inode.c 168 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/jbd2.h>
  28. #include <linux/highuid.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/quotaops.h>
  31. #include <linux/string.h>
  32. #include <linux/buffer_head.h>
  33. #include <linux/writeback.h>
  34. #include <linux/pagevec.h>
  35. #include <linux/mpage.h>
  36. #include <linux/namei.h>
  37. #include <linux/uio.h>
  38. #include <linux/bio.h>
  39. #include <linux/workqueue.h>
  40. #include "ext4_jbd2.h"
  41. #include "xattr.h"
  42. #include "acl.h"
  43. #include "ext4_extents.h"
  44. #include <trace/events/ext4.h>
  45. #define MPAGE_DA_EXTENT_TAIL 0x01
  46. static inline int ext4_begin_ordered_truncate(struct inode *inode,
  47. loff_t new_size)
  48. {
  49. return jbd2_journal_begin_ordered_truncate(
  50. EXT4_SB(inode->i_sb)->s_journal,
  51. &EXT4_I(inode)->jinode,
  52. new_size);
  53. }
  54. static void ext4_invalidatepage(struct page *page, unsigned long offset);
  55. /*
  56. * Test whether an inode is a fast symlink.
  57. */
  58. static int ext4_inode_is_fast_symlink(struct inode *inode)
  59. {
  60. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  61. (inode->i_sb->s_blocksize >> 9) : 0;
  62. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  63. }
  64. /*
  65. * The ext4 forget function must perform a revoke if we are freeing data
  66. * which has been journaled. Metadata (eg. indirect blocks) must be
  67. * revoked in all cases.
  68. *
  69. * "bh" may be NULL: a metadata block may have been freed from memory
  70. * but there may still be a record of it in the journal, and that record
  71. * still needs to be revoked.
  72. *
  73. * If the handle isn't valid we're not journaling, but we still need to
  74. * call into ext4_journal_revoke() to put the buffer head.
  75. */
  76. int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  77. struct buffer_head *bh, ext4_fsblk_t blocknr)
  78. {
  79. int err;
  80. might_sleep();
  81. BUFFER_TRACE(bh, "enter");
  82. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  83. "data mode %x\n",
  84. bh, is_metadata, inode->i_mode,
  85. test_opt(inode->i_sb, DATA_FLAGS));
  86. /* Never use the revoke function if we are doing full data
  87. * journaling: there is no need to, and a V1 superblock won't
  88. * support it. Otherwise, only skip the revoke on un-journaled
  89. * data blocks. */
  90. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  91. (!is_metadata && !ext4_should_journal_data(inode))) {
  92. if (bh) {
  93. BUFFER_TRACE(bh, "call jbd2_journal_forget");
  94. return ext4_journal_forget(handle, bh);
  95. }
  96. return 0;
  97. }
  98. /*
  99. * data!=journal && (is_metadata || should_journal_data(inode))
  100. */
  101. BUFFER_TRACE(bh, "call ext4_journal_revoke");
  102. err = ext4_journal_revoke(handle, blocknr, bh);
  103. if (err)
  104. ext4_abort(inode->i_sb, __func__,
  105. "error %d when attempting revoke", err);
  106. BUFFER_TRACE(bh, "exit");
  107. return err;
  108. }
  109. /*
  110. * Work out how many blocks we need to proceed with the next chunk of a
  111. * truncate transaction.
  112. */
  113. static unsigned long blocks_for_truncate(struct inode *inode)
  114. {
  115. ext4_lblk_t needed;
  116. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  117. /* Give ourselves just enough room to cope with inodes in which
  118. * i_blocks is corrupt: we've seen disk corruptions in the past
  119. * which resulted in random data in an inode which looked enough
  120. * like a regular file for ext4 to try to delete it. Things
  121. * will go a bit crazy if that happens, but at least we should
  122. * try not to panic the whole kernel. */
  123. if (needed < 2)
  124. needed = 2;
  125. /* But we need to bound the transaction so we don't overflow the
  126. * journal. */
  127. if (needed > EXT4_MAX_TRANS_DATA)
  128. needed = EXT4_MAX_TRANS_DATA;
  129. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  130. }
  131. /*
  132. * Truncate transactions can be complex and absolutely huge. So we need to
  133. * be able to restart the transaction at a conventient checkpoint to make
  134. * sure we don't overflow the journal.
  135. *
  136. * start_transaction gets us a new handle for a truncate transaction,
  137. * and extend_transaction tries to extend the existing one a bit. If
  138. * extend fails, we need to propagate the failure up and restart the
  139. * transaction in the top-level truncate loop. --sct
  140. */
  141. static handle_t *start_transaction(struct inode *inode)
  142. {
  143. handle_t *result;
  144. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  145. if (!IS_ERR(result))
  146. return result;
  147. ext4_std_error(inode->i_sb, PTR_ERR(result));
  148. return result;
  149. }
  150. /*
  151. * Try to extend this transaction for the purposes of truncation.
  152. *
  153. * Returns 0 if we managed to create more room. If we can't create more
  154. * room, and the transaction must be restarted we return 1.
  155. */
  156. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  157. {
  158. if (!ext4_handle_valid(handle))
  159. return 0;
  160. if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
  161. return 0;
  162. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  163. return 0;
  164. return 1;
  165. }
  166. /*
  167. * Restart the transaction associated with *handle. This does a commit,
  168. * so before we call here everything must be consistently dirtied against
  169. * this transaction.
  170. */
  171. int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  172. int nblocks)
  173. {
  174. int ret;
  175. /*
  176. * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
  177. * moment, get_block can be called only for blocks inside i_size since
  178. * page cache has been already dropped and writes are blocked by
  179. * i_mutex. So we can safely drop the i_data_sem here.
  180. */
  181. BUG_ON(EXT4_JOURNAL(inode) == NULL);
  182. jbd_debug(2, "restarting handle %p\n", handle);
  183. up_write(&EXT4_I(inode)->i_data_sem);
  184. ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
  185. down_write(&EXT4_I(inode)->i_data_sem);
  186. ext4_discard_preallocations(inode);
  187. return ret;
  188. }
  189. /*
  190. * Called at the last iput() if i_nlink is zero.
  191. */
  192. void ext4_delete_inode(struct inode *inode)
  193. {
  194. handle_t *handle;
  195. int err;
  196. if (ext4_should_order_data(inode))
  197. ext4_begin_ordered_truncate(inode, 0);
  198. truncate_inode_pages(&inode->i_data, 0);
  199. if (is_bad_inode(inode))
  200. goto no_delete;
  201. handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
  202. if (IS_ERR(handle)) {
  203. ext4_std_error(inode->i_sb, PTR_ERR(handle));
  204. /*
  205. * If we're going to skip the normal cleanup, we still need to
  206. * make sure that the in-core orphan linked list is properly
  207. * cleaned up.
  208. */
  209. ext4_orphan_del(NULL, inode);
  210. goto no_delete;
  211. }
  212. if (IS_SYNC(inode))
  213. ext4_handle_sync(handle);
  214. inode->i_size = 0;
  215. err = ext4_mark_inode_dirty(handle, inode);
  216. if (err) {
  217. ext4_warning(inode->i_sb, __func__,
  218. "couldn't mark inode dirty (err %d)", err);
  219. goto stop_handle;
  220. }
  221. if (inode->i_blocks)
  222. ext4_truncate(inode);
  223. /*
  224. * ext4_ext_truncate() doesn't reserve any slop when it
  225. * restarts journal transactions; therefore there may not be
  226. * enough credits left in the handle to remove the inode from
  227. * the orphan list and set the dtime field.
  228. */
  229. if (!ext4_handle_has_enough_credits(handle, 3)) {
  230. err = ext4_journal_extend(handle, 3);
  231. if (err > 0)
  232. err = ext4_journal_restart(handle, 3);
  233. if (err != 0) {
  234. ext4_warning(inode->i_sb, __func__,
  235. "couldn't extend journal (err %d)", err);
  236. stop_handle:
  237. ext4_journal_stop(handle);
  238. goto no_delete;
  239. }
  240. }
  241. /*
  242. * Kill off the orphan record which ext4_truncate created.
  243. * AKPM: I think this can be inside the above `if'.
  244. * Note that ext4_orphan_del() has to be able to cope with the
  245. * deletion of a non-existent orphan - this is because we don't
  246. * know if ext4_truncate() actually created an orphan record.
  247. * (Well, we could do this if we need to, but heck - it works)
  248. */
  249. ext4_orphan_del(handle, inode);
  250. EXT4_I(inode)->i_dtime = get_seconds();
  251. /*
  252. * One subtle ordering requirement: if anything has gone wrong
  253. * (transaction abort, IO errors, whatever), then we can still
  254. * do these next steps (the fs will already have been marked as
  255. * having errors), but we can't free the inode if the mark_dirty
  256. * fails.
  257. */
  258. if (ext4_mark_inode_dirty(handle, inode))
  259. /* If that failed, just do the required in-core inode clear. */
  260. clear_inode(inode);
  261. else
  262. ext4_free_inode(handle, inode);
  263. ext4_journal_stop(handle);
  264. return;
  265. no_delete:
  266. clear_inode(inode); /* We must guarantee clearing of inode... */
  267. }
  268. typedef struct {
  269. __le32 *p;
  270. __le32 key;
  271. struct buffer_head *bh;
  272. } Indirect;
  273. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  274. {
  275. p->key = *(p->p = v);
  276. p->bh = bh;
  277. }
  278. /**
  279. * ext4_block_to_path - parse the block number into array of offsets
  280. * @inode: inode in question (we are only interested in its superblock)
  281. * @i_block: block number to be parsed
  282. * @offsets: array to store the offsets in
  283. * @boundary: set this non-zero if the referred-to block is likely to be
  284. * followed (on disk) by an indirect block.
  285. *
  286. * To store the locations of file's data ext4 uses a data structure common
  287. * for UNIX filesystems - tree of pointers anchored in the inode, with
  288. * data blocks at leaves and indirect blocks in intermediate nodes.
  289. * This function translates the block number into path in that tree -
  290. * return value is the path length and @offsets[n] is the offset of
  291. * pointer to (n+1)th node in the nth one. If @block is out of range
  292. * (negative or too large) warning is printed and zero returned.
  293. *
  294. * Note: function doesn't find node addresses, so no IO is needed. All
  295. * we need to know is the capacity of indirect blocks (taken from the
  296. * inode->i_sb).
  297. */
  298. /*
  299. * Portability note: the last comparison (check that we fit into triple
  300. * indirect block) is spelled differently, because otherwise on an
  301. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  302. * if our filesystem had 8Kb blocks. We might use long long, but that would
  303. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  304. * i_block would have to be negative in the very beginning, so we would not
  305. * get there at all.
  306. */
  307. static int ext4_block_to_path(struct inode *inode,
  308. ext4_lblk_t i_block,
  309. ext4_lblk_t offsets[4], int *boundary)
  310. {
  311. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  312. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  313. const long direct_blocks = EXT4_NDIR_BLOCKS,
  314. indirect_blocks = ptrs,
  315. double_blocks = (1 << (ptrs_bits * 2));
  316. int n = 0;
  317. int final = 0;
  318. if (i_block < direct_blocks) {
  319. offsets[n++] = i_block;
  320. final = direct_blocks;
  321. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  322. offsets[n++] = EXT4_IND_BLOCK;
  323. offsets[n++] = i_block;
  324. final = ptrs;
  325. } else if ((i_block -= indirect_blocks) < double_blocks) {
  326. offsets[n++] = EXT4_DIND_BLOCK;
  327. offsets[n++] = i_block >> ptrs_bits;
  328. offsets[n++] = i_block & (ptrs - 1);
  329. final = ptrs;
  330. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  331. offsets[n++] = EXT4_TIND_BLOCK;
  332. offsets[n++] = i_block >> (ptrs_bits * 2);
  333. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  334. offsets[n++] = i_block & (ptrs - 1);
  335. final = ptrs;
  336. } else {
  337. ext4_warning(inode->i_sb, "ext4_block_to_path",
  338. "block %lu > max in inode %lu",
  339. i_block + direct_blocks +
  340. indirect_blocks + double_blocks, inode->i_ino);
  341. }
  342. if (boundary)
  343. *boundary = final - 1 - (i_block & (ptrs - 1));
  344. return n;
  345. }
  346. static int __ext4_check_blockref(const char *function, struct inode *inode,
  347. __le32 *p, unsigned int max)
  348. {
  349. __le32 *bref = p;
  350. unsigned int blk;
  351. while (bref < p+max) {
  352. blk = le32_to_cpu(*bref++);
  353. if (blk &&
  354. unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
  355. blk, 1))) {
  356. ext4_error(inode->i_sb, function,
  357. "invalid block reference %u "
  358. "in inode #%lu", blk, inode->i_ino);
  359. return -EIO;
  360. }
  361. }
  362. return 0;
  363. }
  364. #define ext4_check_indirect_blockref(inode, bh) \
  365. __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
  366. EXT4_ADDR_PER_BLOCK((inode)->i_sb))
  367. #define ext4_check_inode_blockref(inode) \
  368. __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
  369. EXT4_NDIR_BLOCKS)
  370. /**
  371. * ext4_get_branch - read the chain of indirect blocks leading to data
  372. * @inode: inode in question
  373. * @depth: depth of the chain (1 - direct pointer, etc.)
  374. * @offsets: offsets of pointers in inode/indirect blocks
  375. * @chain: place to store the result
  376. * @err: here we store the error value
  377. *
  378. * Function fills the array of triples <key, p, bh> and returns %NULL
  379. * if everything went OK or the pointer to the last filled triple
  380. * (incomplete one) otherwise. Upon the return chain[i].key contains
  381. * the number of (i+1)-th block in the chain (as it is stored in memory,
  382. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  383. * number (it points into struct inode for i==0 and into the bh->b_data
  384. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  385. * block for i>0 and NULL for i==0. In other words, it holds the block
  386. * numbers of the chain, addresses they were taken from (and where we can
  387. * verify that chain did not change) and buffer_heads hosting these
  388. * numbers.
  389. *
  390. * Function stops when it stumbles upon zero pointer (absent block)
  391. * (pointer to last triple returned, *@err == 0)
  392. * or when it gets an IO error reading an indirect block
  393. * (ditto, *@err == -EIO)
  394. * or when it reads all @depth-1 indirect blocks successfully and finds
  395. * the whole chain, all way to the data (returns %NULL, *err == 0).
  396. *
  397. * Need to be called with
  398. * down_read(&EXT4_I(inode)->i_data_sem)
  399. */
  400. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  401. ext4_lblk_t *offsets,
  402. Indirect chain[4], int *err)
  403. {
  404. struct super_block *sb = inode->i_sb;
  405. Indirect *p = chain;
  406. struct buffer_head *bh;
  407. *err = 0;
  408. /* i_data is not going away, no lock needed */
  409. add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
  410. if (!p->key)
  411. goto no_block;
  412. while (--depth) {
  413. bh = sb_getblk(sb, le32_to_cpu(p->key));
  414. if (unlikely(!bh))
  415. goto failure;
  416. if (!bh_uptodate_or_lock(bh)) {
  417. if (bh_submit_read(bh) < 0) {
  418. put_bh(bh);
  419. goto failure;
  420. }
  421. /* validate block references */
  422. if (ext4_check_indirect_blockref(inode, bh)) {
  423. put_bh(bh);
  424. goto failure;
  425. }
  426. }
  427. add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
  428. /* Reader: end */
  429. if (!p->key)
  430. goto no_block;
  431. }
  432. return NULL;
  433. failure:
  434. *err = -EIO;
  435. no_block:
  436. return p;
  437. }
  438. /**
  439. * ext4_find_near - find a place for allocation with sufficient locality
  440. * @inode: owner
  441. * @ind: descriptor of indirect block.
  442. *
  443. * This function returns the preferred place for block allocation.
  444. * It is used when heuristic for sequential allocation fails.
  445. * Rules are:
  446. * + if there is a block to the left of our position - allocate near it.
  447. * + if pointer will live in indirect block - allocate near that block.
  448. * + if pointer will live in inode - allocate in the same
  449. * cylinder group.
  450. *
  451. * In the latter case we colour the starting block by the callers PID to
  452. * prevent it from clashing with concurrent allocations for a different inode
  453. * in the same block group. The PID is used here so that functionally related
  454. * files will be close-by on-disk.
  455. *
  456. * Caller must make sure that @ind is valid and will stay that way.
  457. */
  458. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  459. {
  460. struct ext4_inode_info *ei = EXT4_I(inode);
  461. __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
  462. __le32 *p;
  463. ext4_fsblk_t bg_start;
  464. ext4_fsblk_t last_block;
  465. ext4_grpblk_t colour;
  466. ext4_group_t block_group;
  467. int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
  468. /* Try to find previous block */
  469. for (p = ind->p - 1; p >= start; p--) {
  470. if (*p)
  471. return le32_to_cpu(*p);
  472. }
  473. /* No such thing, so let's try location of indirect block */
  474. if (ind->bh)
  475. return ind->bh->b_blocknr;
  476. /*
  477. * It is going to be referred to from the inode itself? OK, just put it
  478. * into the same cylinder group then.
  479. */
  480. block_group = ei->i_block_group;
  481. if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
  482. block_group &= ~(flex_size-1);
  483. if (S_ISREG(inode->i_mode))
  484. block_group++;
  485. }
  486. bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
  487. last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
  488. /*
  489. * If we are doing delayed allocation, we don't need take
  490. * colour into account.
  491. */
  492. if (test_opt(inode->i_sb, DELALLOC))
  493. return bg_start;
  494. if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
  495. colour = (current->pid % 16) *
  496. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  497. else
  498. colour = (current->pid % 16) * ((last_block - bg_start) / 16);
  499. return bg_start + colour;
  500. }
  501. /**
  502. * ext4_find_goal - find a preferred place for allocation.
  503. * @inode: owner
  504. * @block: block we want
  505. * @partial: pointer to the last triple within a chain
  506. *
  507. * Normally this function find the preferred place for block allocation,
  508. * returns it.
  509. * Because this is only used for non-extent files, we limit the block nr
  510. * to 32 bits.
  511. */
  512. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  513. Indirect *partial)
  514. {
  515. ext4_fsblk_t goal;
  516. /*
  517. * XXX need to get goal block from mballoc's data structures
  518. */
  519. goal = ext4_find_near(inode, partial);
  520. goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
  521. return goal;
  522. }
  523. /**
  524. * ext4_blks_to_allocate: Look up the block map and count the number
  525. * of direct blocks need to be allocated for the given branch.
  526. *
  527. * @branch: chain of indirect blocks
  528. * @k: number of blocks need for indirect blocks
  529. * @blks: number of data blocks to be mapped.
  530. * @blocks_to_boundary: the offset in the indirect block
  531. *
  532. * return the total number of blocks to be allocate, including the
  533. * direct and indirect blocks.
  534. */
  535. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
  536. int blocks_to_boundary)
  537. {
  538. unsigned int count = 0;
  539. /*
  540. * Simple case, [t,d]Indirect block(s) has not allocated yet
  541. * then it's clear blocks on that path have not allocated
  542. */
  543. if (k > 0) {
  544. /* right now we don't handle cross boundary allocation */
  545. if (blks < blocks_to_boundary + 1)
  546. count += blks;
  547. else
  548. count += blocks_to_boundary + 1;
  549. return count;
  550. }
  551. count++;
  552. while (count < blks && count <= blocks_to_boundary &&
  553. le32_to_cpu(*(branch[0].p + count)) == 0) {
  554. count++;
  555. }
  556. return count;
  557. }
  558. /**
  559. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  560. * @indirect_blks: the number of blocks need to allocate for indirect
  561. * blocks
  562. *
  563. * @new_blocks: on return it will store the new block numbers for
  564. * the indirect blocks(if needed) and the first direct block,
  565. * @blks: on return it will store the total number of allocated
  566. * direct blocks
  567. */
  568. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  569. ext4_lblk_t iblock, ext4_fsblk_t goal,
  570. int indirect_blks, int blks,
  571. ext4_fsblk_t new_blocks[4], int *err)
  572. {
  573. struct ext4_allocation_request ar;
  574. int target, i;
  575. unsigned long count = 0, blk_allocated = 0;
  576. int index = 0;
  577. ext4_fsblk_t current_block = 0;
  578. int ret = 0;
  579. /*
  580. * Here we try to allocate the requested multiple blocks at once,
  581. * on a best-effort basis.
  582. * To build a branch, we should allocate blocks for
  583. * the indirect blocks(if not allocated yet), and at least
  584. * the first direct block of this branch. That's the
  585. * minimum number of blocks need to allocate(required)
  586. */
  587. /* first we try to allocate the indirect blocks */
  588. target = indirect_blks;
  589. while (target > 0) {
  590. count = target;
  591. /* allocating blocks for indirect blocks and direct blocks */
  592. current_block = ext4_new_meta_blocks(handle, inode,
  593. goal, &count, err);
  594. if (*err)
  595. goto failed_out;
  596. BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
  597. target -= count;
  598. /* allocate blocks for indirect blocks */
  599. while (index < indirect_blks && count) {
  600. new_blocks[index++] = current_block++;
  601. count--;
  602. }
  603. if (count > 0) {
  604. /*
  605. * save the new block number
  606. * for the first direct block
  607. */
  608. new_blocks[index] = current_block;
  609. printk(KERN_INFO "%s returned more blocks than "
  610. "requested\n", __func__);
  611. WARN_ON(1);
  612. break;
  613. }
  614. }
  615. target = blks - count ;
  616. blk_allocated = count;
  617. if (!target)
  618. goto allocated;
  619. /* Now allocate data blocks */
  620. memset(&ar, 0, sizeof(ar));
  621. ar.inode = inode;
  622. ar.goal = goal;
  623. ar.len = target;
  624. ar.logical = iblock;
  625. if (S_ISREG(inode->i_mode))
  626. /* enable in-core preallocation only for regular files */
  627. ar.flags = EXT4_MB_HINT_DATA;
  628. current_block = ext4_mb_new_blocks(handle, &ar, err);
  629. BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
  630. if (*err && (target == blks)) {
  631. /*
  632. * if the allocation failed and we didn't allocate
  633. * any blocks before
  634. */
  635. goto failed_out;
  636. }
  637. if (!*err) {
  638. if (target == blks) {
  639. /*
  640. * save the new block number
  641. * for the first direct block
  642. */
  643. new_blocks[index] = current_block;
  644. }
  645. blk_allocated += ar.len;
  646. }
  647. allocated:
  648. /* total number of blocks allocated for direct blocks */
  649. ret = blk_allocated;
  650. *err = 0;
  651. return ret;
  652. failed_out:
  653. for (i = 0; i < index; i++)
  654. ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
  655. return ret;
  656. }
  657. /**
  658. * ext4_alloc_branch - allocate and set up a chain of blocks.
  659. * @inode: owner
  660. * @indirect_blks: number of allocated indirect blocks
  661. * @blks: number of allocated direct blocks
  662. * @offsets: offsets (in the blocks) to store the pointers to next.
  663. * @branch: place to store the chain in.
  664. *
  665. * This function allocates blocks, zeroes out all but the last one,
  666. * links them into chain and (if we are synchronous) writes them to disk.
  667. * In other words, it prepares a branch that can be spliced onto the
  668. * inode. It stores the information about that chain in the branch[], in
  669. * the same format as ext4_get_branch() would do. We are calling it after
  670. * we had read the existing part of chain and partial points to the last
  671. * triple of that (one with zero ->key). Upon the exit we have the same
  672. * picture as after the successful ext4_get_block(), except that in one
  673. * place chain is disconnected - *branch->p is still zero (we did not
  674. * set the last link), but branch->key contains the number that should
  675. * be placed into *branch->p to fill that gap.
