direct.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/nfs_fs.h>
  47. #include <linux/nfs_page.h>
  48. #include <linux/sunrpc/clnt.h>
  49. #include <asm/system.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/atomic.h>
  52. #include "internal.h"
  53. #include "iostat.h"
  54. #define NFSDBG_FACILITY NFSDBG_VFS
  55. static struct kmem_cache *nfs_direct_cachep;
  56. /*
  57. * This represents a set of asynchronous requests that we're waiting on
  58. */
  59. struct nfs_direct_req {
  60. struct kref kref; /* release manager */
  61. /* I/O parameters */
  62. struct nfs_open_context *ctx; /* file open context info */
  63. struct kiocb * iocb; /* controlling i/o request */
  64. struct inode * inode; /* target file of i/o */
  65. /* completion state */
  66. atomic_t io_count; /* i/os we're waiting for */
  67. spinlock_t lock; /* protect completion state */
  68. ssize_t count, /* bytes actually processed */
  69. error; /* any reported error */
  70. struct completion completion; /* wait for i/o completion */
  71. /* commit state */
  72. struct list_head rewrite_list; /* saved nfs_write_data structs */
  73. struct nfs_write_data * commit_data; /* special write_data for commits */
  74. int flags;
  75. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  76. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  77. struct nfs_writeverf verf; /* unstable write verifier */
  78. };
  79. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  80. static const struct rpc_call_ops nfs_write_direct_ops;
  81. static inline void get_dreq(struct nfs_direct_req *dreq)
  82. {
  83. atomic_inc(&dreq->io_count);
  84. }
  85. static inline int put_dreq(struct nfs_direct_req *dreq)
  86. {
  87. return atomic_dec_and_test(&dreq->io_count);
  88. }
  89. /**
  90. * nfs_direct_IO - NFS address space operation for direct I/O
  91. * @rw: direction (read or write)
  92. * @iocb: target I/O control block
  93. * @iov: array of vectors that define I/O buffer
  94. * @pos: offset in file to begin the operation
  95. * @nr_segs: size of iovec array
  96. *
  97. * The presence of this routine in the address space ops vector means
  98. * the NFS client supports direct I/O. However, we shunt off direct
  99. * read and write requests before the VFS gets them, so this method
  100. * should never be called.
  101. */
  102. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  103. {
  104. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  105. iocb->ki_filp->f_path.dentry->d_name.name,
  106. (long long) pos, nr_segs);
  107. return -EINVAL;
  108. }
  109. static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
  110. {
  111. unsigned int npages;
  112. unsigned int i;
  113. if (count == 0)
  114. return;
  115. pages += (pgbase >> PAGE_SHIFT);
  116. npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  117. for (i = 0; i < npages; i++) {
  118. struct page *page = pages[i];
  119. if (!PageCompound(page))
  120. set_page_dirty(page);
  121. }
  122. }
  123. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  124. {
  125. unsigned int i;
  126. for (i = 0; i < npages; i++)
  127. page_cache_release(pages[i]);
  128. }
  129. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  130. {
  131. struct nfs_direct_req *dreq;
  132. dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
  133. if (!dreq)
  134. return NULL;
  135. kref_init(&dreq->kref);
  136. kref_get(&dreq->kref);
  137. init_completion(&dreq->completion);
  138. INIT_LIST_HEAD(&dreq->rewrite_list);
  139. dreq->iocb = NULL;
  140. dreq->ctx = NULL;
  141. spin_lock_init(&dreq->lock);
  142. atomic_set(&dreq->io_count, 0);
  143. dreq->count = 0;
  144. dreq->error = 0;
  145. dreq->flags = 0;
  146. return dreq;
  147. }
  148. static void nfs_direct_req_free(struct kref *kref)
  149. {
  150. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  151. if (dreq->ctx != NULL)
  152. put_nfs_open_context(dreq->ctx);
  153. kmem_cache_free(nfs_direct_cachep, dreq);
  154. }
  155. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  156. {
  157. kref_put(&dreq->kref, nfs_direct_req_free);
  158. }
  159. /*
  160. * Collects and returns the final error value/byte-count.
