma->vm_file);
  2029. }
  2030. return ret;
  2031. oom_free_new:
  2032. page_cache_release(new_page);
  2033. oom:
  2034. if (old_page) {
  2035. if (page_mkwrite) {
  2036. unlock_page(old_page);
  2037. page_cache_release(old_page);
  2038. }
  2039. page_cache_release(old_page);
  2040. }
  2041. return VM_FAULT_OOM;
  2042. unwritable_page:
  2043. page_cache_release(old_page);
  2044. return ret;
  2045. }
  2046. /*
  2047. * Helper functions for unmap_mapping_range().
  2048. *
  2049. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2050. *
  2051. * We have to restart searching the prio_tree whenever we drop the lock,
  2052. * since the iterator is only valid while the lock is held, and anyway
  2053. * a later vma might be split and reinserted earlier while lock dropped.
  2054. *
  2055. * The list of nonlinear vmas could be handled more efficiently, using
  2056. * a placeholder, but handle it in the same way until a need is shown.
  2057. * It is important to search the prio_tree before nonlinear list: a vma
  2058. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2059. * while the lock is dropped; but never shifted from list to prio_tree.
  2060. *
  2061. * In order to make forward progress despite restarting the search,
  2062. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2063. * quickly skip it next time around. Since the prio_tree search only
  2064. * shows us those vmas affected by unmapping the range in question, we
  2065. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2066. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2067. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2068. * i_mmap_lock.
  2069. *
  2070. * In order to make forward progress despite repeatedly restarting some
  2071. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2072. * and restart from that address when we reach that vma again. It might
  2073. * have been split or merged, shrunk or extended, but never shifted: so
  2074. * restart_addr remains valid so long as it remains in the vma's range.
  2075. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2076. * values so we can save vma's restart_addr in its truncate_count field.
  2077. */
  2078. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2079. static void reset_vma_truncate_counts(struct address_space *mapping)
  2080. {
  2081. struct vm_area_struct *vma;
  2082. struct prio_tree_iter iter;
  2083. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2084. vma->vm_truncate_count = 0;
  2085. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2086. vma->vm_truncate_count = 0;
  2087. }
  2088. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2089. unsigned long start_addr, unsigned long end_addr,
  2090. struct zap_details *details)
  2091. {
  2092. unsigned long restart_addr;
  2093. int need_break;
  2094. /*
  2095. * files that support invalidating or truncating portions of the
  2096. * file from under mmaped areas must have their ->fault function
  2097. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2098. * This provides synchronisation against concurrent unmapping here.
  2099. */
  2100. again:
  2101. restart_addr = vma->vm_truncate_count;
  2102. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2103. start_addr = restart_addr;
  2104. if (start_addr >= end_addr) {
  2105. /* Top of vma has been split off since last time */
  2106. vma->vm_truncate_count = details->truncate_count;
  2107. return 0;
  2108. }
  2109. }
  2110. restart_addr = zap_page_range(vma, start_addr,
  2111. end_addr - start_addr, details);
  2112. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2113. if (restart_addr >= end_addr) {
  2114. /* We have now completed this vma: mark it so */
  2115. vma->vm_truncate_count = details->truncate_count;
  2116. if (!need_break)
  2117. return 0;
  2118. } else {
  2119. /* Note restart_addr in vma's truncate_count field */
  2120. vma->vm_truncate_count = restart_addr;
  2121. if (!need_break)
  2122. goto again;
  2123. }
  2124. spin_unlock(details->i_mmap_lock);
  2125. cond_resched();
  2126. spin_lock(details->i_mmap_lock);
  2127. return -EINTR;
  2128. }
  2129. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2130. struct zap_details *details)
  2131. {
  2132. struct vm_area_struct *vma;
  2133. struct prio_tree_iter iter;
  2134. pgoff_t vba, vea, zba, zea;
  2135. restart:
  2136. vma_prio_tree_foreach(vma, &iter, root,
  2137. details->first_index, details->last_index) {
  2138. /* Skip quickly over those we have already dealt with */
  2139. if (vma->vm_truncate_count == details->truncate_count)
  2140. continue;
  2141. vba = vma->vm_pgoff;
  2142. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2143. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2144. zba = details->first_index;
  2145. if (zba < vba)
  2146. zba = vba;
  2147. zea = details->last_index;
  2148. if (zea > vea)
  2149. zea = vea;
  2150. if (unmap_mapping_range_vma(vma,
  2151. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2152. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2153. details) < 0)
  2154. goto restart;
  2155. }
  2156. }
  2157. static inline void unmap_mapping_range_list(struct list_head *head,
  2158. struct zap_details *details)
  2159. {
  2160. struct vm_area_struct *vma;
  2161. /*
  2162. * In nonlinear VMAs there is no correspondence between virtual address
  2163. * offset and file offset. So we must perform an exhaustive search
  2164. * across *all* the pages in each nonlinear VMA, not just the pages
  2165. * whose virtual address lies outside the file truncation point.