  676. *
  677. * If allocation fails we free all blocks we've allocated (and forget
  678. * their buffer_heads) and return the error value the from failed
  679. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  680. * as described above and return 0.
  681. */
  682. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  683. ext4_lblk_t iblock, int indirect_blks,
  684. int *blks, ext4_fsblk_t goal,
  685. ext4_lblk_t *offsets, Indirect *branch)
  686. {
  687. int blocksize = inode->i_sb->s_blocksize;
  688. int i, n = 0;
  689. int err = 0;
  690. struct buffer_head *bh;
  691. int num;
  692. ext4_fsblk_t new_blocks[4];
  693. ext4_fsblk_t current_block;
  694. num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
  695. *blks, new_blocks, &err);
  696. if (err)
  697. return err;
  698. branch[0].key = cpu_to_le32(new_blocks[0]);
  699. /*
  700. * metadata blocks and data blocks are allocated.
  701. */
  702. for (n = 1; n <= indirect_blks; n++) {
  703. /*
  704. * Get buffer_head for parent block, zero it out
  705. * and set the pointer to new one, then send
  706. * parent to disk.
  707. */
  708. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  709. branch[n].bh = bh;
  710. lock_buffer(bh);
  711. BUFFER_TRACE(bh, "call get_create_access");
  712. err = ext4_journal_get_create_access(handle, bh);
  713. if (err) {
  714. /* Don't brelse(bh) here; it's done in
  715. * ext4_journal_forget() below */
  716. unlock_buffer(bh);
  717. goto failed;
  718. }
  719. memset(bh->b_data, 0, blocksize);
  720. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  721. branch[n].key = cpu_to_le32(new_blocks[n]);
  722. *branch[n].p = branch[n].key;
  723. if (n == indirect_blks) {
  724. current_block = new_blocks[n];
  725. /*
  726. * End of chain, update the last new metablock of
  727. * the chain to point to the new allocated
  728. * data blocks numbers
  729. */
  730. for (i = 1; i < num; i++)
  731. *(branch[n].p + i) = cpu_to_le32(++current_block);
  732. }
  733. BUFFER_TRACE(bh, "marking uptodate");
  734. set_buffer_uptodate(bh);
  735. unlock_buffer(bh);
  736. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  737. err = ext4_handle_dirty_metadata(handle, inode, bh);
  738. if (err)
  739. goto failed;
  740. }
  741. *blks = num;
  742. return err;
  743. failed:
  744. /* Allocation failed, free what we already allocated */
  745. for (i = 1; i <= n ; i++) {
  746. BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
  747. ext4_journal_forget(handle, branch[i].bh);
  748. }
  749. for (i = 0; i < indirect_blks; i++)
  750. ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
  751. ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
  752. return err;
  753. }
  754. /**
  755. * ext4_splice_branch - splice the allocated branch onto inode.
  756. * @inode: owner
  757. * @block: (logical) number of block we are adding
  758. * @chain: chain of indirect blocks (with a missing link - see
  759. * ext4_alloc_branch)
  760. * @where: location of missing link
  761. * @num: number of indirect blocks we are adding
  762. * @blks: number of direct blocks we are adding
  763. *
  764. * This function fills the missing link and does all housekeeping needed in
  765. * inode (->i_blocks, etc.). In case of success we end up with the full
  766. * chain to new block and return 0.
  767. */
  768. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  769. ext4_lblk_t block, Indirect *where, int num,
  770. int blks)
  771. {
  772. int i;
  773. int err = 0;
  774. ext4_fsblk_t current_block;
  775. /*
  776. * If we're splicing into a [td]indirect block (as opposed to the
  777. * inode) then we need to get write access to the [td]indirect block
  778. * before the splice.
  779. */
  780. if (where->bh) {
  781. BUFFER_TRACE(where->bh, "get_write_access");
  782. err = ext4_journal_get_write_access(handle, where->bh);
  783. if (err)
  784. goto err_out;
  785. }
  786. /* That's it */
  787. *where->p = where->key;
  788. /*
  789. * Update the host buffer_head or inode to point to more just allocated
  790. * direct blocks blocks
  791. */
  792. if (num == 0 && blks > 1) {
  793. current_block = le32_to_cpu(where->key) + 1;
  794. for (i = 1; i < blks; i++)
  795. *(where->p + i) = cpu_to_le32(current_block++);
  796. }
  797. /* We are done with atomic stuff, now do the rest of housekeeping */
  798. /* had we spliced it onto indirect block? */
  799. if (where->bh) {
  800. /*
  801. * If we spliced it onto an indirect block, we haven't
  802. * altered the inode. Note however that if it is being spliced
  803. * onto an indirect block at the very end of the file (the
  804. * file is growing) then we *will* alter the inode to reflect
  805. * the new i_size. But that is not done here - it is done in
  806. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  807. */
  808. jbd_debug(5, "splicing indirect only\n");
  809. BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
  810. err = ext4_handle_dirty_metadata(handle, inode, where->bh);
  811. if (err)
  812. goto err_out;
  813. } else {
  814. /*
  815. * OK, we spliced it into the inode itself on a direct block.
  816. */
  817. ext4_mark_inode_dirty(handle, inode);
  818. jbd_debug(5, "splicing direct\n");
  819. }
  820. return err;
  821. err_out:
  822. for (i = 1; i <= num; i++) {
  823. BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
  824. ext4_journal_forget(handle, where[i].bh);
  825. ext4_free_blocks(handle, inode,
  826. le32_to_cpu(where[i-1].key), 1, 0);
  827. }
  828. ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
  829. return err;
  830. }
  831. /*
  832. * The ext4_ind_get_blocks() function handles non-extents inodes
  833. * (i.e., using the traditional indirect/double-indirect i_blocks
  834. * scheme) for ext4_get_blocks().
  835. *
  836. * Allocation strategy is simple: if we have to allocate something, we will
  837. * have to go the whole way to leaf. So let's do it before attaching anything
  838. * to tree, set linkage between the newborn blocks, write them if sync is
  839. * required, recheck the path, free and repeat if check fails, otherwise
  840. * set the last missing link (that will protect us from any truncate-generated
  841. * removals - all blocks on the path are immune now) and possibly force the
  842. * write on the parent block.
  843. * That has a nice additional property: no special recovery from the failed
  844. * allocations is needed - we simply release blocks and do not touch anything
  845. * reachable from inode.
  846. *
  847. * `handle' can be NULL if create == 0.
  848. *
  849. * return > 0, # of blocks mapped or allocated.
  850. * return = 0, if plain lookup failed.
  851. * return < 0, error case.
  852. *
  853. * The ext4_ind_get_blocks() function should be called with
  854. * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
  855. * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
  856. * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
  857. * blocks.
  858. */
  859. static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
  860. ext4_lblk_t iblock, unsigned int maxblocks,
  861. struct buffer_head *bh_result,
  862. int flags)
  863. {
  864. int err = -EIO;
  865. ext4_lblk_t offsets[4];
  866. Indirect chain[4];
  867. Indirect *partial;
  868. ext4_fsblk_t goal;
  869. int indirect_blks;
  870. int blocks_to_boundary = 0;
  871. int depth;
  872. int count = 0;
  873. ext4_fsblk_t first_block = 0;
  874. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  875. J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
  876. depth = ext4_block_to_path(inode, iblock, offsets,
  877. &blocks_to_boundary);
  878. if (depth == 0)
  879. goto out;
  880. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  881. /* Simplest case - block found, no allocation needed */
  882. if (!partial) {
  883. first_block = le32_to_cpu(chain[depth - 1].key);
  884. clear_buffer_new(bh_result);
  885. count++;
  886. /*map more blocks*/
  887. while (count < maxblocks && count <= blocks_to_boundary) {
  888. ext4_fsblk_t blk;
  889. blk = le32_to_cpu(*(chain[depth-1].p + count));
  890. if (blk == first_block + count)
  891. count++;
  892. else
  893. break;
  894. }
  895. goto got_it;
  896. }
  897. /* Next simple case - plain lookup or failed read of indirect block */
  898. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
  899. goto cleanup;
  900. /*
  901. * Okay, we need to do block allocation.
  902. */
  903. goal = ext4_find_goal(inode, iblock, partial);
  904. /* the number of blocks need to allocate for [d,t]indirect blocks */
  905. indirect_blks = (chain + depth) - partial - 1;
  906. /*
  907. * Next look up the indirect map to count the totoal number of
  908. * direct blocks to allocate for this branch.
  909. */
  910. count = ext4_blks_to_allocate(partial, indirect_blks,
  911. maxblocks, blocks_to_boundary);
  912. /*
  913. * Block out ext4_truncate while we alter the tree
  914. */
  915. err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
  916. &count, goal,
  917. offsets + (partial - chain), partial);
  918. /*
  919. * The ext4_splice_branch call will free and forget any buffers
  920. * on the new chain if there is a failure, but that risks using
  921. * up transaction credits, especially for bitmaps where the
  922. * credits cannot be returned. Can we handle this somehow? We
  923. * may need to return -EAGAIN upwards in the worst case. --sct
  924. */
  925. if (!err)
  926. err = ext4_splice_branch(handle, inode, iblock,
  927. partial, indirect_blks, count);
  928. else
  929. goto cleanup;
  930. set_buffer_new(bh_result);
  931. got_it:
  932. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  933. if (count > blocks_to_boundary)
  934. set_buffer_boundary(bh_result);
  935. err = count;
  936. /* Clean up and exit */
  937. partial = chain + depth - 1; /* the whole chain */
  938. cleanup:
  939. while (partial > chain) {
  940. BUFFER_TRACE(partial->bh, "call brelse");
  941. brelse(partial->bh);
  942. partial--;
  943. }
  944. BUFFER_TRACE(bh_result, "returned");
  945. out:
  946. return err;
  947. }
  948. qsize_t ext4_get_reserved_space(struct inode *inode)
  949. {
  950. unsigned long long total;
  951. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  952. total = EXT4_I(inode)->i_reserved_data_blocks +
  953. EXT4_I(inode)->i_reserved_meta_blocks;
  954. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  955. return total;
  956. }
  957. /*
  958. * Calculate the number of metadata blocks need to reserve
  959. * to allocate @blocks for non extent file based file
  960. */
  961. static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
  962. {
  963. int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  964. int ind_blks, dind_blks, tind_blks;
  965. /* number of new indirect blocks needed */
  966. ind_blks = (blocks + icap - 1) / icap;
  967. dind_blks = (ind_blks + icap - 1) / icap;
  968. tind_blks = 1;
  969. return ind_blks + dind_blks + tind_blks;
  970. }
  971. /*
  972. * Calculate the number of metadata blocks need to reserve
  973. * to allocate given number of blocks
  974. */
  975. static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
  976. {
  977. if (!blocks)
  978. return 0;
  979. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  980. return ext4_ext_calc_metadata_amount(inode, blocks);
  981. return ext4_indirect_calc_metadata_amount(inode, blocks);
  982. }
  983. static void ext4_da_update_reserve_space(struct inode *inode, int used)
  984. {
  985. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  986. int total, mdb, mdb_free;
  987. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  988. /* recalculate the number of metablocks still need to be reserved */
  989. total = EXT4_I(inode)->i_reserved_data_blocks - used;
  990. mdb = ext4_calc_metadata_amount(inode, total);
  991. /* figure out how many metablocks to release */
  992. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  993. mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
  994. if (mdb_free) {
  995. /* Account for allocated meta_blocks */
  996. mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
  997. /* update fs dirty blocks counter */
  998. percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
  999. EXT4_I(inode)->i_allocated_meta_blocks = 0;
  1000. EXT4_I(inode)->i_reserved_meta_blocks = mdb;
  1001. }
  1002. /* update per-inode reservations */
  1003. BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
  1004. EXT4_I(inode)->i_reserved_data_blocks -= used;
  1005. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1006. /*
  1007. * free those over-booking quota for metadata blocks
  1008. */
  1009. if (mdb_free)
  1010. vfs_dq_release_reservation_block(inode, mdb_free);
  1011. /*
  1012. * If we have done all the pending block allocations and if
  1013. * there aren't any writers on the inode, we can discard the
  1014. * inode's preallocations.
  1015. */
  1016. if (!total && (atomic_read(&inode->i_writecount) == 0))
  1017. ext4_discard_preallocations(inode);
  1018. }
  1019. static int check_block_validity(struct inode *inode, const char *msg,
  1020. sector_t logical, sector_t phys, int len)
  1021. {
  1022. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
  1023. ext4_error(inode->i_sb, msg,
  1024. "inode #%lu logical block %llu mapped to %llu "
  1025. "(size %d)", inode->i_ino,
  1026. (unsigned long long) logical,
  1027. (unsigned long long) phys, len);
  1028. return -EIO;
  1029. }
  1030. return 0;
  1031. }
  1032. /*
  1033. * Return the number of contiguous dirty pages in a given inode
  1034. * starting at page frame idx.
  1035. */
  1036. static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
  1037. unsigned int max_pages)
  1038. {
  1039. struct address_space *mapping = inode->i_mapping;
  1040. pgoff_t index;
  1041. struct pagevec pvec;
  1042. pgoff_t num = 0;
  1043. int i, nr_pages, done = 0;
  1044. if (max_pages == 0)
  1045. return 0;
  1046. pagevec_init(&pvec, 0);
  1047. while (!done) {
  1048. index = idx;
  1049. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  1050. PAGECACHE_TAG_DIRTY,
  1051. (pgoff_t)PAGEVEC_SIZE);
  1052. if (nr_pages == 0)
  1053. break;
  1054. for (i = 0; i < nr_pages; i++) {
  1055. struct page *page = pvec.pages[i];
  1056. struct buffer_head *bh, *head;
  1057. lock_page(page);
  1058. if (unlikely(page->mapping != mapping) ||
  1059. !PageDirty(page) ||
  1060. PageWriteback(page) ||
  1061. page->index != idx) {
  1062. done = 1;
  1063. unlock_page(page);
  1064. break;
  1065. }
  1066. if (page_has_buffers(page)) {
  1067. bh = head = page_buffers(page);
  1068. do {
  1069. if (!buffer_delay(bh) &&
  1070. !buffer_unwritten(bh))
  1071. done = 1;
  1072. bh = bh->b_this_page;
  1073. } while (!done && (bh != head));
  1074. }
  1075. unlock_page(page);
  1076. if (done)
  1077. break;
  1078. idx++;
  1079. num++;
  1080. if (num >= max_pages)
  1081. break;
  1082. }
  1083. pagevec_release(&pvec);
  1084. }
  1085. return num;
  1086. }
  1087. /*
  1088. * The ext4_get_blocks() function tries to look up the requested blocks,
  1089. * and returns if the blocks are already mapped.
  1090. *
  1091. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  1092. * and store the allocated blocks in the result buffer head and mark it
  1093. * mapped.
  1094. *
  1095. * If file type is extents based, it will call ext4_ext_get_blocks(),
  1096. * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
  1097. * based files
  1098. *
  1099. * On success, it returns the number of blocks being mapped or allocate.
  1100. * if create==0 and the blocks are pre-allocated and uninitialized block,
  1101. * the result buffer head is unmapped. If the create ==1, it will make sure
  1102. * the buffer head is mapped.
  1103. *
  1104. * It returns 0 if plain look up failed (blocks have not been allocated), in
  1105. * that casem, buffer head is unmapped
  1106. *
  1107. * It returns the error in case of allocation failure.
  1108. */
  1109. int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
  1110. unsigned int max_blocks, struct buffer_head *bh,
  1111. int flags)
  1112. {
  1113. int retval;
  1114. clear_buffer_mapped(bh);
  1115. clear_buffer_unwritten(bh);
  1116. ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
  1117. "logical block %lu\n", inode->i_ino, flags, max_blocks,
  1118. (unsigned long)block);
  1119. /*
  1120. * Try to see if we can get the block without requesting a new
  1121. * file system block.
  1122. */
  1123. down_read((&EXT4_I(inode)->i_data_sem));
  1124. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  1125. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  1126. bh, 0);
  1127. } else {
  1128. retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
  1129. bh, 0);
  1130. }
  1131. up_read((&EXT4_I(inode)->i_data_sem));
  1132. if (retval > 0 && buffer_mapped(bh)) {
  1133. int ret = check_block_validity(inode, "file system corruption",
  1134. block, bh->b_blocknr, retval);
  1135. if (ret != 0)
  1136. return ret;
  1137. }
  1138. /* If it is only a block(s) look up */
  1139. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
  1140. return retval;
  1141. /*
  1142. * Returns if the blocks have already allocated
  1143. *
  1144. * Note that if blocks have been preallocated
  1145. * ext4_ext_get_block() returns th create = 0
  1146. * with buffer head unmapped.
  1147. */
  1148. if (retval > 0 && buffer_mapped(bh))
  1149. return retval;
  1150. /*
  1151. * When we call get_blocks without the create flag, the
  1152. * BH_Unwritten flag could have gotten set if the blocks
  1153. * requested were part of a uninitialized extent. We need to
  1154. * clear this flag now that we are committed to convert all or
  1155. * part of the uninitialized extent to be an initialized
  1156. * extent. This is because we need to avoid the combination
  1157. * of BH_Unwritten and BH_Mapped flags being simultaneously
  1158. * set on the buffer_head.
  1159. */
  1160. clear_buffer_unwritten(bh);
  1161. /*
  1162. * New blocks allocate and/or writing to uninitialized extent
  1163. * will possibly result in updating i_data, so we take
  1164. * the write lock of i_data_sem, and call get_blocks()
  1165. * with create == 1 flag.
  1166. */
  1167. down_write((&EXT4_I(inode)->i_data_sem));
  1168. /*
  1169. * if the caller is from delayed allocation writeout path
  1170. * we have already reserved fs blocks for allocation
  1171. * let the underlying get_block() function know to
  1172. * avoid double accounting
  1173. */
  1174. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  1175. EXT4_I(inode)->i_delalloc_reserved_flag = 1;
  1176. /*
  1177. * We need to check for EXT4 here because migrate
  1178. * could have changed the inode type in between
  1179. */
  1180. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  1181. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  1182. bh, flags);
  1183. } else {
  1184. retval = ext4_ind_get_blocks(handle, inode, block,
  1185. max_blocks, bh, flags);
  1186. if (retval > 0 && buffer_new(bh)) {
  1187. /*
  1188. * We allocated new blocks which will result in
  1189. * i_data's format changing. Force the migrate
  1190. * to fail by clearing migrate flags
  1191. */
  1192. EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
  1193. }
  1194. }
  1195. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  1196. EXT4_I(inode)->i_delalloc_reserved_flag = 0;
  1197. /*
  1198. * Update reserved blocks/metadata blocks after successful
  1199. * block allocation which had been deferred till now.
  1200. */
  1201. if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
  1202. ext4_da_update_reserve_space(inode, retval);
  1203. up_write((&EXT4_I(inode)->i_data_sem));
  1204. if (retval > 0 && buffer_mapped(bh)) {
  1205. int ret = check_block_validity(inode, "file system "
  1206. "corruption after allocation",
  1207. block, bh->b_blocknr, retval);
  1208. if (ret != 0)
  1209. return ret;
  1210. }
  1211. return retval;
  1212. }
  1213. /* Maximum number of blocks we map for direct IO at once. */
  1214. #define DIO_MAX_BLOCKS 4096
  1215. int ext4_get_block(struct inode *inode, sector_t iblock,
  1216. struct buffer_head *bh_result, int create)
  1217. {
  1218. handle_t *handle = ext4_journal_current_handle();
  1219. int ret = 0, started = 0;
  1220. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  1221. int dio_credits;
  1222. if (create && !handle) {
  1223. /* Direct IO write... */
  1224. if (max_blocks > DIO_MAX_BLOCKS)
  1225. max_blocks = DIO_MAX_BLOCKS;
  1226. dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
  1227. handle = ext4_journal_start(inode, dio_credits);
  1228. if (IS_ERR(handle)) {
  1229. ret = PTR_ERR(handle);
  1230. goto out;
  1231. }
  1232. started = 1;
  1233. }
  1234. ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
  1235. create ? EXT4_GET_BLOCKS_CREATE : 0);
  1236. if (ret > 0) {
  1237. bh_result->b_size = (ret << inode->i_blkbits);
  1238. ret = 0;
  1239. }
  1240. if (started)
  1241. ext4_journal_stop(handle);
  1242. out:
  1243. return ret;
  1244. }
  1245. /*
  1246. * `handle' can be NULL if create is zero
  1247. */
  1248. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  1249. ext4_lblk_t block, int create, int *errp)
  1250. {
  1251. struct buffer_head dummy;
  1252. int fatal = 0, err;
  1253. int flags = 0;
  1254. J_ASSERT(handle != NULL || create == 0);
  1255. dummy.b_state = 0;
  1256. dummy.b_blocknr = -1000;
  1257. buffer_trace_init(&dummy.b_history);
  1258. if (create)
  1259. flags |= EXT4_GET_BLOCKS_CREATE;
  1260. err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
  1261. /*
  1262. * ext4_get_blocks() returns number of blocks mapped. 0 in
  1263. * case of a HOLE.
  1264. */
  1265. if (err > 0) {
  1266. if (err > 1)
  1267. WARN_ON(1);
  1268. err = 0;
  1269. }
  1270. *errp = err;
  1271. if (!err && buffer_mapped(&dummy)) {
  1272. struct buffer_head *bh;
  1273. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  1274. if (!bh) {
  1275. *errp = -EIO;
  1276. goto err;
  1277. }
  1278. if (buffer_new(&dummy)) {
  1279. J_ASSERT(create != 0);
  1280. J_ASSERT(handle != NULL);
  1281. /*
  1282. * Now that we do not always journal data, we should
  1283. * keep in mind whether this should always journal the
  1284. * new buffer as metadata. For now, regular file
  1285. * writes use ext4_get_block instead, so it's not a
  1286. * problem.
  1287. */
  1288. lock_buffer(bh);
  1289. BUFFER_TRACE(bh, "call get_create_access");
  1290. fatal = ext4_journal_get_create_access(handle, bh);
  1291. if (!fatal && !buffer_uptodate(bh)) {
  1292. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  1293. set_buffer_uptodate(bh);
  1294. }
  1295. unlock_buffer(bh);
  1296. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  1297. err = ext4_handle_dirty_metadata(handle, inode, bh);
  1298. if (!fatal)
  1299. fatal = err;
  1300. } else {
  1301. BUFFER_TRACE(bh, "not a new buffer");
  1302. }
  1303. if (fatal) {
  1304. *errp = fatal;
  1305. brelse(bh);
  1306. bh = NULL;
  1307. }
  1308. return bh;
  1309. }
  1310. err:
  1311. return NULL;
  1312. }
  1313. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  1314. ext4_lblk_t block, int create, int *err)
  1315. {
  1316. struct buffer_head *bh;
  1317. bh = ext4_getblk(handle, inode, block, create, err);
  1318. if (!bh)
  1319. return bh;
  1320. if (buffer_uptodate(bh))
  1321. return bh;
  1322. ll_rw_block(READ_META, 1, &bh);
  1323. wait_on_buffer(bh);
  1324. if (buffer_uptodate(bh))
  1325. return bh;
  1326. put_bh(bh);
  1327. *err = -EIO;
  1328. return NULL;
  1329. }
  1330. static int walk_page_buffers(handle_t *handle,
  1331. struct buffer_head *head,
  1332. unsigned from,
  1333. unsigned to,
  1334. int *partial,
  1335. int (*fn)(handle_t *handle,
  1336. struct buffer_head *bh))
  1337. {
  1338. struct buffer_head *bh;
  1339. unsigned block_start, block_end;
  1340. unsigned blocksize = head->b_size;
  1341. int err, ret = 0;
  1342. struct buffer_head *next;
  1343. for (bh = head, block_start = 0;
  1344. ret == 0 && (bh != head || !block_start);
  1345. block_start = block_end, bh = next) {
  1346. next = bh->b_this_page;
  1347. block_end = block_start + blocksize;
  1348. if (block_end <= from || block_start >= to) {
  1349. if (partial && !buffer_uptodate(bh))
  1350. *partial = 1;
  1351. continue;
  1352. }
  1353. err = (*fn)(handle, bh);
  1354. if (!ret)
  1355. ret = err;
  1356. }
  1357. return ret;
  1358. }
  1359. /*
  1360. * To preserve ordering, it is essential that the hole instantiation and
  1361. * the data write be encapsulated in a single transaction. We cannot
  1362. * close off a transaction and start a new one between the ext4_get_block()
  1363. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1364. * prepare_write() is the right place.
