bitmap.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024
  1. /*
  2. * lib/bitmap.c
  3. * Helper functions for bitmap.h.
  4. *
  5. * This source code is licensed under the GNU General Public License,
  6. * Version 2. See the file COPYING for more details.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/ctype.h>
  10. #include <linux/errno.h>
  11. #include <linux/bitmap.h>
  12. #include <linux/bitops.h>
  13. #include <asm/uaccess.h>
  14. /*
  15. * bitmaps provide an array of bits, implemented using an an
  16. * array of unsigned longs. The number of valid bits in a
  17. * given bitmap does _not_ need to be an exact multiple of
  18. * BITS_PER_LONG.
  19. *
  20. * The possible unused bits in the last, partially used word
  21. * of a bitmap are 'don't care'. The implementation makes
  22. * no particular effort to keep them zero. It ensures that
  23. * their value will not affect the results of any operation.
  24. * The bitmap operations that return Boolean (bitmap_empty,
  25. * for example) or scalar (bitmap_weight, for example) results
  26. * carefully filter out these unused bits from impacting their
  27. * results.
  28. *
  29. * These operations actually hold to a slightly stronger rule:
  30. * if you don't input any bitmaps to these ops that have some
  31. * unused bits set, then they won't output any set unused bits
  32. * in output bitmaps.
  33. *
  34. * The byte ordering of bitmaps is more natural on little
  35. * endian architectures. See the big-endian headers
  36. * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  37. * for the best explanations of this ordering.
  38. */
  39. int __bitmap_empty(const unsigned long *bitmap, int bits)
  40. {
  41. int k, lim = bits/BITS_PER_LONG;
  42. for (k = 0; k < lim; ++k)
  43. if (bitmap[k])
  44. return 0;
  45. if (bits % BITS_PER_LONG)
  46. if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  47. return 0;
  48. return 1;
  49. }
  50. EXPORT_SYMBOL(__bitmap_empty);
  51. int __bitmap_full(const unsigned long *bitmap, int bits)
  52. {
  53. int k, lim = bits/BITS_PER_LONG;
  54. for (k = 0; k < lim; ++k)
  55. if (~bitmap[k])
  56. return 0;
  57. if (bits % BITS_PER_LONG)
  58. if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  59. return 0;
  60. return 1;
  61. }
  62. EXPORT_SYMBOL(__bitmap_full);
  63. int __bitmap_equal(const unsigned long *bitmap1,
  64. const unsigned long *bitmap2, int bits)
  65. {
  66. int k, lim = bits/BITS_PER_LONG;
  67. for (k = 0; k < lim; ++k)
  68. if (bitmap1[k] != bitmap2[k])
  69. return 0;
  70. if (bits % BITS_PER_LONG)
  71. if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  72. return 0;
  73. return 1;
  74. }
  75. EXPORT_SYMBOL(__bitmap_equal);
  76. void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
  77. {
  78. int k, lim = bits/BITS_PER_LONG;
  79. for (k = 0; k < lim; ++k)
  80. dst[k] = ~src[k];
  81. if (bits % BITS_PER_LONG)
  82. dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
  83. }
  84. EXPORT_SYMBOL(__bitmap_complement);
  85. /**
  86. * __bitmap_shift_right - logical right shift of the bits in a bitmap
  87. * @dst : destination bitmap
  88. * @src : source bitmap
  89. * @shift : shift by this many bits
  90. * @bits : bitmap size, in bits
  91. *
  92. * Shifting right (dividing) means moving bits in the MS -> LS bit
  93. * direction. Zeros are fed into the vacated MS positions and the
  94. * LS bits shifted off the bottom are lost.
  95. */
  96. void __bitmap_shift_right(unsigned long *dst,
  97. const unsigned long *src, int shift, int bits)
  98. {
  99. int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  100. int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  101. unsigned long mask = (1UL << left) - 1;
  102. for (k = 0; off + k < lim; ++k) {
  103. unsigned long upper, lower;
  104. /*
  105. * If shift is not word aligned, take lower rem bits of
  106. * word above and make them the top rem bits of result.
  107. */
  108. if (!rem || off + k + 1 >= lim)
  109. upper = 0;
  110. else {
  111. upper = src[off + k + 1];
  112. if (off + k + 1 == lim - 1 && left)
  113. upper &= mask;
  114. }
  115. lower = src[off + k];
  116. if (left && off + k == lim - 1)
  117. lower &= mask;
  118. dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
  119. if (left && k == lim - 1)
  120. dst[k] &= mask;
  121. }
  122. if (off)
  123. memset(&dst[lim - off], 0, off*sizeof(unsigned long));
  124. }
  125. EXPORT_SYMBOL(__bitmap_shift_right);
  126. /**
  127. * __bitmap_shift_left - logical left shift of the bits in a bitmap
  128. * @dst : destination bitmap
  129. * @src : source bitmap
  130. * @shift : shift by this many bits
  131. * @bits : bitmap size, in bits
  132. *
  133. * Shifting left (multiplying) means moving bits in the LS -> MS
  134. * direction. Zeros are fed into the vacated LS bit positions
  135. * and those MS bits shifted off the top are lost.