  161. */
  162. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  163. {
  164. ssize_t result = -EIOCBQUEUED;
  165. /* Async requests don't wait here */
  166. if (dreq->iocb)
  167. goto out;
  168. result = wait_for_completion_killable(&dreq->completion);
  169. if (!result)
  170. result = dreq->error;
  171. if (!result)
  172. result = dreq->count;
  173. out:
  174. return (ssize_t) result;
  175. }
  176. /*
  177. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  178. * the iocb is still valid here if this is a synchronous request.
  179. */
  180. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  181. {
  182. if (dreq->iocb) {
  183. long res = (long) dreq->error;
  184. if (!res)
  185. res = (long) dreq->count;
  186. aio_complete(dreq->iocb, res, 0);
  187. }
  188. complete_all(&dreq->completion);
  189. nfs_direct_req_release(dreq);
  190. }
  191. /*
  192. * We must hold a reference to all the pages in this direct read request
  193. * until the RPCs complete. This could be long *after* we are woken up in
  194. * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
  195. */
  196. static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
  197. {
  198. struct nfs_read_data *data = calldata;
  199. nfs_readpage_result(task, data);
  200. }
  201. static void nfs_direct_read_release(void *calldata)
  202. {
  203. struct nfs_read_data *data = calldata;
  204. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  205. int status = data->task.tk_status;
  206. spin_lock(&dreq->lock);
  207. if (unlikely(status < 0)) {
  208. dreq->error = status;
  209. spin_unlock(&dreq->lock);
  210. } else {
  211. dreq->count += data->res.count;
  212. spin_unlock(&dreq->lock);
  213. nfs_direct_dirty_pages(data->pagevec,
  214. data->args.pgbase,
  215. data->res.count);
  216. }
  217. nfs_direct_release_pages(data->pagevec, data->npages);
  218. if (put_dreq(dreq))
  219. nfs_direct_complete(dreq);
  220. nfs_readdata_free(data);
  221. }
  222. static const struct rpc_call_ops nfs_read_direct_ops = {
  223. #if defined(CONFIG_NFS_V4_1)
  224. .rpc_call_prepare = nfs_read_prepare,
  225. #endif /* CONFIG_NFS_V4_1 */
  226. .rpc_call_done = nfs_direct_read_result,
  227. .rpc_release = nfs_direct_read_release,
  228. };
  229. /*
  230. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  231. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  232. * bail and stop sending more reads. Read length accounting is
  233. * handled automatically by nfs_direct_read_result(). Otherwise, if
  234. * no requests have been sent, just return an error.
  235. */
  236. static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
  237. const struct iovec *iov,
  238. loff_t pos)
  239. {
  240. struct nfs_open_context *ctx = dreq->ctx;
  241. struct inode *inode = ctx->path.dentry->d_inode;
  242. unsigned long user_addr = (unsigned long)iov->iov_base;
  243. size_t count = iov->iov_len;
  244. size_t rsize = NFS_SERVER(inode)->rsize;
  245. struct rpc_task *task;
  246. struct rpc_message msg = {
  247. .rpc_cred = ctx->cred,
  248. };
  249. struct rpc_task_setup task_setup_data = {
  250. .rpc_client = NFS_CLIENT(inode),
  251. .rpc_message = &msg,
  252. .callback_ops = &nfs_read_direct_ops,
  253. .workqueue = nfsiod_workqueue,
  254. .flags = RPC_TASK_ASYNC,
  255. };
  256. unsigned int pgbase;
  257. int result;
  258. ssize_t started = 0;
  259. do {
  260. struct nfs_read_data *data;
  261. size_t bytes;
  262. pgbase = user_addr & ~PAGE_MASK;
  263. bytes = min(rsize,count);
  264. result = -ENOMEM;
  265. data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
  266. if (unlikely(!data))
  267. break;
  268. down_read(&current->mm->mmap_sem);
  269. result = get_user_pages(current, current->mm, user_addr,
  270. data->npages, 1, 0, data->pagevec, NULL);
  271. up_read(&current->mm->mmap_sem);
  272. if (result < 0) {
  273. nfs_readdata_free(data);
  274. break;
  275. }
  276. if ((unsigned)result < data->npages) {
  277. bytes = result * PAGE_SIZE;
  278. if (bytes <= pgbase) {
  279. nfs_direct_release_pages(data->pagevec, result);
  280. nfs_readdata_free(data);