  1365. *
  1366. * Also, this function can nest inside ext4_writepage() ->
  1367. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1368. * has generated enough buffer credits to do the whole page. So we won't
  1369. * block on the journal in that case, which is good, because the caller may
  1370. * be PF_MEMALLOC.
  1371. *
  1372. * By accident, ext4 can be reentered when a transaction is open via
  1373. * quota file writes. If we were to commit the transaction while thus
  1374. * reentered, there can be a deadlock - we would be holding a quota
  1375. * lock, and the commit would never complete if another thread had a
  1376. * transaction open and was blocking on the quota lock - a ranking
  1377. * violation.
  1378. *
  1379. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1380. * will _not_ run commit under these circumstances because handle->h_ref
  1381. * is elevated. We'll still have enough credits for the tiny quotafile
  1382. * write.
  1383. */
  1384. static int do_journal_get_write_access(handle_t *handle,
  1385. struct buffer_head *bh)
  1386. {
  1387. if (!buffer_mapped(bh) || buffer_freed(bh))
  1388. return 0;
  1389. return ext4_journal_get_write_access(handle, bh);
  1390. }
  1391. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  1392. loff_t pos, unsigned len, unsigned flags,
  1393. struct page **pagep, void **fsdata)
  1394. {
  1395. struct inode *inode = mapping->host;
  1396. int ret, needed_blocks;
  1397. handle_t *handle;
  1398. int retries = 0;
  1399. struct page *page;
  1400. pgoff_t index;
  1401. unsigned from, to;
  1402. trace_ext4_write_begin(inode, pos, len, flags);
  1403. /*
  1404. * Reserve one block more for addition to orphan list in case
  1405. * we allocate blocks but write fails for some reason
  1406. */
  1407. needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
  1408. index = pos >> PAGE_CACHE_SHIFT;
  1409. from = pos & (PAGE_CACHE_SIZE - 1);
  1410. to = from + len;
  1411. retry:
  1412. handle = ext4_journal_start(inode, needed_blocks);
  1413. if (IS_ERR(handle)) {
  1414. ret = PTR_ERR(handle);
  1415. goto out;
  1416. }
  1417. /* We cannot recurse into the filesystem as the transaction is already
  1418. * started */
  1419. flags |= AOP_FLAG_NOFS;
  1420. page = grab_cache_page_write_begin(mapping, index, flags);
  1421. if (!page) {
  1422. ext4_journal_stop(handle);
  1423. ret = -ENOMEM;
  1424. goto out;
  1425. }
  1426. *pagep = page;
  1427. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1428. ext4_get_block);
  1429. if (!ret && ext4_should_journal_data(inode)) {
  1430. ret = walk_page_buffers(handle, page_buffers(page),
  1431. from, to, NULL, do_journal_get_write_access);
  1432. }
  1433. if (ret) {
  1434. unlock_page(page);
  1435. page_cache_release(page);
  1436. /*
  1437. * block_write_begin may have instantiated a few blocks
  1438. * outside i_size. Trim these off again. Don't need
  1439. * i_size_read because we hold i_mutex.
  1440. *
  1441. * Add inode to orphan list in case we crash before
  1442. * truncate finishes
  1443. */
  1444. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1445. ext4_orphan_add(handle, inode);
  1446. ext4_journal_stop(handle);
  1447. if (pos + len > inode->i_size) {
  1448. ext4_truncate(inode);
  1449. /*
  1450. * If truncate failed early the inode might
  1451. * still be on the orphan list; we need to
  1452. * make sure the inode is removed from the
  1453. * orphan list in that case.
  1454. */
  1455. if (inode->i_nlink)
  1456. ext4_orphan_del(NULL, inode);
  1457. }
  1458. }
  1459. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1460. goto retry;
  1461. out:
  1462. return ret;
  1463. }
  1464. /* For write_end() in data=journal mode */
  1465. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1466. {
  1467. if (!buffer_mapped(bh) || buffer_freed(bh))
  1468. return 0;
  1469. set_buffer_uptodate(bh);
  1470. return ext4_handle_dirty_metadata(handle, NULL, bh);
  1471. }
  1472. static int ext4_generic_write_end(struct file *file,
  1473. struct address_space *mapping,
  1474. loff_t pos, unsigned len, unsigned copied,
  1475. struct page *page, void *fsdata)
  1476. {
  1477. int i_size_changed = 0;
  1478. struct inode *inode = mapping->host;
  1479. handle_t *handle = ext4_journal_current_handle();
  1480. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1481. /*
  1482. * No need to use i_size_read() here, the i_size
  1483. * cannot change under us because we hold i_mutex.
  1484. *
  1485. * But it's important to update i_size while still holding page lock:
  1486. * page writeout could otherwise come in and zero beyond i_size.
  1487. */
  1488. if (pos + copied > inode->i_size) {
  1489. i_size_write(inode, pos + copied);
  1490. i_size_changed = 1;
  1491. }
  1492. if (pos + copied > EXT4_I(inode)->i_disksize) {
  1493. /* We need to mark inode dirty even if
  1494. * new_i_size is less that inode->i_size
  1495. * bu greater than i_disksize.(hint delalloc)
  1496. */
  1497. ext4_update_i_disksize(inode, (pos + copied));
  1498. i_size_changed = 1;
  1499. }
  1500. unlock_page(page);
  1501. page_cache_release(page);
  1502. /*
  1503. * Don't mark the inode dirty under page lock. First, it unnecessarily
  1504. * makes the holding time of page lock longer. Second, it forces lock
  1505. * ordering of page lock and transaction start for journaling
  1506. * filesystems.
  1507. */
  1508. if (i_size_changed)
  1509. ext4_mark_inode_dirty(handle, inode);
  1510. return copied;
  1511. }
  1512. /*
  1513. * We need to pick up the new inode size which generic_commit_write gave us
  1514. * `file' can be NULL - eg, when called from page_symlink().
  1515. *
  1516. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1517. * buffers are managed internally.
  1518. */
  1519. static int ext4_ordered_write_end(struct file *file,
  1520. struct address_space *mapping,
  1521. loff_t pos, unsigned len, unsigned copied,
  1522. struct page *page, void *fsdata)
  1523. {
  1524. handle_t *handle = ext4_journal_current_handle();
  1525. struct inode *inode = mapping->host;
  1526. int ret = 0, ret2;
  1527. trace_ext4_ordered_write_end(inode, pos, len, copied);
  1528. ret = ext4_jbd2_file_inode(handle, inode);
  1529. if (ret == 0) {
  1530. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1531. page, fsdata);
  1532. copied = ret2;
  1533. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1534. /* if we have allocated more blocks and copied
  1535. * less. We will have blocks allocated outside
  1536. * inode->i_size. So truncate them
  1537. */
  1538. ext4_orphan_add(handle, inode);
  1539. if (ret2 < 0)
  1540. ret = ret2;
  1541. }
  1542. ret2 = ext4_journal_stop(handle);
  1543. if (!ret)
  1544. ret = ret2;
  1545. if (pos + len > inode->i_size) {
  1546. ext4_truncate(inode);
  1547. /*
  1548. * If truncate failed early the inode might still be
  1549. * on the orphan list; we need to make sure the inode
  1550. * is removed from the orphan list in that case.
  1551. */
  1552. if (inode->i_nlink)
  1553. ext4_orphan_del(NULL, inode);
  1554. }
  1555. return ret ? ret : copied;
  1556. }
  1557. static int ext4_writeback_write_end(struct file *file,
  1558. struct address_space *mapping,
  1559. loff_t pos, unsigned len, unsigned copied,
  1560. struct page *page, void *fsdata)
  1561. {
  1562. handle_t *handle = ext4_journal_current_handle();
  1563. struct inode *inode = mapping->host;
  1564. int ret = 0, ret2;
  1565. trace_ext4_writeback_write_end(inode, pos, len, copied);
  1566. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1567. page, fsdata);
  1568. copied = ret2;
  1569. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1570. /* if we have allocated more blocks and copied
  1571. * less. We will have blocks allocated outside
  1572. * inode->i_size. So truncate them
  1573. */
  1574. ext4_orphan_add(handle, inode);
  1575. if (ret2 < 0)
  1576. ret = ret2;
  1577. ret2 = ext4_journal_stop(handle);
  1578. if (!ret)
  1579. ret = ret2;
  1580. if (pos + len > inode->i_size) {
  1581. ext4_truncate(inode);
  1582. /*
  1583. * If truncate failed early the inode might still be
  1584. * on the orphan list; we need to make sure the inode
  1585. * is removed from the orphan list in that case.
  1586. */
  1587. if (inode->i_nlink)
  1588. ext4_orphan_del(NULL, inode);
  1589. }
  1590. return ret ? ret : copied;
  1591. }
  1592. static int ext4_journalled_write_end(struct file *file,
  1593. struct address_space *mapping,
  1594. loff_t pos, unsigned len, unsigned copied,
  1595. struct page *page, void *fsdata)
  1596. {
  1597. handle_t *handle = ext4_journal_current_handle();
  1598. struct inode *inode = mapping->host;
  1599. int ret = 0, ret2;
  1600. int partial = 0;
  1601. unsigned from, to;
  1602. loff_t new_i_size;
  1603. trace_ext4_journalled_write_end(inode, pos, len, copied);
  1604. from = pos & (PAGE_CACHE_SIZE - 1);
  1605. to = from + len;
  1606. if (copied < len) {
  1607. if (!PageUptodate(page))
  1608. copied = 0;
  1609. page_zero_new_buffers(page, from+copied, to);
  1610. }
  1611. ret = walk_page_buffers(handle, page_buffers(page), from,
  1612. to, &partial, write_end_fn);
  1613. if (!partial)
  1614. SetPageUptodate(page);
  1615. new_i_size = pos + copied;
  1616. if (new_i_size > inode->i_size)
  1617. i_size_write(inode, pos+copied);
  1618. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1619. if (new_i_size > EXT4_I(inode)->i_disksize) {
  1620. ext4_update_i_disksize(inode, new_i_size);
  1621. ret2 = ext4_mark_inode_dirty(handle, inode);
  1622. if (!ret)
  1623. ret = ret2;
  1624. }
  1625. unlock_page(page);
  1626. page_cache_release(page);
  1627. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  1628. /* if we have allocated more blocks and copied
  1629. * less. We will have blocks allocated outside
  1630. * inode->i_size. So truncate them
  1631. */
  1632. ext4_orphan_add(handle, inode);
  1633. ret2 = ext4_journal_stop(handle);
  1634. if (!ret)
  1635. ret = ret2;
  1636. if (pos + len > inode->i_size) {
  1637. ext4_truncate(inode);
  1638. /*
  1639. * If truncate failed early the inode might still be
  1640. * on the orphan list; we need to make sure the inode
  1641. * is removed from the orphan list in that case.
  1642. */
  1643. if (inode->i_nlink)
  1644. ext4_orphan_del(NULL, inode);
  1645. }
  1646. return ret ? ret : copied;
  1647. }
  1648. static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
  1649. {
  1650. int retries = 0;
  1651. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1652. unsigned long md_needed, mdblocks, total = 0;
  1653. /*
  1654. * recalculate the amount of metadata blocks to reserve
  1655. * in order to allocate nrblocks
  1656. * worse case is one extent per block
  1657. */
  1658. repeat:
  1659. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1660. total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
  1661. mdblocks = ext4_calc_metadata_amount(inode, total);
  1662. BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
  1663. md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
  1664. total = md_needed + nrblocks;
  1665. /*
  1666. * Make quota reservation here to prevent quota overflow
  1667. * later. Real quota accounting is done at pages writeout
  1668. * time.
  1669. */
  1670. if (vfs_dq_reserve_block(inode, total)) {
  1671. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1672. return -EDQUOT;
  1673. }
  1674. if (ext4_claim_free_blocks(sbi, total)) {
  1675. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1676. vfs_dq_release_reservation_block(inode, total);
  1677. if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
  1678. yield();
  1679. goto repeat;
  1680. }
  1681. return -ENOSPC;
  1682. }
  1683. EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
  1684. EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
  1685. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1686. return 0; /* success */
  1687. }
  1688. static void ext4_da_release_space(struct inode *inode, int to_free)
  1689. {
  1690. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1691. int total, mdb, mdb_free, release;
  1692. if (!to_free)
  1693. return; /* Nothing to release, exit */
  1694. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  1695. if (!EXT4_I(inode)->i_reserved_data_blocks) {
  1696. /*
  1697. * if there is no reserved blocks, but we try to free some
  1698. * then the counter is messed up somewhere.
  1699. * but since this function is called from invalidate
  1700. * page, it's harmless to return without any action
  1701. */
  1702. printk(KERN_INFO "ext4 delalloc try to release %d reserved "
  1703. "blocks for inode %lu, but there is no reserved "
  1704. "data blocks\n", to_free, inode->i_ino);
  1705. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1706. return;
  1707. }
  1708. /* recalculate the number of metablocks still need to be reserved */
  1709. total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
  1710. mdb = ext4_calc_metadata_amount(inode, total);
  1711. /* figure out how many metablocks to release */
  1712. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  1713. mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
  1714. release = to_free + mdb_free;
  1715. /* update fs dirty blocks counter for truncate case */
  1716. percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
  1717. /* update per-inode reservations */
  1718. BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
  1719. EXT4_I(inode)->i_reserved_data_blocks -= to_free;
  1720. BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
  1721. EXT4_I(inode)->i_reserved_meta_blocks = mdb;
  1722. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1723. vfs_dq_release_reservation_block(inode, release);
  1724. }
  1725. static void ext4_da_page_release_reservation(struct page *page,
  1726. unsigned long offset)
  1727. {
  1728. int to_release = 0;
  1729. struct buffer_head *head, *bh;
  1730. unsigned int curr_off = 0;
  1731. head = page_buffers(page);
  1732. bh = head;
  1733. do {
  1734. unsigned int next_off = curr_off + bh->b_size;
  1735. if ((offset <= curr_off) && (buffer_delay(bh))) {
  1736. to_release++;
  1737. clear_buffer_delay(bh);
  1738. }
  1739. curr_off = next_off;
  1740. } while ((bh = bh->b_this_page) != head);
  1741. ext4_da_release_space(page->mapping->host, to_release);
  1742. }
  1743. /*
  1744. * Delayed allocation stuff
  1745. */
  1746. /*
  1747. * mpage_da_submit_io - walks through extent of pages and try to write
  1748. * them with writepage() call back
  1749. *
  1750. * @mpd->inode: inode
  1751. * @mpd->first_page: first page of the extent
  1752. * @mpd->next_page: page after the last page of the extent
  1753. *
  1754. * By the time mpage_da_submit_io() is called we expect all blocks
  1755. * to be allocated. this may be wrong if allocation failed.
  1756. *
  1757. * As pages are already locked by write_cache_pages(), we can't use it
  1758. */
  1759. static int mpage_da_submit_io(struct mpage_da_data *mpd)
  1760. {
  1761. long pages_skipped;
  1762. struct pagevec pvec;
  1763. unsigned long index, end;
  1764. int ret = 0, err, nr_pages, i;
  1765. struct inode *inode = mpd->inode;
  1766. struct address_space *mapping = inode->i_mapping;
  1767. BUG_ON(mpd->next_page <= mpd->first_page);
  1768. /*
  1769. * We need to start from the first_page to the next_page - 1
  1770. * to make sure we also write the mapped dirty buffer_heads.
  1771. * If we look at mpd->b_blocknr we would only be looking
  1772. * at the currently mapped buffer_heads.
  1773. */
  1774. index = mpd->first_page;
  1775. end = mpd->next_page - 1;
  1776. pagevec_init(&pvec, 0);
  1777. while (index <= end) {
  1778. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1779. if (nr_pages == 0)
  1780. break;
  1781. for (i = 0; i < nr_pages; i++) {
  1782. struct page *page = pvec.pages[i];
  1783. index = page->index;
  1784. if (index > end)
  1785. break;
  1786. index++;
  1787. BUG_ON(!PageLocked(page));
  1788. BUG_ON(PageWriteback(page));
  1789. pages_skipped = mpd->wbc->pages_skipped;
  1790. err = mapping->a_ops->writepage(page, mpd->wbc);
  1791. if (!err && (pages_skipped == mpd->wbc->pages_skipped))
  1792. /*
  1793. * have successfully written the page
  1794. * without skipping the same
  1795. */
  1796. mpd->pages_written++;
  1797. /*
  1798. * In error case, we have to continue because
  1799. * remaining pages are still locked
  1800. * XXX: unlock and re-dirty them?
  1801. */
  1802. if (ret == 0)
  1803. ret = err;
  1804. }
  1805. pagevec_release(&pvec);
  1806. }
  1807. return ret;
  1808. }
  1809. /*
  1810. * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
  1811. *
  1812. * @mpd->inode - inode to walk through
  1813. * @exbh->b_blocknr - first block on a disk
  1814. * @exbh->b_size - amount of space in bytes
  1815. * @logical - first logical block to start assignment with
  1816. *
  1817. * the function goes through all passed space and put actual disk
  1818. * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
  1819. */
  1820. static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
  1821. struct buffer_head *exbh)
  1822. {
  1823. struct inode *inode = mpd->inode;
  1824. struct address_space *mapping = inode->i_mapping;
  1825. int blocks = exbh->b_size >> inode->i_blkbits;
  1826. sector_t pblock = exbh->b_blocknr, cur_logical;
  1827. struct buffer_head *head, *bh;
  1828. pgoff_t index, end;
  1829. struct pagevec pvec;
  1830. int nr_pages, i;
  1831. index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1832. end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1833. cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1834. pagevec_init(&pvec, 0);
  1835. while (index <= end) {
  1836. /* XXX: optimize tail */
  1837. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1838. if (nr_pages == 0)
  1839. break;
  1840. for (i = 0; i < nr_pages; i++) {
  1841. struct page *page = pvec.pages[i];
  1842. index = page->index;
  1843. if (index > end)
  1844. break;
  1845. index++;
  1846. BUG_ON(!PageLocked(page));
  1847. BUG_ON(PageWriteback(page));
  1848. BUG_ON(!page_has_buffers(page));
  1849. bh = page_buffers(page);
  1850. head = bh;
  1851. /* skip blocks out of the range */
  1852. do {
  1853. if (cur_logical >= logical)
  1854. break;
  1855. cur_logical++;
  1856. } while ((bh = bh->b_this_page) != head);
  1857. do {
  1858. if (cur_logical >= logical + blocks)
  1859. break;
  1860. if (buffer_delay(bh) ||
  1861. buffer_unwritten(bh)) {
  1862. BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
  1863. if (buffer_delay(bh)) {
  1864. clear_buffer_delay(bh);
  1865. bh->b_blocknr = pblock;
  1866. } else {
  1867. /*
  1868. * unwritten already should have
  1869. * blocknr assigned. Verify that
  1870. */
  1871. clear_buffer_unwritten(bh);
  1872. BUG_ON(bh->b_blocknr != pblock);
  1873. }
  1874. } else if (buffer_mapped(bh))
  1875. BUG_ON(bh->b_blocknr != pblock);
  1876. cur_logical++;
  1877. pblock++;
  1878. } while ((bh = bh->b_this_page) != head);
  1879. }
  1880. pagevec_release(&pvec);
  1881. }
  1882. }
  1883. /*
  1884. * __unmap_underlying_blocks - just a helper function to unmap
  1885. * set of blocks described by @bh
  1886. */
  1887. static inline void __unmap_underlying_blocks(struct inode *inode,
  1888. struct buffer_head *bh)
  1889. {
  1890. struct block_device *bdev = inode->i_sb->s_bdev;
  1891. int blocks, i;
  1892. blocks = bh->b_size >> inode->i_blkbits;
  1893. for (i = 0; i < blocks; i++)
  1894. unmap_underlying_metadata(bdev, bh->b_blocknr + i);
  1895. }
  1896. static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
  1897. sector_t logical, long blk_cnt)
  1898. {
  1899. int nr_pages, i;
  1900. pgoff_t index, end;
  1901. struct pagevec pvec;
  1902. struct inode *inode = mpd->inode;
  1903. struct address_space *mapping = inode->i_mapping;
  1904. index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1905. end = (logical + blk_cnt - 1) >>
  1906. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1907. while (index <= end) {
  1908. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1909. if (nr_pages == 0)
  1910. break;
  1911. for (i = 0; i < nr_pages; i++) {
  1912. struct page *page = pvec.pages[i];
  1913. index = page->index;
  1914. if (index > end)
  1915. break;
  1916. index++;
  1917. BUG_ON(!PageLocked(page));
  1918. BUG_ON(PageWriteback(page));
  1919. block_invalidatepage(page, 0);
  1920. ClearPageUptodate(page);
  1921. unlock_page(page);
  1922. }
  1923. }
  1924. return;
  1925. }
  1926. static void ext4_print_free_blocks(struct inode *inode)
  1927. {
  1928. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1929. printk(KERN_CRIT "Total free blocks count %lld\n",
  1930. ext4_count_free_blocks(inode->i_sb));
  1931. printk(KERN_CRIT "Free/Dirty block details\n");
  1932. printk(KERN_CRIT "free_blocks=%lld\n",
  1933. (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
  1934. printk(KERN_CRIT "dirty_blocks=%lld\n",
  1935. (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
  1936. printk(KERN_CRIT "Block reservation details\n");
  1937. printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
  1938. EXT4_I(inode)->i_reserved_data_blocks);
  1939. printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
  1940. EXT4_I(inode)->i_reserved_meta_blocks);
  1941. return;
  1942. }
  1943. /*
  1944. * mpage_da_map_blocks - go through given space
  1945. *
  1946. * @mpd - bh describing space
  1947. *
  1948. * The function skips space we know is already mapped to disk blocks.
  1949. *
  1950. */
  1951. static int mpage_da_map_blocks(struct mpage_da_data *mpd)
  1952. {
  1953. int err, blks, get_blocks_flags;
  1954. struct buffer_head new;
  1955. sector_t next = mpd->b_blocknr;
  1956. unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
  1957. loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
  1958. handle_t *handle = NULL;
  1959. /*
  1960. * We consider only non-mapped and non-allocated blocks
  1961. */
  1962. if ((mpd->b_state & (1 << BH_Mapped)) &&
  1963. !(mpd->b_state & (1 << BH_Delay)) &&
  1964. !(mpd->b_state & (1 << BH_Unwritten)))
  1965. return 0;
  1966. /*
  1967. * If we didn't accumulate anything to write simply return
  1968. */
  1969. if (!mpd->b_size)
  1970. return 0;
  1971. handle = ext4_journal_current_handle();
  1972. BUG_ON(!handle);
  1973. /*
  1974. * Call ext4_get_blocks() to allocate any delayed allocation
  1975. * blocks, or to convert an uninitialized extent to be
  1976. * initialized (in the case where we have written into
  1977. * one or more preallocated blocks).
