swiotlb.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <asm/io.h>
  31. #include <asm/dma.h>
  32. #include <asm/scatterlist.h>
  33. #include <linux/init.h>
  34. #include <linux/bootmem.h>
  35. #include <linux/iommu-helper.h>
  36. #define OFFSET(val,align) ((unsigned long) \
  37. ( (val) & ( (align) - 1)))
  38. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  39. /*
  40. * Minimum IO TLB size to bother booting with. Systems with mainly
  41. * 64bit capable cards will only lightly use the swiotlb. If we can't
  42. * allocate a contiguous 1MB, we're probably in trouble anyway.
  43. */
  44. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  45. /*
  46. * Enumeration for sync targets
  47. */
  48. enum dma_sync_target {
  49. SYNC_FOR_CPU = 0,
  50. SYNC_FOR_DEVICE = 1,
  51. };
  52. int swiotlb_force;
  53. /*
  54. * Used to do a quick range check in unmap_single and
  55. * sync_single_*, to see if the memory was in fact allocated by this
  56. * API.
  57. */
  58. static char *io_tlb_start, *io_tlb_end;
  59. /*
  60. * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
  61. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  62. */
  63. static unsigned long io_tlb_nslabs;
  64. /*
  65. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  66. */
  67. static unsigned long io_tlb_overflow = 32*1024;
  68. void *io_tlb_overflow_buffer;
  69. /*
  70. * This is a free list describing the number of free entries available from
  71. * each index
  72. */
  73. static unsigned int *io_tlb_list;
  74. static unsigned int io_tlb_index;
  75. /*
  76. * We need to save away the original address corresponding to a mapped entry
  77. * for the sync operations.
  78. */
  79. static phys_addr_t *io_tlb_orig_addr;
  80. /*
  81. * Protect the above data structures in the map and unmap calls
  82. */
  83. static DEFINE_SPINLOCK(io_tlb_lock);
  84. static int __init
  85. setup_io_tlb_npages(char *str)
  86. {
  87. if (isdigit(*str)) {
  88. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  89. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  90. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  91. }
  92. if (*str == ',')
  93. ++str;
  94. if (!strcmp(str, "force"))
  95. swiotlb_force = 1;
  96. return 1;
  97. }
  98. __setup("swiotlb=", setup_io_tlb_npages);
  99. /* make io_tlb_overflow tunable too? */
  100. /* Note that this doesn't work with highmem page */
  101. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  102. volatile void *address)
  103. {
  104. return phys_to_dma(hwdev, virt_to_phys(address));
  105. }
  106. static void swiotlb_print_info(unsigned long bytes)
  107. {
  108. phys_addr_t pstart, pend;
  109. pstart = virt_to_phys(io_tlb_start);
  110. pend = virt_to_phys(io_tlb_end);
  111. printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
  112. bytes >> 20, io_tlb_start, io_tlb_end);
  113. printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
  114. (unsigned long long)pstart,
  115. (unsigned long long)pend);
  116. }
  117. /*
  118. * Statically reserve bounce buffer space and initialize bounce buffer data
  119. * structures for the software IO TLB used to implement the DMA API.
  120. */
  121. void __init
  122. swiotlb_init_with_default_size(size_t default_size)
  123. {
  124. unsigned long i, bytes;
  125. if (!io_tlb_nslabs) {
  126. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  127. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  128. }
  129. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  130. /*
  131. * Get IO TLB memory from the low pages
  132. */
  133. io_tlb_start = alloc_bootmem_low_pages(bytes);
  134. if (!io_tlb_start)
  135. panic("Cannot allocate SWIOTLB buffer");
  136. io_tlb_end = io_tlb_start + bytes;
  137. /*
  138. * Allocate and initialize the free list array. This array is used
  139. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  140. * between io_tlb_start and io_tlb_end.