  281. break;
  282. }
  283. bytes -= pgbase;
  284. data->npages = result;
  285. }
  286. get_dreq(dreq);
  287. data->req = (struct nfs_page *) dreq;
  288. data->inode = inode;
  289. data->cred = msg.rpc_cred;
  290. data->args.fh = NFS_FH(inode);
  291. data->args.context = ctx;
  292. data->args.offset = pos;
  293. data->args.pgbase = pgbase;
  294. data->args.pages = data->pagevec;
  295. data->args.count = bytes;
  296. data->res.fattr = &data->fattr;
  297. data->res.eof = 0;
  298. data->res.count = bytes;
  299. msg.rpc_argp = &data->args;
  300. msg.rpc_resp = &data->res;
  301. task_setup_data.task = &data->task;
  302. task_setup_data.callback_data = data;
  303. NFS_PROTO(inode)->read_setup(data, &msg);
  304. task = rpc_run_task(&task_setup_data);
  305. if (IS_ERR(task))
  306. break;
  307. rpc_put_task(task);
  308. dprintk("NFS: %5u initiated direct read call "
  309. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  310. data->task.tk_pid,
  311. inode->i_sb->s_id,
  312. (long long)NFS_FILEID(inode),
  313. bytes,
  314. (unsigned long long)data->args.offset);
  315. started += bytes;
  316. user_addr += bytes;
  317. pos += bytes;
  318. /* FIXME: Remove this unnecessary math from final patch */
  319. pgbase += bytes;
  320. pgbase &= ~PAGE_MASK;
  321. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  322. count -= bytes;
  323. } while (count != 0);
  324. if (started)
  325. return started;
  326. return result < 0 ? (ssize_t) result : -EFAULT;
  327. }
  328. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  329. const struct iovec *iov,
  330. unsigned long nr_segs,
  331. loff_t pos)
  332. {
  333. ssize_t result = -EINVAL;
  334. size_t requested_bytes = 0;
  335. unsigned long seg;
  336. get_dreq(dreq);
  337. for (seg = 0; seg < nr_segs; seg++) {
  338. const struct iovec *vec = &iov[seg];
  339. result = nfs_direct_read_schedule_segment(dreq, vec, pos);
  340. if (result < 0)
  341. break;
  342. requested_bytes += result;
  343. if ((size_t)result < vec->iov_len)
  344. break;
  345. pos += vec->iov_len;
  346. }
  347. if (put_dreq(dreq))
  348. nfs_direct_complete(dreq);
  349. if (requested_bytes != 0)
  350. return 0;
  351. if (result < 0)
  352. return result;
  353. return -EIO;
  354. }
  355. static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
  356. unsigned long nr_segs, loff_t pos)
  357. {
  358. ssize_t result = 0;
  359. struct inode *inode = iocb->ki_filp->f_mapping->host;
  360. struct nfs_direct_req *dreq;
  361. dreq = nfs_direct_req_alloc();
  362. if (!dreq)
  363. return -ENOMEM;
  364. dreq->inode = inode;
  365. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  366. if (!is_sync_kiocb(iocb))
  367. dreq->iocb = iocb;
  368. result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
  369. if (!result)
  370. result = nfs_direct_wait(dreq);
  371. nfs_direct_req_release(dreq);
  372. return result;
  373. }
  374. static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
  375. {
  376. while (!list_empty(&dreq->rewrite_list)) {
  377. struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
  378. list_del(&data->pages);
  379. nfs_direct_release_pages(data->pagevec, data->npages);
  380. nfs_writedata_free(data);
  381. }
  382. }
  383. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  384. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  385. {
  386. struct inode *inode = dreq->inode;
  387. struct list_head *p;
  388. struct nfs_write_data *data;
  389. struct rpc_task *task;
  390. struct rpc_message msg = {
  391. .rpc_cred = dreq->ctx->cred,
  392. };
  393. struct rpc_task_setup task_setup_data = {
  394. .rpc_client = NFS_CLIENT(inode),
  395. .rpc_message = &msg,
  396. .callback_ops = &nfs_write_direct_ops,
  397. .workqueue = nfsiod_workqueue,
  398. .flags = RPC_TASK_ASYNC,
  399. };
  400. dreq->count = 0;
  401. get_dreq(dreq);
  402. list_for_each(p, &dreq->rewrite_list) {
  403. data = list_entry(p, struct nfs_write_data, pages);
  404. get_dreq(dreq);
  405. /* Use stable writes */
  406. data->args.stable = NFS_FILE_SYNC;
  407. /*
  408. * Reset data->res.
