write.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/migrate.h>
  16. #include <linux/sunrpc/clnt.h>
  17. #include <linux/nfs_fs.h>
  18. #include <linux/nfs_mount.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/backing-dev.h>
  21. #include <asm/uaccess.h>
  22. #include "delegation.h"
  23. #include "internal.h"
  24. #include "iostat.h"
  25. #include "nfs4_fs.h"
  26. #include "fscache.h"
  27. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  28. #define MIN_POOL_WRITE (32)
  29. #define MIN_POOL_COMMIT (4)
  30. /*
  31. * Local function declarations
  32. */
  33. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  34. struct inode *inode, int ioflags);
  35. static void nfs_redirty_request(struct nfs_page *req);
  36. static const struct rpc_call_ops nfs_write_partial_ops;
  37. static const struct rpc_call_ops nfs_write_full_ops;
  38. static const struct rpc_call_ops nfs_commit_ops;
  39. static struct kmem_cache *nfs_wdata_cachep;
  40. static mempool_t *nfs_wdata_mempool;
  41. static mempool_t *nfs_commit_mempool;
  42. struct nfs_write_data *nfs_commitdata_alloc(void)
  43. {
  44. struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  45. if (p) {
  46. memset(p, 0, sizeof(*p));
  47. INIT_LIST_HEAD(&p->pages);
  48. p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
  49. }
  50. return p;
  51. }
  52. void nfs_commit_free(struct nfs_write_data *p)
  53. {
  54. if (p && (p->pagevec != &p->page_array[0]))
  55. kfree(p->pagevec);
  56. mempool_free(p, nfs_commit_mempool);
  57. }
  58. struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  59. {
  60. struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  61. if (p) {
  62. memset(p, 0, sizeof(*p));
  63. INIT_LIST_HEAD(&p->pages);
  64. p->npages = pagecount;
  65. p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
  66. if (pagecount <= ARRAY_SIZE(p->page_array))
  67. p->pagevec = p->page_array;
  68. else {
  69. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  70. if (!p->pagevec) {
  71. mempool_free(p, nfs_wdata_mempool);
  72. p = NULL;
  73. }
  74. }
  75. }
  76. return p;
  77. }
  78. void nfs_writedata_free(struct nfs_write_data *p)
  79. {
  80. if (p && (p->pagevec != &p->page_array[0]))
  81. kfree(p->pagevec);
  82. mempool_free(p, nfs_wdata_mempool);
  83. }
  84. static void nfs_writedata_release(struct nfs_write_data *wdata)
  85. {
  86. put_nfs_open_context(wdata->args.context);
  87. nfs_writedata_free(wdata);
  88. }
  89. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  90. {
  91. ctx->error = error;
  92. smp_wmb();
  93. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  94. }
  95. static struct nfs_page *nfs_page_find_request_locked(struct page *page)
  96. {
  97. struct nfs_page *req = NULL;
  98. if (PagePrivate(page)) {
  99. req = (struct nfs_page *)page_private(page);
  100. if (req != NULL)
  101. kref_get(&req->wb_kref);
  102. }
  103. return req;
  104. }
  105. static struct nfs_page *nfs_page_find_request(struct page *page)
  106. {
  107. struct inode *inode = page->mapping->host;
  108. struct nfs_page *req = NULL;
  109. spin_lock(&inode->i_lock);
  110. req = nfs_page_find_request_locked(page);
  111. spin_unlock(&inode->i_lock);
  112. return req;
  113. }
  114. /* Adjust the file length if we're writing beyond the end */
  115. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  116. {
  117. struct inode *inode = page->mapping->host;
  118. loff_t end, i_size;
  119. pgoff_t end_index;
  120. spin_lock(&inode->i_lock);
  121. i_size = i_size_read(inode);
  122. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  123. if (i_size > 0 && page->index < end_index)
  124. goto out;
  125. end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
  126. if (i_size >= end)
  127. goto out;
  128. i_size_write(inode, end);
  129. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  130. out:
  131. spin_unlock(&inode->i_lock);
  132. }
  133. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  134. static void nfs_set_pageerror(struct page *page)
  135. {
  136. SetPageError(page);
  137. nfs_zap_mapping(page->mapping->host, page->mapping);
  138. }
  139. /* We can set the PG_uptodate flag if we see that a write request
  140. * covers the full page.
  141. */
  142. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  143. {
  144. if (PageUptodate(page))
  145. return;
  146. if (base != 0)
  147. return;
  148. if (count != nfs_page_length(page))
  149. return;
  150. SetPageUptodate(page);
  151. }
  152. static int wb_priority(struct writeback_control *wbc)
  153. {
  154. if (wbc->for_reclaim)
  155. return FLUSH_HIGHPRI | FLUSH_STABLE;
  156. if (wbc->for_kupdate)
  157. return FLUSH_LOWPRI;
  158. return 0;
  159. }
  160. /*
  161. * NFS congestion control
  162. */
  163. int nfs_congestion_kb;
  164. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  165. #define NFS_CONGESTION_OFF_THRESH \
  166. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  167. static int nfs_set_page_writeback(struct page *page)
  168. {
  169. int ret = test_set_page_writeback(page);
  170. if (!ret) {
  171. struct inode *inode = page->mapping->host;
  172. struct nfs_server *nfss = NFS_SERVER(inode);
  173. if (atomic_long_inc_return(&nfss->writeback) >
  174. NFS_CONGESTION_ON_THRESH) {
  175. set_bdi_congested(&nfss->backing_dev_info,
  176. BLK_RW_ASYNC);
  177. }
  178. }
  179. return ret;
  180. }
  181. static void nfs_end_page_writeback(struct page *page)
  182. {
  183. struct inode *inode = page->mapping->host;
  184. struct nfs_server *nfss = NFS_SERVER(inode);
  185. end_page_writeback(page);
  186. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  187. clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
  188. }
  189. static struct nfs_page *nfs_find_and_lock_request(struct page *page)
  190. {
  191. struct inode *inode = page->mapping->host;
  192. struct nfs_page *req;
  193. int ret;
  194. spin_lock(&inode->i_lock);
  195. for (;;) {
  196. req = nfs_page_find_request_locked(page);
  197. if (req == NULL)
  198. break;
  199. if (nfs_set_page_tag_locked(req))
  200. break;
  201. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  202. * then the call to nfs_set_page_tag_locked() will always
  203. * succeed provided that someone hasn't already marked the
  204. * request as dirty (in which case we don't care).
