file.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. /*
  2. * linux/fs/file.c
  3. *
  4. * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
  5. *
  6. * Manage the dynamic fd arrays in the process files_struct.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/fs.h>
  10. #include <linux/mm.h>
  11. #include <linux/time.h>
  12. #include <linux/sched.h>
  13. #include <linux/slab.h>
  14. #include <linux/vmalloc.h>
  15. #include <linux/file.h>
  16. #include <linux/fdtable.h>
  17. #include <linux/bitops.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/rcupdate.h>
  21. #include <linux/workqueue.h>
  22. struct fdtable_defer {
  23. spinlock_t lock;
  24. struct work_struct wq;
  25. struct fdtable *next;
  26. };
  27. int sysctl_nr_open __read_mostly = 1024*1024;
  28. int sysctl_nr_open_min = BITS_PER_LONG;
  29. int sysctl_nr_open_max = 1024 * 1024; /* raised later */
  30. /*
  31. * We use this list to defer free fdtables that have vmalloced
  32. * sets/arrays. By keeping a per-cpu list, we avoid having to embed
  33. * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
  34. * this per-task structure.
  35. */
  36. static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
  37. static inline void * alloc_fdmem(unsigned int size)
  38. {
  39. if (size <= PAGE_SIZE)
  40. return kmalloc(size, GFP_KERNEL);
  41. else
  42. return vmalloc(size);
  43. }
  44. static inline void free_fdarr(struct fdtable *fdt)
  45. {
  46. if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *)))
  47. kfree(fdt->fd);
  48. else
  49. vfree(fdt->fd);
  50. }
  51. static inline void free_fdset(struct fdtable *fdt)
  52. {
  53. if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2))
  54. kfree(fdt->open_fds);
  55. else
  56. vfree(fdt->open_fds);
  57. }
  58. static void free_fdtable_work(struct work_struct *work)
  59. {
  60. struct fdtable_defer *f =
  61. container_of(work, struct fdtable_defer, wq);
  62. struct fdtable *fdt;
  63. spin_lock_bh(&f->lock);
  64. fdt = f->next;
  65. f->next = NULL;
  66. spin_unlock_bh(&f->lock);
  67. while(fdt) {
  68. struct fdtable *next = fdt->next;
  69. vfree(fdt->fd);
  70. free_fdset(fdt);
  71. kfree(fdt);
  72. fdt = next;
  73. }
  74. }
  75. void free_fdtable_rcu(struct rcu_head *rcu)
  76. {
  77. struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
  78. struct fdtable_defer *fddef;
  79. BUG_ON(!fdt);
  80. if (fdt->max_fds <= NR_OPEN_DEFAULT) {
  81. /*
  82. * This fdtable is embedded in the files structure and that
  83. * structure itself is getting destroyed.
  84. */
  85. kmem_cache_free(files_cachep,
  86. container_of(fdt, struct files_struct, fdtab));
  87. return;
  88. }
  89. if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) {
  90. kfree(fdt->fd);
  91. kfree(fdt->open_fds);
  92. kfree(fdt);
  93. } else {
  94. fddef = &get_cpu_var(fdtable_defer_list);
  95. spin_lock(&fddef->lock);
  96. fdt->next = fddef->next;
  97. fddef->next = fdt;
  98. /* vmallocs are handled from the workqueue context */
  99. schedule_work(&fddef->wq);
  100. spin_unlock(&fddef->lock);
  101. put_cpu_var(fdtable_defer_list);
  102. }
  103. }
  104. /*
  105. * Expand the fdset in the files_struct. Called with the files spinlock
  106. * held for write.
  107. */
  108. static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
  109. {
  110. unsigned int cpy, set;
  111. BUG_ON(nfdt->max_fds < ofdt->max_fds);
  112. cpy = ofdt->max_fds * sizeof(struct file *);
  113. set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
  114. memcpy(nfdt->fd, ofdt->fd, cpy);
  115. memset((char *)(nfdt->fd) + cpy, 0, set);
  116. cpy = ofdt->max_fds / BITS_PER_BYTE;
  117. set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
  118. memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
  119. memset((char *)(nfdt->open_fds) + cpy, 0, set);
  120. memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
  121. memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
  122. }
  123. static struct fdtable * alloc_fdtable(unsigned int nr)
  124. {
  125. struct fdtable *fdt;
  126. char *data;
  127. /*
  128. * Figure out how many fds we actually want to support in this fdtable.