  409. */
  410. nfs_fattr_init(&data->fattr);
  411. data->res.count = data->args.count;
  412. memset(&data->verf, 0, sizeof(data->verf));
  413. /*
  414. * Reuse data->task; data->args should not have changed
  415. * since the original request was sent.
  416. */
  417. task_setup_data.task = &data->task;
  418. task_setup_data.callback_data = data;
  419. msg.rpc_argp = &data->args;
  420. msg.rpc_resp = &data->res;
  421. NFS_PROTO(inode)->write_setup(data, &msg);
  422. /*
  423. * We're called via an RPC callback, so BKL is already held.
  424. */
  425. task = rpc_run_task(&task_setup_data);
  426. if (!IS_ERR(task))
  427. rpc_put_task(task);
  428. dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  429. data->task.tk_pid,
  430. inode->i_sb->s_id,
  431. (long long)NFS_FILEID(inode),
  432. data->args.count,
  433. (unsigned long long)data->args.offset);
  434. }
  435. if (put_dreq(dreq))
  436. nfs_direct_write_complete(dreq, inode);
  437. }
  438. static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
  439. {
  440. struct nfs_write_data *data = calldata;
  441. /* Call the NFS version-specific code */
  442. NFS_PROTO(data->inode)->commit_done(task, data);
  443. }
  444. static void nfs_direct_commit_release(void *calldata)
  445. {
  446. struct nfs_write_data *data = calldata;
  447. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  448. int status = data->task.tk_status;
  449. if (status < 0) {
  450. dprintk("NFS: %5u commit failed with error %d.\n",
  451. data->task.tk_pid, status);
  452. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  453. } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  454. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  455. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  456. }
  457. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  458. nfs_direct_write_complete(dreq, data->inode);
  459. nfs_commit_free(data);
  460. }
  461. static const struct rpc_call_ops nfs_commit_direct_ops = {
  462. #if defined(CONFIG_NFS_V4_1)
  463. .rpc_call_prepare = nfs_write_prepare,
  464. #endif /* CONFIG_NFS_V4_1 */
  465. .rpc_call_done = nfs_direct_commit_result,
  466. .rpc_release = nfs_direct_commit_release,
  467. };
  468. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  469. {
  470. struct nfs_write_data *data = dreq->commit_data;
  471. struct rpc_task *task;
  472. struct rpc_message msg = {
  473. .rpc_argp = &data->args,
  474. .rpc_resp = &data->res,
  475. .rpc_cred = dreq->ctx->cred,
  476. };
  477. struct rpc_task_setup task_setup_data = {
  478. .task = &data->task,
  479. .rpc_client = NFS_CLIENT(dreq->inode),
  480. .rpc_message = &msg,
  481. .callback_ops = &nfs_commit_direct_ops,
  482. .callback_data = data,
  483. .workqueue = nfsiod_workqueue,
  484. .flags = RPC_TASK_ASYNC,
  485. };
  486. data->inode = dreq->inode;
  487. data->cred = msg.rpc_cred;
  488. data->args.fh = NFS_FH(data->inode);
  489. data->args.offset = 0;
  490. data->args.count = 0;
  491. data->args.context = dreq->ctx;
  492. data->res.count = 0;
  493. data->res.fattr = &data->fattr;
  494. data->res.verf = &data->verf;
  495. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  496. /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
  497. dreq->commit_data = NULL;
  498. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  499. task = rpc_run_task(&task_setup_data);
  500. if (!IS_ERR(task))
  501. rpc_put_task(task);
  502. }
  503. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  504. {
  505. int flags = dreq->flags;
  506. dreq->flags = 0;
  507. switch (flags) {
  508. case NFS_ODIRECT_DO_COMMIT:
  509. nfs_direct_commit_schedule(dreq);
  510. break;
  511. case NFS_ODIRECT_RESCHED_WRITES:
  512. nfs_direct_write_reschedule(dreq);
  513. break;
  514. default:
  515. if (dreq->commit_data != NULL)
  516. nfs_commit_free(dreq->commit_data);
  517. nfs_direct_free_writedata(dreq);
  518. nfs_zap_mapping(inode, inode->i_mapping);
  519. nfs_direct_complete(dreq);
  520. }
  521. }
  522. static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  523. {
  524. dreq->commit_data = nfs_commitdata_alloc();
  525. if (dreq->commit_data != NULL)
  526. dreq->commit_data->req = (struct nfs_page *) dreq;
  527. }
  528. #else
  529. static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  530. {
  531. dreq->commit_data = NULL;
  532. }
  533. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  534. {
  535. nfs_direct_free_writedata(dreq);
  536. nfs_zap_mapping(inode, inode->i_mapping);
  537. nfs_direct_complete(dreq);
  538. }
  539. #endif
  540. static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
  541. {
  542. struct nfs_write_data *data = calldata;
  543. if (nfs_writeback_done(task, data) != 0)
  544. return;
  545. }
  546. /*
  547. * NB: Return the value of the first error return code. Subsequent
  548. * errors after the first one are ignored.