  205. */
  206. spin_unlock(&inode->i_lock);
  207. ret = nfs_wait_on_request(req);
  208. nfs_release_request(req);
  209. if (ret != 0)
  210. return ERR_PTR(ret);
  211. spin_lock(&inode->i_lock);
  212. }
  213. spin_unlock(&inode->i_lock);
  214. return req;
  215. }
  216. /*
  217. * Find an associated nfs write request, and prepare to flush it out
  218. * May return an error if the user signalled nfs_wait_on_request().
  219. */
  220. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  221. struct page *page)
  222. {
  223. struct nfs_page *req;
  224. int ret = 0;
  225. req = nfs_find_and_lock_request(page);
  226. if (!req)
  227. goto out;
  228. ret = PTR_ERR(req);
  229. if (IS_ERR(req))
  230. goto out;
  231. ret = nfs_set_page_writeback(page);
  232. BUG_ON(ret != 0);
  233. BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
  234. if (!nfs_pageio_add_request(pgio, req)) {
  235. nfs_redirty_request(req);
  236. ret = pgio->pg_error;
  237. }
  238. out:
  239. return ret;
  240. }
  241. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  242. {
  243. struct inode *inode = page->mapping->host;
  244. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  245. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  246. nfs_pageio_cond_complete(pgio, page->index);
  247. return nfs_page_async_flush(pgio, page);
  248. }
  249. /*
  250. * Write an mmapped page to the server.
  251. */
  252. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  253. {
  254. struct nfs_pageio_descriptor pgio;
  255. int err;
  256. nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
  257. err = nfs_do_writepage(page, wbc, &pgio);
  258. nfs_pageio_complete(&pgio);
  259. if (err < 0)
  260. return err;
  261. if (pgio.pg_error < 0)
  262. return pgio.pg_error;
  263. return 0;
  264. }
  265. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  266. {
  267. int ret;
  268. ret = nfs_writepage_locked(page, wbc);
  269. unlock_page(page);
  270. return ret;
  271. }
  272. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  273. {
  274. int ret;
  275. ret = nfs_do_writepage(page, wbc, data);
  276. unlock_page(page);
  277. return ret;
  278. }
  279. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  280. {
  281. struct inode *inode = mapping->host;
  282. unsigned long *bitlock = &NFS_I(inode)->flags;
  283. struct nfs_pageio_descriptor pgio;
  284. int err;
  285. /* Stop dirtying of new pages while we sync */
  286. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  287. nfs_wait_bit_killable, TASK_KILLABLE);
  288. if (err)
  289. goto out_err;
  290. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  291. nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
  292. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  293. nfs_pageio_complete(&pgio);
  294. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  295. smp_mb__after_clear_bit();
  296. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  297. if (err < 0)
  298. goto out_err;
  299. err = pgio.pg_error;
  300. if (err < 0)
  301. goto out_err;
  302. return 0;
  303. out_err:
  304. return err;
  305. }
  306. /*
  307. * Insert a write request into an inode
  308. */
  309. static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  310. {
  311. struct nfs_inode *nfsi = NFS_I(inode);
  312. int error;
  313. error = radix_tree_preload(GFP_NOFS);
  314. if (error != 0)
  315. goto out;
  316. /* Lock the request! */
  317. nfs_lock_request_dontget(req);
  318. spin_lock(&inode->i_lock);
  319. error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
  320. BUG_ON(error);
  321. if (!nfsi->npages) {
  322. igrab(inode);
  323. if (nfs_have_delegation(inode, FMODE_WRITE))
  324. nfsi->change_attr++;
  325. }
  326. SetPagePrivate(req->wb_page);
  327. set_page_private(req->wb_page, (unsigned long)req);
  328. nfsi->npages++;
  329. kref_get(&req->wb_kref);
  330. radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
  331. NFS_PAGE_TAG_LOCKED);
  332. spin_unlock(&inode->i_lock);
  333. radix_tree_preload_end();
  334. out:
  335. return error;
  336. }
  337. /*
  338. * Remove a write request from an inode
  339. */
  340. static void nfs_inode_remove_request(struct nfs_page *req)
  341. {
  342. struct inode *inode = req->wb_context->path.dentry->d_inode;
  343. struct nfs_inode *nfsi = NFS_I(inode);
  344. BUG_ON (!NFS_WBACK_BUSY(req));
  345. spin_lock(&inode->i_lock);
  346. set_page_private(req->wb_page, 0);
  347. ClearPagePrivate(req->wb_page);
  348. radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
  349. nfsi->npages--;
  350. if (!nfsi->npages) {
  351. spin_unlock(&inode->i_lock);
  352. iput(inode);
  353. } else
  354. spin_unlock(&inode->i_lock);
  355. nfs_clear_request(req);
  356. nfs_release_request(req);
  357. }
  358. static void
  359. nfs_mark_request_dirty(struct nfs_page *req)
  360. {
  361. __set_page_dirty_nobuffers(req->wb_page);
  362. }
  363. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  364. /*
  365. * Add a request to the inode's commit list.
  366. */
  367. static void
  368. nfs_mark_request_commit(struct nfs_page *req)
  369. {
  370. struct inode *inode = req->wb_context->path.dentry->d_inode;
  371. struct nfs_inode *nfsi = NFS_I(inode);
  372. spin_lock(&inode->i_lock);
  373. set_bit(PG_CLEAN, &(req)->wb_flags);
  374. radix_tree_tag_set(&nfsi->nfs_page_tree,
  375. req->wb_index,
  376. NFS_PAGE_TAG_COMMIT);
  377. spin_unlock(&inode->i_lock);
  378. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  379. inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  380. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  381. }
  382. static int
  383. nfs_clear_request_commit(struct nfs_page *req)
  384. {
  385. struct page *page = req->wb_page;
  386. if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
  387. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  388. dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  389. return 1;
  390. }
  391. return 0;
  392. }
  393. static inline
  394. int nfs_write_need_commit(struct nfs_write_data *data)
  395. {
  396. return data->verf.committed != NFS_FILE_SYNC;
  397. }
  398. static inline
  399. int nfs_reschedule_unstable_write(struct nfs_page *req)
  400. {
  401. if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  402. nfs_mark_request_commit(req);
  403. return 1;
  404. }
  405. if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  406. nfs_mark_request_dirty(req);
  407. return 1;
  408. }
  409. return 0;
  410. }
  411. #else
  412. static inline void
  413. nfs_mark_request_commit(struct nfs_page *req)
  414. {
  415. }
  416. static inline int
  417. nfs_clear_request_commit(struct nfs_page *req)
  418. {
  419. return 0;
  420. }
  421. static inline
  422. int nfs_write_need_commit(struct nfs_write_data *data)
  423. {
  424. return 0;
  425. }
  426. static inline
  427. int nfs_reschedule_unstable_write(struct nfs_page *req)
  428. {
  429. return 0;
  430. }
  431. #endif
  432. /*
  433. * Wait for a request to complete.