  1978. *
  1979. * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
  1980. * indicate that we are on the delayed allocation path. This
  1981. * affects functions in many different parts of the allocation
  1982. * call path. This flag exists primarily because we don't
  1983. * want to change *many* call functions, so ext4_get_blocks()
  1984. * will set the magic i_delalloc_reserved_flag once the
  1985. * inode's allocation semaphore is taken.
  1986. *
  1987. * If the blocks in questions were delalloc blocks, set
  1988. * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
  1989. * variables are updated after the blocks have been allocated.
  1990. */
  1991. new.b_state = 0;
  1992. get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
  1993. EXT4_GET_BLOCKS_DELALLOC_RESERVE);
  1994. if (mpd->b_state & (1 << BH_Delay))
  1995. get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
  1996. blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
  1997. &new, get_blocks_flags);
  1998. if (blks < 0) {
  1999. err = blks;
  2000. /*
  2001. * If get block returns with error we simply
  2002. * return. Later writepage will redirty the page and
  2003. * writepages will find the dirty page again
  2004. */
  2005. if (err == -EAGAIN)
  2006. return 0;
  2007. if (err == -ENOSPC &&
  2008. ext4_count_free_blocks(mpd->inode->i_sb)) {
  2009. mpd->retval = err;
  2010. return 0;
  2011. }
  2012. /*
  2013. * get block failure will cause us to loop in
  2014. * writepages, because a_ops->writepage won't be able
  2015. * to make progress. The page will be redirtied by
  2016. * writepage and writepages will again try to write
  2017. * the same.
  2018. */
  2019. ext4_msg(mpd->inode->i_sb, KERN_CRIT,
  2020. "delayed block allocation failed for inode %lu at "
  2021. "logical offset %llu with max blocks %zd with "
  2022. "error %d\n", mpd->inode->i_ino,
  2023. (unsigned long long) next,
  2024. mpd->b_size >> mpd->inode->i_blkbits, err);
  2025. printk(KERN_CRIT "This should not happen!! "
  2026. "Data will be lost\n");
  2027. if (err == -ENOSPC) {
  2028. ext4_print_free_blocks(mpd->inode);
  2029. }
  2030. /* invalidate all the pages */
  2031. ext4_da_block_invalidatepages(mpd, next,
  2032. mpd->b_size >> mpd->inode->i_blkbits);
  2033. return err;
  2034. }
  2035. BUG_ON(blks == 0);
  2036. new.b_size = (blks << mpd->inode->i_blkbits);
  2037. if (buffer_new(&new))
  2038. __unmap_underlying_blocks(mpd->inode, &new);
  2039. /*
  2040. * If blocks are delayed marked, we need to
  2041. * put actual blocknr and drop delayed bit
  2042. */
  2043. if ((mpd->b_state & (1 << BH_Delay)) ||
  2044. (mpd->b_state & (1 << BH_Unwritten)))
  2045. mpage_put_bnr_to_bhs(mpd, next, &new);
  2046. if (ext4_should_order_data(mpd->inode)) {
  2047. err = ext4_jbd2_file_inode(handle, mpd->inode);
  2048. if (err)
  2049. return err;
  2050. }
  2051. /*
  2052. * Update on-disk size along with block allocation.
  2053. */
  2054. disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
  2055. if (disksize > i_size_read(mpd->inode))
  2056. disksize = i_size_read(mpd->inode);
  2057. if (disksize > EXT4_I(mpd->inode)->i_disksize) {
  2058. ext4_update_i_disksize(mpd->inode, disksize);
  2059. return ext4_mark_inode_dirty(handle, mpd->inode);
  2060. }
  2061. return 0;
  2062. }
  2063. #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
  2064. (1 << BH_Delay) | (1 << BH_Unwritten))
  2065. /*
  2066. * mpage_add_bh_to_extent - try to add one more block to extent of blocks
  2067. *
  2068. * @mpd->lbh - extent of blocks
  2069. * @logical - logical number of the block in the file
  2070. * @bh - bh of the block (used to access block's state)
  2071. *
  2072. * the function is used to collect contig. blocks in same state
  2073. */
  2074. static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
  2075. sector_t logical, size_t b_size,
  2076. unsigned long b_state)
  2077. {
  2078. sector_t next;
  2079. int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
  2080. /* check if thereserved journal credits might overflow */
  2081. if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
  2082. if (nrblocks >= EXT4_MAX_TRANS_DATA) {
  2083. /*
  2084. * With non-extent format we are limited by the journal
  2085. * credit available. Total credit needed to insert
  2086. * nrblocks contiguous blocks is dependent on the
  2087. * nrblocks. So limit nrblocks.
  2088. */
  2089. goto flush_it;
  2090. } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
  2091. EXT4_MAX_TRANS_DATA) {
  2092. /*
  2093. * Adding the new buffer_head would make it cross the
  2094. * allowed limit for which we have journal credit
  2095. * reserved. So limit the new bh->b_size
  2096. */
  2097. b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
  2098. mpd->inode->i_blkbits;
  2099. /* we will do mpage_da_submit_io in the next loop */
  2100. }
  2101. }
  2102. /*
  2103. * First block in the extent
  2104. */
  2105. if (mpd->b_size == 0) {
  2106. mpd->b_blocknr = logical;
  2107. mpd->b_size = b_size;
  2108. mpd->b_state = b_state & BH_FLAGS;
  2109. return;
  2110. }
  2111. next = mpd->b_blocknr + nrblocks;
  2112. /*
  2113. * Can we merge the block to our big extent?
  2114. */
  2115. if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
  2116. mpd->b_size += b_size;
  2117. return;
  2118. }
  2119. flush_it:
  2120. /*
  2121. * We couldn't merge the block to our extent, so we
  2122. * need to flush current extent and start new one
  2123. */
  2124. if (mpage_da_map_blocks(mpd) == 0)
  2125. mpage_da_submit_io(mpd);
  2126. mpd->io_done = 1;
  2127. return;
  2128. }
  2129. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
  2130. {
  2131. return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
  2132. }
  2133. /*
  2134. * __mpage_da_writepage - finds extent of pages and blocks
  2135. *
  2136. * @page: page to consider
  2137. * @wbc: not used, we just follow rules
  2138. * @data: context
  2139. *
  2140. * The function finds extents of pages and scan them for all blocks.
  2141. */
  2142. static int __mpage_da_writepage(struct page *page,
  2143. struct writeback_control *wbc, void *data)
  2144. {
  2145. struct mpage_da_data *mpd = data;
  2146. struct inode *inode = mpd->inode;
  2147. struct buffer_head *bh, *head;
  2148. sector_t logical;
  2149. if (mpd->io_done) {
  2150. /*
  2151. * Rest of the page in the page_vec
  2152. * redirty then and skip then. We will
  2153. * try to write them again after
  2154. * starting a new transaction
  2155. */
  2156. redirty_page_for_writepage(wbc, page);
  2157. unlock_page(page);
  2158. return MPAGE_DA_EXTENT_TAIL;
  2159. }
  2160. /*
  2161. * Can we merge this page to current extent?
  2162. */
  2163. if (mpd->next_page != page->index) {
  2164. /*
  2165. * Nope, we can't. So, we map non-allocated blocks
  2166. * and start IO on them using writepage()
  2167. */
  2168. if (mpd->next_page != mpd->first_page) {
  2169. if (mpage_da_map_blocks(mpd) == 0)
  2170. mpage_da_submit_io(mpd);
  2171. /*
  2172. * skip rest of the page in the page_vec
  2173. */
  2174. mpd->io_done = 1;
  2175. redirty_page_for_writepage(wbc, page);
  2176. unlock_page(page);
  2177. return MPAGE_DA_EXTENT_TAIL;
  2178. }
  2179. /*
  2180. * Start next extent of pages ...
  2181. */
  2182. mpd->first_page = page->index;
  2183. /*
  2184. * ... and blocks
  2185. */
  2186. mpd->b_size = 0;
  2187. mpd->b_state = 0;
  2188. mpd->b_blocknr = 0;
  2189. }
  2190. mpd->next_page = page->index + 1;
  2191. logical = (sector_t) page->index <<
  2192. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  2193. if (!page_has_buffers(page)) {
  2194. mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
  2195. (1 << BH_Dirty) | (1 << BH_Uptodate));
  2196. if (mpd->io_done)
  2197. return MPAGE_DA_EXTENT_TAIL;
  2198. } else {
  2199. /*
  2200. * Page with regular buffer heads, just add all dirty ones
  2201. */
  2202. head = page_buffers(page);
  2203. bh = head;
  2204. do {
  2205. BUG_ON(buffer_locked(bh));
  2206. /*
  2207. * We need to try to allocate
  2208. * unmapped blocks in the same page.
  2209. * Otherwise we won't make progress
  2210. * with the page in ext4_writepage
  2211. */
  2212. if (ext4_bh_delay_or_unwritten(NULL, bh)) {
  2213. mpage_add_bh_to_extent(mpd, logical,
  2214. bh->b_size,
  2215. bh->b_state);
  2216. if (mpd->io_done)
  2217. return MPAGE_DA_EXTENT_TAIL;
  2218. } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
  2219. /*
  2220. * mapped dirty buffer. We need to update
  2221. * the b_state because we look at
  2222. * b_state in mpage_da_map_blocks. We don't
  2223. * update b_size because if we find an
  2224. * unmapped buffer_head later we need to
  2225. * use the b_state flag of that buffer_head.
  2226. */
  2227. if (mpd->b_size == 0)
  2228. mpd->b_state = bh->b_state & BH_FLAGS;
  2229. }
  2230. logical++;
  2231. } while ((bh = bh->b_this_page) != head);
  2232. }
  2233. return 0;
  2234. }
  2235. /*
  2236. * This is a special get_blocks_t callback which is used by
  2237. * ext4_da_write_begin(). It will either return mapped block or
  2238. * reserve space for a single block.
  2239. *
  2240. * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
  2241. * We also have b_blocknr = -1 and b_bdev initialized properly
  2242. *
  2243. * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
  2244. * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
  2245. * initialized properly.
  2246. */
  2247. static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
  2248. struct buffer_head *bh_result, int create)
  2249. {
  2250. int ret = 0;
  2251. sector_t invalid_block = ~((sector_t) 0xffff);
  2252. if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
  2253. invalid_block = ~0;
  2254. BUG_ON(create == 0);
  2255. BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
  2256. /*
  2257. * first, we need to know whether the block is allocated already
  2258. * preallocated blocks are unmapped but should treated
  2259. * the same as allocated blocks.
  2260. */
  2261. ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
  2262. if ((ret == 0) && !buffer_delay(bh_result)) {
  2263. /* the block isn't (pre)allocated yet, let's reserve space */
  2264. /*
  2265. * XXX: __block_prepare_write() unmaps passed block,
  2266. * is it OK?
  2267. */
  2268. ret = ext4_da_reserve_space(inode, 1);
  2269. if (ret)
  2270. /* not enough space to reserve */
  2271. return ret;
  2272. map_bh(bh_result, inode->i_sb, invalid_block);
  2273. set_buffer_new(bh_result);
  2274. set_buffer_delay(bh_result);
  2275. } else if (ret > 0) {
  2276. bh_result->b_size = (ret << inode->i_blkbits);
  2277. if (buffer_unwritten(bh_result)) {
  2278. /* A delayed write to unwritten bh should
  2279. * be marked new and mapped. Mapped ensures
  2280. * that we don't do get_block multiple times
  2281. * when we write to the same offset and new
  2282. * ensures that we do proper zero out for
  2283. * partial write.
  2284. */
  2285. set_buffer_new(bh_result);
  2286. set_buffer_mapped(bh_result);
  2287. }
  2288. ret = 0;
  2289. }
  2290. return ret;
  2291. }
  2292. /*
  2293. * This function is used as a standard get_block_t calback function
  2294. * when there is no desire to allocate any blocks. It is used as a
  2295. * callback function for block_prepare_write(), nobh_writepage(), and
  2296. * block_write_full_page(). These functions should only try to map a
  2297. * single block at a time.
  2298. *
  2299. * Since this function doesn't do block allocations even if the caller
  2300. * requests it by passing in create=1, it is critically important that
  2301. * any caller checks to make sure that any buffer heads are returned
  2302. * by this function are either all already mapped or marked for
  2303. * delayed allocation before calling nobh_writepage() or
  2304. * block_write_full_page(). Otherwise, b_blocknr could be left
  2305. * unitialized, and the page write functions will be taken by
  2306. * surprise.
  2307. */
  2308. static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  2309. struct buffer_head *bh_result, int create)
  2310. {
  2311. int ret = 0;
  2312. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  2313. BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
  2314. /*
  2315. * we don't want to do block allocation in writepage
  2316. * so call get_block_wrap with create = 0
  2317. */
  2318. ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
  2319. if (ret > 0) {
  2320. bh_result->b_size = (ret << inode->i_blkbits);
  2321. ret = 0;
  2322. }
  2323. return ret;
  2324. }
  2325. static int bget_one(handle_t *handle, struct buffer_head *bh)
  2326. {
  2327. get_bh(bh);
  2328. return 0;
  2329. }
  2330. static int bput_one(handle_t *handle, struct buffer_head *bh)
  2331. {
  2332. put_bh(bh);
  2333. return 0;
  2334. }
  2335. static int __ext4_journalled_writepage(struct page *page,
  2336. struct writeback_control *wbc,
  2337. unsigned int len)
  2338. {
  2339. struct address_space *mapping = page->mapping;
  2340. struct inode *inode = mapping->host;
  2341. struct buffer_head *page_bufs;
  2342. handle_t *handle = NULL;
  2343. int ret = 0;
  2344. int err;
  2345. page_bufs = page_buffers(page);
  2346. BUG_ON(!page_bufs);
  2347. walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
  2348. /* As soon as we unlock the page, it can go away, but we have
  2349. * references to buffers so we are safe */
  2350. unlock_page(page);
  2351. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  2352. if (IS_ERR(handle)) {
  2353. ret = PTR_ERR(handle);
  2354. goto out;
  2355. }
  2356. ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
  2357. do_journal_get_write_access);
  2358. err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
  2359. write_end_fn);
  2360. if (ret == 0)
  2361. ret = err;
  2362. err = ext4_journal_stop(handle);
  2363. if (!ret)
  2364. ret = err;
  2365. walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
  2366. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  2367. out:
  2368. return ret;
  2369. }
  2370. /*
  2371. * Note that we don't need to start a transaction unless we're journaling data
  2372. * because we should have holes filled from ext4_page_mkwrite(). We even don't
  2373. * need to file the inode to the transaction's list in ordered mode because if
  2374. * we are writing back data added by write(), the inode is already there and if
  2375. * we are writing back data modified via mmap(), noone guarantees in which
  2376. * transaction the data will hit the disk. In case we are journaling data, we
  2377. * cannot start transaction directly because transaction start ranks above page
  2378. * lock so we have to do some magic.
  2379. *
  2380. * This function can get called via...
  2381. * - ext4_da_writepages after taking page lock (have journal handle)
  2382. * - journal_submit_inode_data_buffers (no journal handle)
  2383. * - shrink_page_list via pdflush (no journal handle)
  2384. * - grab_page_cache when doing write_begin (have journal handle)
  2385. *
  2386. * We don't do any block allocation in this function. If we have page with
  2387. * multiple blocks we need to write those buffer_heads that are mapped. This
  2388. * is important for mmaped based write. So if we do with blocksize 1K
  2389. * truncate(f, 1024);
  2390. * a = mmap(f, 0, 4096);
  2391. * a[0] = 'a';
  2392. * truncate(f, 4096);
  2393. * we have in the page first buffer_head mapped via page_mkwrite call back
  2394. * but other bufer_heads would be unmapped but dirty(dirty done via the
  2395. * do_wp_page). So writepage should write the first block. If we modify
  2396. * the mmap area beyond 1024 we will again get a page_fault and the
  2397. * page_mkwrite callback will do the block allocation and mark the
  2398. * buffer_heads mapped.
  2399. *
  2400. * We redirty the page if we have any buffer_heads that is either delay or
  2401. * unwritten in the page.
  2402. *
  2403. * We can get recursively called as show below.
  2404. *
  2405. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  2406. * ext4_writepage()
  2407. *
  2408. * But since we don't do any block allocation we should not deadlock.
  2409. * Page also have the dirty flag cleared so we don't get recurive page_lock.
  2410. */
  2411. static int ext4_writepage(struct page *page,
  2412. struct writeback_control *wbc)
  2413. {
  2414. int ret = 0;
  2415. loff_t size;
  2416. unsigned int len;
  2417. struct buffer_head *page_bufs;
  2418. struct inode *inode = page->mapping->host;
  2419. trace_ext4_writepage(inode, page);
  2420. size = i_size_read(inode);
  2421. if (page->index == size >> PAGE_CACHE_SHIFT)
  2422. len = size & ~PAGE_CACHE_MASK;
  2423. else
  2424. len = PAGE_CACHE_SIZE;
  2425. if (page_has_buffers(page)) {
  2426. page_bufs = page_buffers(page);
  2427. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2428. ext4_bh_delay_or_unwritten)) {
  2429. /*
  2430. * We don't want to do block allocation
  2431. * So redirty the page and return
  2432. * We may reach here when we do a journal commit
  2433. * via journal_submit_inode_data_buffers.
  2434. * If we don't have mapping block we just ignore
  2435. * them. We can also reach here via shrink_page_list
  2436. */
  2437. redirty_page_for_writepage(wbc, page);
  2438. unlock_page(page);
  2439. return 0;
  2440. }
  2441. } else {
  2442. /*
  2443. * The test for page_has_buffers() is subtle:
  2444. * We know the page is dirty but it lost buffers. That means
  2445. * that at some moment in time after write_begin()/write_end()
  2446. * has been called all buffers have been clean and thus they
  2447. * must have been written at least once. So they are all
  2448. * mapped and we can happily proceed with mapping them
  2449. * and writing the page.
  2450. *
  2451. * Try to initialize the buffer_heads and check whether
  2452. * all are mapped and non delay. We don't want to
  2453. * do block allocation here.
  2454. */
  2455. ret = block_prepare_write(page, 0, len,
  2456. noalloc_get_block_write);
  2457. if (!ret) {
  2458. page_bufs = page_buffers(page);
  2459. /* check whether all are mapped and non delay */
  2460. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  2461. ext4_bh_delay_or_unwritten)) {
  2462. redirty_page_for_writepage(wbc, page);
  2463. unlock_page(page);
  2464. return 0;
  2465. }
  2466. } else {
  2467. /*
  2468. * We can't do block allocation here
  2469. * so just redity the page and unlock
  2470. * and return
  2471. */
  2472. redirty_page_for_writepage(wbc, page);
  2473. unlock_page(page);
  2474. return 0;
  2475. }
  2476. /* now mark the buffer_heads as dirty and uptodate */
  2477. block_commit_write(page, 0, len);
  2478. }
  2479. if (PageChecked(page) && ext4_should_journal_data(inode)) {
  2480. /*
  2481. * It's mmapped pagecache. Add buffers and journal it. There
  2482. * doesn't seem much point in redirtying the page here.
  2483. */
  2484. ClearPageChecked(page);
  2485. return __ext4_journalled_writepage(page, wbc, len);
  2486. }
  2487. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  2488. ret = nobh_writepage(page, noalloc_get_block_write, wbc);
  2489. else
  2490. ret = block_write_full_page(page, noalloc_get_block_write,
  2491. wbc);
  2492. return ret;
  2493. }
  2494. /*
  2495. * This is called via ext4_da_writepages() to
  2496. * calulate the total number of credits to reserve to fit
  2497. * a single extent allocation into a single transaction,
  2498. * ext4_da_writpeages() will loop calling this before
  2499. * the block allocation.
  2500. */
  2501. static int ext4_da_writepages_trans_blocks(struct inode *inode)
  2502. {
  2503. int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  2504. /*
  2505. * With non-extent format the journal credit needed to
  2506. * insert nrblocks contiguous block is dependent on
  2507. * number of contiguous block. So we will limit
  2508. * number of contiguous block to a sane value
  2509. */
  2510. if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
  2511. (max_blocks > EXT4_MAX_TRANS_DATA))
  2512. max_blocks = EXT4_MAX_TRANS_DATA;
  2513. return ext4_chunk_trans_blocks(inode, max_blocks);
  2514. }
  2515. static int ext4_da_writepages(struct address_space *mapping,
  2516. struct writeback_control *wbc)
  2517. {
  2518. pgoff_t index;
  2519. int range_whole = 0;
  2520. handle_t *handle = NULL;
  2521. struct mpage_da_data mpd;
  2522. struct inode *inode = mapping->host;
  2523. int no_nrwrite_index_update;
  2524. int pages_written = 0;
  2525. long pages_skipped;
  2526. unsigned int max_pages;
  2527. int range_cyclic, cycled = 1, io_done = 0;
  2528. int needed_blocks, ret = 0;
  2529. long desired_nr_to_write, nr_to_writebump = 0;
  2530. loff_t range_start = wbc->range_start;
  2531. struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
  2532. trace_ext4_da_writepages(inode, wbc);
  2533. /*
  2534. * No pages to write? This is mainly a kludge to avoid starting
  2535. * a transaction for special inodes like journal inode on last iput()
  2536. * because that could violate lock ordering on umount
  2537. */
  2538. if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2539. return 0;
  2540. /*
  2541. * If the filesystem has aborted, it is read-only, so return
  2542. * right away instead of dumping stack traces later on that
  2543. * will obscure the real source of the problem. We test
  2544. * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
  2545. * the latter could be true if the filesystem is mounted
  2546. * read-only, and in that case, ext4_da_writepages should
  2547. * *never* be called, so if that ever happens, we would want
  2548. * the stack trace.
  2549. */
  2550. if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
  2551. return -EROFS;
  2552. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  2553. range_whole = 1;
  2554. range_cyclic = wbc->range_cyclic;
  2555. if (wbc->range_cyclic) {
  2556. index = mapping->writeback_index;
  2557. if (index)
  2558. cycled = 0;
  2559. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2560. wbc->range_end = LLONG_MAX;
  2561. wbc->range_cyclic = 0;
  2562. } else
  2563. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2564. /*
  2565. * This works around two forms of stupidity. The first is in
  2566. * the writeback code, which caps the maximum number of pages
  2567. * written to be 1024 pages. This is wrong on multiple
  2568. * levels; different architectues have a different page size,
  2569. * which changes the maximum amount of data which gets
  2570. * written. Secondly, 4 megabytes is way too small. XFS
  2571. * forces this value to be 16 megabytes by multiplying
  2572. * nr_to_write parameter by four, and then relies on its
  2573. * allocator to allocate larger extents to make them
  2574. * contiguous. Unfortunately this brings us to the second
  2575. * stupidity, which is that ext4's mballoc code only allocates
  2576. * at most 2048 blocks. So we force contiguous writes up to
  2577. * the number of dirty blocks in the inode, or
  2578. * sbi->max_writeback_mb_bump whichever is smaller.
  2579. */
  2580. max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
  2581. if (!range_cyclic && range_whole)
  2582. desired_nr_to_write = wbc->nr_to_write * 8;
  2583. else
  2584. desired_nr_to_write = ext4_num_dirty_pages(inode, index,
  2585. max_pages);
  2586. if (desired_nr_to_write > max_pages)
  2587. desired_nr_to_write = max_pages;
  2588. if (wbc->nr_to_write < desired_nr_to_write) {
  2589. nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
  2590. wbc->nr_to_write = desired_nr_to_write;
  2591. }
  2592. mpd.wbc = wbc;
  2593. mpd.inode = mapping->host;
  2594. /*
  2595. * we don't want write_cache_pages to update
  2596. * nr_to_write and writeback_index
  2597. */
  2598. no_nrwrite_index_update = wbc->no_nrwrite_index_update;
  2599. wbc->no_nrwrite_index_update = 1;
  2600. pages_skipped = wbc->pages_skipped;
  2601. retry:
  2602. while (!ret && wbc->nr_to_write > 0) {
  2603. /*
  2604. * we insert one extent at a time. So we need
  2605. * credit needed for single extent allocation.