  136. */
  137. void __bitmap_shift_left(unsigned long *dst,
  138. const unsigned long *src, int shift, int bits)
  139. {
  140. int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  141. int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  142. for (k = lim - off - 1; k >= 0; --k) {
  143. unsigned long upper, lower;
  144. /*
  145. * If shift is not word aligned, take upper rem bits of
  146. * word below and make them the bottom rem bits of result.
  147. */
  148. if (rem && k > 0)
  149. lower = src[k - 1];
  150. else
  151. lower = 0;
  152. upper = src[k];
  153. if (left && k == lim - 1)
  154. upper &= (1UL << left) - 1;
  155. dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
  156. if (left && k + off == lim - 1)
  157. dst[k + off] &= (1UL << left) - 1;
  158. }
  159. if (off)
  160. memset(dst, 0, off*sizeof(unsigned long));
  161. }
  162. EXPORT_SYMBOL(__bitmap_shift_left);
  163. int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
  164. const unsigned long *bitmap2, int bits)
  165. {
  166. int k;
  167. int nr = BITS_TO_LONGS(bits);
  168. unsigned long result = 0;
  169. for (k = 0; k < nr; k++)
  170. result |= (dst[k] = bitmap1[k] & bitmap2[k]);
  171. return result != 0;
  172. }
  173. EXPORT_SYMBOL(__bitmap_and);
  174. void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
  175. const unsigned long *bitmap2, int bits)
  176. {
  177. int k;
  178. int nr = BITS_TO_LONGS(bits);
  179. for (k = 0; k < nr; k++)
  180. dst[k] = bitmap1[k] | bitmap2[k];
  181. }
  182. EXPORT_SYMBOL(__bitmap_or);
  183. void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
  184. const unsigned long *bitmap2, int bits)
  185. {
  186. int k;
  187. int nr = BITS_TO_LONGS(bits);
  188. for (k = 0; k < nr; k++)
  189. dst[k] = bitmap1[k] ^ bitmap2[k];
  190. }
  191. EXPORT_SYMBOL(__bitmap_xor);
  192. int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
  193. const unsigned long *bitmap2, int bits)
  194. {
  195. int k;
  196. int nr = BITS_TO_LONGS(bits);
  197. unsigned long result = 0;
  198. for (k = 0; k < nr; k++)
  199. result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
  200. return result != 0;
  201. }
  202. EXPORT_SYMBOL(__bitmap_andnot);
  203. int __bitmap_intersects(const unsigned long *bitmap1,
  204. const unsigned long *bitmap2, int bits)
  205. {
  206. int k, lim = bits/BITS_PER_LONG;
  207. for (k = 0; k < lim; ++k)
  208. if (bitmap1[k] & bitmap2[k])
  209. return 1;
  210. if (bits % BITS_PER_LONG)
  211. if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  212. return 1;
  213. return 0;
  214. }
  215. EXPORT_SYMBOL(__bitmap_intersects);
  216. int __bitmap_subset(const unsigned long *bitmap1,
  217. const unsigned long *bitmap2, int bits)
  218. {
  219. int k, lim = bits/BITS_PER_LONG;
  220. for (k = 0; k < lim; ++k)
  221. if (bitmap1[k] & ~bitmap2[k])
  222. return 0;
  223. if (bits % BITS_PER_LONG)
  224. if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  225. return 0;
  226. return 1;
  227. }
  228. EXPORT_SYMBOL(__bitmap_subset);
  229. int __bitmap_weight(const unsigned long *bitmap, int bits)
  230. {
  231. int k, w = 0, lim = bits/BITS_PER_LONG;
  232. for (k = 0; k < lim; k++)
  233. w += hweight_long(bitmap[k]);
  234. if (bits % BITS_PER_LONG)
  235. w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
  236. return w;
  237. }
  238. EXPORT_SYMBOL(__bitmap_weight);
  239. /*
  240. * Bitmap printing & parsing functions: first version by Bill Irwin,
  241. * second version by Paul Jackson, third by Joe Korty.
  242. */
  243. #define CHUNKSZ 32
  244. #define nbits_to_hold_value(val) fls(val)
  245. #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
  246. #define BASEDEC 10 /* fancier cpuset lists input in decimal */
  247. /**
  248. * bitmap_scnprintf - convert bitmap to an ASCII hex string.