  434. *
  435. * Interruptible by fatal signals only.
  436. */
  437. static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
  438. {
  439. struct nfs_inode *nfsi = NFS_I(inode);
  440. struct nfs_page *req;
  441. pgoff_t idx_end, next;
  442. unsigned int res = 0;
  443. int error;
  444. if (npages == 0)
  445. idx_end = ~0;
  446. else
  447. idx_end = idx_start + npages - 1;
  448. next = idx_start;
  449. while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
  450. if (req->wb_index > idx_end)
  451. break;
  452. next = req->wb_index + 1;
  453. BUG_ON(!NFS_WBACK_BUSY(req));
  454. kref_get(&req->wb_kref);
  455. spin_unlock(&inode->i_lock);
  456. error = nfs_wait_on_request(req);
  457. nfs_release_request(req);
  458. spin_lock(&inode->i_lock);
  459. if (error < 0)
  460. return error;
  461. res++;
  462. }
  463. return res;
  464. }
  465. static void nfs_cancel_commit_list(struct list_head *head)
  466. {
  467. struct nfs_page *req;
  468. while(!list_empty(head)) {
  469. req = nfs_list_entry(head->next);
  470. nfs_list_remove_request(req);
  471. nfs_clear_request_commit(req);
  472. nfs_inode_remove_request(req);
  473. nfs_unlock_request(req);
  474. }
  475. }
  476. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  477. static int
  478. nfs_need_commit(struct nfs_inode *nfsi)
  479. {
  480. return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
  481. }
  482. /*
  483. * nfs_scan_commit - Scan an inode for commit requests
  484. * @inode: NFS inode to scan
  485. * @dst: destination list
  486. * @idx_start: lower bound of page->index to scan.
  487. * @npages: idx_start + npages sets the upper bound to scan.
  488. *
  489. * Moves requests from the inode's 'commit' request list.
  490. * The requests are *not* checked to ensure that they form a contiguous set.
  491. */
  492. static int
  493. nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  494. {
  495. struct nfs_inode *nfsi = NFS_I(inode);
  496. if (!nfs_need_commit(nfsi))
  497. return 0;
  498. return nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
  499. }
  500. #else
  501. static inline int nfs_need_commit(struct nfs_inode *nfsi)
  502. {
  503. return 0;
  504. }
  505. static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  506. {
  507. return 0;
  508. }
  509. #endif
  510. /*
  511. * Search for an existing write request, and attempt to update
  512. * it to reflect a new dirty region on a given page.
  513. *
  514. * If the attempt fails, then the existing request is flushed out
  515. * to disk.
  516. */
  517. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  518. struct page *page,
  519. unsigned int offset,
  520. unsigned int bytes)
  521. {
  522. struct nfs_page *req;
  523. unsigned int rqend;
  524. unsigned int end;
  525. int error;
  526. if (!PagePrivate(page))
  527. return NULL;
  528. end = offset + bytes;
  529. spin_lock(&inode->i_lock);
  530. for (;;) {
  531. req = nfs_page_find_request_locked(page);
  532. if (req == NULL)
  533. goto out_unlock;
  534. rqend = req->wb_offset + req->wb_bytes;
  535. /*
  536. * Tell the caller to flush out the request if
  537. * the offsets are non-contiguous.
  538. * Note: nfs_flush_incompatible() will already
  539. * have flushed out requests having wrong owners.
  540. */
  541. if (offset > rqend
  542. || end < req->wb_offset)
  543. goto out_flushme;
  544. if (nfs_set_page_tag_locked(req))
  545. break;
  546. /* The request is locked, so wait and then retry */
  547. spin_unlock(&inode->i_lock);
  548. error = nfs_wait_on_request(req);
  549. nfs_release_request(req);
  550. if (error != 0)
  551. goto out_err;
  552. spin_lock(&inode->i_lock);
  553. }
  554. if (nfs_clear_request_commit(req))
  555. radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
  556. req->wb_index, NFS_PAGE_TAG_COMMIT);
  557. /* Okay, the request matches. Update the region */
  558. if (offset < req->wb_offset) {
  559. req->wb_offset = offset;
  560. req->wb_pgbase = offset;
  561. }
  562. if (end > rqend)
  563. req->wb_bytes = end - req->wb_offset;
  564. else
  565. req->wb_bytes = rqend - req->wb_offset;
  566. out_unlock:
  567. spin_unlock(&inode->i_lock);
  568. return req;
  569. out_flushme:
  570. spin_unlock(&inode->i_lock);
  571. nfs_release_request(req);
  572. error = nfs_wb_page(inode, page);
  573. out_err:
  574. return ERR_PTR(error);
  575. }
  576. /*
  577. * Try to update an existing write request, or create one if there is none.
  578. *
  579. * Note: Should always be called with the Page Lock held to prevent races
  580. * if we have to add a new request. Also assumes that the caller has
  581. * already called nfs_flush_incompatible() if necessary.