  2606. * journalled mode is currently not supported
  2607. * by delalloc
  2608. */
  2609. BUG_ON(ext4_should_journal_data(inode));
  2610. needed_blocks = ext4_da_writepages_trans_blocks(inode);
  2611. /* start a new transaction*/
  2612. handle = ext4_journal_start(inode, needed_blocks);
  2613. if (IS_ERR(handle)) {
  2614. ret = PTR_ERR(handle);
  2615. ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
  2616. "%ld pages, ino %lu; err %d\n", __func__,
  2617. wbc->nr_to_write, inode->i_ino, ret);
  2618. goto out_writepages;
  2619. }
  2620. /*
  2621. * Now call __mpage_da_writepage to find the next
  2622. * contiguous region of logical blocks that need
  2623. * blocks to be allocated by ext4. We don't actually
  2624. * submit the blocks for I/O here, even though
  2625. * write_cache_pages thinks it will, and will set the
  2626. * pages as clean for write before calling
  2627. * __mpage_da_writepage().
  2628. */
  2629. mpd.b_size = 0;
  2630. mpd.b_state = 0;
  2631. mpd.b_blocknr = 0;
  2632. mpd.first_page = 0;
  2633. mpd.next_page = 0;
  2634. mpd.io_done = 0;
  2635. mpd.pages_written = 0;
  2636. mpd.retval = 0;
  2637. ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
  2638. &mpd);
  2639. /*
  2640. * If we have a contigous extent of pages and we
  2641. * haven't done the I/O yet, map the blocks and submit
  2642. * them for I/O.
  2643. */
  2644. if (!mpd.io_done && mpd.next_page != mpd.first_page) {
  2645. if (mpage_da_map_blocks(&mpd) == 0)
  2646. mpage_da_submit_io(&mpd);
  2647. mpd.io_done = 1;
  2648. ret = MPAGE_DA_EXTENT_TAIL;
  2649. }
  2650. trace_ext4_da_write_pages(inode, &mpd);
  2651. wbc->nr_to_write -= mpd.pages_written;
  2652. ext4_journal_stop(handle);
  2653. if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
  2654. /* commit the transaction which would
  2655. * free blocks released in the transaction
  2656. * and try again
  2657. */
  2658. jbd2_journal_force_commit_nested(sbi->s_journal);
  2659. wbc->pages_skipped = pages_skipped;
  2660. ret = 0;
  2661. } else if (ret == MPAGE_DA_EXTENT_TAIL) {
  2662. /*
  2663. * got one extent now try with
  2664. * rest of the pages
  2665. */
  2666. pages_written += mpd.pages_written;
  2667. wbc->pages_skipped = pages_skipped;
  2668. ret = 0;
  2669. io_done = 1;
  2670. } else if (wbc->nr_to_write)
  2671. /*
  2672. * There is no more writeout needed
  2673. * or we requested for a noblocking writeout
  2674. * and we found the device congested
  2675. */
  2676. break;
  2677. }
  2678. if (!io_done && !cycled) {
  2679. cycled = 1;
  2680. index = 0;
  2681. wbc->range_start = index << PAGE_CACHE_SHIFT;
  2682. wbc->range_end = mapping->writeback_index - 1;
  2683. goto retry;
  2684. }
  2685. if (pages_skipped != wbc->pages_skipped)
  2686. ext4_msg(inode->i_sb, KERN_CRIT,
  2687. "This should not happen leaving %s "
  2688. "with nr_to_write = %ld ret = %d\n",
  2689. __func__, wbc->nr_to_write, ret);
  2690. /* Update index */
  2691. index += pages_written;
  2692. wbc->range_cyclic = range_cyclic;
  2693. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  2694. /*
  2695. * set the writeback_index so that range_cyclic
  2696. * mode will write it back later
  2697. */
  2698. mapping->writeback_index = index;
  2699. out_writepages:
  2700. if (!no_nrwrite_index_update)
  2701. wbc->no_nrwrite_index_update = 0;
  2702. if (wbc->nr_to_write > nr_to_writebump)
  2703. wbc->nr_to_write -= nr_to_writebump;
  2704. wbc->range_start = range_start;
  2705. trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
  2706. return ret;
  2707. }
  2708. #define FALL_BACK_TO_NONDELALLOC 1
  2709. static int ext4_nonda_switch(struct super_block *sb)
  2710. {
  2711. s64 free_blocks, dirty_blocks;
  2712. struct ext4_sb_info *sbi = EXT4_SB(sb);
  2713. /*
  2714. * switch to non delalloc mode if we are running low
  2715. * on free block. The free block accounting via percpu
  2716. * counters can get slightly wrong with percpu_counter_batch getting
  2717. * accumulated on each CPU without updating global counters
  2718. * Delalloc need an accurate free block accounting. So switch
  2719. * to non delalloc when we are near to error range.
  2720. */
  2721. free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
  2722. dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
  2723. if (2 * free_blocks < 3 * dirty_blocks ||
  2724. free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
  2725. /*
  2726. * free block count is less that 150% of dirty blocks
  2727. * or free blocks is less that watermark
  2728. */
  2729. return 1;
  2730. }
  2731. return 0;
  2732. }
  2733. static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
  2734. loff_t pos, unsigned len, unsigned flags,
  2735. struct page **pagep, void **fsdata)
  2736. {
  2737. int ret, retries = 0;
  2738. struct page *page;
  2739. pgoff_t index;
  2740. unsigned from, to;
  2741. struct inode *inode = mapping->host;
  2742. handle_t *handle;
  2743. index = pos >> PAGE_CACHE_SHIFT;
  2744. from = pos & (PAGE_CACHE_SIZE - 1);
  2745. to = from + len;
  2746. if (ext4_nonda_switch(inode->i_sb)) {
  2747. *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
  2748. return ext4_write_begin(file, mapping, pos,
  2749. len, flags, pagep, fsdata);
  2750. }
  2751. *fsdata = (void *)0;
  2752. trace_ext4_da_write_begin(inode, pos, len, flags);
  2753. retry:
  2754. /*
  2755. * With delayed allocation, we don't log the i_disksize update
  2756. * if there is delayed block allocation. But we still need
  2757. * to journalling the i_disksize update if writes to the end
  2758. * of file which has an already mapped buffer.
  2759. */
  2760. handle = ext4_journal_start(inode, 1);
  2761. if (IS_ERR(handle)) {
  2762. ret = PTR_ERR(handle);
  2763. goto out;
  2764. }
  2765. /* We cannot recurse into the filesystem as the transaction is already
  2766. * started */
  2767. flags |= AOP_FLAG_NOFS;
  2768. page = grab_cache_page_write_begin(mapping, index, flags);
  2769. if (!page) {
  2770. ext4_journal_stop(handle);
  2771. ret = -ENOMEM;
  2772. goto out;
  2773. }
  2774. *pagep = page;
  2775. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  2776. ext4_da_get_block_prep);
  2777. if (ret < 0) {
  2778. unlock_page(page);
  2779. ext4_journal_stop(handle);
  2780. page_cache_release(page);
  2781. /*
  2782. * block_write_begin may have instantiated a few blocks
  2783. * outside i_size. Trim these off again. Don't need
  2784. * i_size_read because we hold i_mutex.
  2785. */
  2786. if (pos + len > inode->i_size)
  2787. ext4_truncate(inode);
  2788. }
  2789. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  2790. goto retry;
  2791. out:
  2792. return ret;
  2793. }
  2794. /*
  2795. * Check if we should update i_disksize
  2796. * when write to the end of file but not require block allocation
  2797. */
  2798. static int ext4_da_should_update_i_disksize(struct page *page,
  2799. unsigned long offset)
  2800. {
  2801. struct buffer_head *bh;
  2802. struct inode *inode = page->mapping->host;
  2803. unsigned int idx;
  2804. int i;
  2805. bh = page_buffers(page);
  2806. idx = offset >> inode->i_blkbits;
  2807. for (i = 0; i < idx; i++)
  2808. bh = bh->b_this_page;
  2809. if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
  2810. return 0;
  2811. return 1;
  2812. }
  2813. static int ext4_da_write_end(struct file *file,
  2814. struct address_space *mapping,
  2815. loff_t pos, unsigned len, unsigned copied,
  2816. struct page *page, void *fsdata)
  2817. {
  2818. struct inode *inode = mapping->host;
  2819. int ret = 0, ret2;
  2820. handle_t *handle = ext4_journal_current_handle();
  2821. loff_t new_i_size;
  2822. unsigned long start, end;
  2823. int write_mode = (int)(unsigned long)fsdata;
  2824. if (write_mode == FALL_BACK_TO_NONDELALLOC) {
  2825. if (ext4_should_order_data(inode)) {
  2826. return ext4_ordered_write_end(file, mapping, pos,
  2827. len, copied, page, fsdata);
  2828. } else if (ext4_should_writeback_data(inode)) {
  2829. return ext4_writeback_write_end(file, mapping, pos,
  2830. len, copied, page, fsdata);
  2831. } else {
  2832. BUG();
  2833. }
  2834. }
  2835. trace_ext4_da_write_end(inode, pos, len, copied);
  2836. start = pos & (PAGE_CACHE_SIZE - 1);
  2837. end = start + copied - 1;
  2838. /*
  2839. * generic_write_end() will run mark_inode_dirty() if i_size
  2840. * changes. So let's piggyback the i_disksize mark_inode_dirty
  2841. * into that.
  2842. */
  2843. new_i_size = pos + copied;
  2844. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2845. if (ext4_da_should_update_i_disksize(page, end)) {
  2846. down_write(&EXT4_I(inode)->i_data_sem);
  2847. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2848. /*
  2849. * Updating i_disksize when extending file
  2850. * without needing block allocation
  2851. */
  2852. if (ext4_should_order_data(inode))
  2853. ret = ext4_jbd2_file_inode(handle,
  2854. inode);
  2855. EXT4_I(inode)->i_disksize = new_i_size;
  2856. }
  2857. up_write(&EXT4_I(inode)->i_data_sem);
  2858. /* We need to mark inode dirty even if
  2859. * new_i_size is less that inode->i_size
  2860. * bu greater than i_disksize.(hint delalloc)
  2861. */
  2862. ext4_mark_inode_dirty(handle, inode);
  2863. }
  2864. }
  2865. ret2 = generic_write_end(file, mapping, pos, len, copied,
  2866. page, fsdata);
  2867. copied = ret2;
  2868. if (ret2 < 0)
  2869. ret = ret2;
  2870. ret2 = ext4_journal_stop(handle);
  2871. if (!ret)
  2872. ret = ret2;
  2873. return ret ? ret : copied;
  2874. }
  2875. static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
  2876. {
  2877. /*
  2878. * Drop reserved blocks
  2879. */
  2880. BUG_ON(!PageLocked(page));
  2881. if (!page_has_buffers(page))
  2882. goto out;
  2883. ext4_da_page_release_reservation(page, offset);
  2884. out:
  2885. ext4_invalidatepage(page, offset);
  2886. return;
  2887. }
  2888. /*
  2889. * Force all delayed allocation blocks to be allocated for a given inode.
  2890. */
  2891. int ext4_alloc_da_blocks(struct inode *inode)
  2892. {
  2893. trace_ext4_alloc_da_blocks(inode);
  2894. if (!EXT4_I(inode)->i_reserved_data_blocks &&
  2895. !EXT4_I(inode)->i_reserved_meta_blocks)
  2896. return 0;
  2897. /*
  2898. * We do something simple for now. The filemap_flush() will
  2899. * also start triggering a write of the data blocks, which is
  2900. * not strictly speaking necessary (and for users of
  2901. * laptop_mode, not even desirable). However, to do otherwise
  2902. * would require replicating code paths in:
  2903. *
  2904. * ext4_da_writepages() ->
  2905. * write_cache_pages() ---> (via passed in callback function)
  2906. * __mpage_da_writepage() -->
  2907. * mpage_add_bh_to_extent()
  2908. * mpage_da_map_blocks()
  2909. *
  2910. * The problem is that write_cache_pages(), located in
  2911. * mm/page-writeback.c, marks pages clean in preparation for
  2912. * doing I/O, which is not desirable if we're not planning on
  2913. * doing I/O at all.
  2914. *
  2915. * We could call write_cache_pages(), and then redirty all of
  2916. * the pages by calling redirty_page_for_writeback() but that
  2917. * would be ugly in the extreme. So instead we would need to
  2918. * replicate parts of the code in the above functions,
  2919. * simplifying them becuase we wouldn't actually intend to
  2920. * write out the pages, but rather only collect contiguous
  2921. * logical block extents, call the multi-block allocator, and
  2922. * then update the buffer heads with the block allocations.
  2923. *
  2924. * For now, though, we'll cheat by calling filemap_flush(),
  2925. * which will map the blocks, and start the I/O, but not
  2926. * actually wait for the I/O to complete.
  2927. */
  2928. return filemap_flush(inode->i_mapping);
  2929. }
  2930. /*
  2931. * bmap() is special. It gets used by applications such as lilo and by
  2932. * the swapper to find the on-disk block of a specific piece of data.
  2933. *
  2934. * Naturally, this is dangerous if the block concerned is still in the
  2935. * journal. If somebody makes a swapfile on an ext4 data-journaling
  2936. * filesystem and enables swap, then they may get a nasty shock when the
  2937. * data getting swapped to that swapfile suddenly gets overwritten by
  2938. * the original zero's written out previously to the journal and
  2939. * awaiting writeback in the kernel's buffer cache.
  2940. *
  2941. * So, if we see any bmap calls here on a modified, data-journaled file,
  2942. * take extra steps to flush any blocks which might be in the cache.
  2943. */
  2944. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  2945. {
  2946. struct inode *inode = mapping->host;
  2947. journal_t *journal;
  2948. int err;
  2949. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
  2950. test_opt(inode->i_sb, DELALLOC)) {
  2951. /*
  2952. * With delalloc we want to sync the file
  2953. * so that we can make sure we allocate
  2954. * blocks for file
  2955. */
  2956. filemap_write_and_wait(mapping);
  2957. }
  2958. if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  2959. /*
  2960. * This is a REALLY heavyweight approach, but the use of
  2961. * bmap on dirty files is expected to be extremely rare:
  2962. * only if we run lilo or swapon on a freshly made file
  2963. * do we expect this to happen.
  2964. *
  2965. * (bmap requires CAP_SYS_RAWIO so this does not
  2966. * represent an unprivileged user DOS attack --- we'd be
  2967. * in trouble if mortal users could trigger this path at
  2968. * will.)
  2969. *
  2970. * NB. EXT4_STATE_JDATA is not set on files other than
  2971. * regular files. If somebody wants to bmap a directory
  2972. * or symlink and gets confused because the buffer
  2973. * hasn't yet been flushed to disk, they deserve
  2974. * everything they get.
  2975. */
  2976. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  2977. journal = EXT4_JOURNAL(inode);
  2978. jbd2_journal_lock_updates(journal);
  2979. err = jbd2_journal_flush(journal);
  2980. jbd2_journal_unlock_updates(journal);
  2981. if (err)
  2982. return 0;
  2983. }
  2984. return generic_block_bmap(mapping, block, ext4_get_block);
  2985. }
  2986. static int ext4_readpage(struct file *file, struct page *page)
  2987. {
  2988. return mpage_readpage(page, ext4_get_block);
  2989. }
  2990. static int
  2991. ext4_readpages(struct file *file, struct address_space *mapping,
  2992. struct list_head *pages, unsigned nr_pages)
  2993. {
  2994. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  2995. }
  2996. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  2997. {
  2998. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2999. /*
  3000. * If it's a full truncate we just forget about the pending dirtying
  3001. */
  3002. if (offset == 0)
  3003. ClearPageChecked(page);
  3004. if (journal)
  3005. jbd2_journal_invalidatepage(journal, page, offset);
  3006. else
  3007. block_invalidatepage(page, offset);
  3008. }
  3009. static int ext4_releasepage(struct page *page, gfp_t wait)
  3010. {
  3011. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  3012. WARN_ON(PageChecked(page));
  3013. if (!page_has_buffers(page))
  3014. return 0;
  3015. if (journal)
  3016. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  3017. else
  3018. return try_to_free_buffers(page);
  3019. }
  3020. /*
  3021. * O_DIRECT for ext3 (or indirect map) based files
  3022. *
  3023. * If the O_DIRECT write will extend the file then add this inode to the
  3024. * orphan list. So recovery will truncate it back to the original size
  3025. * if the machine crashes during the write.
  3026. *
  3027. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  3028. * crashes then stale disk data _may_ be exposed inside the file. But current
  3029. * VFS code falls back into buffered path in that case so we are safe.
  3030. */
  3031. static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
  3032. const struct iovec *iov, loff_t offset,
  3033. unsigned long nr_segs)
  3034. {
  3035. struct file *file = iocb->ki_filp;
  3036. struct inode *inode = file->f_mapping->host;
  3037. struct ext4_inode_info *ei = EXT4_I(inode);
  3038. handle_t *handle;
  3039. ssize_t ret;
  3040. int orphan = 0;
  3041. size_t count = iov_length(iov, nr_segs);
  3042. int retries = 0;
  3043. if (rw == WRITE) {
  3044. loff_t final_size = offset + count;
  3045. if (final_size > inode->i_size) {
  3046. /* Credits for sb + inode write */
  3047. handle = ext4_journal_start(inode, 2);
  3048. if (IS_ERR(handle)) {
  3049. ret = PTR_ERR(handle);
  3050. goto out;
  3051. }
  3052. ret = ext4_orphan_add(handle, inode);
  3053. if (ret) {
  3054. ext4_journal_stop(handle);
  3055. goto out;
  3056. }
  3057. orphan = 1;
  3058. ei->i_disksize = inode->i_size;
  3059. ext4_journal_stop(handle);
  3060. }
  3061. }
  3062. retry:
  3063. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  3064. offset, nr_segs,
  3065. ext4_get_block, NULL);
  3066. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  3067. goto retry;
  3068. if (orphan) {
  3069. int err;
  3070. /* Credits for sb + inode write */
  3071. handle = ext4_journal_start(inode, 2);
  3072. if (IS_ERR(handle)) {
  3073. /* This is really bad luck. We've written the data
  3074. * but cannot extend i_size. Bail out and pretend
  3075. * the write failed... */
  3076. ret = PTR_ERR(handle);
  3077. goto out;
  3078. }
  3079. if (inode->i_nlink)
  3080. ext4_orphan_del(handle, inode);
  3081. if (ret > 0) {
  3082. loff_t end = offset + ret;
  3083. if (end > inode->i_size) {
  3084. ei->i_disksize = end;
  3085. i_size_write(inode, end);
  3086. /*
  3087. * We're going to return a positive `ret'
  3088. * here due to non-zero-length I/O, so there's
  3089. * no way of reporting error returns from
  3090. * ext4_mark_inode_dirty() to userspace. So
  3091. * ignore it.
  3092. */
  3093. ext4_mark_inode_dirty(handle, inode);
  3094. }
  3095. }
  3096. err = ext4_journal_stop(handle);
  3097. if (ret == 0)
  3098. ret = err;
  3099. }
  3100. out:
  3101. return ret;
  3102. }
  3103. static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
  3104. struct buffer_head *bh_result, int create)
  3105. {
  3106. handle_t *handle = NULL;
  3107. int ret = 0;
  3108. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  3109. int dio_credits;
  3110. ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
  3111. inode->i_ino, create);
  3112. /*
  3113. * DIO VFS code passes create = 0 flag for write to
  3114. * the middle of file. It does this to avoid block
  3115. * allocation for holes, to prevent expose stale data
  3116. * out when there is parallel buffered read (which does
  3117. * not hold the i_mutex lock) while direct IO write has
  3118. * not completed. DIO request on holes finally falls back
  3119. * to buffered IO for this reason.
  3120. *
  3121. * For ext4 extent based file, since we support fallocate,
  3122. * new allocated extent as uninitialized, for holes, we
  3123. * could fallocate blocks for holes, thus parallel
  3124. * buffered IO read will zero out the page when read on
  3125. * a hole while parallel DIO write to the hole has not completed.
  3126. *
  3127. * when we come here, we know it's a direct IO write to
  3128. * to the middle of file (<i_size)
  3129. * so it's safe to override the create flag from VFS.
  3130. */
  3131. create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
  3132. if (max_blocks > DIO_MAX_BLOCKS)
  3133. max_blocks = DIO_MAX_BLOCKS;
  3134. dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
  3135. handle = ext4_journal_start(inode, dio_credits);
  3136. if (IS_ERR(handle)) {
  3137. ret = PTR_ERR(handle);
  3138. goto out;
  3139. }
  3140. ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
  3141. create);
  3142. if (ret > 0) {
  3143. bh_result->b_size = (ret << inode->i_blkbits);
  3144. ret = 0;
  3145. }
  3146. ext4_journal_stop(handle);
  3147. out:
  3148. return ret;
  3149. }
  3150. static void ext4_free_io_end(ext4_io_end_t *io)
  3151. {
  3152. BUG_ON(!io);
  3153. iput(io->inode);
  3154. kfree(io);
  3155. }
  3156. static void dump_aio_dio_list(struct inode * inode)
  3157. {
  3158. #ifdef EXT4_DEBUG
  3159. struct list_head *cur, *before, *after;
  3160. ext4_io_end_t *io, *io0, *io1;
  3161. if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
  3162. ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
  3163. return;
  3164. }
  3165. ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
  3166. list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
  3167. cur = &io->list;
  3168. before = cur->prev;
  3169. io0 = container_of(before, ext4_io_end_t, list);
  3170. after = cur->next;
  3171. io1 = container_of(after, ext4_io_end_t, list);
  3172. ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
  3173. io, inode->i_ino, io0, io1);
  3174. }
  3175. #endif
  3176. }
  3177. /*
  3178. * check a range of space and convert unwritten extents to written.
  3179. */
  3180. static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
  3181. {
  3182. struct inode *inode = io->inode;
  3183. loff_t offset = io->offset;
  3184. size_t size = io->size;
  3185. int ret = 0;
  3186. ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
  3187. "list->prev 0x%p\n",
  3188. io, inode->i_ino, io->list.next, io->list.prev);
  3189. if (list_empty(&io->list))
  3190. return ret;
  3191. if (io->flag != DIO_AIO_UNWRITTEN)
  3192. return ret;
  3193. if (offset + size <= i_size_read(inode))
  3194. ret = ext4_convert_unwritten_extents(inode, offset, size);
  3195. if (ret < 0) {
  3196. printk(KERN_EMERG "%s: failed to convert unwritten"
  3197. "extents to written extents, error is %d"
  3198. " io is still on inode %lu aio dio list\n",
  3199. __func__, ret, inode->i_ino);
  3200. return ret;
  3201. }
  3202. /* clear the DIO AIO unwritten flag */
  3203. io->flag = 0;
  3204. return ret;
  3205. }
  3206. /*
  3207. * work on completed aio dio IO, to convert unwritten extents to extents
  3208. */
  3209. static void ext4_end_aio_dio_work(struct work_struct *work)
  3210. {
  3211. ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
  3212. struct inode *inode = io->inode;
  3213. int ret = 0;
  3214. mutex_lock(&inode->i_mutex);
  3215. ret = ext4_end_aio_dio_nolock(io);
  3216. if (ret >= 0) {
  3217. if (!list_empty(&io->list))
  3218. list_del_init(&io->list);
  3219. ext4_free_io_end(io);
  3220. }
  3221. mutex_unlock(&inode->i_mutex);
  3222. }
  3223. /*
  3224. * This function is called from ext4_sync_file().