  129. * Allocation steps are keyed to the size of the fdarray, since it
  130. * grows far faster than any of the other dynamic data. We try to fit
  131. * the fdarray into comfortable page-tuned chunks: starting at 1024B
  132. * and growing in powers of two from there on.
  133. */
  134. nr /= (1024 / sizeof(struct file *));
  135. nr = roundup_pow_of_two(nr + 1);
  136. nr *= (1024 / sizeof(struct file *));
  137. /*
  138. * Note that this can drive nr *below* what we had passed if sysctl_nr_open
  139. * had been set lower between the check in expand_files() and here. Deal
  140. * with that in caller, it's cheaper that way.
  141. *
  142. * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
  143. * bitmaps handling below becomes unpleasant, to put it mildly...
  144. */
  145. if (unlikely(nr > sysctl_nr_open))
  146. nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
  147. fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
  148. if (!fdt)
  149. goto out;
  150. fdt->max_fds = nr;
  151. data = alloc_fdmem(nr * sizeof(struct file *));
  152. if (!data)
  153. goto out_fdt;
  154. fdt->fd = (struct file **)data;
  155. data = alloc_fdmem(max_t(unsigned int,
  156. 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
  157. if (!data)
  158. goto out_arr;
  159. fdt->open_fds = (fd_set *)data;
  160. data += nr / BITS_PER_BYTE;
  161. fdt->close_on_exec = (fd_set *)data;
  162. INIT_RCU_HEAD(&fdt->rcu);
  163. fdt->next = NULL;
  164. return fdt;
  165. out_arr:
  166. free_fdarr(fdt);
  167. out_fdt:
  168. kfree(fdt);
  169. out:
  170. return NULL;
  171. }
  172. /*
  173. * Expand the file descriptor table.
  174. * This function will allocate a new fdtable and both fd array and fdset, of
  175. * the given size.
  176. * Return <0 error code on error; 1 on successful completion.
  177. * The files->file_lock should be held on entry, and will be held on exit.
  178. */
  179. static int expand_fdtable(struct files_struct *files, int nr)
  180. __releases(files->file_lock)
  181. __acquires(files->file_lock)
  182. {
  183. struct fdtable *new_fdt, *cur_fdt;
  184. spin_unlock(&files->file_lock);
  185. new_fdt = alloc_fdtable(nr);
  186. spin_lock(&files->file_lock);
  187. if (!new_fdt)
  188. return -ENOMEM;
  189. /*
  190. * extremely unlikely race - sysctl_nr_open decreased between the check in
  191. * caller and alloc_fdtable(). Cheaper to catch it here...
  192. */
  193. if (unlikely(new_fdt->max_fds <= nr)) {
  194. free_fdarr(new_fdt);
  195. free_fdset(new_fdt);
  196. kfree(new_fdt);
  197. return -EMFILE;
  198. }
  199. /*
  200. * Check again since another task may have expanded the fd table while
  201. * we dropped the lock
  202. */
  203. cur_fdt = files_fdtable(files);
  204. if (nr >= cur_fdt->max_fds) {
  205. /* Continue as planned */
  206. copy_fdtable(new_fdt, cur_fdt);
  207. rcu_assign_pointer(files->fdt, new_fdt);
  208. if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
  209. free_fdtable(cur_fdt);
  210. } else {
  211. /* Somebody else expanded, so undo our attempt */
  212. free_fdarr(new_fdt);
  213. free_fdset(new_fdt);
  214. kfree(new_fdt);
  215. }
  216. return 1;
  217. }
  218. /*
  219. * Expand files.
  220. * This function will expand the file structures, if the requested size exceeds
  221. * the current capacity and there is room for expansion.