  2166. */
  2167. restart:
  2168. list_for_each_entry(vma, head, shared.vm_set.list) {
  2169. /* Skip quickly over those we have already dealt with */
  2170. if (vma->vm_truncate_count == details->truncate_count)
  2171. continue;
  2172. details->nonlinear_vma = vma;
  2173. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2174. vma->vm_end, details) < 0)
  2175. goto restart;
  2176. }
  2177. }
  2178. /**
  2179. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2180. * @mapping: the address space containing mmaps to be unmapped.
  2181. * @holebegin: byte in first page to unmap, relative to the start of
  2182. * the underlying file. This will be rounded down to a PAGE_SIZE
  2183. * boundary. Note that this is different from truncate_pagecache(), which
  2184. * must keep the partial page. In contrast, we must get rid of
  2185. * partial pages.
  2186. * @holelen: size of prospective hole in bytes. This will be rounded
  2187. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2188. * end of the file.
  2189. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2190. * but 0 when invalidating pagecache, don't throw away private data.
  2191. */
  2192. void unmap_mapping_range(struct address_space *mapping,
  2193. loff_t const holebegin, loff_t const holelen, int even_cows)
  2194. {
  2195. struct zap_details details;
  2196. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2197. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2198. /* Check for overflow. */
  2199. if (sizeof(holelen) > sizeof(hlen)) {
  2200. long long holeend =
  2201. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2202. if (holeend & ~(long long)ULONG_MAX)
  2203. hlen = ULONG_MAX - hba + 1;
  2204. }
  2205. details.check_mapping = even_cows? NULL: mapping;
  2206. details.nonlinear_vma = NULL;
  2207. details.first_index = hba;
  2208. details.last_index = hba + hlen - 1;
  2209. if (details.last_index < details.first_index)
  2210. details.last_index = ULONG_MAX;
  2211. details.i_mmap_lock = &mapping->i_mmap_lock;
  2212. spin_lock(&mapping->i_mmap_lock);
  2213. /* Protect against endless unmapping loops */
  2214. mapping->truncate_count++;
  2215. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2216. if (mapping->truncate_count == 0)
  2217. reset_vma_truncate_counts(mapping);
  2218. mapping->truncate_count++;
  2219. }
  2220. details.truncate_count = mapping->truncate_count;
  2221. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2222. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2223. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2224. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2225. spin_unlock(&mapping->i_mmap_lock);
  2226. }
  2227. EXPORT_SYMBOL(unmap_mapping_range);
  2228. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2229. {
  2230. struct address_space *mapping = inode->i_mapping;
  2231. /*
  2232. * If the underlying filesystem is not going to provide
  2233. * a way to truncate a range of blocks (punch a hole) -
  2234. * we should return failure right now.
  2235. */
  2236. if (!inode->i_op->truncate_range)
  2237. return -ENOSYS;
  2238. mutex_lock(&inode->i_mutex);
  2239. down_write(&inode->i_alloc_sem);
  2240. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2241. truncate_inode_pages_range(mapping, offset, end);
  2242. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2243. inode->i_op->truncate_range(inode, offset, end);
  2244. up_write(&inode->i_alloc_sem);
  2245. mutex_unlock(&inode->i_mutex);
  2246. return 0;
  2247. }
  2248. /*
  2249. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2250. * but allow concurrent faults), and pte mapped but not yet locked.
  2251. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2252. */
  2253. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2254. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2255. unsigned int flags, pte_t orig_pte)
  2256. {
  2257. spinlock_t *ptl;
  2258. struct page *page;
  2259. swp_entry_t entry;
  2260. pte_t pte;
  2261. struct mem_cgroup *ptr = NULL;
  2262. int ret = 0;
  2263. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2264. goto out;
  2265. entry = pte_to_swp_entry(orig_pte);
  2266. if (unlikely(non_swap_entry(entry))) {
  2267. if (is_migration_entry(entry)) {
  2268. migration_entry_wait(mm, pmd, address);
  2269. } else if (is_hwpoison_entry(entry)) {
  2270. ret = VM_FAULT_HWPOISON;
  2271. } else {
  2272. print_bad_pte(vma, address, orig_pte, NULL);
  2273. ret = VM_FAULT_OOM;
  2274. }
  2275. goto out;
  2276. }
  2277. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2278. page = lookup_swap_cache(entry);
  2279. if (!page) {
  2280. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2281. page = swapin_readahead(entry,
  2282. GFP_HIGHUSER_MOVABLE, vma, address);
  2283. if (!page) {
  2284. /*
  2285. * Back out if somebody else faulted in this pte
  2286. * while we released the pte lock.
