memory-failure.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a 2bit ECC memory or cache
  11. * failure.
  12. *
  13. * Handles page cache pages in various states. The tricky part
  14. * here is that we can access any page asynchronous to other VM
  15. * users, because memory failures could happen anytime and anywhere,
  16. * possibly violating some of their assumptions. This is why this code
  17. * has to be extremely careful. Generally it tries to use normal locking
  18. * rules, as in get the standard locks, even if that means the
  19. * error handling takes potentially a long time.
  20. *
  21. * The operation to map back from RMAP chains to processes has to walk
  22. * the complete process list and has non linear complexity with the number
  23. * mappings. In short it can be quite slow. But since memory corruptions
  24. * are rare we hope to get away with this.
  25. */
  26. /*
  27. * Notebook:
  28. * - hugetlb needs more code
  29. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  30. * - pass bad pages to kdump next kernel
  31. */
  32. #define DEBUG 1 /* remove me in 2.6.34 */
  33. #include <linux/kernel.h>
  34. #include <linux/mm.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/sched.h>
  37. #include <linux/ksm.h>
  38. #include <linux/rmap.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/swap.h>
  41. #include <linux/backing-dev.h>
  42. #include "internal.h"
  43. int sysctl_memory_failure_early_kill __read_mostly = 0;
  44. int sysctl_memory_failure_recovery __read_mostly = 1;
  45. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  46. /*
  47. * Send all the processes who have the page mapped an ``action optional''
  48. * signal.
  49. */
  50. static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
  51. unsigned long pfn)
  52. {
  53. struct siginfo si;
  54. int ret;
  55. printk(KERN_ERR
  56. "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
  57. pfn, t->comm, t->pid);
  58. si.si_signo = SIGBUS;
  59. si.si_errno = 0;
  60. si.si_code = BUS_MCEERR_AO;
  61. si.si_addr = (void *)addr;
  62. #ifdef __ARCH_SI_TRAPNO
  63. si.si_trapno = trapno;
  64. #endif
  65. si.si_addr_lsb = PAGE_SHIFT;
  66. /*
  67. * Don't use force here, it's convenient if the signal
  68. * can be temporarily blocked.
  69. * This could cause a loop when the user sets SIGBUS
  70. * to SIG_IGN, but hopefully noone will do that?
  71. */
  72. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  73. if (ret < 0)
  74. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  75. t->comm, t->pid, ret);
  76. return ret;
  77. }
  78. /*
  79. * Kill all processes that have a poisoned page mapped and then isolate
  80. * the page.
  81. *
  82. * General strategy:
  83. * Find all processes having the page mapped and kill them.
  84. * But we keep a page reference around so that the page is not
  85. * actually freed yet.
  86. * Then stash the page away
  87. *
  88. * There's no convenient way to get back to mapped processes
  89. * from the VMAs. So do a brute-force search over all
  90. * running processes.
  91. *
  92. * Remember that machine checks are not common (or rather
  93. * if they are common you have other problems), so this shouldn't
  94. * be a performance issue.
  95. *
  96. * Also there are some races possible while we get from the
  97. * error detection to actually handle it.
  98. */
  99. struct to_kill {
  100. struct list_head nd;
  101. struct task_struct *tsk;
  102. unsigned long addr;
  103. unsigned addr_valid:1;
  104. };
  105. /*
  106. * Failure handling: if we can't find or can't kill a process there's
  107. * not much we can do. We just print a message and ignore otherwise.
  108. */
  109. /*
  110. * Schedule a process for later kill.
  111. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  112. * TBD would GFP_NOIO be enough?
  113. */
  114. static void add_to_kill(struct task_struct *tsk, struct page *p,
  115. struct vm_area_struct *vma,
  116. struct list_head *to_kill,
  117. struct to_kill **tkc)
  118. {
  119. struct to_kill *tk;
  120. if (*tkc) {
  121. tk = *tkc;
  122. *tkc = NULL;
  123. } else {
  124. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  125. if (!tk) {
  126. printk(KERN_ERR
  127. "MCE: Out of memory while machine check handling\n");
  128. return;
  129. }
  130. }
  131. tk->addr = page_address_in_vma(p, vma);
  132. tk->addr_valid = 1;
  133. /*
  134. * In theory we don't have to kill when the page was
  135. * munmaped. But it could be also a mremap. Since that's
  136. * likely very rare kill anyways just out of paranoia, but use
  137. * a SIGKILL because the error is not contained anymore.
