sched_clock.c 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. * Create a semi stable clock from a mixture of other events, including:
  14. * - gtod
  15. * - sched_clock()
  16. * - explicit idle events
  17. *
  18. * We use gtod as base and the unstable clock deltas. The deltas are filtered,
  19. * making it monotonic and keeping it within an expected window.
  20. *
  21. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  22. * that is otherwise invisible (TSC gets stopped).
  23. *
  24. * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
  25. * consistent between cpus (never more than 2 jiffies difference).
  26. */
  27. #include <linux/spinlock.h>
  28. #include <linux/hardirq.h>
  29. #include <linux/module.h>
  30. #include <linux/percpu.h>
  31. #include <linux/ktime.h>
  32. #include <linux/sched.h>
  33. /*
  34. * Scheduler clock - returns current time in nanosec units.
  35. * This is default implementation.
  36. * Architectures and sub-architectures can override this.
  37. */
  38. unsigned long long __attribute__((weak)) sched_clock(void)
  39. {
  40. return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  41. * (NSEC_PER_SEC / HZ);
  42. }
  43. static __read_mostly int sched_clock_running;
  44. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  45. __read_mostly int sched_clock_stable;
  46. struct sched_clock_data {
  47. u64 tick_raw;
  48. u64 tick_gtod;
  49. u64 clock;
  50. };
  51. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  52. static inline struct sched_clock_data *this_scd(void)
  53. {
  54. return &__get_cpu_var(sched_clock_data);
  55. }
  56. static inline struct sched_clock_data *cpu_sdc(int cpu)
  57. {
  58. return &per_cpu(sched_clock_data, cpu);
  59. }
  60. void sched_clock_init(void)
  61. {
  62. u64 ktime_now = ktime_to_ns(ktime_get());
  63. int cpu;
  64. for_each_possible_cpu(cpu) {
  65. struct sched_clock_data *scd = cpu_sdc(cpu);
  66. scd->tick_raw = 0;
  67. scd->tick_gtod = ktime_now;
  68. scd->clock = ktime_now;
  69. }
  70. sched_clock_running = 1;
  71. }
  72. /*
  73. * min, max except they take wrapping into account
  74. */
  75. static inline u64 wrap_min(u64 x, u64 y)
  76. {
  77. return (s64)(x - y) < 0 ? x : y;
  78. }
  79. static inline u64 wrap_max(u64 x, u64 y)
  80. {
  81. return (s64)(x - y) > 0 ? x : y;
  82. }
  83. /*
  84. * update the percpu scd from the raw @now value
  85. *
  86. * - filter out backward motion
  87. * - use the GTOD tick value to create a window to filter crazy TSC values
  88. */
  89. static u64 sched_clock_local(struct sched_clock_data *scd)
  90. {
  91. u64 now, clock, old_clock, min_clock, max_clock;
  92. s64 delta;
  93. again:
  94. now = sched_clock();
  95. delta = now - scd->tick_raw;
  96. if (unlikely(delta < 0))
  97. delta = 0;
  98. old_clock = scd->clock;
  99. /*
  100. * scd->clock = clamp(scd->tick_gtod + delta,
  101. * max(scd->tick_gtod, scd->clock),
  102. * scd->tick_gtod + TICK_NSEC);
  103. */
  104. clock = scd->tick_gtod + delta;
  105. min_clock = wrap_max(scd->tick_gtod, old_clock);
  106. max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
  107. clock = wrap_max(clock, min_clock);
  108. clock = wrap_min(clock, max_clock);
  109. if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
  110. goto again;
  111. return clock;
  112. }
  113. static u64 sched_clock_remote(struct sched_clock_data *scd)
  114. {
  115. struct sched_clock_data *my_scd = this_scd();
  116. u64 this_clock, remote_clock;
  117. u64 *ptr, old_val, val;
  118. sched_clock_local(my_scd);
  119. again:
  120. this_clock = my_scd->clock;
  121. remote_clock = scd->clock;
  122. /*
  123. * Use the opportunity that we have both locks
  124. * taken to couple the two clocks: we take the
  125. * larger time as the latest time for both
  126. * runqueues. (this creates monotonic movement)
  127. */
  128. if (likely((s64)(remote_clock - this_clock) < 0)) {
  129. ptr = &scd->clock;
  130. old_val = remote_clock;
  131. val = this_clock;
  132. } else {
  133. /*
  134. * Should be rare, but possible:
  135. */
  136. ptr = &my_scd->clock;
  137. old_val = this_clock;
  138. val = remote_clock;
  139. }
  140. if (cmpxchg64(ptr, old_val, val) != old_val)
  141. goto again;
  142. return val;
  143. }
  144. u64 sched_clock_cpu(int cpu)
  145. {
  146. struct sched_clock_data *scd;
  147. u64 clock;
  148. WARN_ON_ONCE(!irqs_disabled());
  149. if (sched_clock_stable)
  150. return sched_clock();
  151. if (unlikely(!sched_clock_running))
  152. return 0ull;
  153. scd = cpu_sdc(cpu);
  154. if (cpu != smp_processor_id())
  155. clock = sched_clock_remote(scd);
  156. else
  157. clock = sched_clock_local(scd);
  158. return clock;
  159. }
  160. void sched_clock_tick(void)
  161. {
  162. struct sched_clock_data *scd;
  163. u64 now, now_gtod;
  164. if (sched_clock_stable)
  165. return;
  166. if (unlikely(!sched_clock_running))
  167. return;
  168. WARN_ON_ONCE(!irqs_disabled());
  169. scd = this_scd();
  170. now_gtod = ktime_to_ns(ktime_get());
  171. now = sched_clock();
  172. scd->tick_raw = now;
  173. scd->tick_gtod = now_gtod;
  174. sched_clock_local(scd);
  175. }
  176. /*
  177. * We are going deep-idle (irqs are disabled):
  178. */
  179. void sched_clock_idle_sleep_event(void)
  180. {
  181. sched_clock_cpu(smp_processor_id());
  182. }
  183. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  184. /*
  185. * We just idled delta nanoseconds (called with irqs disabled):
  186. */
  187. void sched_clock_idle_wakeup_event(u64 delta_ns)
  188. {
  189. if (timekeeping_suspended)
  190. return;
  191. sched_clock_tick();
  192. touch_softlockup_watchdog();
  193. }
  194. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  195. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  196. void sched_clock_init(void)
  197. {
  198. sched_clock_running = 1;
  199. }
  200. u64 sched_clock_cpu(int cpu)
  201. {
  202. if (unlikely(!sched_clock_running))
  203. return 0;
  204. return sched_clock();
  205. }
  206. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  207. unsigned long long cpu_clock(int cpu)
  208. {
  209. unsigned long long clock;
  210. unsigned long flags;
  211. local_irq_save(flags);
  212. clock = sched_clock_cpu(cpu);
  213. local_irq_restore(flags);
  214. return clock;
  215. }
  216. EXPORT_SYMBOL_GPL(cpu_clock);