  2287. */
  2288. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2289. if (likely(pte_same(*page_table, orig_pte)))
  2290. ret = VM_FAULT_OOM;
  2291. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2292. goto unlock;
  2293. }
  2294. /* Had to read the page from swap area: Major fault */
  2295. ret = VM_FAULT_MAJOR;
  2296. count_vm_event(PGMAJFAULT);
  2297. } else if (PageHWPoison(page)) {
  2298. ret = VM_FAULT_HWPOISON;
  2299. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2300. goto out_release;
  2301. }
  2302. lock_page(page);
  2303. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2304. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2305. ret = VM_FAULT_OOM;
  2306. goto out_page;
  2307. }
  2308. /*
  2309. * Back out if somebody else already faulted in this pte.
  2310. */
  2311. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2312. if (unlikely(!pte_same(*page_table, orig_pte)))
  2313. goto out_nomap;
  2314. if (unlikely(!PageUptodate(page))) {
  2315. ret = VM_FAULT_SIGBUS;
  2316. goto out_nomap;
  2317. }
  2318. /*
  2319. * The page isn't present yet, go ahead with the fault.
  2320. *
  2321. * Be careful about the sequence of operations here.
  2322. * To get its accounting right, reuse_swap_page() must be called
  2323. * while the page is counted on swap but not yet in mapcount i.e.
  2324. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2325. * must be called after the swap_free(), or it will never succeed.
  2326. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2327. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2328. * in page->private. In this case, a record in swap_cgroup is silently
  2329. * discarded at swap_free().
  2330. */
  2331. inc_mm_counter(mm, anon_rss);
  2332. pte = mk_pte(page, vma->vm_page_prot);
  2333. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2334. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2335. flags &= ~FAULT_FLAG_WRITE;
  2336. }
  2337. flush_icache_page(vma, page);
  2338. set_pte_at(mm, address, page_table, pte);
  2339. page_add_anon_rmap(page, vma, address);
  2340. /* It's better to call commit-charge after rmap is established */
  2341. mem_cgroup_commit_charge_swapin(page, ptr);
  2342. swap_free(entry);
  2343. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2344. try_to_free_swap(page);
  2345. unlock_page(page);
  2346. if (flags & FAULT_FLAG_WRITE) {
  2347. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2348. if (ret & VM_FAULT_ERROR)
  2349. ret &= VM_FAULT_ERROR;
  2350. goto out;
  2351. }
  2352. /* No need to invalidate - it was non-present before */
  2353. update_mmu_cache(vma, address, pte);
  2354. unlock:
  2355. pte_unmap_unlock(page_table, ptl);
  2356. out:
  2357. return ret;
  2358. out_nomap:
  2359. mem_cgroup_cancel_charge_swapin(ptr);
  2360. pte_unmap_unlock(page_table, ptl);
  2361. out_page:
  2362. unlock_page(page);
  2363. out_release:
  2364. page_cache_release(page);
  2365. return ret;
  2366. }
  2367. /*
  2368. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2369. * but allow concurrent faults), and pte mapped but not yet locked.