  138. */
  139. if (tk->addr == -EFAULT) {
  140. pr_debug("MCE: Unable to find user space address %lx in %s\n",
  141. page_to_pfn(p), tsk->comm);
  142. tk->addr_valid = 0;
  143. }
  144. get_task_struct(tsk);
  145. tk->tsk = tsk;
  146. list_add_tail(&tk->nd, to_kill);
  147. }
  148. /*
  149. * Kill the processes that have been collected earlier.
  150. *
  151. * Only do anything when DOIT is set, otherwise just free the list
  152. * (this is used for clean pages which do not need killing)
  153. * Also when FAIL is set do a force kill because something went
  154. * wrong earlier.
  155. */
  156. static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
  157. int fail, unsigned long pfn)
  158. {
  159. struct to_kill *tk, *next;
  160. list_for_each_entry_safe (tk, next, to_kill, nd) {
  161. if (doit) {
  162. /*
  163. * In case something went wrong with munmaping
  164. * make sure the process doesn't catch the
  165. * signal and then access the memory. Just kill it.
  166. * the signal handlers
  167. */
  168. if (fail || tk->addr_valid == 0) {
  169. printk(KERN_ERR
  170. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  171. pfn, tk->tsk->comm, tk->tsk->pid);
  172. force_sig(SIGKILL, tk->tsk);
  173. }
  174. /*
  175. * In theory the process could have mapped
  176. * something else on the address in-between. We could
  177. * check for that, but we need to tell the
  178. * process anyways.
  179. */
  180. else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
  181. pfn) < 0)
  182. printk(KERN_ERR
  183. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  184. pfn, tk->tsk->comm, tk->tsk->pid);
  185. }
  186. put_task_struct(tk->tsk);
  187. kfree(tk);
  188. }
  189. }
  190. static int task_early_kill(struct task_struct *tsk)
  191. {
  192. if (!tsk->mm)
  193. return 0;
  194. if (tsk->flags & PF_MCE_PROCESS)
  195. return !!(tsk->flags & PF_MCE_EARLY);
  196. return sysctl_memory_failure_early_kill;
  197. }
  198. /*
  199. * Collect processes when the error hit an anonymous page.
  200. */
  201. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  202. struct to_kill **tkc)
  203. {
  204. struct vm_area_struct *vma;
  205. struct task_struct *tsk;
  206. struct anon_vma *av;
  207. read_lock(&tasklist_lock);
  208. av = page_lock_anon_vma(page);
  209. if (av == NULL) /* Not actually mapped anymore */
  210. goto out;
  211. for_each_process (tsk) {
  212. if (!task_early_kill(tsk))
  213. continue;
  214. list_for_each_entry (vma, &av->head, anon_vma_node) {
  215. if (!page_mapped_in_vma(page, vma))
  216. continue;
  217. if (vma->vm_mm == tsk->mm)
  218. add_to_kill(tsk, page, vma, to_kill, tkc);
  219. }
  220. }
  221. page_unlock_anon_vma(av);
  222. out:
  223. read_unlock(&tasklist_lock);
  224. }
  225. /*
  226. * Collect processes when the error hit a file mapped page.
  227. */
  228. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  229. struct to_kill **tkc)
  230. {
  231. struct vm_area_struct *vma;
  232. struct task_struct *tsk;
  233. struct prio_tree_iter iter;
  234. struct address_space *mapping = page->mapping;
  235. /*
  236. * A note on the locking order between the two locks.
  237. * We don't rely on this particular order.
  238. * If you have some other code that needs a different order
  239. * feel free to switch them around. Or add a reverse link
  240. * from mm_struct to task_struct, then this could be all
  241. * done without taking tasklist_lock and looping over all tasks.
  242. */
  243. read_lock(&tasklist_lock);
  244. spin_lock(&mapping->i_mmap_lock);
  245. for_each_process(tsk) {
  246. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  247. if (!task_early_kill(tsk))
  248. continue;
  249. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  250. pgoff) {
  251. /*
  252. * Send early kill signal to tasks where a vma covers
  253. * the page but the corrupted page is not necessarily
  254. * mapped it in its pte.
  255. * Assume applications who requested early kill want
  256. * to be informed of all such data corruptions.