  249. * @buf: byte buffer into which string is placed
  250. * @buflen: reserved size of @buf, in bytes
  251. * @maskp: pointer to bitmap to convert
  252. * @nmaskbits: size of bitmap, in bits
  253. *
  254. * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
  255. * comma-separated sets of eight digits per set.
  256. */
  257. int bitmap_scnprintf(char *buf, unsigned int buflen,
  258. const unsigned long *maskp, int nmaskbits)
  259. {
  260. int i, word, bit, len = 0;
  261. unsigned long val;
  262. const char *sep = "";
  263. int chunksz;
  264. u32 chunkmask;
  265. chunksz = nmaskbits & (CHUNKSZ - 1);
  266. if (chunksz == 0)
  267. chunksz = CHUNKSZ;
  268. i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
  269. for (; i >= 0; i -= CHUNKSZ) {
  270. chunkmask = ((1ULL << chunksz) - 1);
  271. word = i / BITS_PER_LONG;
  272. bit = i % BITS_PER_LONG;
  273. val = (maskp[word] >> bit) & chunkmask;
  274. len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
  275. (chunksz+3)/4, val);
  276. chunksz = CHUNKSZ;
  277. sep = ",";
  278. }
  279. return len;
  280. }
  281. EXPORT_SYMBOL(bitmap_scnprintf);
  282. /**
  283. * __bitmap_parse - convert an ASCII hex string into a bitmap.
  284. * @buf: pointer to buffer containing string.
  285. * @buflen: buffer size in bytes. If string is smaller than this
  286. * then it must be terminated with a \0.
  287. * @is_user: location of buffer, 0 indicates kernel space
  288. * @maskp: pointer to bitmap array that will contain result.
  289. * @nmaskbits: size of bitmap, in bits.
  290. *
  291. * Commas group hex digits into chunks. Each chunk defines exactly 32
  292. * bits of the resultant bitmask. No chunk may specify a value larger
  293. * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
  294. * then leading 0-bits are prepended. %-EINVAL is returned for illegal
  295. * characters and for grouping errors such as "1,,5", ",44", "," and "".
  296. * Leading and trailing whitespace accepted, but not embedded whitespace.
  297. */
  298. int __bitmap_parse(const char *buf, unsigned int buflen,
  299. int is_user, unsigned long *maskp,
  300. int nmaskbits)
  301. {
  302. int c, old_c, totaldigits, ndigits, nchunks, nbits;
  303. u32 chunk;
  304. const char __user *ubuf = buf;
  305. bitmap_zero(maskp, nmaskbits);
  306. nchunks = nbits = totaldigits = c = 0;
  307. do {
  308. chunk = ndigits = 0;
  309. /* Get the next chunk of the bitmap */
  310. while (buflen) {
  311. old_c = c;
  312. if (is_user) {
  313. if (__get_user(c, ubuf++))
  314. return -EFAULT;
  315. }
  316. else
  317. c = *buf++;
  318. buflen--;
  319. if (isspace(c))
  320. continue;
  321. /*
  322. * If the last character was a space and the current
  323. * character isn't '\0', we've got embedded whitespace.
  324. * This is a no-no, so throw an error.
  325. */
  326. if (totaldigits && c && isspace(old_c))
  327. return -EINVAL;
  328. /* A '\0' or a ',' signal the end of the chunk */
  329. if (c == '\0' || c == ',')
  330. break;
  331. if (!isxdigit(c))
  332. return -EINVAL;
  333. /*
  334. * Make sure there are at least 4 free bits in 'chunk'.
  335. * If not, this hexdigit will overflow 'chunk', so
  336. * throw an error.
  337. */
  338. if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
  339. return -EOVERFLOW;
  340. chunk = (chunk << 4) | unhex(c);
  341. ndigits++; totaldigits++;
  342. }
  343. if (ndigits == 0)
  344. return -EINVAL;
  345. if (nchunks == 0 && chunk == 0)
  346. continue;
  347. __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
  348. *maskp |= chunk;
  349. nchunks++;
  350. nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
  351. if (nbits > nmaskbits)
  352. return -EOVERFLOW;
  353. } while (buflen && c == ',');
  354. return 0;
  355. }
  356. EXPORT_SYMBOL(__bitmap_parse);
  357. /**
  358. * bitmap_parse_user()
  359. *
  360. * @ubuf: pointer to user buffer containing string.
  361. * @ulen: buffer size in bytes. If string is smaller than this
  362. * then it must be terminated with a \0.
  363. * @maskp: pointer to bitmap array that will contain result.
  364. * @nmaskbits: size of bitmap, in bits.