  141. */
  142. io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
  143. for (i = 0; i < io_tlb_nslabs; i++)
  144. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  145. io_tlb_index = 0;
  146. io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
  147. /*
  148. * Get the overflow emergency buffer
  149. */
  150. io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
  151. if (!io_tlb_overflow_buffer)
  152. panic("Cannot allocate SWIOTLB overflow buffer!\n");
  153. swiotlb_print_info(bytes);
  154. }
  155. void __init
  156. swiotlb_init(void)
  157. {
  158. swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
  159. }
  160. /*
  161. * Systems with larger DMA zones (those that don't support ISA) can
  162. * initialize the swiotlb later using the slab allocator if needed.
  163. * This should be just like above, but with some error catching.
  164. */
  165. int
  166. swiotlb_late_init_with_default_size(size_t default_size)
  167. {
  168. unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
  169. unsigned int order;
  170. if (!io_tlb_nslabs) {
  171. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  172. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  173. }
  174. /*
  175. * Get IO TLB memory from the low pages
  176. */
  177. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  178. io_tlb_nslabs = SLABS_PER_PAGE << order;
  179. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  180. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  181. io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  182. order);
  183. if (io_tlb_start)
  184. break;
  185. order--;
  186. }
  187. if (!io_tlb_start)
  188. goto cleanup1;
  189. if (order != get_order(bytes)) {
  190. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  191. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  192. io_tlb_nslabs = SLABS_PER_PAGE << order;
  193. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  194. }
  195. io_tlb_end = io_tlb_start + bytes;
  196. memset(io_tlb_start, 0, bytes);
  197. /*
  198. * Allocate and initialize the free list array. This array is used
  199. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  200. * between io_tlb_start and io_tlb_end.
  201. */
  202. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  203. get_order(io_tlb_nslabs * sizeof(int)));
  204. if (!io_tlb_list)
  205. goto cleanup2;
  206. for (i = 0; i < io_tlb_nslabs; i++)
  207. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  208. io_tlb_index = 0;
  209. io_tlb_orig_addr = (phys_addr_t *)
  210. __get_free_pages(GFP_KERNEL,
  211. get_order(io_tlb_nslabs *
  212. sizeof(phys_addr_t)));
  213. if (!io_tlb_orig_addr)
  214. goto cleanup3;
  215. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  216. /*
  217. * Get the overflow emergency buffer
  218. */
  219. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  220. get_order(io_tlb_overflow));
  221. if (!io_tlb_overflow_buffer)
  222. goto cleanup4;
  223. swiotlb_print_info(bytes);
  224. return 0;
  225. cleanup4:
  226. free_pages((unsigned long)io_tlb_orig_addr,
  227. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  228. io_tlb_orig_addr = NULL;
  229. cleanup3:
  230. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  231. sizeof(int)));
  232. io_tlb_list = NULL;
  233. cleanup2:
  234. io_tlb_end = NULL;
  235. free_pages((unsigned long)io_tlb_start, order);
  236. io_tlb_start = NULL;
  237. cleanup1:
  238. io_tlb_nslabs = req_nslabs;
  239. return -ENOMEM;
  240. }
  241. static int is_swiotlb_buffer(phys_addr_t paddr)
  242. {
  243. return paddr >= virt_to_phys(io_tlb_start) &&
  244. paddr < virt_to_phys(io_tlb_end);
  245. }
  246. /*
  247. * Bounce: copy the swiotlb buffer back to the original dma location
  248. */
  249. static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
  250. enum dma_data_direction dir)
  251. {
  252. unsigned long pfn = PFN_DOWN(phys);
  253. if (PageHighMem(pfn_to_page(pfn))) {
  254. /* The buffer does not have a mapping. Map it in and copy */
  255. unsigned int offset = phys & ~PAGE_MASK;
  256. char *buffer;
  257. unsigned int sz = 0;
  258. unsigned long flags;
  259. while (size) {
  260. sz = min_t(size_t, PAGE_SIZE - offset, size);
  261. local_irq_save(flags);
  262. buffer = kmap_atomic(pfn_to_page(pfn),
  263. KM_BOUNCE_READ);
  264. if (dir == DMA_TO_DEVICE)
  265. memcpy(dma_addr, buffer + offset, sz);
  266. else
  267. memcpy(buffer + offset, dma_addr, sz);
  268. kunmap_atomic(buffer, KM_BOUNCE_READ);
  269. local_irq_restore(flags);
  270. size -= sz;
  271. pfn++;
  272. dma_addr += sz;
  273. offset = 0;
  274. }
  275. } else {
  276. if (dir == DMA_TO_DEVICE)
  277. memcpy(dma_addr, phys_to_virt(phys), size);
  278. else
  279. memcpy(phys_to_virt(phys), dma_addr, size);
  280. }
  281. }
  282. /*
  283. * Allocates bounce buffer and returns its kernel virtual address.