  2370. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2371. */
  2372. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2373. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2374. unsigned int flags)
  2375. {
  2376. struct page *page;
  2377. spinlock_t *ptl;
  2378. pte_t entry;
  2379. if (!(flags & FAULT_FLAG_WRITE)) {
  2380. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2381. vma->vm_page_prot));
  2382. ptl = pte_lockptr(mm, pmd);
  2383. spin_lock(ptl);
  2384. if (!pte_none(*page_table))
  2385. goto unlock;
  2386. goto setpte;
  2387. }
  2388. /* Allocate our own private page. */
  2389. pte_unmap(page_table);
  2390. if (unlikely(anon_vma_prepare(vma)))
  2391. goto oom;
  2392. page = alloc_zeroed_user_highpage_movable(vma, address);
  2393. if (!page)
  2394. goto oom;
  2395. __SetPageUptodate(page);
  2396. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2397. goto oom_free_page;
  2398. entry = mk_pte(page, vma->vm_page_prot);
  2399. if (vma->vm_flags & VM_WRITE)
  2400. entry = pte_mkwrite(pte_mkdirty(entry));
  2401. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2402. if (!pte_none(*page_table))
  2403. goto release;
  2404. inc_mm_counter(mm, anon_rss);
  2405. page_add_new_anon_rmap(page, vma, address);
  2406. setpte:
  2407. set_pte_at(mm, address, page_table, entry);
  2408. /* No need to invalidate - it was non-present before */
  2409. update_mmu_cache(vma, address, entry);
  2410. unlock:
  2411. pte_unmap_unlock(page_table, ptl);
  2412. return 0;
  2413. release:
  2414. mem_cgroup_uncharge_page(page);
  2415. page_cache_release(page);
  2416. goto unlock;
  2417. oom_free_page:
  2418. page_cache_release(page);
  2419. oom:
  2420. return VM_FAULT_OOM;
  2421. }
  2422. /*
  2423. * __do_fault() tries to create a new page mapping. It aggressively
  2424. * tries to share with existing pages, but makes a separate copy if
  2425. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2426. * the next page fault.
  2427. *
  2428. * As this is called only for pages that do not currently exist, we
  2429. * do not need to flush old virtual caches or the TLB.
  2430. *
  2431. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2432. * but allow concurrent faults), and pte neither mapped nor locked.
  2433. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2434. */
  2435. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2436. unsigned long address, pmd_t *pmd,
  2437. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2438. {
  2439. pte_t *page_table;
  2440. spinlock_t *ptl;
  2441. struct page *page;
  2442. pte_t entry;
  2443. int anon = 0;
  2444. int charged = 0;
  2445. struct page *dirty_page = NULL;
  2446. struct vm_fault vmf;
  2447. int ret;
  2448. int page_mkwrite = 0;
  2449. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2450. vmf.pgoff = pgoff;
  2451. vmf.flags = flags;
  2452. vmf.page = NULL;
  2453. ret = vma->vm_ops->fault(vma, &vmf);
  2454. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2455. return ret;
  2456. if (unlikely(PageHWPoison(vmf.page))) {
  2457. if (ret & VM_FAULT_LOCKED)
  2458. unlock_page(vmf.page);
  2459. return VM_FAULT_HWPOISON;
  2460. }
  2461. /*
  2462. * For consistency in subsequent calls, make the faulted page always
  2463. * locked.
  2464. */
  2465. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2466. lock_page(vmf.page);
  2467. else
  2468. VM_BUG_ON(!PageLocked(vmf.page));
  2469. /*
  2470. * Should we do an early C-O-W break?
  2471. */
  2472. page = vmf.page;
  2473. if (flags & FAULT_FLAG_WRITE) {
  2474. if (!(vma->vm_flags & VM_SHARED)) {
  2475. anon = 1;
  2476. if (unlikely(anon_vma_prepare(vma))) {
  2477. ret = VM_FAULT_OOM;
  2478. goto out;
  2479. }
  2480. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2481. vma, address);
  2482. if (!page) {
  2483. ret = VM_FAULT_OOM;
  2484. goto out;
  2485. }
  2486. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2487. ret = VM_FAULT_OOM;
  2488. page_cache_release(page);
  2489. goto out;
  2490. }
  2491. charged = 1;
  2492. /*
  2493. * Don't let another task, with possibly unlocked vma,
  2494. * keep the mlocked page.
  2495. */
  2496. if (vma->vm_flags & VM_LOCKED)
  2497. clear_page_mlock(vmf.page);
  2498. copy_user_highpage(page, vmf.page, address, vma);
  2499. __SetPageUptodate(page);
  2500. } else {
  2501. /*
  2502. * If the page will be shareable, see if the backing
  2503. * address space wants to know that the page is about
  2504. * to become writable
  2505. */
  2506. if (vma->vm_ops->page_mkwrite) {
  2507. int tmp;
  2508. unlock_page(page);
  2509. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2510. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2511. if (unlikely(tmp &
  2512. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2513. ret = tmp;
  2514. goto unwritable_page;
  2515. }
  2516. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2517. lock_page(page);
  2518. if (!page->mapping) {
  2519. ret = 0; /* retry the fault */
  2520. unlock_page(page);
  2521. goto unwritable_page;
  2522. }
  2523. } else
  2524. VM_BUG_ON(!PageLocked(page));
  2525. page_mkwrite = 1;
  2526. }
  2527. }
  2528. }
  2529. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2530. /*
  2531. * This silly early PAGE_DIRTY setting removes a race
  2532. * due to the bad i386 page protection. But it's valid
  2533. * for other architectures too.