  582. */
  583. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  584. struct page *page, unsigned int offset, unsigned int bytes)
  585. {
  586. struct inode *inode = page->mapping->host;
  587. struct nfs_page *req;
  588. int error;
  589. req = nfs_try_to_update_request(inode, page, offset, bytes);
  590. if (req != NULL)
  591. goto out;
  592. req = nfs_create_request(ctx, inode, page, offset, bytes);
  593. if (IS_ERR(req))
  594. goto out;
  595. error = nfs_inode_add_request(inode, req);
  596. if (error != 0) {
  597. nfs_release_request(req);
  598. req = ERR_PTR(error);
  599. }
  600. out:
  601. return req;
  602. }
  603. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  604. unsigned int offset, unsigned int count)
  605. {
  606. struct nfs_page *req;
  607. req = nfs_setup_write_request(ctx, page, offset, count);
  608. if (IS_ERR(req))
  609. return PTR_ERR(req);
  610. /* Update file length */
  611. nfs_grow_file(page, offset, count);
  612. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  613. nfs_clear_page_tag_locked(req);
  614. return 0;
  615. }
  616. int nfs_flush_incompatible(struct file *file, struct page *page)
  617. {
  618. struct nfs_open_context *ctx = nfs_file_open_context(file);
  619. struct nfs_page *req;
  620. int do_flush, status;
  621. /*
  622. * Look for a request corresponding to this page. If there
  623. * is one, and it belongs to another file, we flush it out
  624. * before we try to copy anything into the page. Do this
  625. * due to the lack of an ACCESS-type call in NFSv2.
  626. * Also do the same if we find a request from an existing
  627. * dropped page.
  628. */
  629. do {
  630. req = nfs_page_find_request(page);
  631. if (req == NULL)
  632. return 0;
  633. do_flush = req->wb_page != page || req->wb_context != ctx;
  634. nfs_release_request(req);
  635. if (!do_flush)
  636. return 0;
  637. status = nfs_wb_page(page->mapping->host, page);
  638. } while (status == 0);
  639. return status;
  640. }
  641. /*
  642. * If the page cache is marked as unsafe or invalid, then we can't rely on
  643. * the PageUptodate() flag. In this case, we will need to turn off
  644. * write optimisations that depend on the page contents being correct.
  645. */
  646. static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
  647. {
  648. return PageUptodate(page) &&
  649. !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
  650. }
  651. /*
  652. * Update and possibly write a cached page of an NFS file.
  653. *
  654. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  655. * things with a page scheduled for an RPC call (e.g. invalidate it).
  656. */
  657. int nfs_updatepage(struct file *file, struct page *page,
  658. unsigned int offset, unsigned int count)
  659. {
  660. struct nfs_open_context *ctx = nfs_file_open_context(file);
  661. struct inode *inode = page->mapping->host;
  662. int status = 0;
  663. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  664. dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
  665. file->f_path.dentry->d_parent->d_name.name,
  666. file->f_path.dentry->d_name.name, count,
  667. (long long)(page_offset(page) + offset));
  668. /* If we're not using byte range locks, and we know the page
  669. * is up to date, it may be more efficient to extend the write
  670. * to cover the entire page in order to avoid fragmentation
  671. * inefficiencies.
  672. */
  673. if (nfs_write_pageuptodate(page, inode) &&
  674. inode->i_flock == NULL &&
  675. !(file->f_flags & O_SYNC)) {
  676. count = max(count + offset, nfs_page_length(page));
  677. offset = 0;
  678. }
  679. status = nfs_writepage_setup(ctx, page, offset, count);
  680. if (status < 0)
  681. nfs_set_pageerror(page);
  682. else
  683. __set_page_dirty_nobuffers(page);
  684. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  685. status, (long long)i_size_read(inode));
  686. return status;
  687. }
  688. static void nfs_writepage_release(struct nfs_page *req)
  689. {
  690. if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
  691. nfs_end_page_writeback(req->wb_page);
  692. nfs_inode_remove_request(req);
  693. } else
  694. nfs_end_page_writeback(req->wb_page);
  695. nfs_clear_page_tag_locked(req);
  696. }
  697. static int flush_task_priority(int how)
  698. {
  699. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  700. case FLUSH_HIGHPRI:
  701. return RPC_PRIORITY_HIGH;
  702. case FLUSH_LOWPRI:
  703. return RPC_PRIORITY_LOW;
  704. }
  705. return RPC_PRIORITY_NORMAL;
  706. }
  707. /*
  708. * Set up the argument/result storage required for the RPC call.
  709. */
  710. static int nfs_write_rpcsetup(struct nfs_page *req,
  711. struct nfs_write_data *data,
  712. const struct rpc_call_ops *call_ops,
  713. unsigned int count, unsigned int offset,
  714. int how)
  715. {
  716. struct inode *inode = req->wb_context->path.dentry->d_inode;
  717. int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
  718. int priority = flush_task_priority(how);
  719. struct rpc_task *task;
  720. struct rpc_message msg = {
  721. .rpc_argp = &data->args,
  722. .rpc_resp = &data->res,
  723. .rpc_cred = req->wb_context->cred,
  724. };
  725. struct rpc_task_setup task_setup_data = {
  726. .rpc_client = NFS_CLIENT(inode),
  727. .task = &data->task,
  728. .rpc_message = &msg,
  729. .callback_ops = call_ops,
  730. .callback_data = data,
  731. .workqueue = nfsiod_workqueue,
  732. .flags = flags,
  733. .priority = priority,
  734. };
  735. /* Set up the RPC argument and reply structs
  736. * NB: take care not to mess about with data->commit et al. */
  737. data->req = req;
  738. data->inode = inode = req->wb_context->path.dentry->d_inode;
  739. data->cred = msg.rpc_cred;
  740. data->args.fh = NFS_FH(inode);
  741. data->args.offset = req_offset(req) + offset;
  742. data->args.pgbase = req->wb_pgbase + offset;
  743. data->args.pages = data->pagevec;
  744. data->args.count = count;
  745. data->args.context = get_nfs_open_context(req->wb_context);
  746. data->args.stable = NFS_UNSTABLE;
  747. if (how & FLUSH_STABLE) {
  748. data->args.stable = NFS_DATA_SYNC;
  749. if (!nfs_need_commit(NFS_I(inode)))
  750. data->args.stable = NFS_FILE_SYNC;
  751. }
  752. data->res.fattr = &data->fattr;
  753. data->res.count = count;
  754. data->res.verf = &data->verf;
  755. nfs_fattr_init(&data->fattr);
  756. /* Set up the initial task struct. */
  757. NFS_PROTO(inode)->write_setup(data, &msg);
  758. dprintk("NFS: %5u initiated write call "
  759. "(req %s/%lld, %u bytes @ offset %llu)\n",
  760. data->task.tk_pid,
  761. inode->i_sb->s_id,
  762. (long long)NFS_FILEID(inode),
  763. count,
  764. (unsigned long long)data->args.offset);
  765. task = rpc_run_task(&task_setup_data);
  766. if (IS_ERR(task))
  767. return PTR_ERR(task);
  768. rpc_put_task(task);
  769. return 0;
  770. }
  771. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  772. * call this on each, which will prepare them to be retried on next
  773. * writeback using standard nfs.