  284. */
  285. static void *
  286. map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
  287. {
  288. unsigned long flags;
  289. char *dma_addr;
  290. unsigned int nslots, stride, index, wrap;
  291. int i;
  292. unsigned long start_dma_addr;
  293. unsigned long mask;
  294. unsigned long offset_slots;
  295. unsigned long max_slots;
  296. mask = dma_get_seg_boundary(hwdev);
  297. start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
  298. offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  299. /*
  300. * Carefully handle integer overflow which can occur when mask == ~0UL.
  301. */
  302. max_slots = mask + 1
  303. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  304. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  305. /*
  306. * For mappings greater than a page, we limit the stride (and
  307. * hence alignment) to a page size.
  308. */
  309. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  310. if (size > PAGE_SIZE)
  311. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  312. else
  313. stride = 1;
  314. BUG_ON(!nslots);
  315. /*
  316. * Find suitable number of IO TLB entries size that will fit this
  317. * request and allocate a buffer from that IO TLB pool.
  318. */
  319. spin_lock_irqsave(&io_tlb_lock, flags);
  320. index = ALIGN(io_tlb_index, stride);
  321. if (index >= io_tlb_nslabs)
  322. index = 0;
  323. wrap = index;
  324. do {
  325. while (iommu_is_span_boundary(index, nslots, offset_slots,
  326. max_slots)) {
  327. index += stride;
  328. if (index >= io_tlb_nslabs)
  329. index = 0;
  330. if (index == wrap)
  331. goto not_found;
  332. }
  333. /*
  334. * If we find a slot that indicates we have 'nslots' number of
  335. * contiguous buffers, we allocate the buffers from that slot
  336. * and mark the entries as '0' indicating unavailable.
  337. */
  338. if (io_tlb_list[index] >= nslots) {
  339. int count = 0;
  340. for (i = index; i < (int) (index + nslots); i++)
  341. io_tlb_list[i] = 0;
  342. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  343. io_tlb_list[i] = ++count;
  344. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  345. /*
  346. * Update the indices to avoid searching in the next
  347. * round.
  348. */
  349. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  350. ? (index + nslots) : 0);
  351. goto found;
  352. }
  353. index += stride;
  354. if (index >= io_tlb_nslabs)
  355. index = 0;
  356. } while (index != wrap);
  357. not_found:
  358. spin_unlock_irqrestore(&io_tlb_lock, flags);
  359. return NULL;
  360. found:
  361. spin_unlock_irqrestore(&io_tlb_lock, flags);
  362. /*
  363. * Save away the mapping from the original address to the DMA address.
  364. * This is needed when we sync the memory. Then we sync the buffer if
  365. * needed.
  366. */
  367. for (i = 0; i < nslots; i++)
  368. io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
  369. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  370. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  371. return dma_addr;
  372. }
  373. /*
  374. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  375. */
  376. static void
  377. do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
  378. {
  379. unsigned long flags;
  380. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  381. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  382. phys_addr_t phys = io_tlb_orig_addr[index];
  383. /*
  384. * First, sync the memory before unmapping the entry
  385. */
  386. if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  387. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  388. /*
  389. * Return the buffer to the free list by setting the corresponding
  390. * entries to indicate the number of contigous entries available.