  365. *
  366. * Wrapper for __bitmap_parse(), providing it with user buffer.
  367. *
  368. * We cannot have this as an inline function in bitmap.h because it needs
  369. * linux/uaccess.h to get the access_ok() declaration and this causes
  370. * cyclic dependencies.
  371. */
  372. int bitmap_parse_user(const char __user *ubuf,
  373. unsigned int ulen, unsigned long *maskp,
  374. int nmaskbits)
  375. {
  376. if (!access_ok(VERIFY_READ, ubuf, ulen))
  377. return -EFAULT;
  378. return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
  379. }
  380. EXPORT_SYMBOL(bitmap_parse_user);
  381. /*
  382. * bscnl_emit(buf, buflen, rbot, rtop, bp)
  383. *
  384. * Helper routine for bitmap_scnlistprintf(). Write decimal number
  385. * or range to buf, suppressing output past buf+buflen, with optional
  386. * comma-prefix. Return len of what would be written to buf, if it
  387. * all fit.
  388. */
  389. static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
  390. {
  391. if (len > 0)
  392. len += scnprintf(buf + len, buflen - len, ",");
  393. if (rbot == rtop)
  394. len += scnprintf(buf + len, buflen - len, "%d", rbot);
  395. else
  396. len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
  397. return len;
  398. }
  399. /**
  400. * bitmap_scnlistprintf - convert bitmap to list format ASCII string
  401. * @buf: byte buffer into which string is placed
  402. * @buflen: reserved size of @buf, in bytes
  403. * @maskp: pointer to bitmap to convert
  404. * @nmaskbits: size of bitmap, in bits
  405. *
  406. * Output format is a comma-separated list of decimal numbers and
  407. * ranges. Consecutively set bits are shown as two hyphen-separated
  408. * decimal numbers, the smallest and largest bit numbers set in
  409. * the range. Output format is compatible with the format
  410. * accepted as input by bitmap_parselist().
  411. *
  412. * The return value is the number of characters which would be
  413. * generated for the given input, excluding the trailing '\0', as
  414. * per ISO C99.
  415. */
  416. int bitmap_scnlistprintf(char *buf, unsigned int buflen,
  417. const unsigned long *maskp, int nmaskbits)
  418. {
  419. int len = 0;
  420. /* current bit is 'cur', most recently seen range is [rbot, rtop] */
  421. int cur, rbot, rtop;
  422. if (buflen == 0)
  423. return 0;
  424. buf[0] = 0;
  425. rbot = cur = find_first_bit(maskp, nmaskbits);
  426. while (cur < nmaskbits) {
  427. rtop = cur;
  428. cur = find_next_bit(maskp, nmaskbits, cur+1);
  429. if (cur >= nmaskbits || cur > rtop + 1) {
  430. len = bscnl_emit(buf, buflen, rbot, rtop, len);
  431. rbot = cur;
  432. }
  433. }
  434. return len;
  435. }
  436. EXPORT_SYMBOL(bitmap_scnlistprintf);
  437. /**
  438. * bitmap_parselist - convert list format ASCII string to bitmap
  439. * @bp: read nul-terminated user string from this buffer
  440. * @maskp: write resulting mask here
  441. * @nmaskbits: number of bits in mask to be written
  442. *
  443. * Input format is a comma-separated list of decimal numbers and
  444. * ranges. Consecutively set bits are shown as two hyphen-separated
  445. * decimal numbers, the smallest and largest bit numbers set in
  446. * the range.
  447. *
  448. * Returns 0 on success, -errno on invalid input strings.
  449. * Error values:
  450. * %-EINVAL: second number in range smaller than first
  451. * %-EINVAL: invalid character in string
  452. * %-ERANGE: bit number specified too large for mask
  453. */
  454. int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
  455. {
  456. unsigned a, b;
  457. bitmap_zero(maskp, nmaskbits);
  458. do {
  459. if (!isdigit(*bp))
  460. return -EINVAL;
  461. b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
  462. if (*bp == '-') {
  463. bp++;
  464. if (!isdigit(*bp))
  465. return -EINVAL;
  466. b = simple_strtoul(bp, (char **)&bp, BASEDEC);
  467. }
  468. if (!(a <= b))
  469. return -EINVAL;
  470. if (b >= nmaskbits)
  471. return -ERANGE;
  472. while (a <= b) {
  473. set_bit(a, maskp);
  474. a++;
  475. }
  476. if (*bp == ',')
  477. bp++;
  478. } while (*bp != '\0' && *bp != '\n');
  479. return 0;
  480. }
  481. EXPORT_SYMBOL(bitmap_parselist);
  482. /**
  483. * bitmap_pos_to_ord(buf, pos, bits)
  484. * @buf: pointer to a bitmap
  485. * @pos: a bit position in @buf (0 <= @pos < @bits)
  486. * @bits: number of valid bit positions in @buf
  487. *
  488. * Map the bit at position @pos in @buf (of length @bits) to the
  489. * ordinal of which set bit it is. If it is not set or if @pos
  490. * is not a valid bit position, map to -1.