  549. */
  550. static void nfs_direct_write_release(void *calldata)
  551. {
  552. struct nfs_write_data *data = calldata;
  553. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  554. int status = data->task.tk_status;
  555. spin_lock(&dreq->lock);
  556. if (unlikely(status < 0)) {
  557. /* An error has occurred, so we should not commit */
  558. dreq->flags = 0;
  559. dreq->error = status;
  560. }
  561. if (unlikely(dreq->error != 0))
  562. goto out_unlock;
  563. dreq->count += data->res.count;
  564. if (data->res.verf->committed != NFS_FILE_SYNC) {
  565. switch (dreq->flags) {
  566. case 0:
  567. memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
  568. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  569. break;
  570. case NFS_ODIRECT_DO_COMMIT:
  571. if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
  572. dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
  573. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  574. }
  575. }
  576. }
  577. out_unlock:
  578. spin_unlock(&dreq->lock);
  579. if (put_dreq(dreq))
  580. nfs_direct_write_complete(dreq, data->inode);
  581. }
  582. static const struct rpc_call_ops nfs_write_direct_ops = {
  583. #if defined(CONFIG_NFS_V4_1)
  584. .rpc_call_prepare = nfs_write_prepare,
  585. #endif /* CONFIG_NFS_V4_1 */
  586. .rpc_call_done = nfs_direct_write_result,
  587. .rpc_release = nfs_direct_write_release,
  588. };
  589. /*
  590. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  591. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  592. * bail and stop sending more writes. Write length accounting is
  593. * handled automatically by nfs_direct_write_result(). Otherwise, if
  594. * no requests have been sent, just return an error.
  595. */
  596. static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
  597. const struct iovec *iov,
  598. loff_t pos, int sync)
  599. {
  600. struct nfs_open_context *ctx = dreq->ctx;
  601. struct inode *inode = ctx->path.dentry->d_inode;
  602. unsigned long user_addr = (unsigned long)iov->iov_base;
  603. size_t count = iov->iov_len;
  604. struct rpc_task *task;
  605. struct rpc_message msg = {
  606. .rpc_cred = ctx->cred,
  607. };
  608. struct rpc_task_setup task_setup_data = {
  609. .rpc_client = NFS_CLIENT(inode),
  610. .rpc_message = &msg,
  611. .callback_ops = &nfs_write_direct_ops,
  612. .workqueue = nfsiod_workqueue,
  613. .flags = RPC_TASK_ASYNC,
  614. };
  615. size_t wsize = NFS_SERVER(inode)->wsize;
  616. unsigned int pgbase;
  617. int result;
  618. ssize_t started = 0;
  619. do {
  620. struct nfs_write_data *data;
  621. size_t bytes;
  622. pgbase = user_addr & ~PAGE_MASK;
  623. bytes = min(wsize,count);
  624. result = -ENOMEM;
  625. data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
  626. if (unlikely(!data))
  627. break;
  628. down_read(&current->mm->mmap_sem);
  629. result = get_user_pages(current, current->mm, user_addr,
  630. data->npages, 0, 0, data->pagevec, NULL);
  631. up_read(&current->mm->mmap_sem);
  632. if (result < 0) {
  633. nfs_writedata_free(data);
  634. break;
  635. }
  636. if ((unsigned)result < data->npages) {
  637. bytes = result * PAGE_SIZE;
  638. if (bytes <= pgbase) {
  639. nfs_direct_release_pages(data->pagevec, result);
  640. nfs_writedata_free(data);
  641. break;
  642. }
  643. bytes -= pgbase;
  644. data->npages = result;
  645. }
  646. get_dreq(dreq);
  647. list_move_tail(&data->pages, &dreq->rewrite_list);
  648. data->req = (struct nfs_page *) dreq;
  649. data->inode = inode;
  650. data->cred = msg.rpc_cred;
  651. data->args.fh = NFS_FH(inode);
  652. data->args.context = ctx;
  653. data->args.offset = pos;
  654. data->args.pgbase = pgbase;