  391. * While returning the entries to the free list, we merge the entries
  392. * with slots below and above the pool being returned.
  393. */
  394. spin_lock_irqsave(&io_tlb_lock, flags);
  395. {
  396. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  397. io_tlb_list[index + nslots] : 0);
  398. /*
  399. * Step 1: return the slots to the free list, merging the
  400. * slots with superceeding slots
  401. */
  402. for (i = index + nslots - 1; i >= index; i--)
  403. io_tlb_list[i] = ++count;
  404. /*
  405. * Step 2: merge the returned slots with the preceding slots,
  406. * if available (non zero)
  407. */
  408. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  409. io_tlb_list[i] = ++count;
  410. }
  411. spin_unlock_irqrestore(&io_tlb_lock, flags);
  412. }
  413. static void
  414. sync_single(struct device *hwdev, char *dma_addr, size_t size,
  415. int dir, int target)
  416. {
  417. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  418. phys_addr_t phys = io_tlb_orig_addr[index];
  419. phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
  420. switch (target) {
  421. case SYNC_FOR_CPU:
  422. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  423. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  424. else
  425. BUG_ON(dir != DMA_TO_DEVICE);
  426. break;
  427. case SYNC_FOR_DEVICE:
  428. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  429. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  430. else
  431. BUG_ON(dir != DMA_FROM_DEVICE);
  432. break;
  433. default:
  434. BUG();
  435. }
  436. }
  437. void *
  438. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  439. dma_addr_t *dma_handle, gfp_t flags)
  440. {
  441. dma_addr_t dev_addr;
  442. void *ret;
  443. int order = get_order(size);
  444. u64 dma_mask = DMA_BIT_MASK(32);
  445. if (hwdev && hwdev->coherent_dma_mask)
  446. dma_mask = hwdev->coherent_dma_mask;
  447. ret = (void *)__get_free_pages(flags, order);
  448. if (ret && swiotlb_virt_to_bus(hwdev, ret) + size > dma_mask) {
  449. /*
  450. * The allocated memory isn't reachable by the device.
  451. */
  452. free_pages((unsigned long) ret, order);
  453. ret = NULL;
  454. }
  455. if (!ret) {
  456. /*
  457. * We are either out of memory or the device can't DMA
  458. * to GFP_DMA memory; fall back on map_single(), which
  459. * will grab memory from the lowest available address range.
  460. */
  461. ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  462. if (!ret)
  463. return NULL;
  464. }
  465. memset(ret, 0, size);
  466. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  467. /* Confirm address can be DMA'd by device */
  468. if (dev_addr + size > dma_mask) {
  469. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  470. (unsigned long long)dma_mask,
  471. (unsigned long long)dev_addr);
  472. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  473. do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
  474. return NULL;
  475. }
  476. *dma_handle = dev_addr;
  477. return ret;
  478. }
  479. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  480. void
  481. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  482. dma_addr_t dev_addr)
  483. {
  484. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  485. WARN_ON(irqs_disabled());
  486. if (!is_swiotlb_buffer(paddr))
  487. free_pages((unsigned long)vaddr, get_order(size));
  488. else
  489. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  490. do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
  491. }
  492. EXPORT_SYMBOL(swiotlb_free_coherent);
  493. static void
  494. swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
  495. {
  496. /*
  497. * Ran out of IOMMU space for this operation. This is very bad.
  498. * Unfortunately the drivers cannot handle this operation properly.
  499. * unless they check for dma_mapping_error (most don't)
  500. * When the mapping is small enough return a static buffer to limit
  501. * the damage, or panic when the transfer is too big.