  3225. *
  3226. * When AIO DIO IO is completed, the work to convert unwritten
  3227. * extents to written is queued on workqueue but may not get immediately
  3228. * scheduled. When fsync is called, we need to ensure the
  3229. * conversion is complete before fsync returns.
  3230. * The inode keeps track of a list of completed AIO from DIO path
  3231. * that might needs to do the conversion. This function walks through
  3232. * the list and convert the related unwritten extents to written.
  3233. */
  3234. int flush_aio_dio_completed_IO(struct inode *inode)
  3235. {
  3236. ext4_io_end_t *io;
  3237. int ret = 0;
  3238. int ret2 = 0;
  3239. if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
  3240. return ret;
  3241. dump_aio_dio_list(inode);
  3242. while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
  3243. io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
  3244. ext4_io_end_t, list);
  3245. /*
  3246. * Calling ext4_end_aio_dio_nolock() to convert completed
  3247. * IO to written.
  3248. *
  3249. * When ext4_sync_file() is called, run_queue() may already
  3250. * about to flush the work corresponding to this io structure.
  3251. * It will be upset if it founds the io structure related
  3252. * to the work-to-be schedule is freed.
  3253. *
  3254. * Thus we need to keep the io structure still valid here after
  3255. * convertion finished. The io structure has a flag to
  3256. * avoid double converting from both fsync and background work
  3257. * queue work.
  3258. */
  3259. ret = ext4_end_aio_dio_nolock(io);
  3260. if (ret < 0)
  3261. ret2 = ret;
  3262. else
  3263. list_del_init(&io->list);
  3264. }
  3265. return (ret2 < 0) ? ret2 : 0;
  3266. }
  3267. static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
  3268. {
  3269. ext4_io_end_t *io = NULL;
  3270. io = kmalloc(sizeof(*io), GFP_NOFS);
  3271. if (io) {
  3272. igrab(inode);
  3273. io->inode = inode;
  3274. io->flag = 0;
  3275. io->offset = 0;
  3276. io->size = 0;
  3277. io->error = 0;
  3278. INIT_WORK(&io->work, ext4_end_aio_dio_work);
  3279. INIT_LIST_HEAD(&io->list);
  3280. }
  3281. return io;
  3282. }
  3283. static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
  3284. ssize_t size, void *private)
  3285. {
  3286. ext4_io_end_t *io_end = iocb->private;
  3287. struct workqueue_struct *wq;
  3288. /* if not async direct IO or dio with 0 bytes write, just return */
  3289. if (!io_end || !size)
  3290. return;
  3291. ext_debug("ext4_end_io_dio(): io_end 0x%p"
  3292. "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
  3293. iocb->private, io_end->inode->i_ino, iocb, offset,
  3294. size);
  3295. /* if not aio dio with unwritten extents, just free io and return */
  3296. if (io_end->flag != DIO_AIO_UNWRITTEN){
  3297. ext4_free_io_end(io_end);
  3298. iocb->private = NULL;
  3299. return;
  3300. }
  3301. io_end->offset = offset;
  3302. io_end->size = size;
  3303. wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
  3304. /* queue the work to convert unwritten extents to written */
  3305. queue_work(wq, &io_end->work);
  3306. /* Add the io_end to per-inode completed aio dio list*/
  3307. list_add_tail(&io_end->list,
  3308. &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
  3309. iocb->private = NULL;
  3310. }
  3311. /*
  3312. * For ext4 extent files, ext4 will do direct-io write to holes,
  3313. * preallocated extents, and those write extend the file, no need to
  3314. * fall back to buffered IO.
  3315. *
  3316. * For holes, we fallocate those blocks, mark them as unintialized
  3317. * If those blocks were preallocated, we mark sure they are splited, but
  3318. * still keep the range to write as unintialized.
  3319. *
  3320. * The unwrritten extents will be converted to written when DIO is completed.
  3321. * For async direct IO, since the IO may still pending when return, we
  3322. * set up an end_io call back function, which will do the convertion
  3323. * when async direct IO completed.
  3324. *
  3325. * If the O_DIRECT write will extend the file then add this inode to the
  3326. * orphan list. So recovery will truncate it back to the original size
  3327. * if the machine crashes during the write.
  3328. *
  3329. */
  3330. static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
  3331. const struct iovec *iov, loff_t offset,
  3332. unsigned long nr_segs)
  3333. {
  3334. struct file *file = iocb->ki_filp;
  3335. struct inode *inode = file->f_mapping->host;
  3336. ssize_t ret;
  3337. size_t count = iov_length(iov, nr_segs);
  3338. loff_t final_size = offset + count;
  3339. if (rw == WRITE && final_size <= inode->i_size) {
  3340. /*
  3341. * We could direct write to holes and fallocate.
  3342. *
  3343. * Allocated blocks to fill the hole are marked as uninitialized
  3344. * to prevent paralel buffered read to expose the stale data
  3345. * before DIO complete the data IO.
  3346. *
  3347. * As to previously fallocated extents, ext4 get_block
  3348. * will just simply mark the buffer mapped but still
  3349. * keep the extents uninitialized.
  3350. *
  3351. * for non AIO case, we will convert those unwritten extents
  3352. * to written after return back from blockdev_direct_IO.
  3353. *
  3354. * for async DIO, the conversion needs to be defered when
  3355. * the IO is completed. The ext4 end_io callback function
  3356. * will be called to take care of the conversion work.
  3357. * Here for async case, we allocate an io_end structure to
  3358. * hook to the iocb.
  3359. */
  3360. iocb->private = NULL;
  3361. EXT4_I(inode)->cur_aio_dio = NULL;
  3362. if (!is_sync_kiocb(iocb)) {
  3363. iocb->private = ext4_init_io_end(inode);
  3364. if (!iocb->private)
  3365. return -ENOMEM;
  3366. /*
  3367. * we save the io structure for current async
  3368. * direct IO, so that later ext4_get_blocks()
  3369. * could flag the io structure whether there
  3370. * is a unwritten extents needs to be converted
  3371. * when IO is completed.
  3372. */
  3373. EXT4_I(inode)->cur_aio_dio = iocb->private;
  3374. }
  3375. ret = blockdev_direct_IO(rw, iocb, inode,
  3376. inode->i_sb->s_bdev, iov,
  3377. offset, nr_segs,
  3378. ext4_get_block_dio_write,
  3379. ext4_end_io_dio);
  3380. if (iocb->private)
  3381. EXT4_I(inode)->cur_aio_dio = NULL;
  3382. /*
  3383. * The io_end structure takes a reference to the inode,
  3384. * that structure needs to be destroyed and the
  3385. * reference to the inode need to be dropped, when IO is
  3386. * complete, even with 0 byte write, or failed.
  3387. *
  3388. * In the successful AIO DIO case, the io_end structure will be
  3389. * desctroyed and the reference to the inode will be dropped
  3390. * after the end_io call back function is called.
  3391. *
  3392. * In the case there is 0 byte write, or error case, since
  3393. * VFS direct IO won't invoke the end_io call back function,
  3394. * we need to free the end_io structure here.
  3395. */
  3396. if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
  3397. ext4_free_io_end(iocb->private);
  3398. iocb->private = NULL;
  3399. } else if (ret > 0 && (EXT4_I(inode)->i_state &
  3400. EXT4_STATE_DIO_UNWRITTEN)) {
  3401. int err;
  3402. /*
  3403. * for non AIO case, since the IO is already
  3404. * completed, we could do the convertion right here
  3405. */
  3406. err = ext4_convert_unwritten_extents(inode,
  3407. offset, ret);
  3408. if (err < 0)
  3409. ret = err;
  3410. EXT4_I(inode)->i_state &= ~EXT4_STATE_DIO_UNWRITTEN;
  3411. }
  3412. return ret;
  3413. }
  3414. /* for write the the end of file case, we fall back to old way */
  3415. return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  3416. }
  3417. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  3418. const struct iovec *iov, loff_t offset,
  3419. unsigned long nr_segs)
  3420. {
  3421. struct file *file = iocb->ki_filp;
  3422. struct inode *inode = file->f_mapping->host;
  3423. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  3424. return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
  3425. return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  3426. }
  3427. /*
  3428. * Pages can be marked dirty completely asynchronously from ext4's journalling
  3429. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  3430. * much here because ->set_page_dirty is called under VFS locks. The page is
  3431. * not necessarily locked.
  3432. *
  3433. * We cannot just dirty the page and leave attached buffers clean, because the
  3434. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  3435. * or jbddirty because all the journalling code will explode.
  3436. *
  3437. * So what we do is to mark the page "pending dirty" and next time writepage
  3438. * is called, propagate that into the buffers appropriately.
  3439. */
  3440. static int ext4_journalled_set_page_dirty(struct page *page)
  3441. {
  3442. SetPageChecked(page);
  3443. return __set_page_dirty_nobuffers(page);
  3444. }
  3445. static const struct address_space_operations ext4_ordered_aops = {
  3446. .readpage = ext4_readpage,
  3447. .readpages = ext4_readpages,
  3448. .writepage = ext4_writepage,
  3449. .sync_page = block_sync_page,
  3450. .write_begin = ext4_write_begin,
  3451. .write_end = ext4_ordered_write_end,
  3452. .bmap = ext4_bmap,
  3453. .invalidatepage = ext4_invalidatepage,
  3454. .releasepage = ext4_releasepage,
  3455. .direct_IO = ext4_direct_IO,
  3456. .migratepage = buffer_migrate_page,
  3457. .is_partially_uptodate = block_is_partially_uptodate,
  3458. .error_remove_page = generic_error_remove_page,
  3459. };
  3460. static const struct address_space_operations ext4_writeback_aops = {
  3461. .readpage = ext4_readpage,
  3462. .readpages = ext4_readpages,
  3463. .writepage = ext4_writepage,
  3464. .sync_page = block_sync_page,
  3465. .write_begin = ext4_write_begin,
  3466. .write_end = ext4_writeback_write_end,
  3467. .bmap = ext4_bmap,
  3468. .invalidatepage = ext4_invalidatepage,
  3469. .releasepage = ext4_releasepage,
  3470. .direct_IO = ext4_direct_IO,
  3471. .migratepage = buffer_migrate_page,
  3472. .is_partially_uptodate = block_is_partially_uptodate,
  3473. .error_remove_page = generic_error_remove_page,
  3474. };
  3475. static const struct address_space_operations ext4_journalled_aops = {
  3476. .readpage = ext4_readpage,
  3477. .readpages = ext4_readpages,
  3478. .writepage = ext4_writepage,
  3479. .sync_page = block_sync_page,
  3480. .write_begin = ext4_write_begin,
  3481. .write_end = ext4_journalled_write_end,
  3482. .set_page_dirty = ext4_journalled_set_page_dirty,
  3483. .bmap = ext4_bmap,
  3484. .invalidatepage = ext4_invalidatepage,
  3485. .releasepage = ext4_releasepage,
  3486. .is_partially_uptodate = block_is_partially_uptodate,
  3487. .error_remove_page = generic_error_remove_page,
  3488. };
  3489. static const struct address_space_operations ext4_da_aops = {
  3490. .readpage = ext4_readpage,
  3491. .readpages = ext4_readpages,
  3492. .writepage = ext4_writepage,
  3493. .writepages = ext4_da_writepages,
  3494. .sync_page = block_sync_page,
  3495. .write_begin = ext4_da_write_begin,
  3496. .write_end = ext4_da_write_end,
  3497. .bmap = ext4_bmap,
  3498. .invalidatepage = ext4_da_invalidatepage,
  3499. .releasepage = ext4_releasepage,
  3500. .direct_IO = ext4_direct_IO,
  3501. .migratepage = buffer_migrate_page,
  3502. .is_partially_uptodate = block_is_partially_uptodate,
  3503. .error_remove_page = generic_error_remove_page,
  3504. };
  3505. void ext4_set_aops(struct inode *inode)
  3506. {
  3507. if (ext4_should_order_data(inode) &&
  3508. test_opt(inode->i_sb, DELALLOC))
  3509. inode->i_mapping->a_ops = &ext4_da_aops;
  3510. else if (ext4_should_order_data(inode))
  3511. inode->i_mapping->a_ops = &ext4_ordered_aops;
  3512. else if (ext4_should_writeback_data(inode) &&
  3513. test_opt(inode->i_sb, DELALLOC))
  3514. inode->i_mapping->a_ops = &ext4_da_aops;
  3515. else if (ext4_should_writeback_data(inode))
  3516. inode->i_mapping->a_ops = &ext4_writeback_aops;
  3517. else
  3518. inode->i_mapping->a_ops = &ext4_journalled_aops;
  3519. }
  3520. /*
  3521. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  3522. * up to the end of the block which corresponds to `from'.
  3523. * This required during truncate. We need to physically zero the tail end
  3524. * of that block so it doesn't yield old data if the file is later grown.
  3525. */
  3526. int ext4_block_truncate_page(handle_t *handle,
  3527. struct address_space *mapping, loff_t from)
  3528. {
  3529. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  3530. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  3531. unsigned blocksize, length, pos;
  3532. ext4_lblk_t iblock;
  3533. struct inode *inode = mapping->host;
  3534. struct buffer_head *bh;
  3535. struct page *page;
  3536. int err = 0;
  3537. page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
  3538. mapping_gfp_mask(mapping) & ~__GFP_FS);
  3539. if (!page)
  3540. return -EINVAL;
  3541. blocksize = inode->i_sb->s_blocksize;
  3542. length = blocksize - (offset & (blocksize - 1));
  3543. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  3544. /*
  3545. * For "nobh" option, we can only work if we don't need to
  3546. * read-in the page - otherwise we create buffers to do the IO.
  3547. */
  3548. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  3549. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  3550. zero_user(page, offset, length);
  3551. set_page_dirty(page);
  3552. goto unlock;
  3553. }
  3554. if (!page_has_buffers(page))
  3555. create_empty_buffers(page, blocksize, 0);
  3556. /* Find the buffer that contains "offset" */
  3557. bh = page_buffers(page);
  3558. pos = blocksize;
  3559. while (offset >= pos) {
  3560. bh = bh->b_this_page;
  3561. iblock++;
  3562. pos += blocksize;
  3563. }
  3564. err = 0;
  3565. if (buffer_freed(bh)) {
  3566. BUFFER_TRACE(bh, "freed: skip");
  3567. goto unlock;
  3568. }
  3569. if (!buffer_mapped(bh)) {
  3570. BUFFER_TRACE(bh, "unmapped");
  3571. ext4_get_block(inode, iblock, bh, 0);
  3572. /* unmapped? It's a hole - nothing to do */
  3573. if (!buffer_mapped(bh)) {
  3574. BUFFER_TRACE(bh, "still unmapped");
  3575. goto unlock;
  3576. }
  3577. }
  3578. /* Ok, it's mapped. Make sure it's up-to-date */
  3579. if (PageUptodate(page))
  3580. set_buffer_uptodate(bh);
  3581. if (!buffer_uptodate(bh)) {
  3582. err = -EIO;
  3583. ll_rw_block(READ, 1, &bh);
  3584. wait_on_buffer(bh);
  3585. /* Uhhuh. Read error. Complain and punt. */
  3586. if (!buffer_uptodate(bh))
  3587. goto unlock;
  3588. }
  3589. if (ext4_should_journal_data(inode)) {
  3590. BUFFER_TRACE(bh, "get write access");
  3591. err = ext4_journal_get_write_access(handle, bh);
  3592. if (err)
  3593. goto unlock;
  3594. }
  3595. zero_user(page, offset, length);
  3596. BUFFER_TRACE(bh, "zeroed end of block");
  3597. err = 0;
  3598. if (ext4_should_journal_data(inode)) {
  3599. err = ext4_handle_dirty_metadata(handle, inode, bh);
  3600. } else {
  3601. if (ext4_should_order_data(inode))
  3602. err = ext4_jbd2_file_inode(handle, inode);
  3603. mark_buffer_dirty(bh);
  3604. }
  3605. unlock:
  3606. unlock_page(page);
  3607. page_cache_release(page);
  3608. return err;
  3609. }
  3610. /*
  3611. * Probably it should be a library function... search for first non-zero word
  3612. * or memcmp with zero_page, whatever is better for particular architecture.
  3613. * Linus?
  3614. */
  3615. static inline int all_zeroes(__le32 *p, __le32 *q)
  3616. {
  3617. while (p < q)
  3618. if (*p++)
  3619. return 0;
  3620. return 1;
  3621. }
  3622. /**
  3623. * ext4_find_shared - find the indirect blocks for partial truncation.
  3624. * @inode: inode in question
  3625. * @depth: depth of the affected branch
  3626. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  3627. * @chain: place to store the pointers to partial indirect blocks
  3628. * @top: place to the (detached) top of branch
  3629. *
  3630. * This is a helper function used by ext4_truncate().
  3631. *
  3632. * When we do truncate() we may have to clean the ends of several
  3633. * indirect blocks but leave the blocks themselves alive. Block is
  3634. * partially truncated if some data below the new i_size is refered
  3635. * from it (and it is on the path to the first completely truncated
  3636. * data block, indeed). We have to free the top of that path along
  3637. * with everything to the right of the path. Since no allocation
  3638. * past the truncation point is possible until ext4_truncate()
  3639. * finishes, we may safely do the latter, but top of branch may
  3640. * require special attention - pageout below the truncation point
  3641. * might try to populate it.
  3642. *
  3643. * We atomically detach the top of branch from the tree, store the
  3644. * block number of its root in *@top, pointers to buffer_heads of
  3645. * partially truncated blocks - in @chain[].bh and pointers to
  3646. * their last elements that should not be removed - in
  3647. * @chain[].p. Return value is the pointer to last filled element
  3648. * of @chain.
  3649. *
  3650. * The work left to caller to do the actual freeing of subtrees:
  3651. * a) free the subtree starting from *@top
  3652. * b) free the subtrees whose roots are stored in
  3653. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  3654. * c) free the subtrees growing from the inode past the @chain[0].
  3655. * (no partially truncated stuff there). */
  3656. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  3657. ext4_lblk_t offsets[4], Indirect chain[4],
  3658. __le32 *top)
  3659. {
  3660. Indirect *partial, *p;
  3661. int k, err;
  3662. *top = 0;
  3663. /* Make k index the deepest non-null offest + 1 */
  3664. for (k = depth; k > 1 && !offsets[k-1]; k--)
  3665. ;
  3666. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  3667. /* Writer: pointers */
  3668. if (!partial)
  3669. partial = chain + k-1;
  3670. /*
  3671. * If the branch acquired continuation since we've looked at it -
  3672. * fine, it should all survive and (new) top doesn't belong to us.
  3673. */
  3674. if (!partial->key && *partial->p)
  3675. /* Writer: end */
  3676. goto no_top;
  3677. for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
  3678. ;
  3679. /*
  3680. * OK, we've found the last block that must survive. The rest of our
  3681. * branch should be detached before unlocking. However, if that rest
  3682. * of branch is all ours and does not grow immediately from the inode
  3683. * it's easier to cheat and just decrement partial->p.
  3684. */
  3685. if (p == chain + k - 1 && p > chain) {
  3686. p->p--;
  3687. } else {
  3688. *top = *p->p;
  3689. /* Nope, don't do this in ext4. Must leave the tree intact */
  3690. #if 0
  3691. *p->p = 0;
  3692. #endif
  3693. }
  3694. /* Writer: end */
  3695. while (partial > p) {
  3696. brelse(partial->bh);
  3697. partial--;
  3698. }
  3699. no_top:
  3700. return partial;
  3701. }
  3702. /*
  3703. * Zero a number of block pointers in either an inode or an indirect block.
  3704. * If we restart the transaction we must again get write access to the
  3705. * indirect block for further modification.
  3706. *
  3707. * We release `count' blocks on disk, but (last - first) may be greater
  3708. * than `count' because there can be holes in there.
  3709. */
  3710. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  3711. struct buffer_head *bh,
  3712. ext4_fsblk_t block_to_free,
  3713. unsigned long count, __le32 *first,
  3714. __le32 *last)
  3715. {
  3716. __le32 *p;
  3717. if (try_to_extend_transaction(handle, inode)) {
  3718. if (bh) {
  3719. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  3720. ext4_handle_dirty_metadata(handle, inode, bh);
  3721. }
  3722. ext4_mark_inode_dirty(handle, inode);
  3723. ext4_truncate_restart_trans(handle, inode,
  3724. blocks_for_truncate(inode));
  3725. if (bh) {
  3726. BUFFER_TRACE(bh, "retaking write access");
  3727. ext4_journal_get_write_access(handle, bh);
  3728. }
  3729. }
  3730. /*
  3731. * Any buffers which are on the journal will be in memory. We
  3732. * find them on the hash table so jbd2_journal_revoke() will
  3733. * run jbd2_journal_forget() on them. We've already detached
  3734. * each block from the file, so bforget() in
  3735. * jbd2_journal_forget() should be safe.
  3736. *
  3737. * AKPM: turn on bforget in jbd2_journal_forget()!!!
  3738. */
  3739. for (p = first; p < last; p++) {
  3740. u32 nr = le32_to_cpu(*p);
  3741. if (nr) {
  3742. struct buffer_head *tbh;
  3743. *p = 0;
  3744. tbh = sb_find_get_block(inode->i_sb, nr);
  3745. ext4_forget(handle, 0, inode, tbh, nr);
  3746. }
  3747. }
  3748. ext4_free_blocks(handle, inode, block_to_free, count, 0);
  3749. }
  3750. /**
  3751. * ext4_free_data - free a list of data blocks
  3752. * @handle: handle for this transaction
  3753. * @inode: inode we are dealing with
  3754. * @this_bh: indirect buffer_head which contains *@first and *@last
  3755. * @first: array of block numbers
  3756. * @last: points immediately past the end of array
  3757. *
  3758. * We are freeing all blocks refered from that array (numbers are stored as
  3759. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  3760. *
  3761. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  3762. * blocks are contiguous then releasing them at one time will only affect one
  3763. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  3764. * actually use a lot of journal space.
  3765. *
  3766. * @this_bh will be %NULL if @first and @last point into the inode's direct
  3767. * block pointers.
  3768. */
  3769. static void ext4_free_data(handle_t *handle, struct inode *inode,
  3770. struct buffer_head *this_bh,
  3771. __le32 *first, __le32 *last)
  3772. {
  3773. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  3774. unsigned long count = 0; /* Number of blocks in the run */
  3775. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  3776. corresponding to
  3777. block_to_free */
  3778. ext4_fsblk_t nr; /* Current block # */
  3779. __le32 *p; /* Pointer into inode/ind
  3780. for current block */
  3781. int err;
  3782. if (this_bh) { /* For indirect block */
  3783. BUFFER_TRACE(this_bh, "get_write_access");
  3784. err = ext4_journal_get_write_access(handle, this_bh);
  3785. /* Important: if we can't update the indirect pointers
  3786. * to the blocks, we can't free them. */
  3787. if (err)
  3788. return;
  3789. }
  3790. for (p = first; p < last; p++) {
  3791. nr = le32_to_cpu(*p);
  3792. if (nr) {
  3793. /* accumulate blocks to free if they're contiguous */
  3794. if (count == 0) {
  3795. block_to_free = nr;
  3796. block_to_free_p = p;
  3797. count = 1;
  3798. } else if (nr == block_to_free + count) {
  3799. count++;
  3800. } else {
  3801. ext4_clear_blocks(handle, inode, this_bh,
  3802. block_to_free,
  3803. count, block_to_free_p, p);
  3804. block_to_free = nr;
  3805. block_to_free_p = p;
  3806. count = 1;
  3807. }
  3808. }
  3809. }
  3810. if (count > 0)
  3811. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  3812. count, block_to_free_p, p);
  3813. if (this_bh) {
  3814. BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
  3815. /*
  3816. * The buffer head should have an attached journal head at this
  3817. * point. However, if the data is corrupted and an indirect
  3818. * block pointed to itself, it would have been detached when
  3819. * the block was cleared. Check for this instead of OOPSing.