  774. */
  775. static void nfs_redirty_request(struct nfs_page *req)
  776. {
  777. nfs_mark_request_dirty(req);
  778. nfs_end_page_writeback(req->wb_page);
  779. nfs_clear_page_tag_locked(req);
  780. }
  781. /*
  782. * Generate multiple small requests to write out a single
  783. * contiguous dirty area on one page.
  784. */
  785. static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
  786. {
  787. struct nfs_page *req = nfs_list_entry(head->next);
  788. struct page *page = req->wb_page;
  789. struct nfs_write_data *data;
  790. size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
  791. unsigned int offset;
  792. int requests = 0;
  793. int ret = 0;
  794. LIST_HEAD(list);
  795. nfs_list_remove_request(req);
  796. nbytes = count;
  797. do {
  798. size_t len = min(nbytes, wsize);
  799. data = nfs_writedata_alloc(1);
  800. if (!data)
  801. goto out_bad;
  802. list_add(&data->pages, &list);
  803. requests++;
  804. nbytes -= len;
  805. } while (nbytes != 0);
  806. atomic_set(&req->wb_complete, requests);
  807. ClearPageError(page);
  808. offset = 0;
  809. nbytes = count;
  810. do {
  811. int ret2;
  812. data = list_entry(list.next, struct nfs_write_data, pages);
  813. list_del_init(&data->pages);
  814. data->pagevec[0] = page;
  815. if (nbytes < wsize)
  816. wsize = nbytes;
  817. ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
  818. wsize, offset, how);
  819. if (ret == 0)
  820. ret = ret2;
  821. offset += wsize;
  822. nbytes -= wsize;
  823. } while (nbytes != 0);
  824. return ret;
  825. out_bad:
  826. while (!list_empty(&list)) {
  827. data = list_entry(list.next, struct nfs_write_data, pages);
  828. list_del(&data->pages);
  829. nfs_writedata_release(data);
  830. }
  831. nfs_redirty_request(req);
  832. return -ENOMEM;
  833. }
  834. /*
  835. * Create an RPC task for the given write request and kick it.
  836. * The page must have been locked by the caller.
  837. *
  838. * It may happen that the page we're passed is not marked dirty.
  839. * This is the case if nfs_updatepage detects a conflicting request
  840. * that has been written but not committed.
  841. */
  842. static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
  843. {
  844. struct nfs_page *req;
  845. struct page **pages;
  846. struct nfs_write_data *data;
  847. data = nfs_writedata_alloc(npages);
  848. if (!data)
  849. goto out_bad;
  850. pages = data->pagevec;
  851. while (!list_empty(head)) {
  852. req = nfs_list_entry(head->next);
  853. nfs_list_remove_request(req);
  854. nfs_list_add_request(req, &data->pages);
  855. ClearPageError(req->wb_page);
  856. *pages++ = req->wb_page;
  857. }
  858. req = nfs_list_entry(data->pages.next);
  859. /* Set up the argument struct */
  860. return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
  861. out_bad:
  862. while (!list_empty(head)) {
  863. req = nfs_list_entry(head->next);
  864. nfs_list_remove_request(req);
  865. nfs_redirty_request(req);
  866. }
  867. return -ENOMEM;
  868. }
  869. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  870. struct inode *inode, int ioflags)
  871. {
  872. size_t wsize = NFS_SERVER(inode)->wsize;
  873. if (wsize < PAGE_CACHE_SIZE)
  874. nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
  875. else
  876. nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
  877. }
  878. /*
  879. * Handle a write reply that flushed part of a page.
  880. */
  881. static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
  882. {
  883. struct nfs_write_data *data = calldata;
  884. dprintk("NFS: %5u write(%s/%lld %d@%lld)",
  885. task->tk_pid,
  886. data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
  887. (long long)
  888. NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
  889. data->req->wb_bytes, (long long)req_offset(data->req));
  890. nfs_writeback_done(task, data);
  891. }
  892. static void nfs_writeback_release_partial(void *calldata)
  893. {
  894. struct nfs_write_data *data = calldata;
  895. struct nfs_page *req = data->req;
  896. struct page *page = req->wb_page;
  897. int status = data->task.tk_status;
  898. if (status < 0) {
  899. nfs_set_pageerror(page);
  900. nfs_context_set_write_error(req->wb_context, status);
  901. dprintk(", error = %d\n", status);
  902. goto out;
  903. }
  904. if (nfs_write_need_commit(data)) {
  905. struct inode *inode = page->mapping->host;
  906. spin_lock(&inode->i_lock);
  907. if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  908. /* Do nothing we need to resend the writes */
  909. } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  910. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  911. dprintk(" defer commit\n");
  912. } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
  913. set_bit(PG_NEED_RESCHED, &req->wb_flags);
  914. clear_bit(PG_NEED_COMMIT, &req->wb_flags);
  915. dprintk(" server reboot detected\n");
  916. }
  917. spin_unlock(&inode->i_lock);
  918. } else
  919. dprintk(" OK\n");
  920. out:
  921. if (atomic_dec_and_test(&req->wb_complete))
  922. nfs_writepage_release(req);
  923. nfs_writedata_release(calldata);
  924. }
  925. #if defined(CONFIG_NFS_V4_1)
  926. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  927. {
  928. struct nfs_write_data *data = calldata;
  929. struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
  930. if (nfs4_setup_sequence(clp, &data->args.seq_args,
  931. &data->res.seq_res, 1, task))
  932. return;
  933. rpc_call_start(task);
  934. }
  935. #endif /* CONFIG_NFS_V4_1 */
  936. static const struct rpc_call_ops nfs_write_partial_ops = {
  937. #if defined(CONFIG_NFS_V4_1)
  938. .rpc_call_prepare = nfs_write_prepare,
  939. #endif /* CONFIG_NFS_V4_1 */
  940. .rpc_call_done = nfs_writeback_done_partial,
  941. .rpc_release = nfs_writeback_release_partial,
  942. };
  943. /*
  944. * Handle a write reply that flushes a whole page.
  945. *
  946. * FIXME: There is an inherent race with invalidate_inode_pages and
  947. * writebacks since the page->count is kept > 1 for as long
  948. * as the page has a write request pending.