  491. *
  492. * If for example, just bits 4 through 7 are set in @buf, then @pos
  493. * values 4 through 7 will get mapped to 0 through 3, respectively,
  494. * and other @pos values will get mapped to 0. When @pos value 7
  495. * gets mapped to (returns) @ord value 3 in this example, that means
  496. * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
  497. *
  498. * The bit positions 0 through @bits are valid positions in @buf.
  499. */
  500. static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
  501. {
  502. int i, ord;
  503. if (pos < 0 || pos >= bits || !test_bit(pos, buf))
  504. return -1;
  505. i = find_first_bit(buf, bits);
  506. ord = 0;
  507. while (i < pos) {
  508. i = find_next_bit(buf, bits, i + 1);
  509. ord++;
  510. }
  511. BUG_ON(i != pos);
  512. return ord;
  513. }
  514. /**
  515. * bitmap_ord_to_pos(buf, ord, bits)
  516. * @buf: pointer to bitmap
  517. * @ord: ordinal bit position (n-th set bit, n >= 0)
  518. * @bits: number of valid bit positions in @buf
  519. *
  520. * Map the ordinal offset of bit @ord in @buf to its position in @buf.
  521. * Value of @ord should be in range 0 <= @ord < weight(buf), else
  522. * results are undefined.
  523. *
  524. * If for example, just bits 4 through 7 are set in @buf, then @ord
  525. * values 0 through 3 will get mapped to 4 through 7, respectively,
  526. * and all other @ord values return undefined values. When @ord value 3
  527. * gets mapped to (returns) @pos value 7 in this example, that means
  528. * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
  529. *
  530. * The bit positions 0 through @bits are valid positions in @buf.
  531. */
  532. static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
  533. {
  534. int pos = 0;
  535. if (ord >= 0 && ord < bits) {
  536. int i;
  537. for (i = find_first_bit(buf, bits);
  538. i < bits && ord > 0;
  539. i = find_next_bit(buf, bits, i + 1))
  540. ord--;
  541. if (i < bits && ord == 0)
  542. pos = i;
  543. }
  544. return pos;
  545. }
  546. /**
  547. * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
  548. * @dst: remapped result
  549. * @src: subset to be remapped
  550. * @old: defines domain of map
  551. * @new: defines range of map
  552. * @bits: number of bits in each of these bitmaps
  553. *
  554. * Let @old and @new define a mapping of bit positions, such that
  555. * whatever position is held by the n-th set bit in @old is mapped
  556. * to the n-th set bit in @new. In the more general case, allowing
  557. * for the possibility that the weight 'w' of @new is less than the
  558. * weight of @old, map the position of the n-th set bit in @old to
  559. * the position of the m-th set bit in @new, where m == n % w.
  560. *
  561. * If either of the @old and @new bitmaps are empty, or if @src and
  562. * @dst point to the same location, then this routine copies @src
  563. * to @dst.
  564. *
  565. * The positions of unset bits in @old are mapped to themselves
  566. * (the identify map).
  567. *
  568. * Apply the above specified mapping to @src, placing the result in
  569. * @dst, clearing any bits previously set in @dst.
  570. *
  571. * For example, lets say that @old has bits 4 through 7 set, and
  572. * @new has bits 12 through 15 set. This defines the mapping of bit
  573. * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  574. * bit positions unchanged. So if say @src comes into this routine
  575. * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
  576. * 13 and 15 set.
  577. */
  578. void bitmap_remap(unsigned long *dst, const unsigned long *src,
  579. const unsigned long *old, const unsigned long *new,
  580. int bits)
  581. {
  582. int oldbit, w;
  583. if (dst == src) /* following doesn't handle inplace remaps */
  584. return;
  585. bitmap_zero(dst, bits);
  586. w = bitmap_weight(new, bits);
  587. for (oldbit = find_first_bit(src, bits);
  588. oldbit < bits;
  589. oldbit = find_next_bit(src, bits, oldbit + 1)) {
  590. int n = bitmap_pos_to_ord(old, oldbit, bits);
  591. if (n < 0 || w == 0)
  592. set_bit(oldbit, dst); /* identity map */
  593. else
  594. set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
  595. }
  596. }
  597. EXPORT_SYMBOL(bitmap_remap);
  598. /**
  599. * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
  600. * @oldbit: bit position to be mapped
  601. * @old: defines domain of map
  602. * @new: defines range of map
  603. * @bits: number of bits in each of these bitmaps
  604. *
  605. * Let @old and @new define a mapping of bit positions, such that
  606. * whatever position is held by the n-th set bit in @old is mapped
  607. * to the n-th set bit in @new. In the more general case, allowing
  608. * for the possibility that the weight 'w' of @new is less than the
  609. * weight of @old, map the position of the n-th set bit in @old to
  610. * the position of the m-th set bit in @new, where m == n % w.