  655. data->args.pages = data->pagevec;
  656. data->args.count = bytes;
  657. data->args.stable = sync;
  658. data->res.fattr = &data->fattr;
  659. data->res.count = bytes;
  660. data->res.verf = &data->verf;
  661. task_setup_data.task = &data->task;
  662. task_setup_data.callback_data = data;
  663. msg.rpc_argp = &data->args;
  664. msg.rpc_resp = &data->res;
  665. NFS_PROTO(inode)->write_setup(data, &msg);
  666. task = rpc_run_task(&task_setup_data);
  667. if (IS_ERR(task))
  668. break;
  669. rpc_put_task(task);
  670. dprintk("NFS: %5u initiated direct write call "
  671. "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
  672. data->task.tk_pid,
  673. inode->i_sb->s_id,
  674. (long long)NFS_FILEID(inode),
  675. bytes,
  676. (unsigned long long)data->args.offset);
  677. started += bytes;
  678. user_addr += bytes;
  679. pos += bytes;
  680. /* FIXME: Remove this useless math from the final patch */
  681. pgbase += bytes;
  682. pgbase &= ~PAGE_MASK;
  683. BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
  684. count -= bytes;
  685. } while (count != 0);
  686. if (started)
  687. return started;
  688. return result < 0 ? (ssize_t) result : -EFAULT;
  689. }
  690. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  691. const struct iovec *iov,
  692. unsigned long nr_segs,
  693. loff_t pos, int sync)
  694. {
  695. ssize_t result = 0;
  696. size_t requested_bytes = 0;
  697. unsigned long seg;
  698. get_dreq(dreq);
  699. for (seg = 0; seg < nr_segs; seg++) {
  700. const struct iovec *vec = &iov[seg];
  701. result = nfs_direct_write_schedule_segment(dreq, vec,
  702. pos, sync);
  703. if (result < 0)
  704. break;
  705. requested_bytes += result;
  706. if ((size_t)result < vec->iov_len)
  707. break;
  708. pos += vec->iov_len;
  709. }
  710. if (put_dreq(dreq))
  711. nfs_direct_write_complete(dreq, dreq->inode);
  712. if (requested_bytes != 0)
  713. return 0;
  714. if (result < 0)
  715. return result;
  716. return -EIO;
  717. }
  718. static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
  719. unsigned long nr_segs, loff_t pos,
  720. size_t count)
  721. {
  722. ssize_t result = 0;
  723. struct inode *inode = iocb->ki_filp->f_mapping->host;
  724. struct nfs_direct_req *dreq;
  725. size_t wsize = NFS_SERVER(inode)->wsize;
  726. int sync = NFS_UNSTABLE;
  727. dreq = nfs_direct_req_alloc();
  728. if (!dreq)
  729. return -ENOMEM;
  730. nfs_alloc_commit_data(dreq);
  731. if (dreq->commit_data == NULL || count < wsize)
  732. sync = NFS_FILE_SYNC;
  733. dreq->inode = inode;
  734. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  735. if (!is_sync_kiocb(iocb))
  736. dreq->iocb = iocb;
  737. result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
  738. if (!result)
  739. result = nfs_direct_wait(dreq);
  740. nfs_direct_req_release(dreq);
  741. return result;
  742. }
  743. /**
  744. * nfs_file_direct_read - file direct read operation for NFS files
  745. * @iocb: target I/O control block
  746. * @iov: vector of user buffers into which to read data
  747. * @nr_segs: size of iov vector
  748. * @pos: byte offset in file where reading starts
  749. *
  750. * We use this function for direct reads instead of calling
  751. * generic_file_aio_read() in order to avoid gfar's check to see if
  752. * the request starts before the end of the file. For that check
  753. * to work, we must generate a GETATTR before each direct read, and
  754. * even then there is a window between the GETATTR and the subsequent
  755. * READ where the file size could change. Our preference is simply
  756. * to do all reads the application wants, and the server will take
  757. * care of managing the end of file boundary.