  949. */
  950. static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
  951. {
  952. struct nfs_write_data *data = calldata;
  953. nfs_writeback_done(task, data);
  954. }
  955. static void nfs_writeback_release_full(void *calldata)
  956. {
  957. struct nfs_write_data *data = calldata;
  958. int status = data->task.tk_status;
  959. /* Update attributes as result of writeback. */
  960. while (!list_empty(&data->pages)) {
  961. struct nfs_page *req = nfs_list_entry(data->pages.next);
  962. struct page *page = req->wb_page;
  963. nfs_list_remove_request(req);
  964. dprintk("NFS: %5u write (%s/%lld %d@%lld)",
  965. data->task.tk_pid,
  966. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  967. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  968. req->wb_bytes,
  969. (long long)req_offset(req));
  970. if (status < 0) {
  971. nfs_set_pageerror(page);
  972. nfs_context_set_write_error(req->wb_context, status);
  973. dprintk(", error = %d\n", status);
  974. goto remove_request;
  975. }
  976. if (nfs_write_need_commit(data)) {
  977. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  978. nfs_mark_request_commit(req);
  979. nfs_end_page_writeback(page);
  980. dprintk(" marked for commit\n");
  981. goto next;
  982. }
  983. dprintk(" OK\n");
  984. remove_request:
  985. nfs_end_page_writeback(page);
  986. nfs_inode_remove_request(req);
  987. next:
  988. nfs_clear_page_tag_locked(req);
  989. }
  990. nfs_writedata_release(calldata);
  991. }
  992. static const struct rpc_call_ops nfs_write_full_ops = {
  993. #if defined(CONFIG_NFS_V4_1)
  994. .rpc_call_prepare = nfs_write_prepare,
  995. #endif /* CONFIG_NFS_V4_1 */
  996. .rpc_call_done = nfs_writeback_done_full,
  997. .rpc_release = nfs_writeback_release_full,
  998. };
  999. /*
  1000. * This function is called when the WRITE call is complete.
  1001. */
  1002. int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  1003. {
  1004. struct nfs_writeargs *argp = &data->args;
  1005. struct nfs_writeres *resp = &data->res;
  1006. struct nfs_server *server = NFS_SERVER(data->inode);
  1007. int status;
  1008. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1009. task->tk_pid, task->tk_status);
  1010. /*
  1011. * ->write_done will attempt to use post-op attributes to detect
  1012. * conflicting writes by other clients. A strict interpretation
  1013. * of close-to-open would allow us to continue caching even if
  1014. * another writer had changed the file, but some applications
  1015. * depend on tighter cache coherency when writing.
  1016. */
  1017. status = NFS_PROTO(data->inode)->write_done(task, data);
  1018. if (status != 0)
  1019. return status;
  1020. nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1021. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1022. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1023. /* We tried a write call, but the server did not
  1024. * commit data to stable storage even though we
  1025. * requested it.
  1026. * Note: There is a known bug in Tru64 < 5.0 in which
  1027. * the server reports NFS_DATA_SYNC, but performs
  1028. * NFS_FILE_SYNC. We therefore implement this checking
  1029. * as a dprintk() in order to avoid filling syslog.
  1030. */
  1031. static unsigned long complain;
  1032. if (time_before(complain, jiffies)) {
  1033. dprintk("NFS: faulty NFS server %s:"
  1034. " (committed = %d) != (stable = %d)\n",
  1035. server->nfs_client->cl_hostname,
  1036. resp->verf->committed, argp->stable);
  1037. complain = jiffies + 300 * HZ;
  1038. }
  1039. }
  1040. #endif
  1041. /* Is this a short write? */
  1042. if (task->tk_status >= 0 && resp->count < argp->count) {
  1043. static unsigned long complain;
  1044. nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
  1045. /* Has the server at least made some progress? */
  1046. if (resp->count != 0) {
  1047. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1048. if (resp->verf->committed != NFS_UNSTABLE) {
  1049. /* Resend from where the server left off */
  1050. argp->offset += resp->count;
  1051. argp->pgbase += resp->count;
  1052. argp->count -= resp->count;
  1053. } else {
  1054. /* Resend as a stable write in order to avoid
  1055. * headaches in the case of a server crash.
  1056. */
  1057. argp->stable = NFS_FILE_SYNC;
  1058. }
  1059. nfs4_restart_rpc(task, server->nfs_client);
  1060. return -EAGAIN;
  1061. }
  1062. if (time_before(complain, jiffies)) {
  1063. printk(KERN_WARNING
  1064. "NFS: Server wrote zero bytes, expected %u.\n",
  1065. argp->count);
  1066. complain = jiffies + 300 * HZ;
  1067. }
  1068. /* Can't do anything about it except throw an error. */
  1069. task->tk_status = -EIO;
  1070. }
  1071. nfs4_sequence_free_slot(server->nfs_client, &data->res.seq_res);
  1072. return 0;
  1073. }
  1074. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1075. void nfs_commitdata_release(void *data)
  1076. {
  1077. struct nfs_write_data *wdata = data;
  1078. put_nfs_open_context(wdata->args.context);
  1079. nfs_commit_free(wdata);
  1080. }
  1081. /*
  1082. * Set up the argument/result storage required for the RPC call.