  2534. *
  2535. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2536. * an exclusive copy of the page, or this is a shared mapping,
  2537. * so we can make it writable and dirty to avoid having to
  2538. * handle that later.
  2539. */
  2540. /* Only go through if we didn't race with anybody else... */
  2541. if (likely(pte_same(*page_table, orig_pte))) {
  2542. flush_icache_page(vma, page);
  2543. entry = mk_pte(page, vma->vm_page_prot);
  2544. if (flags & FAULT_FLAG_WRITE)
  2545. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2546. if (anon) {
  2547. inc_mm_counter(mm, anon_rss);
  2548. page_add_new_anon_rmap(page, vma, address);
  2549. } else {
  2550. inc_mm_counter(mm, file_rss);
  2551. page_add_file_rmap(page);
  2552. if (flags & FAULT_FLAG_WRITE) {
  2553. dirty_page = page;
  2554. get_page(dirty_page);
  2555. }
  2556. }
  2557. set_pte_at(mm, address, page_table, entry);
  2558. /* no need to invalidate: a not-present page won't be cached */
  2559. update_mmu_cache(vma, address, entry);
  2560. } else {
  2561. if (charged)
  2562. mem_cgroup_uncharge_page(page);
  2563. if (anon)
  2564. page_cache_release(page);
  2565. else
  2566. anon = 1; /* no anon but release faulted_page */
  2567. }
  2568. pte_unmap_unlock(page_table, ptl);
  2569. out:
  2570. if (dirty_page) {
  2571. struct address_space *mapping = page->mapping;
  2572. if (set_page_dirty(dirty_page))
  2573. page_mkwrite = 1;
  2574. unlock_page(dirty_page);
  2575. put_page(dirty_page);
  2576. if (page_mkwrite && mapping) {
  2577. /*
  2578. * Some device drivers do not set page.mapping but still
  2579. * dirty their pages
  2580. */
  2581. balance_dirty_pages_ratelimited(mapping);
  2582. }
  2583. /* file_update_time outside page_lock */
  2584. if (vma->vm_file)
  2585. file_update_time(vma->vm_file);
  2586. } else {
  2587. unlock_page(vmf.page);
  2588. if (anon)
  2589. page_cache_release(vmf.page);
  2590. }
  2591. return ret;
  2592. unwritable_page:
  2593. page_cache_release(page);
  2594. return ret;
  2595. }
  2596. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2597. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2598. unsigned int flags, pte_t orig_pte)
  2599. {
  2600. pgoff_t pgoff = (((address & PAGE_MASK)
  2601. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2602. pte_unmap(page_table);
  2603. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2604. }
  2605. /*
  2606. * Fault of a previously existing named mapping. Repopulate the pte
  2607. * from the encoded file_pte if possible. This enables swappable
  2608. * nonlinear vmas.
  2609. *
  2610. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2611. * but allow concurrent faults), and pte mapped but not yet locked.
  2612. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2613. */
  2614. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2615. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2616. unsigned int flags, pte_t orig_pte)
  2617. {
  2618. pgoff_t pgoff;
  2619. flags |= FAULT_FLAG_NONLINEAR;
  2620. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2621. return 0;
  2622. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2623. /*
  2624. * Page table corrupted: show pte and kill process.
  2625. */
  2626. print_bad_pte(vma, address, orig_pte, NULL);
  2627. return VM_FAULT_OOM;
  2628. }
  2629. pgoff = pte_to_pgoff(orig_pte);
  2630. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2631. }
  2632. /*
  2633. * These routines also need to handle stuff like marking pages dirty
  2634. * and/or accessed for architectures that don't do it in hardware (most
  2635. * RISC architectures). The early dirtying is also good on the i386.
  2636. *
  2637. * There is also a hook called "update_mmu_cache()" that architectures
  2638. * with external mmu caches can use to update those (ie the Sparc or
  2639. * PowerPC hashed page tables that act as extended TLBs).
  2640. *
  2641. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2642. * but allow concurrent faults), and pte mapped but not yet locked.