  257. */
  258. if (vma->vm_mm == tsk->mm)
  259. add_to_kill(tsk, page, vma, to_kill, tkc);
  260. }
  261. }
  262. spin_unlock(&mapping->i_mmap_lock);
  263. read_unlock(&tasklist_lock);
  264. }
  265. /*
  266. * Collect the processes who have the corrupted page mapped to kill.
  267. * This is done in two steps for locking reasons.
  268. * First preallocate one tokill structure outside the spin locks,
  269. * so that we can kill at least one process reasonably reliable.
  270. */
  271. static void collect_procs(struct page *page, struct list_head *tokill)
  272. {
  273. struct to_kill *tk;
  274. if (!page->mapping)
  275. return;
  276. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  277. if (!tk)
  278. return;
  279. if (PageAnon(page))
  280. collect_procs_anon(page, tokill, &tk);
  281. else
  282. collect_procs_file(page, tokill, &tk);
  283. kfree(tk);
  284. }
  285. /*
  286. * Error handlers for various types of pages.
  287. */
  288. enum outcome {
  289. FAILED, /* Error handling failed */
  290. DELAYED, /* Will be handled later */
  291. IGNORED, /* Error safely ignored */
  292. RECOVERED, /* Successfully recovered */
  293. };
  294. static const char *action_name[] = {
  295. [FAILED] = "Failed",
  296. [DELAYED] = "Delayed",
  297. [IGNORED] = "Ignored",
  298. [RECOVERED] = "Recovered",
  299. };
  300. /*
  301. * Error hit kernel page.
  302. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  303. * could be more sophisticated.
  304. */
  305. static int me_kernel(struct page *p, unsigned long pfn)
  306. {
  307. return DELAYED;
  308. }
  309. /*
  310. * Already poisoned page.
  311. */
  312. static int me_ignore(struct page *p, unsigned long pfn)
  313. {
  314. return IGNORED;
  315. }
  316. /*
  317. * Page in unknown state. Do nothing.
  318. */
  319. static int me_unknown(struct page *p, unsigned long pfn)
  320. {
  321. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  322. return FAILED;
  323. }
  324. /*
  325. * Free memory
  326. */
  327. static int me_free(struct page *p, unsigned long pfn)
  328. {
  329. return DELAYED;
  330. }
  331. /*
  332. * Clean (or cleaned) page cache page.
  333. */
  334. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  335. {
  336. int err;
  337. int ret = FAILED;
  338. struct address_space *mapping;
  339. /*
  340. * For anonymous pages we're done the only reference left
  341. * should be the one m_f() holds.
  342. */
  343. if (PageAnon(p))
  344. return RECOVERED;
  345. /*
  346. * Now truncate the page in the page cache. This is really
  347. * more like a "temporary hole punch"
  348. * Don't do this for block devices when someone else
  349. * has a reference, because it could be file system metadata
  350. * and that's not safe to truncate.
  351. */
  352. mapping = page_mapping(p);
  353. if (!mapping) {
  354. /*
  355. * Page has been teared down in the meanwhile
  356. */
  357. return FAILED;
  358. }
  359. /*
  360. * Truncation is a bit tricky. Enable it per file system for now.
  361. *
  362. * Open: to take i_mutex or not for this? Right now we don't.
  363. */
  364. if (mapping->a_ops->error_remove_page) {
  365. err = mapping->a_ops->error_remove_page(mapping, p);
  366. if (err != 0) {
  367. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  368. pfn, err);
  369. } else if (page_has_private(p) &&
  370. !try_to_release_page(p, GFP_NOIO)) {
  371. pr_debug("MCE %#lx: failed to release buffers\n", pfn);
  372. } else {
  373. ret = RECOVERED;
  374. }
  375. } else {
  376. /*
  377. * If the file system doesn't support it just invalidate
  378. * This fails on dirty or anything with private pages
  379. */
  380. if (invalidate_inode_page(p))
  381. ret = RECOVERED;
  382. else
  383. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  384. pfn);
  385. }
  386. return ret;
  387. }
  388. /*
  389. * Dirty cache page page
  390. * Issues: when the error hit a hole page the error is not properly
  391. * propagated.
  392. */
  393. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  394. {
  395. struct address_space *mapping = page_mapping(p);
  396. SetPageError(p);
  397. /* TBD: print more information about the file. */
  398. if (mapping) {
  399. /*
  400. * IO error will be reported by write(), fsync(), etc.