  611. *
  612. * The positions of unset bits in @old are mapped to themselves
  613. * (the identify map).
  614. *
  615. * Apply the above specified mapping to bit position @oldbit, returning
  616. * the new bit position.
  617. *
  618. * For example, lets say that @old has bits 4 through 7 set, and
  619. * @new has bits 12 through 15 set. This defines the mapping of bit
  620. * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  621. * bit positions unchanged. So if say @oldbit is 5, then this routine
  622. * returns 13.
  623. */
  624. int bitmap_bitremap(int oldbit, const unsigned long *old,
  625. const unsigned long *new, int bits)
  626. {
  627. int w = bitmap_weight(new, bits);
  628. int n = bitmap_pos_to_ord(old, oldbit, bits);
  629. if (n < 0 || w == 0)
  630. return oldbit;
  631. else
  632. return bitmap_ord_to_pos(new, n % w, bits);
  633. }
  634. EXPORT_SYMBOL(bitmap_bitremap);
  635. /**
  636. * bitmap_onto - translate one bitmap relative to another
  637. * @dst: resulting translated bitmap
  638. * @orig: original untranslated bitmap
  639. * @relmap: bitmap relative to which translated
  640. * @bits: number of bits in each of these bitmaps
  641. *
  642. * Set the n-th bit of @dst iff there exists some m such that the
  643. * n-th bit of @relmap is set, the m-th bit of @orig is set, and
  644. * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
  645. * (If you understood the previous sentence the first time your
  646. * read it, you're overqualified for your current job.)
  647. *
  648. * In other words, @orig is mapped onto (surjectively) @dst,
  649. * using the the map { <n, m> | the n-th bit of @relmap is the
  650. * m-th set bit of @relmap }.
  651. *
  652. * Any set bits in @orig above bit number W, where W is the
  653. * weight of (number of set bits in) @relmap are mapped nowhere.
  654. * In particular, if for all bits m set in @orig, m >= W, then
  655. * @dst will end up empty. In situations where the possibility
  656. * of such an empty result is not desired, one way to avoid it is
  657. * to use the bitmap_fold() operator, below, to first fold the
  658. * @orig bitmap over itself so that all its set bits x are in the
  659. * range 0 <= x < W. The bitmap_fold() operator does this by
  660. * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
  661. *
  662. * Example [1] for bitmap_onto():
  663. * Let's say @relmap has bits 30-39 set, and @orig has bits
  664. * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
  665. * @dst will have bits 31, 33, 35, 37 and 39 set.
  666. *
  667. * When bit 0 is set in @orig, it means turn on the bit in
  668. * @dst corresponding to whatever is the first bit (if any)
  669. * that is turned on in @relmap. Since bit 0 was off in the
  670. * above example, we leave off that bit (bit 30) in @dst.
  671. *
  672. * When bit 1 is set in @orig (as in the above example), it
  673. * means turn on the bit in @dst corresponding to whatever
  674. * is the second bit that is turned on in @relmap. The second
  675. * bit in @relmap that was turned on in the above example was
  676. * bit 31, so we turned on bit 31 in @dst.
  677. *
  678. * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
  679. * because they were the 4th, 6th, 8th and 10th set bits
  680. * set in @relmap, and the 4th, 6th, 8th and 10th bits of
  681. * @orig (i.e. bits 3, 5, 7 and 9) were also set.
  682. *
  683. * When bit 11 is set in @orig, it means turn on the bit in
  684. * @dst corresponding to whatever is the twelth bit that is
  685. * turned on in @relmap. In the above example, there were
  686. * only ten bits turned on in @relmap (30..39), so that bit
  687. * 11 was set in @orig had no affect on @dst.
  688. *
  689. * Example [2] for bitmap_fold() + bitmap_onto():
  690. * Let's say @relmap has these ten bits set:
  691. * 40 41 42 43 45 48 53 61 74 95
  692. * (for the curious, that's 40 plus the first ten terms of the
  693. * Fibonacci sequence.)