  222. * Return <0 error code on error; 0 when nothing done; 1 when files were
  223. * expanded and execution may have blocked.
  224. * The files->file_lock should be held on entry, and will be held on exit.
  225. */
  226. int expand_files(struct files_struct *files, int nr)
  227. {
  228. struct fdtable *fdt;
  229. fdt = files_fdtable(files);
  230. /*
  231. * N.B. For clone tasks sharing a files structure, this test
  232. * will limit the total number of files that can be opened.
  233. */
  234. if (nr >= current->signal->rlim[RLIMIT_NOFILE].rlim_cur)
  235. return -EMFILE;
  236. /* Do we need to expand? */
  237. if (nr < fdt->max_fds)
  238. return 0;
  239. /* Can we expand? */
  240. if (nr >= sysctl_nr_open)
  241. return -EMFILE;
  242. /* All good, so we try */
  243. return expand_fdtable(files, nr);
  244. }
  245. static int count_open_files(struct fdtable *fdt)
  246. {
  247. int size = fdt->max_fds;
  248. int i;
  249. /* Find the last open fd */
  250. for (i = size/(8*sizeof(long)); i > 0; ) {
  251. if (fdt->open_fds->fds_bits[--i])
  252. break;
  253. }
  254. i = (i+1) * 8 * sizeof(long);
  255. return i;
  256. }
  257. /*
  258. * Allocate a new files structure and copy contents from the
  259. * passed in files structure.
  260. * errorp will be valid only when the returned files_struct is NULL.
  261. */
  262. struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  263. {
  264. struct files_struct *newf;
  265. struct file **old_fds, **new_fds;
  266. int open_files, size, i;
  267. struct fdtable *old_fdt, *new_fdt;
  268. *errorp = -ENOMEM;
  269. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  270. if (!newf)
  271. goto out;
  272. atomic_set(&newf->count, 1);
  273. spin_lock_init(&newf->file_lock);
  274. newf->next_fd = 0;
  275. new_fdt = &newf->fdtab;
  276. new_fdt->max_fds = NR_OPEN_DEFAULT;
  277. new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  278. new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
  279. new_fdt->fd = &newf->fd_array[0];
  280. INIT_RCU_HEAD(&new_fdt->rcu);
  281. new_fdt->next = NULL;
  282. spin_lock(&oldf->file_lock);
  283. old_fdt = files_fdtable(oldf);
  284. open_files = count_open_files(old_fdt);
  285. /*
  286. * Check whether we need to allocate a larger fd array and fd set.
  287. */
  288. while (unlikely(open_files > new_fdt->max_fds)) {
  289. spin_unlock(&oldf->file_lock);
  290. if (new_fdt != &newf->fdtab) {
  291. free_fdarr(new_fdt);
  292. free_fdset(new_fdt);
  293. kfree(new_fdt);
  294. }
  295. new_fdt = alloc_fdtable(open_files - 1);
  296. if (!new_fdt) {
  297. *errorp = -ENOMEM;
  298. goto out_release;
  299. }
  300. /* beyond sysctl_nr_open; nothing to do */
  301. if (unlikely(new_fdt->max_fds < open_files)) {
  302. free_fdarr(new_fdt);
  303. free_fdset(new_fdt);
  304. kfree(new_fdt);
  305. *errorp = -EMFILE;
  306. goto out_release;
  307. }
  308. /*
  309. * Reacquire the oldf lock and a pointer to its fd table
  310. * who knows it may have a new bigger fd table. We need
  311. * the latest pointer.
  312. */
  313. spin_lock(&oldf->file_lock);
  314. old_fdt = files_fdtable(oldf);
  315. open_files = count_open_files(old_fdt);
  316. }
  317. old_fds = old_fdt->fd;
  318. new_fds = new_fdt->fd;
  319. memcpy(new_fdt->open_fds->fds_bits,
  320. old_fdt->open_fds->fds_bits, open_files/8);
  321. memcpy(new_fdt->close_on_exec->fds_bits,
  322. old_fdt->close_on_exec->fds_bits, open_files/8);
  323. for (i = open_files; i != 0; i--) {
  324. struct file *f = *old_fds++;
  325. if (f) {
  326. get_file(f);
  327. } else {
  328. /*
  329. * The fd may be claimed in the fd bitmap but not yet
  330. * instantiated in the files array if a sibling thread
  331. * is partway through open(). So make sure that this
  332. * fd is available to the new process.