  3820. */
  3821. if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
  3822. ext4_handle_dirty_metadata(handle, inode, this_bh);
  3823. else
  3824. ext4_error(inode->i_sb, __func__,
  3825. "circular indirect block detected, "
  3826. "inode=%lu, block=%llu",
  3827. inode->i_ino,
  3828. (unsigned long long) this_bh->b_blocknr);
  3829. }
  3830. }
  3831. /**
  3832. * ext4_free_branches - free an array of branches
  3833. * @handle: JBD handle for this transaction
  3834. * @inode: inode we are dealing with
  3835. * @parent_bh: the buffer_head which contains *@first and *@last
  3836. * @first: array of block numbers
  3837. * @last: pointer immediately past the end of array
  3838. * @depth: depth of the branches to free
  3839. *
  3840. * We are freeing all blocks refered from these branches (numbers are
  3841. * stored as little-endian 32-bit) and updating @inode->i_blocks
  3842. * appropriately.
  3843. */
  3844. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  3845. struct buffer_head *parent_bh,
  3846. __le32 *first, __le32 *last, int depth)
  3847. {
  3848. ext4_fsblk_t nr;
  3849. __le32 *p;
  3850. if (ext4_handle_is_aborted(handle))
  3851. return;
  3852. if (depth--) {
  3853. struct buffer_head *bh;
  3854. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  3855. p = last;
  3856. while (--p >= first) {
  3857. nr = le32_to_cpu(*p);
  3858. if (!nr)
  3859. continue; /* A hole */
  3860. /* Go read the buffer for the next level down */
  3861. bh = sb_bread(inode->i_sb, nr);
  3862. /*
  3863. * A read failure? Report error and clear slot
  3864. * (should be rare).
  3865. */
  3866. if (!bh) {
  3867. ext4_error(inode->i_sb, "ext4_free_branches",
  3868. "Read failure, inode=%lu, block=%llu",
  3869. inode->i_ino, nr);
  3870. continue;
  3871. }
  3872. /* This zaps the entire block. Bottom up. */
  3873. BUFFER_TRACE(bh, "free child branches");
  3874. ext4_free_branches(handle, inode, bh,
  3875. (__le32 *) bh->b_data,
  3876. (__le32 *) bh->b_data + addr_per_block,
  3877. depth);
  3878. /*
  3879. * We've probably journalled the indirect block several
  3880. * times during the truncate. But it's no longer
  3881. * needed and we now drop it from the transaction via
  3882. * jbd2_journal_revoke().
  3883. *
  3884. * That's easy if it's exclusively part of this
  3885. * transaction. But if it's part of the committing
  3886. * transaction then jbd2_journal_forget() will simply
  3887. * brelse() it. That means that if the underlying
  3888. * block is reallocated in ext4_get_block(),
  3889. * unmap_underlying_metadata() will find this block
  3890. * and will try to get rid of it. damn, damn.
  3891. *
  3892. * If this block has already been committed to the
  3893. * journal, a revoke record will be written. And
  3894. * revoke records must be emitted *before* clearing
  3895. * this block's bit in the bitmaps.
  3896. */
  3897. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  3898. /*
  3899. * Everything below this this pointer has been
  3900. * released. Now let this top-of-subtree go.
  3901. *
  3902. * We want the freeing of this indirect block to be
  3903. * atomic in the journal with the updating of the
  3904. * bitmap block which owns it. So make some room in
  3905. * the journal.
  3906. *
  3907. * We zero the parent pointer *after* freeing its
  3908. * pointee in the bitmaps, so if extend_transaction()
  3909. * for some reason fails to put the bitmap changes and
  3910. * the release into the same transaction, recovery
  3911. * will merely complain about releasing a free block,
  3912. * rather than leaking blocks.
  3913. */
  3914. if (ext4_handle_is_aborted(handle))
  3915. return;
  3916. if (try_to_extend_transaction(handle, inode)) {
  3917. ext4_mark_inode_dirty(handle, inode);
  3918. ext4_truncate_restart_trans(handle, inode,
  3919. blocks_for_truncate(inode));
  3920. }
  3921. ext4_free_blocks(handle, inode, nr, 1, 1);
  3922. if (parent_bh) {
  3923. /*
  3924. * The block which we have just freed is
  3925. * pointed to by an indirect block: journal it
  3926. */
  3927. BUFFER_TRACE(parent_bh, "get_write_access");
  3928. if (!ext4_journal_get_write_access(handle,
  3929. parent_bh)){
  3930. *p = 0;
  3931. BUFFER_TRACE(parent_bh,
  3932. "call ext4_handle_dirty_metadata");
  3933. ext4_handle_dirty_metadata(handle,
  3934. inode,
  3935. parent_bh);
  3936. }
  3937. }
  3938. }
  3939. } else {
  3940. /* We have reached the bottom of the tree. */
  3941. BUFFER_TRACE(parent_bh, "free data blocks");
  3942. ext4_free_data(handle, inode, parent_bh, first, last);
  3943. }
  3944. }
  3945. int ext4_can_truncate(struct inode *inode)
  3946. {
  3947. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  3948. return 0;
  3949. if (S_ISREG(inode->i_mode))
  3950. return 1;
  3951. if (S_ISDIR(inode->i_mode))
  3952. return 1;
  3953. if (S_ISLNK(inode->i_mode))
  3954. return !ext4_inode_is_fast_symlink(inode);
  3955. return 0;
  3956. }
  3957. /*
  3958. * ext4_truncate()
  3959. *
  3960. * We block out ext4_get_block() block instantiations across the entire
  3961. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  3962. * simultaneously on behalf of the same inode.
  3963. *
  3964. * As we work through the truncate and commmit bits of it to the journal there
  3965. * is one core, guiding principle: the file's tree must always be consistent on
  3966. * disk. We must be able to restart the truncate after a crash.
  3967. *
  3968. * The file's tree may be transiently inconsistent in memory (although it
  3969. * probably isn't), but whenever we close off and commit a journal transaction,
  3970. * the contents of (the filesystem + the journal) must be consistent and
  3971. * restartable. It's pretty simple, really: bottom up, right to left (although
  3972. * left-to-right works OK too).
  3973. *
  3974. * Note that at recovery time, journal replay occurs *before* the restart of
  3975. * truncate against the orphan inode list.
  3976. *
  3977. * The committed inode has the new, desired i_size (which is the same as
  3978. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  3979. * that this inode's truncate did not complete and it will again call
  3980. * ext4_truncate() to have another go. So there will be instantiated blocks
  3981. * to the right of the truncation point in a crashed ext4 filesystem. But
  3982. * that's fine - as long as they are linked from the inode, the post-crash
  3983. * ext4_truncate() run will find them and release them.
  3984. */
  3985. void ext4_truncate(struct inode *inode)
  3986. {
  3987. handle_t *handle;
  3988. struct ext4_inode_info *ei = EXT4_I(inode);
  3989. __le32 *i_data = ei->i_data;
  3990. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  3991. struct address_space *mapping = inode->i_mapping;
  3992. ext4_lblk_t offsets[4];
  3993. Indirect chain[4];
  3994. Indirect *partial;
  3995. __le32 nr = 0;
  3996. int n;
  3997. ext4_lblk_t last_block;
  3998. unsigned blocksize = inode->i_sb->s_blocksize;
  3999. if (!ext4_can_truncate(inode))
  4000. return;
  4001. if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
  4002. ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
  4003. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  4004. ext4_ext_truncate(inode);
  4005. return;
  4006. }
  4007. handle = start_transaction(inode);
  4008. if (IS_ERR(handle))
  4009. return; /* AKPM: return what? */
  4010. last_block = (inode->i_size + blocksize-1)
  4011. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  4012. if (inode->i_size & (blocksize - 1))
  4013. if (ext4_block_truncate_page(handle, mapping, inode->i_size))
  4014. goto out_stop;
  4015. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  4016. if (n == 0)
  4017. goto out_stop; /* error */
  4018. /*
  4019. * OK. This truncate is going to happen. We add the inode to the
  4020. * orphan list, so that if this truncate spans multiple transactions,
  4021. * and we crash, we will resume the truncate when the filesystem
  4022. * recovers. It also marks the inode dirty, to catch the new size.
  4023. *
  4024. * Implication: the file must always be in a sane, consistent
  4025. * truncatable state while each transaction commits.
  4026. */
  4027. if (ext4_orphan_add(handle, inode))
  4028. goto out_stop;
  4029. /*
  4030. * From here we block out all ext4_get_block() callers who want to
  4031. * modify the block allocation tree.
  4032. */
  4033. down_write(&ei->i_data_sem);
  4034. ext4_discard_preallocations(inode);
  4035. /*
  4036. * The orphan list entry will now protect us from any crash which
  4037. * occurs before the truncate completes, so it is now safe to propagate
  4038. * the new, shorter inode size (held for now in i_size) into the
  4039. * on-disk inode. We do this via i_disksize, which is the value which
  4040. * ext4 *really* writes onto the disk inode.
  4041. */
  4042. ei->i_disksize = inode->i_size;
  4043. if (n == 1) { /* direct blocks */
  4044. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  4045. i_data + EXT4_NDIR_BLOCKS);
  4046. goto do_indirects;
  4047. }
  4048. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  4049. /* Kill the top of shared branch (not detached) */
  4050. if (nr) {
  4051. if (partial == chain) {
  4052. /* Shared branch grows from the inode */
  4053. ext4_free_branches(handle, inode, NULL,
  4054. &nr, &nr+1, (chain+n-1) - partial);
  4055. *partial->p = 0;
  4056. /*
  4057. * We mark the inode dirty prior to restart,
  4058. * and prior to stop. No need for it here.
  4059. */
  4060. } else {
  4061. /* Shared branch grows from an indirect block */
  4062. BUFFER_TRACE(partial->bh, "get_write_access");
  4063. ext4_free_branches(handle, inode, partial->bh,
  4064. partial->p,
  4065. partial->p+1, (chain+n-1) - partial);
  4066. }
  4067. }
  4068. /* Clear the ends of indirect blocks on the shared branch */
  4069. while (partial > chain) {
  4070. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  4071. (__le32*)partial->bh->b_data+addr_per_block,
  4072. (chain+n-1) - partial);
  4073. BUFFER_TRACE(partial->bh, "call brelse");
  4074. brelse(partial->bh);
  4075. partial--;
  4076. }
  4077. do_indirects:
  4078. /* Kill the remaining (whole) subtrees */
  4079. switch (offsets[0]) {
  4080. default:
  4081. nr = i_data[EXT4_IND_BLOCK];
  4082. if (nr) {
  4083. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  4084. i_data[EXT4_IND_BLOCK] = 0;
  4085. }
  4086. case EXT4_IND_BLOCK:
  4087. nr = i_data[EXT4_DIND_BLOCK];
  4088. if (nr) {
  4089. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  4090. i_data[EXT4_DIND_BLOCK] = 0;
  4091. }
  4092. case EXT4_DIND_BLOCK:
  4093. nr = i_data[EXT4_TIND_BLOCK];
  4094. if (nr) {
  4095. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  4096. i_data[EXT4_TIND_BLOCK] = 0;
  4097. }
  4098. case EXT4_TIND_BLOCK:
  4099. ;
  4100. }
  4101. up_write(&ei->i_data_sem);
  4102. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  4103. ext4_mark_inode_dirty(handle, inode);
  4104. /*
  4105. * In a multi-transaction truncate, we only make the final transaction
  4106. * synchronous
  4107. */
  4108. if (IS_SYNC(inode))
  4109. ext4_handle_sync(handle);
  4110. out_stop:
  4111. /*
  4112. * If this was a simple ftruncate(), and the file will remain alive
  4113. * then we need to clear up the orphan record which we created above.
  4114. * However, if this was a real unlink then we were called by
  4115. * ext4_delete_inode(), and we allow that function to clean up the
  4116. * orphan info for us.
  4117. */
  4118. if (inode->i_nlink)
  4119. ext4_orphan_del(handle, inode);
  4120. ext4_journal_stop(handle);
  4121. }
  4122. /*
  4123. * ext4_get_inode_loc returns with an extra refcount against the inode's
  4124. * underlying buffer_head on success. If 'in_mem' is true, we have all
  4125. * data in memory that is needed to recreate the on-disk version of this
  4126. * inode.
  4127. */
  4128. static int __ext4_get_inode_loc(struct inode *inode,
  4129. struct ext4_iloc *iloc, int in_mem)
  4130. {
  4131. struct ext4_group_desc *gdp;
  4132. struct buffer_head *bh;
  4133. struct super_block *sb = inode->i_sb;
  4134. ext4_fsblk_t block;
  4135. int inodes_per_block, inode_offset;
  4136. iloc->bh = NULL;
  4137. if (!ext4_valid_inum(sb, inode->i_ino))
  4138. return -EIO;
  4139. iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
  4140. gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
  4141. if (!gdp)
  4142. return -EIO;
  4143. /*
  4144. * Figure out the offset within the block group inode table
  4145. */
  4146. inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
  4147. inode_offset = ((inode->i_ino - 1) %
  4148. EXT4_INODES_PER_GROUP(sb));
  4149. block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
  4150. iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
  4151. bh = sb_getblk(sb, block);
  4152. if (!bh) {
  4153. ext4_error(sb, "ext4_get_inode_loc", "unable to read "
  4154. "inode block - inode=%lu, block=%llu",
  4155. inode->i_ino, block);
  4156. return -EIO;
  4157. }
  4158. if (!buffer_uptodate(bh)) {
  4159. lock_buffer(bh);
  4160. /*
  4161. * If the buffer has the write error flag, we have failed
  4162. * to write out another inode in the same block. In this
  4163. * case, we don't have to read the block because we may
  4164. * read the old inode data successfully.
  4165. */
  4166. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  4167. set_buffer_uptodate(bh);
  4168. if (buffer_uptodate(bh)) {
  4169. /* someone brought it uptodate while we waited */
  4170. unlock_buffer(bh);
  4171. goto has_buffer;
  4172. }
  4173. /*
  4174. * If we have all information of the inode in memory and this
  4175. * is the only valid inode in the block, we need not read the
  4176. * block.
  4177. */
  4178. if (in_mem) {
  4179. struct buffer_head *bitmap_bh;
  4180. int i, start;
  4181. start = inode_offset & ~(inodes_per_block - 1);
  4182. /* Is the inode bitmap in cache? */
  4183. bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
  4184. if (!bitmap_bh)
  4185. goto make_io;
  4186. /*
  4187. * If the inode bitmap isn't in cache then the
  4188. * optimisation may end up performing two reads instead
  4189. * of one, so skip it.
  4190. */
  4191. if (!buffer_uptodate(bitmap_bh)) {
  4192. brelse(bitmap_bh);
  4193. goto make_io;
  4194. }
  4195. for (i = start; i < start + inodes_per_block; i++) {
  4196. if (i == inode_offset)
  4197. continue;
  4198. if (ext4_test_bit(i, bitmap_bh->b_data))
  4199. break;
  4200. }
  4201. brelse(bitmap_bh);
  4202. if (i == start + inodes_per_block) {
  4203. /* all other inodes are free, so skip I/O */
  4204. memset(bh->b_data, 0, bh->b_size);
  4205. set_buffer_uptodate(bh);
  4206. unlock_buffer(bh);
  4207. goto has_buffer;
  4208. }
  4209. }
  4210. make_io:
  4211. /*
  4212. * If we need to do any I/O, try to pre-readahead extra
  4213. * blocks from the inode table.
  4214. */
  4215. if (EXT4_SB(sb)->s_inode_readahead_blks) {
  4216. ext4_fsblk_t b, end, table;
  4217. unsigned num;
  4218. table = ext4_inode_table(sb, gdp);
  4219. /* s_inode_readahead_blks is always a power of 2 */
  4220. b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
  4221. if (table > b)
  4222. b = table;
  4223. end = b + EXT4_SB(sb)->s_inode_readahead_blks;
  4224. num = EXT4_INODES_PER_GROUP(sb);
  4225. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4226. EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
  4227. num -= ext4_itable_unused_count(sb, gdp);
  4228. table += num / inodes_per_block;
  4229. if (end > table)
  4230. end = table;
  4231. while (b <= end)
  4232. sb_breadahead(sb, b++);
  4233. }
  4234. /*
  4235. * There are other valid inodes in the buffer, this inode
  4236. * has in-inode xattrs, or we don't have this inode in memory.
  4237. * Read the block from disk.
  4238. */
  4239. get_bh(bh);
  4240. bh->b_end_io = end_buffer_read_sync;
  4241. submit_bh(READ_META, bh);
  4242. wait_on_buffer(bh);
  4243. if (!buffer_uptodate(bh)) {
  4244. ext4_error(sb, __func__,
  4245. "unable to read inode block - inode=%lu, "
  4246. "block=%llu", inode->i_ino, block);
  4247. brelse(bh);
  4248. return -EIO;
  4249. }
  4250. }
  4251. has_buffer:
  4252. iloc->bh = bh;
  4253. return 0;
  4254. }
  4255. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  4256. {
  4257. /* We have all inode data except xattrs in memory here. */
  4258. return __ext4_get_inode_loc(inode, iloc,
  4259. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  4260. }
  4261. void ext4_set_inode_flags(struct inode *inode)
  4262. {
  4263. unsigned int flags = EXT4_I(inode)->i_flags;
  4264. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  4265. if (flags & EXT4_SYNC_FL)
  4266. inode->i_flags |= S_SYNC;
  4267. if (flags & EXT4_APPEND_FL)
  4268. inode->i_flags |= S_APPEND;
  4269. if (flags & EXT4_IMMUTABLE_FL)
  4270. inode->i_flags |= S_IMMUTABLE;
  4271. if (flags & EXT4_NOATIME_FL)
  4272. inode->i_flags |= S_NOATIME;
  4273. if (flags & EXT4_DIRSYNC_FL)
  4274. inode->i_flags |= S_DIRSYNC;
  4275. }
  4276. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  4277. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  4278. {
  4279. unsigned int flags = ei->vfs_inode.i_flags;
  4280. ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  4281. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
  4282. if (flags & S_SYNC)
  4283. ei->i_flags |= EXT4_SYNC_FL;
  4284. if (flags & S_APPEND)
  4285. ei->i_flags |= EXT4_APPEND_FL;
  4286. if (flags & S_IMMUTABLE)
  4287. ei->i_flags |= EXT4_IMMUTABLE_FL;
  4288. if (flags & S_NOATIME)
  4289. ei->i_flags |= EXT4_NOATIME_FL;
  4290. if (flags & S_DIRSYNC)
  4291. ei->i_flags |= EXT4_DIRSYNC_FL;
  4292. }
  4293. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  4294. struct ext4_inode_info *ei)
  4295. {
  4296. blkcnt_t i_blocks ;
  4297. struct inode *inode = &(ei->vfs_inode);
  4298. struct super_block *sb = inode->i_sb;
  4299. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4300. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  4301. /* we are using combined 48 bit field */
  4302. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  4303. le32_to_cpu(raw_inode->i_blocks_lo);
  4304. if (ei->i_flags & EXT4_HUGE_FILE_FL) {
  4305. /* i_blocks represent file system block size */
  4306. return i_blocks << (inode->i_blkbits - 9);
  4307. } else {
  4308. return i_blocks;
  4309. }
  4310. } else {
  4311. return le32_to_cpu(raw_inode->i_blocks_lo);
  4312. }
  4313. }
  4314. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  4315. {
  4316. struct ext4_iloc iloc;
  4317. struct ext4_inode *raw_inode;
  4318. struct ext4_inode_info *ei;
  4319. struct buffer_head *bh;
  4320. struct inode *inode;
  4321. long ret;
  4322. int block;
  4323. inode = iget_locked(sb, ino);
  4324. if (!inode)
  4325. return ERR_PTR(-ENOMEM);
  4326. if (!(inode->i_state & I_NEW))
  4327. return inode;
  4328. ei = EXT4_I(inode);
  4329. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  4330. if (ret < 0)
  4331. goto bad_inode;
  4332. bh = iloc.bh;
  4333. raw_inode = ext4_raw_inode(&iloc);
  4334. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  4335. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  4336. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  4337. if (!(test_opt(inode->i_sb, NO_UID32))) {
  4338. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  4339. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  4340. }
  4341. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  4342. ei->i_state = 0;
  4343. ei->i_dir_start_lookup = 0;
  4344. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  4345. /* We now have enough fields to check if the inode was active or not.
  4346. * This is needed because nfsd might try to access dead inodes
  4347. * the test is that same one that e2fsck uses
  4348. * NeilBrown 1999oct15
  4349. */
  4350. if (inode->i_nlink == 0) {
  4351. if (inode->i_mode == 0 ||
  4352. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  4353. /* this inode is deleted */
  4354. brelse(bh);
  4355. ret = -ESTALE;
  4356. goto bad_inode;
  4357. }
  4358. /* The only unlinked inodes we let through here have
  4359. * valid i_mode and are being read by the orphan
  4360. * recovery code: that's fine, we're about to complete
  4361. * the process of deleting those. */
  4362. }
  4363. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  4364. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  4365. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  4366. if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
  4367. ei->i_file_acl |=
  4368. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  4369. inode->i_size = ext4_isize(raw_inode);
  4370. ei->i_disksize = inode->i_size;
  4371. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  4372. ei->i_block_group = iloc.block_group;
  4373. ei->i_last_alloc_group = ~0;
  4374. /*
  4375. * NOTE! The in-memory inode i_data array is in little-endian order
  4376. * even on big-endian machines: we do NOT byteswap the block numbers!