  1083. */
  1084. static int nfs_commit_rpcsetup(struct list_head *head,
  1085. struct nfs_write_data *data,
  1086. int how)
  1087. {
  1088. struct nfs_page *first = nfs_list_entry(head->next);
  1089. struct inode *inode = first->wb_context->path.dentry->d_inode;
  1090. int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
  1091. int priority = flush_task_priority(how);
  1092. struct rpc_task *task;
  1093. struct rpc_message msg = {
  1094. .rpc_argp = &data->args,
  1095. .rpc_resp = &data->res,
  1096. .rpc_cred = first->wb_context->cred,
  1097. };
  1098. struct rpc_task_setup task_setup_data = {
  1099. .task = &data->task,
  1100. .rpc_client = NFS_CLIENT(inode),
  1101. .rpc_message = &msg,
  1102. .callback_ops = &nfs_commit_ops,
  1103. .callback_data = data,
  1104. .workqueue = nfsiod_workqueue,
  1105. .flags = flags,
  1106. .priority = priority,
  1107. };
  1108. /* Set up the RPC argument and reply structs
  1109. * NB: take care not to mess about with data->commit et al. */
  1110. list_splice_init(head, &data->pages);
  1111. data->inode = inode;
  1112. data->cred = msg.rpc_cred;
  1113. data->args.fh = NFS_FH(data->inode);
  1114. /* Note: we always request a commit of the entire inode */
  1115. data->args.offset = 0;
  1116. data->args.count = 0;
  1117. data->args.context = get_nfs_open_context(first->wb_context);
  1118. data->res.count = 0;
  1119. data->res.fattr = &data->fattr;
  1120. data->res.verf = &data->verf;
  1121. nfs_fattr_init(&data->fattr);
  1122. /* Set up the initial task struct. */
  1123. NFS_PROTO(inode)->commit_setup(data, &msg);
  1124. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1125. task = rpc_run_task(&task_setup_data);
  1126. if (IS_ERR(task))
  1127. return PTR_ERR(task);
  1128. rpc_put_task(task);
  1129. return 0;
  1130. }
  1131. /*
  1132. * Commit dirty pages
  1133. */
  1134. static int
  1135. nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1136. {
  1137. struct nfs_write_data *data;
  1138. struct nfs_page *req;
  1139. data = nfs_commitdata_alloc();
  1140. if (!data)
  1141. goto out_bad;
  1142. /* Set up the argument struct */
  1143. return nfs_commit_rpcsetup(head, data, how);
  1144. out_bad:
  1145. while (!list_empty(head)) {
  1146. req = nfs_list_entry(head->next);
  1147. nfs_list_remove_request(req);
  1148. nfs_mark_request_commit(req);
  1149. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1150. dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
  1151. BDI_RECLAIMABLE);
  1152. nfs_clear_page_tag_locked(req);
  1153. }
  1154. return -ENOMEM;
  1155. }
  1156. /*
  1157. * COMMIT call returned
  1158. */
  1159. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1160. {
  1161. struct nfs_write_data *data = calldata;
  1162. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1163. task->tk_pid, task->tk_status);
  1164. /* Call the NFS version-specific code */
  1165. if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
  1166. return;
  1167. }
  1168. static void nfs_commit_release(void *calldata)
  1169. {
  1170. struct nfs_write_data *data = calldata;
  1171. struct nfs_page *req;
  1172. int status = data->task.tk_status;
  1173. while (!list_empty(&data->pages)) {
  1174. req = nfs_list_entry(data->pages.next);
  1175. nfs_list_remove_request(req);
  1176. nfs_clear_request_commit(req);
  1177. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1178. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  1179. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  1180. req->wb_bytes,
  1181. (long long)req_offset(req));
  1182. if (status < 0) {
  1183. nfs_context_set_write_error(req->wb_context, status);
  1184. nfs_inode_remove_request(req);
  1185. dprintk(", error = %d\n", status);
  1186. goto next;
  1187. }
  1188. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1189. * returned by the server against all stored verfs. */
  1190. if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
  1191. /* We have a match */
  1192. nfs_inode_remove_request(req);
  1193. dprintk(" OK\n");
  1194. goto next;
  1195. }
  1196. /* We have a mismatch. Write the page again */
  1197. dprintk(" mismatch\n");
  1198. nfs_mark_request_dirty(req);
  1199. next:
  1200. nfs_clear_page_tag_locked(req);
  1201. }
  1202. nfs_commitdata_release(calldata);
  1203. }
  1204. static const struct rpc_call_ops nfs_commit_ops = {
  1205. #if defined(CONFIG_NFS_V4_1)
  1206. .rpc_call_prepare = nfs_write_prepare,
  1207. #endif /* CONFIG_NFS_V4_1 */
  1208. .rpc_call_done = nfs_commit_done,
  1209. .rpc_release = nfs_commit_release,
  1210. };
  1211. int nfs_commit_inode(struct inode *inode, int how)
  1212. {
  1213. LIST_HEAD(head);
  1214. int res;
  1215. spin_lock(&inode->i_lock);
  1216. res = nfs_scan_commit(inode, &head, 0, 0);
  1217. spin_unlock(&inode->i_lock);
  1218. if (res) {
  1219. int error = nfs_commit_list(inode, &head, how);
  1220. if (error < 0)
  1221. return error;
  1222. }
  1223. return res;
  1224. }
  1225. #else
  1226. static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1227. {
  1228. return 0;
  1229. }
  1230. #endif
  1231. long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
  1232. {
  1233. struct inode *inode = mapping->host;
  1234. pgoff_t idx_start, idx_end;
  1235. unsigned int npages = 0;
  1236. LIST_HEAD(head);
  1237. int nocommit = how & FLUSH_NOCOMMIT;
  1238. long pages, ret;
  1239. /* FIXME */
  1240. if (wbc->range_cyclic)
  1241. idx_start = 0;
  1242. else {
  1243. idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
  1244. idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1245. if (idx_end > idx_start) {
  1246. pgoff_t l_npages = 1 + idx_end - idx_start;
  1247. npages = l_npages;
  1248. if (sizeof(npages) != sizeof(l_npages) &&
  1249. (pgoff_t)npages != l_npages)
  1250. npages = 0;
  1251. }
  1252. }
  1253. how &= ~FLUSH_NOCOMMIT;
  1254. spin_lock(&inode->i_lock);
  1255. do {
  1256. ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
  1257. if (ret != 0)
  1258. continue;
  1259. if (nocommit)
  1260. break;
  1261. pages = nfs_scan_commit(inode, &head, idx_start, npages);
  1262. if (pages == 0)
  1263. break;
  1264. if (how & FLUSH_INVALIDATE) {
  1265. spin_unlock(&inode->i_lock);
  1266. nfs_cancel_commit_list(&head);
  1267. ret = pages;
  1268. spin_lock(&inode->i_lock);
  1269. continue;
  1270. }
  1271. pages += nfs_scan_commit(inode, &head, 0, 0);
  1272. spin_unlock(&inode->i_lock);
  1273. ret = nfs_commit_list(inode, &head, how);
  1274. spin_lock(&inode->i_lock);
  1275. } while (ret >= 0);
  1276. spin_unlock(&inode->i_lock);
  1277. return ret;
  1278. }
  1279. static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
  1280. {
  1281. int ret;
  1282. ret = nfs_writepages(mapping, wbc);
  1283. if (ret < 0)
  1284. goto out;
  1285. ret = nfs_sync_mapping_wait(mapping, wbc, how);
  1286. if (ret < 0)
  1287. goto out;
  1288. return 0;
  1289. out:
  1290. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1291. return ret;
  1292. }
  1293. /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
  1294. static int nfs_write_mapping(struct address_space *mapping, int how)
  1295. {
  1296. struct writeback_control wbc = {
  1297. .bdi = mapping->backing_dev_info,
  1298. .sync_mode = WB_SYNC_ALL,
  1299. .nr_to_write = LONG_MAX,
  1300. .range_start = 0,
  1301. .range_end = LLONG_MAX,
  1302. };
  1303. return __nfs_write_mapping(mapping, &wbc, how);
  1304. }
  1305. /*
  1306. * flush the inode to disk.