  401. * who check the mapping.
  402. * This way the application knows that something went
  403. * wrong with its dirty file data.
  404. *
  405. * There's one open issue:
  406. *
  407. * The EIO will be only reported on the next IO
  408. * operation and then cleared through the IO map.
  409. * Normally Linux has two mechanisms to pass IO error
  410. * first through the AS_EIO flag in the address space
  411. * and then through the PageError flag in the page.
  412. * Since we drop pages on memory failure handling the
  413. * only mechanism open to use is through AS_AIO.
  414. *
  415. * This has the disadvantage that it gets cleared on
  416. * the first operation that returns an error, while
  417. * the PageError bit is more sticky and only cleared
  418. * when the page is reread or dropped. If an
  419. * application assumes it will always get error on
  420. * fsync, but does other operations on the fd before
  421. * and the page is dropped inbetween then the error
  422. * will not be properly reported.
  423. *
  424. * This can already happen even without hwpoisoned
  425. * pages: first on metadata IO errors (which only
  426. * report through AS_EIO) or when the page is dropped
  427. * at the wrong time.
  428. *
  429. * So right now we assume that the application DTRT on
  430. * the first EIO, but we're not worse than other parts
  431. * of the kernel.
  432. */
  433. mapping_set_error(mapping, EIO);
  434. }
  435. return me_pagecache_clean(p, pfn);
  436. }
  437. /*
  438. * Clean and dirty swap cache.
  439. *
  440. * Dirty swap cache page is tricky to handle. The page could live both in page
  441. * cache and swap cache(ie. page is freshly swapped in). So it could be
  442. * referenced concurrently by 2 types of PTEs:
  443. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  444. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  445. * and then
  446. * - clear dirty bit to prevent IO
  447. * - remove from LRU
  448. * - but keep in the swap cache, so that when we return to it on
  449. * a later page fault, we know the application is accessing
  450. * corrupted data and shall be killed (we installed simple
  451. * interception code in do_swap_page to catch it).
  452. *
  453. * Clean swap cache pages can be directly isolated. A later page fault will
  454. * bring in the known good data from disk.
  455. */
  456. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  457. {
  458. ClearPageDirty(p);
  459. /* Trigger EIO in shmem: */
  460. ClearPageUptodate(p);
  461. return DELAYED;
  462. }
  463. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  464. {
  465. delete_from_swap_cache(p);
  466. return RECOVERED;
  467. }
  468. /*
  469. * Huge pages. Needs work.
  470. * Issues:
  471. * No rmap support so we cannot find the original mapper. In theory could walk
  472. * all MMs and look for the mappings, but that would be non atomic and racy.
  473. * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
  474. * like just walking the current process and hoping it has it mapped (that
  475. * should be usually true for the common "shared database cache" case)
  476. * Should handle free huge pages and dequeue them too, but this needs to
  477. * handle huge page accounting correctly.
  478. */
  479. static int me_huge_page(struct page *p, unsigned long pfn)
  480. {
  481. return FAILED;
  482. }
  483. /*
  484. * Various page states we can handle.
  485. *
  486. * A page state is defined by its current page->flags bits.
  487. * The table matches them in order and calls the right handler.
  488. *
  489. * This is quite tricky because we can access page at any time
  490. * in its live cycle, so all accesses have to be extremly careful.
  491. *
  492. * This is not complete. More states could be added.
  493. * For any missing state don't attempt recovery.
  494. */
  495. #define dirty (1UL << PG_dirty)
  496. #define sc (1UL << PG_swapcache)
  497. #define unevict (1UL << PG_unevictable)
  498. #define mlock (1UL << PG_mlocked)
  499. #define writeback (1UL << PG_writeback)
  500. #define lru (1UL << PG_lru)
  501. #define swapbacked (1UL << PG_swapbacked)
  502. #define head (1UL << PG_head)
  503. #define tail (1UL << PG_tail)
  504. #define compound (1UL << PG_compound)
  505. #define slab (1UL << PG_slab)
  506. #define buddy (1UL << PG_buddy)
  507. #define reserved (1UL << PG_reserved)
  508. static struct page_state {
  509. unsigned long mask;
  510. unsigned long res;
  511. char *msg;
  512. int (*action)(struct page *p, unsigned long pfn);
  513. } error_states[] = {
  514. { reserved, reserved, "reserved kernel", me_ignore },
  515. { buddy, buddy, "free kernel", me_free },
  516. /*
  517. * Could in theory check if slab page is free or if we can drop
  518. * currently unused objects without touching them. But just
  519. * treat it as standard kernel for now.