  502. */
  503. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  504. "device %s\n", size, dev ? dev_name(dev) : "?");
  505. if (size <= io_tlb_overflow || !do_panic)
  506. return;
  507. if (dir == DMA_BIDIRECTIONAL)
  508. panic("DMA: Random memory could be DMA accessed\n");
  509. if (dir == DMA_FROM_DEVICE)
  510. panic("DMA: Random memory could be DMA written\n");
  511. if (dir == DMA_TO_DEVICE)
  512. panic("DMA: Random memory could be DMA read\n");
  513. }
  514. /*
  515. * Map a single buffer of the indicated size for DMA in streaming mode. The
  516. * physical address to use is returned.
  517. *
  518. * Once the device is given the dma address, the device owns this memory until
  519. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  520. */
  521. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  522. unsigned long offset, size_t size,
  523. enum dma_data_direction dir,
  524. struct dma_attrs *attrs)
  525. {
  526. phys_addr_t phys = page_to_phys(page) + offset;
  527. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  528. void *map;
  529. BUG_ON(dir == DMA_NONE);
  530. /*
  531. * If the address happens to be in the device's DMA window,
  532. * we can safely return the device addr and not worry about bounce
  533. * buffering it.
  534. */
  535. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  536. return dev_addr;
  537. /*
  538. * Oh well, have to allocate and map a bounce buffer.
  539. */
  540. map = map_single(dev, phys, size, dir);
  541. if (!map) {
  542. swiotlb_full(dev, size, dir, 1);
  543. map = io_tlb_overflow_buffer;
  544. }
  545. dev_addr = swiotlb_virt_to_bus(dev, map);
  546. /*
  547. * Ensure that the address returned is DMA'ble
  548. */
  549. if (!dma_capable(dev, dev_addr, size))
  550. panic("map_single: bounce buffer is not DMA'ble");
  551. return dev_addr;
  552. }
  553. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  554. /*
  555. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  556. * match what was provided for in a previous swiotlb_map_page call. All
  557. * other usages are undefined.
  558. *
  559. * After this call, reads by the cpu to the buffer are guaranteed to see
  560. * whatever the device wrote there.
  561. */
  562. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  563. size_t size, int dir)
  564. {
  565. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  566. BUG_ON(dir == DMA_NONE);
  567. if (is_swiotlb_buffer(paddr)) {
  568. do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  569. return;
  570. }
  571. if (dir != DMA_FROM_DEVICE)
  572. return;
  573. /*
  574. * phys_to_virt doesn't work with hihgmem page but we could
  575. * call dma_mark_clean() with hihgmem page here. However, we
  576. * are fine since dma_mark_clean() is null on POWERPC. We can
  577. * make dma_mark_clean() take a physical address if necessary.
  578. */
  579. dma_mark_clean(phys_to_virt(paddr), size);
  580. }
  581. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  582. size_t size, enum dma_data_direction dir,
  583. struct dma_attrs *attrs)
  584. {
  585. unmap_single(hwdev, dev_addr, size, dir);
  586. }
  587. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  588. /*
  589. * Make physical memory consistent for a single streaming mode DMA translation
  590. * after a transfer.
  591. *
  592. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  593. * using the cpu, yet do not wish to teardown the dma mapping, you must
  594. * call this function before doing so. At the next point you give the dma
  595. * address back to the card, you must first perform a
  596. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  597. */
  598. static void
  599. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  600. size_t size, int dir, int target)
  601. {
  602. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  603. BUG_ON(dir == DMA_NONE);
  604. if (is_swiotlb_buffer(paddr)) {
  605. sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
  606. return;
  607. }
  608. if (dir != DMA_FROM_DEVICE)
  609. return;
  610. dma_mark_clean(phys_to_virt(paddr), size);
  611. }
  612. void
  613. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  614. size_t size, enum dma_data_direction dir)
  615. {
  616. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  617. }
  618. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  619. void
  620. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  621. size_t size, enum dma_data_direction dir)
  622. {
  623. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  624. }
  625. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  626. /*
  627. * Same as above, but for a sub-range of the mapping.