  333. */
  334. FD_CLR(open_files - i, new_fdt->open_fds);
  335. }
  336. rcu_assign_pointer(*new_fds++, f);
  337. }
  338. spin_unlock(&oldf->file_lock);
  339. /* compute the remainder to be cleared */
  340. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  341. /* This is long word aligned thus could use a optimized version */
  342. memset(new_fds, 0, size);
  343. if (new_fdt->max_fds > open_files) {
  344. int left = (new_fdt->max_fds-open_files)/8;
  345. int start = open_files / (8 * sizeof(unsigned long));
  346. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  347. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  348. }
  349. rcu_assign_pointer(newf->fdt, new_fdt);
  350. return newf;
  351. out_release:
  352. kmem_cache_free(files_cachep, newf);
  353. out:
  354. return NULL;
  355. }
  356. static void __devinit fdtable_defer_list_init(int cpu)
  357. {
  358. struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
  359. spin_lock_init(&fddef->lock);
  360. INIT_WORK(&fddef->wq, free_fdtable_work);
  361. fddef->next = NULL;
  362. }
  363. void __init files_defer_init(void)
  364. {
  365. int i;
  366. for_each_possible_cpu(i)
  367. fdtable_defer_list_init(i);
  368. sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
  369. -BITS_PER_LONG;
  370. }
  371. struct files_struct init_files = {
  372. .count = ATOMIC_INIT(1),
  373. .fdt = &init_files.fdtab,
  374. .fdtab = {
  375. .max_fds = NR_OPEN_DEFAULT,
  376. .fd = &init_files.fd_array[0],
  377. .close_on_exec = (fd_set *)&init_files.close_on_exec_init,
  378. .open_fds = (fd_set *)&init_files.open_fds_init,
  379. .rcu = RCU_HEAD_INIT,
  380. },
  381. .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock),
  382. };
  383. /*
  384. * allocate a file descriptor, mark it busy.
  385. */
  386. int alloc_fd(unsigned start, unsigned flags)
  387. {
  388. struct files_struct *files = current->files;
  389. unsigned int fd;
  390. int error;
  391. struct fdtable *fdt;
  392. spin_lock(&files->file_lock);
  393. repeat:
  394. fdt = files_fdtable(files);
  395. fd = start;
  396. if (fd < files->next_fd)
  397. fd = files->next_fd;
  398. if (fd < fdt->max_fds)
  399. fd = find_next_zero_bit(fdt->open_fds->fds_bits,
  400. fdt->max_fds, fd);
  401. error = expand_files(files, fd);
  402. if (error < 0)
  403. goto out;
  404. /*
  405. * If we needed to expand the fs array we
  406. * might have blocked - try again.
  407. */
  408. if (error)
  409. goto repeat;
  410. if (start <= files->next_fd)
  411. files->next_fd = fd + 1;
  412. FD_SET(fd, fdt->open_fds);
  413. if (flags & O_CLOEXEC)
  414. FD_SET(fd, fdt->close_on_exec);
  415. else
  416. FD_CLR(fd, fdt->close_on_exec);
  417. error = fd;
  418. #if 1
  419. /* Sanity check */
  420. if (rcu_dereference(fdt->fd[fd]) != NULL) {
  421. printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
  422. rcu_assign_pointer(fdt->fd[fd], NULL);
  423. }
  424. #endif
  425. out:
  426. spin_unlock(&files->file_lock);
  427. return error;
  428. }
  429. int get_unused_fd(void)
  430. {
  431. return alloc_fd(0, 0);
  432. }
  433. EXPORT_SYMBOL(get_unused_fd);