  694. *
  695. * Further lets say we use the following code, invoking
  696. * bitmap_fold() then bitmap_onto, as suggested above to
  697. * avoid the possitility of an empty @dst result:
  698. *
  699. * unsigned long *tmp; // a temporary bitmap's bits
  700. *
  701. * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
  702. * bitmap_onto(dst, tmp, relmap, bits);
  703. *
  704. * Then this table shows what various values of @dst would be, for
  705. * various @orig's. I list the zero-based positions of each set bit.
  706. * The tmp column shows the intermediate result, as computed by
  707. * using bitmap_fold() to fold the @orig bitmap modulo ten
  708. * (the weight of @relmap).
  709. *
  710. * @orig tmp @dst
  711. * 0 0 40
  712. * 1 1 41
  713. * 9 9 95
  714. * 10 0 40 (*)
  715. * 1 3 5 7 1 3 5 7 41 43 48 61
  716. * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
  717. * 0 9 18 27 0 9 8 7 40 61 74 95
  718. * 0 10 20 30 0 40
  719. * 0 11 22 33 0 1 2 3 40 41 42 43
  720. * 0 12 24 36 0 2 4 6 40 42 45 53
  721. * 78 102 211 1 2 8 41 42 74 (*)
  722. *
  723. * (*) For these marked lines, if we hadn't first done bitmap_fold()
  724. * into tmp, then the @dst result would have been empty.
  725. *
  726. * If either of @orig or @relmap is empty (no set bits), then @dst
  727. * will be returned empty.
  728. *
  729. * If (as explained above) the only set bits in @orig are in positions
  730. * m where m >= W, (where W is the weight of @relmap) then @dst will
  731. * once again be returned empty.
  732. *
  733. * All bits in @dst not set by the above rule are cleared.
  734. */
  735. void bitmap_onto(unsigned long *dst, const unsigned long *orig,
  736. const unsigned long *relmap, int bits)
  737. {
  738. int n, m; /* same meaning as in above comment */
  739. if (dst == orig) /* following doesn't handle inplace mappings */
  740. return;
  741. bitmap_zero(dst, bits);
  742. /*
  743. * The following code is a more efficient, but less
  744. * obvious, equivalent to the loop:
  745. * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
  746. * n = bitmap_ord_to_pos(orig, m, bits);
  747. * if (test_bit(m, orig))
  748. * set_bit(n, dst);
  749. * }
  750. */
  751. m = 0;
  752. for (n = find_first_bit(relmap, bits);
  753. n < bits;
  754. n = find_next_bit(relmap, bits, n + 1)) {
  755. /* m == bitmap_pos_to_ord(relmap, n, bits) */
  756. if (test_bit(m, orig))
  757. set_bit(n, dst);
  758. m++;
  759. }
  760. }
  761. EXPORT_SYMBOL(bitmap_onto);
  762. /**
  763. * bitmap_fold - fold larger bitmap into smaller, modulo specified size
  764. * @dst: resulting smaller bitmap
  765. * @orig: original larger bitmap
  766. * @sz: specified size
  767. * @bits: number of bits in each of these bitmaps
  768. *
  769. * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
  770. * Clear all other bits in @dst. See further the comment and
  771. * Example [2] for bitmap_onto() for why and how to use this.
  772. */
  773. void bitmap_fold(unsigned long *dst, const unsigned long *orig,
  774. int sz, int bits)
  775. {
  776. int oldbit;
  777. if (dst == orig) /* following doesn't handle inplace mappings */
  778. return;
  779. bitmap_zero(dst, bits);
  780. for (oldbit = find_first_bit(orig, bits);
  781. oldbit < bits;
  782. oldbit = find_next_bit(orig, bits, oldbit + 1))
  783. set_bit(oldbit % sz, dst);
  784. }
  785. EXPORT_SYMBOL(bitmap_fold);
  786. /*
  787. * Common code for bitmap_*_region() routines.
  788. * bitmap: array of unsigned longs corresponding to the bitmap
  789. * pos: the beginning of the region
  790. * order: region size (log base 2 of number of bits)
  791. * reg_op: operation(s) to perform on that region of bitmap
  792. *
  793. * Can set, verify and/or release a region of bits in a bitmap,
  794. * depending on which combination of REG_OP_* flag bits is set.
  795. *
  796. * A region of a bitmap is a sequence of bits in the bitmap, of
  797. * some size '1 << order' (a power of two), aligned to that same
  798. * '1 << order' power of two.
  799. *
  800. * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
  801. * Returns 0 in all other cases and reg_ops.