  520. */
  521. { slab, slab, "kernel slab", me_kernel },
  522. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  523. { head, head, "huge", me_huge_page },
  524. { tail, tail, "huge", me_huge_page },
  525. #else
  526. { compound, compound, "huge", me_huge_page },
  527. #endif
  528. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  529. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  530. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  531. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  532. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  533. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  534. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  535. #endif
  536. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  537. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  538. { swapbacked, swapbacked, "anonymous", me_pagecache_clean },
  539. /*
  540. * Catchall entry: must be at end.
  541. */
  542. { 0, 0, "unknown page state", me_unknown },
  543. };
  544. static void action_result(unsigned long pfn, char *msg, int result)
  545. {
  546. struct page *page = NULL;
  547. if (pfn_valid(pfn))
  548. page = pfn_to_page(pfn);
  549. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  550. pfn,
  551. page && PageDirty(page) ? "dirty " : "",
  552. msg, action_name[result]);
  553. }
  554. static int page_action(struct page_state *ps, struct page *p,
  555. unsigned long pfn, int ref)
  556. {
  557. int result;
  558. int count;
  559. result = ps->action(p, pfn);
  560. action_result(pfn, ps->msg, result);
  561. count = page_count(p) - 1 - ref;
  562. if (count != 0)
  563. printk(KERN_ERR
  564. "MCE %#lx: %s page still referenced by %d users\n",
  565. pfn, ps->msg, count);
  566. /* Could do more checks here if page looks ok */
  567. /*
  568. * Could adjust zone counters here to correct for the missing page.
  569. */
  570. return result == RECOVERED ? 0 : -EBUSY;
  571. }
  572. #define N_UNMAP_TRIES 5
  573. /*
  574. * Do all that is necessary to remove user space mappings. Unmap
  575. * the pages and send SIGBUS to the processes if the data was dirty.
  576. */
  577. static void hwpoison_user_mappings(struct page *p, unsigned long pfn,
  578. int trapno)
  579. {
  580. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  581. struct address_space *mapping;
  582. LIST_HEAD(tokill);
  583. int ret;
  584. int i;
  585. int kill = 1;
  586. if (PageReserved(p) || PageCompound(p) || PageSlab(p) || PageKsm(p))
  587. return;
  588. /*
  589. * This check implies we don't kill processes if their pages
  590. * are in the swap cache early. Those are always late kills.
  591. */
  592. if (!page_mapped(p))
  593. return;
  594. if (PageSwapCache(p)) {
  595. printk(KERN_ERR
  596. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  597. ttu |= TTU_IGNORE_HWPOISON;
  598. }
  599. /*
  600. * Propagate the dirty bit from PTEs to struct page first, because we
  601. * need this to decide if we should kill or just drop the page.
  602. */
  603. mapping = page_mapping(p);
  604. if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
  605. if (page_mkclean(p)) {
  606. SetPageDirty(p);
  607. } else {
  608. kill = 0;
  609. ttu |= TTU_IGNORE_HWPOISON;
  610. printk(KERN_INFO
  611. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  612. pfn);
  613. }
  614. }
  615. /*
  616. * First collect all the processes that have the page
  617. * mapped in dirty form. This has to be done before try_to_unmap,
  618. * because ttu takes the rmap data structures down.
  619. *
  620. * Error handling: We ignore errors here because
  621. * there's nothing that can be done.
  622. */
  623. if (kill)
  624. collect_procs(p, &tokill);
  625. /*
  626. * try_to_unmap can fail temporarily due to races.
  627. * Try a few times (RED-PEN better strategy?)
  628. */
  629. for (i = 0; i < N_UNMAP_TRIES; i++) {
  630. ret = try_to_unmap(p, ttu);
  631. if (ret == SWAP_SUCCESS)
  632. break;
  633. pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
  634. }
  635. if (ret != SWAP_SUCCESS)
  636. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  637. pfn, page_mapcount(p));
  638. /*
  639. * Now that the dirty bit has been propagated to the
  640. * struct page and all unmaps done we can decide if
  641. * killing is needed or not. Only kill when the page
  642. * was dirty, otherwise the tokill list is merely
  643. * freed. When there was a problem unmapping earlier
  644. * use a more force-full uncatchable kill to prevent
  645. * any accesses to the poisoned memory.