  628. */
  629. static void
  630. swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
  631. unsigned long offset, size_t size,
  632. int dir, int target)
  633. {
  634. swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
  635. }
  636. void
  637. swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  638. unsigned long offset, size_t size,
  639. enum dma_data_direction dir)
  640. {
  641. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  642. SYNC_FOR_CPU);
  643. }
  644. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
  645. void
  646. swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
  647. unsigned long offset, size_t size,
  648. enum dma_data_direction dir)
  649. {
  650. swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
  651. SYNC_FOR_DEVICE);
  652. }
  653. EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
  654. /*
  655. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  656. * This is the scatter-gather version of the above swiotlb_map_page
  657. * interface. Here the scatter gather list elements are each tagged with the
  658. * appropriate dma address and length. They are obtained via
  659. * sg_dma_{address,length}(SG).
  660. *
  661. * NOTE: An implementation may be able to use a smaller number of
  662. * DMA address/length pairs than there are SG table elements.
  663. * (for example via virtual mapping capabilities)
  664. * The routine returns the number of addr/length pairs actually
  665. * used, at most nents.
  666. *
  667. * Device ownership issues as mentioned above for swiotlb_map_page are the
  668. * same here.
  669. */
  670. int
  671. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  672. enum dma_data_direction dir, struct dma_attrs *attrs)
  673. {
  674. struct scatterlist *sg;
  675. int i;
  676. BUG_ON(dir == DMA_NONE);
  677. for_each_sg(sgl, sg, nelems, i) {
  678. phys_addr_t paddr = sg_phys(sg);
  679. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  680. if (swiotlb_force ||
  681. !dma_capable(hwdev, dev_addr, sg->length)) {
  682. void *map = map_single(hwdev, sg_phys(sg),
  683. sg->length, dir);
  684. if (!map) {
  685. /* Don't panic here, we expect map_sg users
  686. to do proper error handling. */
  687. swiotlb_full(hwdev, sg->length, dir, 0);
  688. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  689. attrs);
  690. sgl[0].dma_length = 0;
  691. return 0;
  692. }
  693. sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
  694. } else
  695. sg->dma_address = dev_addr;
  696. sg->dma_length = sg->length;
  697. }
  698. return nelems;
  699. }
  700. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  701. int
  702. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  703. int dir)
  704. {
  705. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  706. }
  707. EXPORT_SYMBOL(swiotlb_map_sg);
  708. /*
  709. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  710. * concerning calls here are the same as for swiotlb_unmap_page() above.
  711. */
  712. void
  713. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  714. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  715. {
  716. struct scatterlist *sg;
  717. int i;
  718. BUG_ON(dir == DMA_NONE);
  719. for_each_sg(sgl, sg, nelems, i)
  720. unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  721. }
  722. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  723. void
  724. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  725. int dir)
  726. {
  727. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  728. }
  729. EXPORT_SYMBOL(swiotlb_unmap_sg);
  730. /*
  731. * Make physical memory consistent for a set of streaming mode DMA translations
  732. * after a transfer.
  733. *
  734. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  735. * and usage.
  736. */
  737. static void
  738. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  739. int nelems, int dir, int target)
  740. {
  741. struct scatterlist *sg;
  742. int i;
  743. for_each_sg(sgl, sg, nelems, i)
  744. swiotlb_sync_single(hwdev, sg->dma_address,
  745. sg->dma_length, dir, target);
  746. }
  747. void
  748. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  749. int nelems, enum dma_data_direction dir)
  750. {
  751. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  752. }
  753. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  754. void
  755. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  756. int nelems, enum dma_data_direction dir)
  757. {
  758. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  759. }
  760. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  761. int
  762. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  763. {
  764. return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
  765. }
  766. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  767. /*
  768. * Return whether the given device DMA address mask can be supported
  769. * properly. For example, if your device can only drive the low 24-bits
  770. * during bus mastering, then you would pass 0x00ffffff as the mask to
  771. * this function.
  772. */
  773. int
  774. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  775. {
  776. return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
  777. }
  778. EXPORT_SYMBOL(swiotlb_dma_supported);