  2643. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2644. */
  2645. static inline int handle_pte_fault(struct mm_struct *mm,
  2646. struct vm_area_struct *vma, unsigned long address,
  2647. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2648. {
  2649. pte_t entry;
  2650. spinlock_t *ptl;
  2651. entry = *pte;
  2652. if (!pte_present(entry)) {
  2653. if (pte_none(entry)) {
  2654. if (vma->vm_ops) {
  2655. if (likely(vma->vm_ops->fault))
  2656. return do_linear_fault(mm, vma, address,
  2657. pte, pmd, flags, entry);
  2658. }
  2659. return do_anonymous_page(mm, vma, address,
  2660. pte, pmd, flags);
  2661. }
  2662. if (pte_file(entry))
  2663. return do_nonlinear_fault(mm, vma, address,
  2664. pte, pmd, flags, entry);
  2665. return do_swap_page(mm, vma, address,
  2666. pte, pmd, flags, entry);
  2667. }
  2668. ptl = pte_lockptr(mm, pmd);
  2669. spin_lock(ptl);
  2670. if (unlikely(!pte_same(*pte, entry)))
  2671. goto unlock;
  2672. if (flags & FAULT_FLAG_WRITE) {
  2673. if (!pte_write(entry))
  2674. return do_wp_page(mm, vma, address,
  2675. pte, pmd, ptl, entry);
  2676. entry = pte_mkdirty(entry);
  2677. }
  2678. entry = pte_mkyoung(entry);
  2679. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2680. update_mmu_cache(vma, address, entry);
  2681. } else {
  2682. /*
  2683. * This is needed only for protection faults but the arch code
  2684. * is not yet telling us if this is a protection fault or not.
  2685. * This still avoids useless tlb flushes for .text page faults
  2686. * with threads.
  2687. */
  2688. if (flags & FAULT_FLAG_WRITE)
  2689. flush_tlb_page(vma, address);
  2690. }
  2691. unlock:
  2692. pte_unmap_unlock(pte, ptl);
  2693. return 0;
  2694. }
  2695. /*
  2696. * By the time we get here, we already hold the mm semaphore
  2697. */
  2698. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2699. unsigned long address, unsigned int flags)
  2700. {
  2701. pgd_t *pgd;
  2702. pud_t *pud;
  2703. pmd_t *pmd;
  2704. pte_t *pte;
  2705. __set_current_state(TASK_RUNNING);
  2706. count_vm_event(PGFAULT);
  2707. if (unlikely(is_vm_hugetlb_page(vma)))
  2708. return hugetlb_fault(mm, vma, address, flags);
  2709. pgd = pgd_offset(mm, address);
  2710. pud = pud_alloc(mm, pgd, address);
  2711. if (!pud)
  2712. return VM_FAULT_OOM;
  2713. pmd = pmd_alloc(mm, pud, address);
  2714. if (!pmd)
  2715. return VM_FAULT_OOM;
  2716. pte = pte_alloc_map(mm, pmd, address);
  2717. if (!pte)
  2718. return VM_FAULT_OOM;
  2719. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2720. }
  2721. #ifndef __PAGETABLE_PUD_FOLDED
  2722. /*
  2723. * Allocate page upper directory.
  2724. * We've already handled the fast-path in-line.
  2725. */
  2726. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2727. {
  2728. pud_t *new = pud_alloc_one(mm, address);
  2729. if (!new)
  2730. return -ENOMEM;
  2731. smp_wmb(); /* See comment in __pte_alloc */
  2732. spin_lock(&mm->page_table_lock);
  2733. if (pgd_present(*pgd)) /* Another has populated it */
  2734. pud_free(mm, new);
  2735. else
  2736. pgd_populate(mm, pgd, new);
  2737. spin_unlock(&mm->page_table_lock);
  2738. return 0;
  2739. }
  2740. #endif /* __PAGETABLE_PUD_FOLDED */
  2741. #ifndef __PAGETABLE_PMD_FOLDED
  2742. /*
  2743. * Allocate page middle directory.
  2744. * We've already handled the fast-path in-line.