  1307. */
  1308. int nfs_wb_all(struct inode *inode)
  1309. {
  1310. return nfs_write_mapping(inode->i_mapping, 0);
  1311. }
  1312. int nfs_wb_nocommit(struct inode *inode)
  1313. {
  1314. return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
  1315. }
  1316. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1317. {
  1318. struct nfs_page *req;
  1319. loff_t range_start = page_offset(page);
  1320. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1321. struct writeback_control wbc = {
  1322. .bdi = page->mapping->backing_dev_info,
  1323. .sync_mode = WB_SYNC_ALL,
  1324. .nr_to_write = LONG_MAX,
  1325. .range_start = range_start,
  1326. .range_end = range_end,
  1327. };
  1328. int ret = 0;
  1329. BUG_ON(!PageLocked(page));
  1330. for (;;) {
  1331. req = nfs_page_find_request(page);
  1332. if (req == NULL)
  1333. goto out;
  1334. if (test_bit(PG_CLEAN, &req->wb_flags)) {
  1335. nfs_release_request(req);
  1336. break;
  1337. }
  1338. if (nfs_lock_request_dontget(req)) {
  1339. nfs_inode_remove_request(req);
  1340. /*
  1341. * In case nfs_inode_remove_request has marked the
  1342. * page as being dirty
  1343. */
  1344. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1345. nfs_unlock_request(req);
  1346. break;
  1347. }
  1348. ret = nfs_wait_on_request(req);
  1349. if (ret < 0)
  1350. goto out;
  1351. }
  1352. if (!PagePrivate(page))
  1353. return 0;
  1354. ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
  1355. out:
  1356. return ret;
  1357. }
  1358. static int nfs_wb_page_priority(struct inode *inode, struct page *page,
  1359. int how)
  1360. {
  1361. loff_t range_start = page_offset(page);
  1362. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1363. struct writeback_control wbc = {
  1364. .bdi = page->mapping->backing_dev_info,
  1365. .sync_mode = WB_SYNC_ALL,
  1366. .nr_to_write = LONG_MAX,
  1367. .range_start = range_start,
  1368. .range_end = range_end,
  1369. };
  1370. int ret;
  1371. do {
  1372. if (clear_page_dirty_for_io(page)) {
  1373. ret = nfs_writepage_locked(page, &wbc);
  1374. if (ret < 0)
  1375. goto out_error;
  1376. } else if (!PagePrivate(page))
  1377. break;
  1378. ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
  1379. if (ret < 0)
  1380. goto out_error;
  1381. } while (PagePrivate(page));
  1382. return 0;
  1383. out_error:
  1384. __mark_inode_dirty(inode, I_DIRTY_PAGES);
  1385. return ret;
  1386. }
  1387. /*
  1388. * Write back all requests on one page - we do this before reading it.
  1389. */
  1390. int nfs_wb_page(struct inode *inode, struct page* page)
  1391. {
  1392. return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
  1393. }
  1394. #ifdef CONFIG_MIGRATION
  1395. int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
  1396. struct page *page)
  1397. {
  1398. struct nfs_page *req;
  1399. int ret;
  1400. if (PageFsCache(page))
  1401. nfs_fscache_release_page(page, GFP_KERNEL);
  1402. req = nfs_find_and_lock_request(page);
  1403. ret = PTR_ERR(req);
  1404. if (IS_ERR(req))
  1405. goto out;
  1406. ret = migrate_page(mapping, newpage, page);
  1407. if (!req)
  1408. goto out;
  1409. if (ret)
  1410. goto out_unlock;
  1411. page_cache_get(newpage);
  1412. req->wb_page = newpage;
  1413. SetPagePrivate(newpage);
  1414. set_page_private(newpage, page_private(page));
  1415. ClearPagePrivate(page);
  1416. set_page_private(page, 0);
  1417. page_cache_release(page);
  1418. out_unlock:
  1419. nfs_clear_page_tag_locked(req);
  1420. nfs_release_request(req);
  1421. out:
  1422. return ret;
  1423. }
  1424. #endif
  1425. int __init nfs_init_writepagecache(void)
  1426. {
  1427. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1428. sizeof(struct nfs_write_data),
  1429. 0, SLAB_HWCACHE_ALIGN,
  1430. NULL);
  1431. if (nfs_wdata_cachep == NULL)
  1432. return -ENOMEM;
  1433. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1434. nfs_wdata_cachep);
  1435. if (nfs_wdata_mempool == NULL)
  1436. return -ENOMEM;
  1437. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1438. nfs_wdata_cachep);
  1439. if (nfs_commit_mempool == NULL)
  1440. return -ENOMEM;
  1441. /*
  1442. * NFS congestion size, scale with available memory.
  1443. *
  1444. * 64MB: 8192k
  1445. * 128MB: 11585k
  1446. * 256MB: 16384k
  1447. * 512MB: 23170k
  1448. * 1GB: 32768k
  1449. * 2GB: 46340k
  1450. * 4GB: 65536k
  1451. * 8GB: 92681k
  1452. * 16GB: 131072k
  1453. *
  1454. * This allows larger machines to have larger/more transfers.
  1455. * Limit the default to 256M
  1456. */
  1457. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1458. if (nfs_congestion_kb > 256*1024)
  1459. nfs_congestion_kb = 256*1024;
  1460. return 0;
  1461. }
  1462. void nfs_destroy_writepagecache(void)
  1463. {
  1464. mempool_destroy(nfs_commit_mempool);
  1465. mempool_destroy(nfs_wdata_mempool);
  1466. kmem_cache_destroy(nfs_wdata_cachep);
  1467. }