  802. */
  803. enum {
  804. REG_OP_ISFREE, /* true if region is all zero bits */
  805. REG_OP_ALLOC, /* set all bits in region */
  806. REG_OP_RELEASE, /* clear all bits in region */
  807. };
  808. static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
  809. {
  810. int nbits_reg; /* number of bits in region */
  811. int index; /* index first long of region in bitmap */
  812. int offset; /* bit offset region in bitmap[index] */
  813. int nlongs_reg; /* num longs spanned by region in bitmap */
  814. int nbitsinlong; /* num bits of region in each spanned long */
  815. unsigned long mask; /* bitmask for one long of region */
  816. int i; /* scans bitmap by longs */
  817. int ret = 0; /* return value */
  818. /*
  819. * Either nlongs_reg == 1 (for small orders that fit in one long)
  820. * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
  821. */
  822. nbits_reg = 1 << order;
  823. index = pos / BITS_PER_LONG;
  824. offset = pos - (index * BITS_PER_LONG);
  825. nlongs_reg = BITS_TO_LONGS(nbits_reg);
  826. nbitsinlong = min(nbits_reg, BITS_PER_LONG);
  827. /*
  828. * Can't do "mask = (1UL << nbitsinlong) - 1", as that
  829. * overflows if nbitsinlong == BITS_PER_LONG.
  830. */
  831. mask = (1UL << (nbitsinlong - 1));
  832. mask += mask - 1;
  833. mask <<= offset;
  834. switch (reg_op) {
  835. case REG_OP_ISFREE:
  836. for (i = 0; i < nlongs_reg; i++) {
  837. if (bitmap[index + i] & mask)
  838. goto done;
  839. }
  840. ret = 1; /* all bits in region free (zero) */
  841. break;
  842. case REG_OP_ALLOC:
  843. for (i = 0; i < nlongs_reg; i++)
  844. bitmap[index + i] |= mask;
  845. break;
  846. case REG_OP_RELEASE:
  847. for (i = 0; i < nlongs_reg; i++)
  848. bitmap[index + i] &= ~mask;
  849. break;
  850. }
  851. done:
  852. return ret;
  853. }
  854. /**
  855. * bitmap_find_free_region - find a contiguous aligned mem region
  856. * @bitmap: array of unsigned longs corresponding to the bitmap
  857. * @bits: number of bits in the bitmap
  858. * @order: region size (log base 2 of number of bits) to find
  859. *
  860. * Find a region of free (zero) bits in a @bitmap of @bits bits and
  861. * allocate them (set them to one). Only consider regions of length
  862. * a power (@order) of two, aligned to that power of two, which
  863. * makes the search algorithm much faster.
  864. *
  865. * Return the bit offset in bitmap of the allocated region,
  866. * or -errno on failure.
  867. */
  868. int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
  869. {
  870. int pos, end; /* scans bitmap by regions of size order */
  871. for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
  872. if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  873. continue;
  874. __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  875. return pos;
  876. }
  877. return -ENOMEM;
  878. }
  879. EXPORT_SYMBOL(bitmap_find_free_region);
  880. /**
  881. * bitmap_release_region - release allocated bitmap region
  882. * @bitmap: array of unsigned longs corresponding to the bitmap
  883. * @pos: beginning of bit region to release
  884. * @order: region size (log base 2 of number of bits) to release
  885. *
  886. * This is the complement to __bitmap_find_free_region() and releases
  887. * the found region (by clearing it in the bitmap).
  888. *
  889. * No return value.
  890. */
  891. void bitmap_release_region(unsigned long *bitmap, int pos, int order)
  892. {
  893. __reg_op(bitmap, pos, order, REG_OP_RELEASE);
  894. }
  895. EXPORT_SYMBOL(bitmap_release_region);
  896. /**
  897. * bitmap_allocate_region - allocate bitmap region
  898. * @bitmap: array of unsigned longs corresponding to the bitmap
  899. * @pos: beginning of bit region to allocate
  900. * @order: region size (log base 2 of number of bits) to allocate
  901. *
  902. * Allocate (set bits in) a specified region of a bitmap.
  903. *
  904. * Return 0 on success, or %-EBUSY if specified region wasn't
  905. * free (not all bits were zero).
  906. */
  907. int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
  908. {
  909. if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  910. return -EBUSY;
  911. __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  912. return 0;
  913. }
  914. EXPORT_SYMBOL(bitmap_allocate_region);
  915. /**
  916. * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
  917. * @dst: destination buffer
  918. * @src: bitmap to copy
  919. * @nbits: number of bits in the bitmap
  920. *
  921. * Require nbits % BITS_PER_LONG == 0.
  922. */
  923. void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
  924. {
  925. unsigned long *d = dst;
  926. int i;
  927. for (i = 0; i < nbits/BITS_PER_LONG; i++) {
  928. if (BITS_PER_LONG == 64)
  929. d[i] = cpu_to_le64(src[i]);
  930. else
  931. d[i] = cpu_to_le32(src[i]);
  932. }
  933. }
  934. EXPORT_SYMBOL(bitmap_copy_le);