  2745. */
  2746. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2747. {
  2748. pmd_t *new = pmd_alloc_one(mm, address);
  2749. if (!new)
  2750. return -ENOMEM;
  2751. smp_wmb(); /* See comment in __pte_alloc */
  2752. spin_lock(&mm->page_table_lock);
  2753. #ifndef __ARCH_HAS_4LEVEL_HACK
  2754. if (pud_present(*pud)) /* Another has populated it */
  2755. pmd_free(mm, new);
  2756. else
  2757. pud_populate(mm, pud, new);
  2758. #else
  2759. if (pgd_present(*pud)) /* Another has populated it */
  2760. pmd_free(mm, new);
  2761. else
  2762. pgd_populate(mm, pud, new);
  2763. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2764. spin_unlock(&mm->page_table_lock);
  2765. return 0;
  2766. }
  2767. #endif /* __PAGETABLE_PMD_FOLDED */
  2768. int make_pages_present(unsigned long addr, unsigned long end)
  2769. {
  2770. int ret, len, write;
  2771. struct vm_area_struct * vma;
  2772. vma = find_vma(current->mm, addr);
  2773. if (!vma)
  2774. return -ENOMEM;
  2775. write = (vma->vm_flags & VM_WRITE) != 0;
  2776. BUG_ON(addr >= end);
  2777. BUG_ON(end > vma->vm_end);
  2778. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2779. ret = get_user_pages(current, current->mm, addr,
  2780. len, write, 0, NULL, NULL);
  2781. if (ret < 0)
  2782. return ret;
  2783. return ret == len ? 0 : -EFAULT;
  2784. }
  2785. #if !defined(__HAVE_ARCH_GATE_AREA)
  2786. #if defined(AT_SYSINFO_EHDR)
  2787. static struct vm_area_struct gate_vma;
  2788. static int __init gate_vma_init(void)
  2789. {
  2790. gate_vma.vm_mm = NULL;
  2791. gate_vma.vm_start = FIXADDR_USER_START;
  2792. gate_vma.vm_end = FIXADDR_USER_END;
  2793. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2794. gate_vma.vm_page_prot = __P101;
  2795. /*
  2796. * Make sure the vDSO gets into every core dump.
  2797. * Dumping its contents makes post-mortem fully interpretable later
  2798. * without matching up the same kernel and hardware config to see
  2799. * what PC values meant.
  2800. */
  2801. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2802. return 0;
  2803. }
  2804. __initcall(gate_vma_init);
  2805. #endif
  2806. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2807. {
  2808. #ifdef AT_SYSINFO_EHDR
  2809. return &gate_vma;
  2810. #else
  2811. return NULL;
  2812. #endif
  2813. }
  2814. int in_gate_area_no_task(unsigned long addr)
  2815. {
  2816. #ifdef AT_SYSINFO_EHDR
  2817. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2818. return 1;
  2819. #endif
  2820. return 0;
  2821. }
  2822. #endif /* __HAVE_ARCH_GATE_AREA */
  2823. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2824. pte_t **ptepp, spinlock_t **ptlp)
  2825. {
  2826. pgd_t *pgd;
  2827. pud_t *pud;
  2828. pmd_t *pmd;
  2829. pte_t *ptep;
  2830. pgd = pgd_offset(mm, address);
  2831. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2832. goto out;
  2833. pud = pud_offset(pgd, address);
  2834. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2835. goto out;
  2836. pmd = pmd_offset(pud, address);
  2837. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2838. goto out;
  2839. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2840. if (pmd_huge(*pmd))
  2841. goto out;
  2842. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2843. if (!ptep)
  2844. goto out;
  2845. if (!pte_present(*ptep))
  2846. goto unlock;
  2847. *ptepp = ptep;
  2848. return 0;
  2849. unlock:
  2850. pte_unmap_unlock(ptep, *ptlp);
  2851. out:
  2852. return -EINVAL;
  2853. }
  2854. /**
  2855. * follow_pfn - look up PFN at a user virtual address
  2856. * @vma: memory mapping
  2857. * @address: user virtual address
  2858. * @pfn: location to store found PFN
  2859. *
  2860. * Only IO mappings and raw PFN mappings are allowed.
  2861. *
  2862. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2863. */
  2864. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2865. unsigned long *pfn)
  2866. {
  2867. int ret = -EINVAL;
  2868. spinlock_t *ptl;
  2869. pte_t *ptep;
  2870. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2871. return ret;
  2872. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2873. if (ret)
  2874. return ret;
  2875. *pfn = pte_pfn(*ptep);
  2876. pte_unmap_unlock(ptep, ptl);
  2877. return 0;
  2878. }
  2879. EXPORT_SYMBOL(follow_pfn);
  2880. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2881. int follow_phys(struct vm_area_struct *vma,
  2882. unsigned long address, unsigned int flags,
  2883. unsigned long *prot, resource_size_t *phys)
  2884. {
  2885. int ret = -EINVAL;
  2886. pte_t *ptep, pte;
  2887. spinlock_t *ptl;
  2888. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2889. goto out;
  2890. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2891. goto out;
  2892. pte = *ptep;
  2893. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2894. goto unlock;
  2895. *prot = pgprot_val(pte_pgprot(pte));
  2896. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2897. ret = 0;
  2898. unlock:
  2899. pte_unmap_unlock(ptep, ptl);
  2900. out:
  2901. return ret;
  2902. }
  2903. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2904. void *buf, int len, int write)
  2905. {
  2906. resource_size_t phys_addr;
  2907. unsigned long prot = 0;
  2908. void __iomem *maddr;
  2909. int offset = addr & (PAGE_SIZE-1);
  2910. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2911. return -EINVAL;
  2912. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2913. if (write)
  2914. memcpy_toio(maddr + offset, buf, len);
  2915. else
  2916. memcpy_fromio(buf, maddr + offset, len);
  2917. iounmap(maddr);
  2918. return len;
  2919. }
  2920. #endif
  2921. /*
  2922. * Access another process' address space.