  758. *
  759. * This function also eliminates unnecessarily updating the file's
  760. * atime locally, as the NFS server sets the file's atime, and this
  761. * client must read the updated atime from the server back into its
  762. * cache.
  763. */
  764. ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
  765. unsigned long nr_segs, loff_t pos)
  766. {
  767. ssize_t retval = -EINVAL;
  768. struct file *file = iocb->ki_filp;
  769. struct address_space *mapping = file->f_mapping;
  770. size_t count;
  771. count = iov_length(iov, nr_segs);
  772. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  773. dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
  774. file->f_path.dentry->d_parent->d_name.name,
  775. file->f_path.dentry->d_name.name,
  776. count, (long long) pos);
  777. retval = 0;
  778. if (!count)
  779. goto out;
  780. retval = nfs_sync_mapping(mapping);
  781. if (retval)
  782. goto out;
  783. retval = nfs_direct_read(iocb, iov, nr_segs, pos);
  784. if (retval > 0)
  785. iocb->ki_pos = pos + retval;
  786. out:
  787. return retval;
  788. }
  789. /**
  790. * nfs_file_direct_write - file direct write operation for NFS files
  791. * @iocb: target I/O control block
  792. * @iov: vector of user buffers from which to write data
  793. * @nr_segs: size of iov vector
  794. * @pos: byte offset in file where writing starts
  795. *
  796. * We use this function for direct writes instead of calling
  797. * generic_file_aio_write() in order to avoid taking the inode
  798. * semaphore and updating the i_size. The NFS server will set
  799. * the new i_size and this client must read the updated size
  800. * back into its cache. We let the server do generic write
  801. * parameter checking and report problems.
  802. *
  803. * We eliminate local atime updates, see direct read above.
  804. *
  805. * We avoid unnecessary page cache invalidations for normal cached
  806. * readers of this file.
  807. *
  808. * Note that O_APPEND is not supported for NFS direct writes, as there
  809. * is no atomic O_APPEND write facility in the NFS protocol.
  810. */
  811. ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  812. unsigned long nr_segs, loff_t pos)
  813. {
  814. ssize_t retval = -EINVAL;
  815. struct file *file = iocb->ki_filp;
  816. struct address_space *mapping = file->f_mapping;
  817. size_t count;
  818. count = iov_length(iov, nr_segs);
  819. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
  820. dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
  821. file->f_path.dentry->d_parent->d_name.name,
  822. file->f_path.dentry->d_name.name,
  823. count, (long long) pos);
  824. retval = generic_write_checks(file, &pos, &count, 0);
  825. if (retval)
  826. goto out;
  827. retval = -EINVAL;
  828. if ((ssize_t) count < 0)
  829. goto out;
  830. retval = 0;
  831. if (!count)
  832. goto out;
  833. retval = nfs_sync_mapping(mapping);
  834. if (retval)
  835. goto out;
  836. retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
  837. if (retval > 0)
  838. iocb->ki_pos = pos + retval;
  839. out:
  840. return retval;
  841. }
  842. /**
  843. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  844. *
  845. */
  846. int __init nfs_init_directcache(void)
  847. {
  848. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  849. sizeof(struct nfs_direct_req),
  850. 0, (SLAB_RECLAIM_ACCOUNT|
  851. SLAB_MEM_SPREAD),
  852. NULL);
  853. if (nfs_direct_cachep == NULL)
  854. return -ENOMEM;
  855. return 0;
  856. }
  857. /**
  858. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  859. *
  860. */
  861. void nfs_destroy_directcache(void)
  862. {
  863. kmem_cache_destroy(nfs_direct_cachep);
  864. }