  646. */
  647. kill_procs_ao(&tokill, !!PageDirty(p), trapno,
  648. ret != SWAP_SUCCESS, pfn);
  649. }
  650. int __memory_failure(unsigned long pfn, int trapno, int ref)
  651. {
  652. unsigned long lru_flag;
  653. struct page_state *ps;
  654. struct page *p;
  655. int res;
  656. if (!sysctl_memory_failure_recovery)
  657. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  658. if (!pfn_valid(pfn)) {
  659. action_result(pfn, "memory outside kernel control", IGNORED);
  660. return -EIO;
  661. }
  662. p = pfn_to_page(pfn);
  663. if (TestSetPageHWPoison(p)) {
  664. action_result(pfn, "already hardware poisoned", IGNORED);
  665. return 0;
  666. }
  667. atomic_long_add(1, &mce_bad_pages);
  668. /*
  669. * We need/can do nothing about count=0 pages.
  670. * 1) it's a free page, and therefore in safe hand:
  671. * prep_new_page() will be the gate keeper.
  672. * 2) it's part of a non-compound high order page.
  673. * Implies some kernel user: cannot stop them from
  674. * R/W the page; let's pray that the page has been
  675. * used and will be freed some time later.
  676. * In fact it's dangerous to directly bump up page count from 0,
  677. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  678. */
  679. if (!get_page_unless_zero(compound_head(p))) {
  680. action_result(pfn, "free or high order kernel", IGNORED);
  681. return PageBuddy(compound_head(p)) ? 0 : -EBUSY;
  682. }
  683. /*
  684. * We ignore non-LRU pages for good reasons.
  685. * - PG_locked is only well defined for LRU pages and a few others
  686. * - to avoid races with __set_page_locked()
  687. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  688. * The check (unnecessarily) ignores LRU pages being isolated and
  689. * walked by the page reclaim code, however that's not a big loss.
  690. */
  691. if (!PageLRU(p))
  692. lru_add_drain_all();
  693. lru_flag = p->flags & lru;
  694. if (isolate_lru_page(p)) {
  695. action_result(pfn, "non LRU", IGNORED);
  696. put_page(p);
  697. return -EBUSY;
  698. }
  699. page_cache_release(p);
  700. /*
  701. * Lock the page and wait for writeback to finish.
  702. * It's very difficult to mess with pages currently under IO
  703. * and in many cases impossible, so we just avoid it here.
  704. */
  705. lock_page_nosync(p);
  706. wait_on_page_writeback(p);
  707. /*
  708. * Now take care of user space mappings.
  709. */
  710. hwpoison_user_mappings(p, pfn, trapno);
  711. /*
  712. * Torn down by someone else?
  713. */
  714. if ((lru_flag & lru) && !PageSwapCache(p) && p->mapping == NULL) {
  715. action_result(pfn, "already truncated LRU", IGNORED);
  716. res = 0;
  717. goto out;
  718. }
  719. res = -EBUSY;
  720. for (ps = error_states;; ps++) {
  721. if (((p->flags | lru_flag)& ps->mask) == ps->res) {
  722. res = page_action(ps, p, pfn, ref);
  723. break;
  724. }
  725. }
  726. out:
  727. unlock_page(p);
  728. return res;
  729. }
  730. EXPORT_SYMBOL_GPL(__memory_failure);
  731. /**
  732. * memory_failure - Handle memory failure of a page.
  733. * @pfn: Page Number of the corrupted page
  734. * @trapno: Trap number reported in the signal to user space.
  735. *
  736. * This function is called by the low level machine check code
  737. * of an architecture when it detects hardware memory corruption
  738. * of a page. It tries its best to recover, which includes
  739. * dropping pages, killing processes etc.
  740. *
  741. * The function is primarily of use for corruptions that
  742. * happen outside the current execution context (e.g. when
  743. * detected by a background scrubber)
  744. *
  745. * Must run in process context (e.g. a work queue) with interrupts
  746. * enabled and no spinlocks hold.
  747. */
  748. void memory_failure(unsigned long pfn, int trapno)
  749. {
  750. __memory_failure(pfn, trapno, 0);
  751. }