  2923. * Source/target buffer must be kernel space,
  2924. * Do not walk the page table directly, use get_user_pages
  2925. */
  2926. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2927. {
  2928. struct mm_struct *mm;
  2929. struct vm_area_struct *vma;
  2930. void *old_buf = buf;
  2931. mm = get_task_mm(tsk);
  2932. if (!mm)
  2933. return 0;
  2934. down_read(&mm->mmap_sem);
  2935. /* ignore errors, just check how much was successfully transferred */
  2936. while (len) {
  2937. int bytes, ret, offset;
  2938. void *maddr;
  2939. struct page *page = NULL;
  2940. ret = get_user_pages(tsk, mm, addr, 1,
  2941. write, 1, &page, &vma);
  2942. if (ret <= 0) {
  2943. /*
  2944. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2945. * we can access using slightly different code.
  2946. */
  2947. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2948. vma = find_vma(mm, addr);
  2949. if (!vma)
  2950. break;
  2951. if (vma->vm_ops && vma->vm_ops->access)
  2952. ret = vma->vm_ops->access(vma, addr, buf,
  2953. len, write);
  2954. if (ret <= 0)
  2955. #endif
  2956. break;
  2957. bytes = ret;
  2958. } else {
  2959. bytes = len;
  2960. offset = addr & (PAGE_SIZE-1);
  2961. if (bytes > PAGE_SIZE-offset)
  2962. bytes = PAGE_SIZE-offset;
  2963. maddr = kmap(page);
  2964. if (write) {
  2965. copy_to_user_page(vma, page, addr,
  2966. maddr + offset, buf, bytes);
  2967. set_page_dirty_lock(page);
  2968. } else {
  2969. copy_from_user_page(vma, page, addr,
  2970. buf, maddr + offset, bytes);
  2971. }
  2972. kunmap(page);
  2973. page_cache_release(page);
  2974. }
  2975. len -= bytes;
  2976. buf += bytes;
  2977. addr += bytes;
  2978. }
  2979. up_read(&mm->mmap_sem);
  2980. mmput(mm);
  2981. return buf - old_buf;
  2982. }
  2983. /*
  2984. * Print the name of a VMA.
  2985. */
  2986. void print_vma_addr(char *prefix, unsigned long ip)
  2987. {
  2988. struct mm_struct *mm = current->mm;
  2989. struct vm_area_struct *vma;
  2990. /*
  2991. * Do not print if we are in atomic
  2992. * contexts (in exception stacks, etc.):
  2993. */
  2994. if (preempt_count())
  2995. return;
  2996. down_read(&mm->mmap_sem);
  2997. vma = find_vma(mm, ip);
  2998. if (vma && vma->vm_file) {
  2999. struct file *f = vma->vm_file;
  3000. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3001. if (buf) {
  3002. char *p, *s;
  3003. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3004. if (IS_ERR(p))
  3005. p = "?";
  3006. s = strrchr(p, '/');
  3007. if (s)
  3008. p = s+1;
  3009. printk("%s%s[%lx+%lx]", prefix, p,
  3010. vma->vm_start,
  3011. vma->vm_end - vma->vm_start);
  3012. free_page((unsigned long)buf);
  3013. }
  3014. }
  3015. up_read(&current->mm->mmap_sem);
  3016. }
  3017. #ifdef CONFIG_PROVE_LOCKING
  3018. void might_fault(void)
  3019. {
  3020. /*
  3021. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3022. * holding the mmap_sem, this is safe because kernel memory doesn't
  3023. * get paged out, therefore we'll never actually fault, and the
  3024. * below annotations will generate false positives.
  3025. */
  3026. if (segment_eq(get_fs(), KERNEL_DS))
  3027. return;
  3028. might_sleep();
  3029. /*
  3030. * it would be nicer only to annotate paths which are not under
  3031. * pagefault_disable, however that requires a larger audit and
  3032. * providing helpers like get_user_atomic.
  3033. */
  3034. if (!in_atomic() && current->mm)
  3035. might_lock_read(&current->mm->mmap_sem);
  3036. }
  3037. EXPORT_SYMBOL(might_fault);
  3038. #endif