  4377. */
  4378. for (block = 0; block < EXT4_N_BLOCKS; block++)
  4379. ei->i_data[block] = raw_inode->i_block[block];
  4380. INIT_LIST_HEAD(&ei->i_orphan);
  4381. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  4382. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  4383. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  4384. EXT4_INODE_SIZE(inode->i_sb)) {
  4385. brelse(bh);
  4386. ret = -EIO;
  4387. goto bad_inode;
  4388. }
  4389. if (ei->i_extra_isize == 0) {
  4390. /* The extra space is currently unused. Use it. */
  4391. ei->i_extra_isize = sizeof(struct ext4_inode) -
  4392. EXT4_GOOD_OLD_INODE_SIZE;
  4393. } else {
  4394. __le32 *magic = (void *)raw_inode +
  4395. EXT4_GOOD_OLD_INODE_SIZE +
  4396. ei->i_extra_isize;
  4397. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  4398. ei->i_state |= EXT4_STATE_XATTR;
  4399. }
  4400. } else
  4401. ei->i_extra_isize = 0;
  4402. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  4403. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  4404. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  4405. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  4406. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  4407. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  4408. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  4409. inode->i_version |=
  4410. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  4411. }
  4412. ret = 0;
  4413. if (ei->i_file_acl &&
  4414. ((ei->i_file_acl <
  4415. (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
  4416. EXT4_SB(sb)->s_gdb_count)) ||
  4417. (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
  4418. ext4_error(sb, __func__,
  4419. "bad extended attribute block %llu in inode #%lu",
  4420. ei->i_file_acl, inode->i_ino);
  4421. ret = -EIO;
  4422. goto bad_inode;
  4423. } else if (ei->i_flags & EXT4_EXTENTS_FL) {
  4424. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  4425. (S_ISLNK(inode->i_mode) &&
  4426. !ext4_inode_is_fast_symlink(inode)))
  4427. /* Validate extent which is part of inode */
  4428. ret = ext4_ext_check_inode(inode);
  4429. } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  4430. (S_ISLNK(inode->i_mode) &&
  4431. !ext4_inode_is_fast_symlink(inode))) {
  4432. /* Validate block references which are part of inode */
  4433. ret = ext4_check_inode_blockref(inode);
  4434. }
  4435. if (ret) {
  4436. brelse(bh);
  4437. goto bad_inode;
  4438. }
  4439. if (S_ISREG(inode->i_mode)) {
  4440. inode->i_op = &ext4_file_inode_operations;
  4441. inode->i_fop = &ext4_file_operations;
  4442. ext4_set_aops(inode);
  4443. } else if (S_ISDIR(inode->i_mode)) {
  4444. inode->i_op = &ext4_dir_inode_operations;
  4445. inode->i_fop = &ext4_dir_operations;
  4446. } else if (S_ISLNK(inode->i_mode)) {
  4447. if (ext4_inode_is_fast_symlink(inode)) {
  4448. inode->i_op = &ext4_fast_symlink_inode_operations;
  4449. nd_terminate_link(ei->i_data, inode->i_size,
  4450. sizeof(ei->i_data) - 1);
  4451. } else {
  4452. inode->i_op = &ext4_symlink_inode_operations;
  4453. ext4_set_aops(inode);
  4454. }
  4455. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  4456. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  4457. inode->i_op = &ext4_special_inode_operations;
  4458. if (raw_inode->i_block[0])
  4459. init_special_inode(inode, inode->i_mode,
  4460. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  4461. else
  4462. init_special_inode(inode, inode->i_mode,
  4463. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  4464. } else {
  4465. brelse(bh);
  4466. ret = -EIO;
  4467. ext4_error(inode->i_sb, __func__,
  4468. "bogus i_mode (%o) for inode=%lu",
  4469. inode->i_mode, inode->i_ino);
  4470. goto bad_inode;
  4471. }
  4472. brelse(iloc.bh);
  4473. ext4_set_inode_flags(inode);
  4474. unlock_new_inode(inode);
  4475. return inode;
  4476. bad_inode:
  4477. iget_failed(inode);
  4478. return ERR_PTR(ret);
  4479. }
  4480. static int ext4_inode_blocks_set(handle_t *handle,
  4481. struct ext4_inode *raw_inode,
  4482. struct ext4_inode_info *ei)
  4483. {
  4484. struct inode *inode = &(ei->vfs_inode);
  4485. u64 i_blocks = inode->i_blocks;
  4486. struct super_block *sb = inode->i_sb;
  4487. if (i_blocks <= ~0U) {
  4488. /*
  4489. * i_blocks can be represnted in a 32 bit variable
  4490. * as multiple of 512 bytes
  4491. */
  4492. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4493. raw_inode->i_blocks_high = 0;
  4494. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  4495. return 0;
  4496. }
  4497. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
  4498. return -EFBIG;
  4499. if (i_blocks <= 0xffffffffffffULL) {
  4500. /*
  4501. * i_blocks can be represented in a 48 bit variable
  4502. * as multiple of 512 bytes
  4503. */
  4504. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4505. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  4506. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  4507. } else {
  4508. ei->i_flags |= EXT4_HUGE_FILE_FL;
  4509. /* i_block is stored in file system block size */
  4510. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  4511. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  4512. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  4513. }
  4514. return 0;
  4515. }
  4516. /*
  4517. * Post the struct inode info into an on-disk inode location in the
  4518. * buffer-cache. This gobbles the caller's reference to the
  4519. * buffer_head in the inode location struct.
  4520. *
  4521. * The caller must have write access to iloc->bh.
  4522. */
  4523. static int ext4_do_update_inode(handle_t *handle,
  4524. struct inode *inode,
  4525. struct ext4_iloc *iloc)
  4526. {
  4527. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  4528. struct ext4_inode_info *ei = EXT4_I(inode);
  4529. struct buffer_head *bh = iloc->bh;
  4530. int err = 0, rc, block;
  4531. /* For fields not not tracking in the in-memory inode,
  4532. * initialise them to zero for new inodes. */
  4533. if (ei->i_state & EXT4_STATE_NEW)
  4534. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  4535. ext4_get_inode_flags(ei);
  4536. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  4537. if (!(test_opt(inode->i_sb, NO_UID32))) {
  4538. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  4539. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  4540. /*
  4541. * Fix up interoperability with old kernels. Otherwise, old inodes get
  4542. * re-used with the upper 16 bits of the uid/gid intact
  4543. */
  4544. if (!ei->i_dtime) {
  4545. raw_inode->i_uid_high =
  4546. cpu_to_le16(high_16_bits(inode->i_uid));
  4547. raw_inode->i_gid_high =
  4548. cpu_to_le16(high_16_bits(inode->i_gid));
  4549. } else {
  4550. raw_inode->i_uid_high = 0;
  4551. raw_inode->i_gid_high = 0;
  4552. }
  4553. } else {
  4554. raw_inode->i_uid_low =
  4555. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  4556. raw_inode->i_gid_low =
  4557. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  4558. raw_inode->i_uid_high = 0;
  4559. raw_inode->i_gid_high = 0;
  4560. }
  4561. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  4562. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  4563. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  4564. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  4565. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  4566. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  4567. goto out_brelse;
  4568. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  4569. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  4570. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  4571. cpu_to_le32(EXT4_OS_HURD))
  4572. raw_inode->i_file_acl_high =
  4573. cpu_to_le16(ei->i_file_acl >> 32);
  4574. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  4575. ext4_isize_set(raw_inode, ei->i_disksize);
  4576. if (ei->i_disksize > 0x7fffffffULL) {
  4577. struct super_block *sb = inode->i_sb;
  4578. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  4579. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  4580. EXT4_SB(sb)->s_es->s_rev_level ==
  4581. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  4582. /* If this is the first large file
  4583. * created, add a flag to the superblock.
  4584. */
  4585. err = ext4_journal_get_write_access(handle,
  4586. EXT4_SB(sb)->s_sbh);
  4587. if (err)
  4588. goto out_brelse;
  4589. ext4_update_dynamic_rev(sb);
  4590. EXT4_SET_RO_COMPAT_FEATURE(sb,
  4591. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  4592. sb->s_dirt = 1;
  4593. ext4_handle_sync(handle);
  4594. err = ext4_handle_dirty_metadata(handle, inode,
  4595. EXT4_SB(sb)->s_sbh);
  4596. }
  4597. }
  4598. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  4599. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  4600. if (old_valid_dev(inode->i_rdev)) {
  4601. raw_inode->i_block[0] =
  4602. cpu_to_le32(old_encode_dev(inode->i_rdev));
  4603. raw_inode->i_block[1] = 0;
  4604. } else {
  4605. raw_inode->i_block[0] = 0;
  4606. raw_inode->i_block[1] =
  4607. cpu_to_le32(new_encode_dev(inode->i_rdev));
  4608. raw_inode->i_block[2] = 0;
  4609. }
  4610. } else
  4611. for (block = 0; block < EXT4_N_BLOCKS; block++)
  4612. raw_inode->i_block[block] = ei->i_data[block];
  4613. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  4614. if (ei->i_extra_isize) {
  4615. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  4616. raw_inode->i_version_hi =
  4617. cpu_to_le32(inode->i_version >> 32);
  4618. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  4619. }
  4620. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  4621. rc = ext4_handle_dirty_metadata(handle, inode, bh);
  4622. if (!err)
  4623. err = rc;
  4624. ei->i_state &= ~EXT4_STATE_NEW;
  4625. out_brelse:
  4626. brelse(bh);
  4627. ext4_std_error(inode->i_sb, err);
  4628. return err;
  4629. }
  4630. /*
  4631. * ext4_write_inode()
  4632. *
  4633. * We are called from a few places:
  4634. *
  4635. * - Within generic_file_write() for O_SYNC files.
  4636. * Here, there will be no transaction running. We wait for any running
  4637. * trasnaction to commit.
  4638. *
  4639. * - Within sys_sync(), kupdate and such.
  4640. * We wait on commit, if tol to.
  4641. *
  4642. * - Within prune_icache() (PF_MEMALLOC == true)
  4643. * Here we simply return. We can't afford to block kswapd on the
  4644. * journal commit.
  4645. *
  4646. * In all cases it is actually safe for us to return without doing anything,
  4647. * because the inode has been copied into a raw inode buffer in
  4648. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  4649. * knfsd.
  4650. *
  4651. * Note that we are absolutely dependent upon all inode dirtiers doing the
  4652. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  4653. * which we are interested.
  4654. *
  4655. * It would be a bug for them to not do this. The code:
  4656. *
  4657. * mark_inode_dirty(inode)
  4658. * stuff();
  4659. * inode->i_size = expr;
  4660. *
  4661. * is in error because a kswapd-driven write_inode() could occur while
  4662. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  4663. * will no longer be on the superblock's dirty inode list.
  4664. */
  4665. int ext4_write_inode(struct inode *inode, int wait)
  4666. {
  4667. int err;
  4668. if (current->flags & PF_MEMALLOC)
  4669. return 0;
  4670. if (EXT4_SB(inode->i_sb)->s_journal) {
  4671. if (ext4_journal_current_handle()) {
  4672. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  4673. dump_stack();
  4674. return -EIO;
  4675. }
  4676. if (!wait)
  4677. return 0;
  4678. err = ext4_force_commit(inode->i_sb);
  4679. } else {
  4680. struct ext4_iloc iloc;
  4681. err = ext4_get_inode_loc(inode, &iloc);
  4682. if (err)
  4683. return err;
  4684. if (wait)
  4685. sync_dirty_buffer(iloc.bh);
  4686. if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
  4687. ext4_error(inode->i_sb, __func__,
  4688. "IO error syncing inode, "
  4689. "inode=%lu, block=%llu",
  4690. inode->i_ino,
  4691. (unsigned long long)iloc.bh->b_blocknr);
  4692. err = -EIO;
  4693. }
  4694. }
  4695. return err;
  4696. }
  4697. /*
  4698. * ext4_setattr()
  4699. *
  4700. * Called from notify_change.
  4701. *
  4702. * We want to trap VFS attempts to truncate the file as soon as
  4703. * possible. In particular, we want to make sure that when the VFS
  4704. * shrinks i_size, we put the inode on the orphan list and modify
  4705. * i_disksize immediately, so that during the subsequent flushing of
  4706. * dirty pages and freeing of disk blocks, we can guarantee that any
  4707. * commit will leave the blocks being flushed in an unused state on
  4708. * disk. (On recovery, the inode will get truncated and the blocks will
  4709. * be freed, so we have a strong guarantee that no future commit will
  4710. * leave these blocks visible to the user.)
  4711. *
  4712. * Another thing we have to assure is that if we are in ordered mode
  4713. * and inode is still attached to the committing transaction, we must
  4714. * we start writeout of all the dirty pages which are being truncated.
  4715. * This way we are sure that all the data written in the previous
  4716. * transaction are already on disk (truncate waits for pages under
  4717. * writeback).
  4718. *
  4719. * Called with inode->i_mutex down.
  4720. */
  4721. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  4722. {
  4723. struct inode *inode = dentry->d_inode;
  4724. int error, rc = 0;
  4725. const unsigned int ia_valid = attr->ia_valid;
  4726. error = inode_change_ok(inode, attr);
  4727. if (error)
  4728. return error;
  4729. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  4730. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  4731. handle_t *handle;
  4732. /* (user+group)*(old+new) structure, inode write (sb,
  4733. * inode block, ? - but truncate inode update has it) */
  4734. handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
  4735. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  4736. if (IS_ERR(handle)) {
  4737. error = PTR_ERR(handle);
  4738. goto err_out;
  4739. }
  4740. error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
  4741. if (error) {
  4742. ext4_journal_stop(handle);
  4743. return error;
  4744. }
  4745. /* Update corresponding info in inode so that everything is in
  4746. * one transaction */
  4747. if (attr->ia_valid & ATTR_UID)
  4748. inode->i_uid = attr->ia_uid;
  4749. if (attr->ia_valid & ATTR_GID)
  4750. inode->i_gid = attr->ia_gid;
  4751. error = ext4_mark_inode_dirty(handle, inode);
  4752. ext4_journal_stop(handle);
  4753. }
  4754. if (attr->ia_valid & ATTR_SIZE) {
  4755. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
  4756. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  4757. if (attr->ia_size > sbi->s_bitmap_maxbytes) {
  4758. error = -EFBIG;
  4759. goto err_out;
  4760. }
  4761. }
  4762. }
  4763. if (S_ISREG(inode->i_mode) &&
  4764. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  4765. handle_t *handle;
  4766. handle = ext4_journal_start(inode, 3);
  4767. if (IS_ERR(handle)) {
  4768. error = PTR_ERR(handle);
  4769. goto err_out;
  4770. }
  4771. error = ext4_orphan_add(handle, inode);
  4772. EXT4_I(inode)->i_disksize = attr->ia_size;
  4773. rc = ext4_mark_inode_dirty(handle, inode);
  4774. if (!error)
  4775. error = rc;
  4776. ext4_journal_stop(handle);
  4777. if (ext4_should_order_data(inode)) {
  4778. error = ext4_begin_ordered_truncate(inode,
  4779. attr->ia_size);
  4780. if (error) {
  4781. /* Do as much error cleanup as possible */
  4782. handle = ext4_journal_start(inode, 3);
  4783. if (IS_ERR(handle)) {
  4784. ext4_orphan_del(NULL, inode);
  4785. goto err_out;
  4786. }
  4787. ext4_orphan_del(handle, inode);
  4788. ext4_journal_stop(handle);
  4789. goto err_out;
  4790. }
  4791. }
  4792. }
  4793. rc = inode_setattr(inode, attr);
  4794. /* If inode_setattr's call to ext4_truncate failed to get a
  4795. * transaction handle at all, we need to clean up the in-core
  4796. * orphan list manually. */
  4797. if (inode->i_nlink)
  4798. ext4_orphan_del(NULL, inode);
  4799. if (!rc && (ia_valid & ATTR_MODE))
  4800. rc = ext4_acl_chmod(inode);
  4801. err_out:
  4802. ext4_std_error(inode->i_sb, error);
  4803. if (!error)
  4804. error = rc;
  4805. return error;
  4806. }
  4807. int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
  4808. struct kstat *stat)
  4809. {
  4810. struct inode *inode;
  4811. unsigned long delalloc_blocks;
  4812. inode = dentry->d_inode;
  4813. generic_fillattr(inode, stat);
  4814. /*
  4815. * We can't update i_blocks if the block allocation is delayed
  4816. * otherwise in the case of system crash before the real block
  4817. * allocation is done, we will have i_blocks inconsistent with
  4818. * on-disk file blocks.
  4819. * We always keep i_blocks updated together with real
  4820. * allocation. But to not confuse with user, stat
  4821. * will return the blocks that include the delayed allocation
  4822. * blocks for this file.
  4823. */
  4824. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  4825. delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  4826. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  4827. stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
  4828. return 0;
  4829. }
  4830. static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
  4831. int chunk)
  4832. {
  4833. int indirects;
  4834. /* if nrblocks are contiguous */
  4835. if (chunk) {
  4836. /*
  4837. * With N contiguous data blocks, it need at most
  4838. * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
  4839. * 2 dindirect blocks
  4840. * 1 tindirect block
  4841. */
  4842. indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
  4843. return indirects + 3;
  4844. }
  4845. /*
  4846. * if nrblocks are not contiguous, worse case, each block touch
  4847. * a indirect block, and each indirect block touch a double indirect
  4848. * block, plus a triple indirect block
  4849. */
  4850. indirects = nrblocks * 2 + 1;
  4851. return indirects;
  4852. }
  4853. static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4854. {
  4855. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
  4856. return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
  4857. return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
  4858. }
  4859. /*
  4860. * Account for index blocks, block groups bitmaps and block group
  4861. * descriptor blocks if modify datablocks and index blocks
  4862. * worse case, the indexs blocks spread over different block groups
  4863. *
  4864. * If datablocks are discontiguous, they are possible to spread over
  4865. * different block groups too. If they are contiugous, with flexbg,
  4866. * they could still across block group boundary.
  4867. *
  4868. * Also account for superblock, inode, quota and xattr blocks
  4869. */
  4870. int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  4871. {
  4872. ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
  4873. int gdpblocks;
  4874. int idxblocks;
  4875. int ret = 0;
  4876. /*
  4877. * How many index blocks need to touch to modify nrblocks?
  4878. * The "Chunk" flag indicating whether the nrblocks is
  4879. * physically contiguous on disk
  4880. *
  4881. * For Direct IO and fallocate, they calls get_block to allocate
  4882. * one single extent at a time, so they could set the "Chunk" flag
  4883. */
  4884. idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
  4885. ret = idxblocks;
  4886. /*
  4887. * Now let's see how many group bitmaps and group descriptors need
  4888. * to account
  4889. */
  4890. groups = idxblocks;
  4891. if (chunk)
  4892. groups += 1;
  4893. else
  4894. groups += nrblocks;
  4895. gdpblocks = groups;
  4896. if (groups > ngroups)
  4897. groups = ngroups;
  4898. if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
  4899. gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
  4900. /* bitmaps and block group descriptor blocks */
  4901. ret += groups + gdpblocks;
  4902. /* Blocks for super block, inode, quota and xattr blocks */
  4903. ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
  4904. return ret;
  4905. }
  4906. /*
  4907. * Calulate the total number of credits to reserve to fit
  4908. * the modification of a single pages into a single transaction,
  4909. * which may include multiple chunks of block allocations.
  4910. *
  4911. * This could be called via ext4_write_begin()
  4912. *
  4913. * We need to consider the worse case, when
  4914. * one new block per extent.
  4915. */
  4916. int ext4_writepage_trans_blocks(struct inode *inode)
  4917. {
  4918. int bpp = ext4_journal_blocks_per_page(inode);
  4919. int ret;
  4920. ret = ext4_meta_trans_blocks(inode, bpp, 0);
  4921. /* Account for data blocks for journalled mode */
  4922. if (ext4_should_journal_data(inode))
  4923. ret += bpp;
  4924. return ret;
  4925. }
  4926. /*
  4927. * Calculate the journal credits for a chunk of data modification.
  4928. *
  4929. * This is called from DIO, fallocate or whoever calling
  4930. * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
  4931. *
  4932. * journal buffers for data blocks are not included here, as DIO
  4933. * and fallocate do no need to journal data buffers.
  4934. */
  4935. int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
  4936. {
  4937. return ext4_meta_trans_blocks(inode, nrblocks, 1);
  4938. }
  4939. /*
  4940. * The caller must have previously called ext4_reserve_inode_write().
  4941. * Give this, we know that the caller already has write access to iloc->bh.
  4942. */
  4943. int ext4_mark_iloc_dirty(handle_t *handle,
  4944. struct inode *inode, struct ext4_iloc *iloc)
  4945. {
  4946. int err = 0;
  4947. if (test_opt(inode->i_sb, I_VERSION))
  4948. inode_inc_iversion(inode);
  4949. /* the do_update_inode consumes one bh->b_count */
  4950. get_bh(iloc->bh);
  4951. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  4952. err = ext4_do_update_inode(handle, inode, iloc);
  4953. put_bh(iloc->bh);
  4954. return err;
  4955. }
  4956. /*
  4957. * On success, We end up with an outstanding reference count against
  4958. * iloc->bh. This _must_ be cleaned up later.
  4959. */
  4960. int
  4961. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  4962. struct ext4_iloc *iloc)
  4963. {
  4964. int err;
  4965. err = ext4_get_inode_loc(inode, iloc);
  4966. if (!err) {
  4967. BUFFER_TRACE(iloc->bh, "get_write_access");
  4968. err = ext4_journal_get_write_access(handle, iloc->bh);
  4969. if (err) {
  4970. brelse(iloc->bh);
  4971. iloc->bh = NULL;
  4972. }
  4973. }
  4974. ext4_std_error(inode->i_sb, err);
  4975. return err;
  4976. }
  4977. /*
  4978. * Expand an inode by new_extra_isize bytes.
  4979. * Returns 0 on success or negative error number on failure.
  4980. */
  4981. static int ext4_expand_extra_isize(struct inode *inode,
  4982. unsigned int new_extra_isize,
  4983. struct ext4_iloc iloc,
  4984. handle_t *handle)
  4985. {
  4986. struct ext4_inode *raw_inode;
  4987. struct ext4_xattr_ibody_header *header;
  4988. struct ext4_xattr_entry *entry;
  4989. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  4990. return 0;
  4991. raw_inode = ext4_raw_inode(&iloc);
  4992. header = IHDR(inode, raw_inode);
  4993. entry = IFIRST(header);
  4994. /* No extended attributes present */
  4995. if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
  4996. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  4997. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  4998. new_extra_isize);
  4999. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  5000. return 0;
  5001. }
  5002. /* try to expand with EAs present */
  5003. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  5004. raw_inode, handle);
  5005. }
  5006. /*
  5007. * What we do here is to mark the in-core inode as clean with respect to inode
  5008. * dirtiness (it may still be data-dirty).
  5009. * This means that the in-core inode may be reaped by prune_icache
  5010. * without having to perform any I/O. This is a very good thing,
  5011. * because *any* task may call prune_icache - even ones which
  5012. * have a transaction open against a different journal.
  5013. *
  5014. * Is this cheating? Not really. Sure, we haven't written the
  5015. * inode out, but prune_icache isn't a user-visible syncing function.
  5016. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  5017. * we start and wait on commits.
  5018. *
  5019. * Is this efficient/effective? Well, we're being nice to the system
  5020. * by cleaning up our inodes proactively so they can be reaped
  5021. * without I/O. But we are potentially leaving up to five seconds'
  5022. * worth of inodes floating about which prune_icache wants us to
  5023. * write out. One way to fix that would be to get prune_icache()
  5024. * to do a write_super() to free up some memory. It has the desired
  5025. * effect.
  5026. */
  5027. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  5028. {
  5029. struct ext4_iloc iloc;
  5030. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  5031. static unsigned int mnt_count;
  5032. int err, ret;
  5033. might_sleep();
  5034. err = ext4_reserve_inode_write(handle, inode, &iloc);
  5035. if (ext4_handle_valid(handle) &&
  5036. EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  5037. !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
  5038. /*
  5039. * We need extra buffer credits since we may write into EA block
  5040. * with this same handle. If journal_extend fails, then it will
  5041. * only result in a minor loss of functionality for that inode.
  5042. * If this is felt to be critical, then e2fsck should be run to
  5043. * force a large enough s_min_extra_isize.
  5044. */
  5045. if ((jbd2_journal_extend(handle,
  5046. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  5047. ret = ext4_expand_extra_isize(inode,
  5048. sbi->s_want_extra_isize,
  5049. iloc, handle);
  5050. if (ret) {
  5051. EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
  5052. if (mnt_count !=
  5053. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  5054. ext4_warning(inode->i_sb, __func__,
  5055. "Unable to expand inode %lu. Delete"
  5056. " some EAs or run e2fsck.",
  5057. inode->i_ino);
  5058. mnt_count =
  5059. le16_to_cpu(sbi->s_es->s_mnt_count);
  5060. }
  5061. }
  5062. }
  5063. }
  5064. if (!err)
  5065. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  5066. return err;
  5067. }
  5068. /*
  5069. * ext4_dirty_inode() is called from __mark_inode_dirty()
  5070. *
  5071. * We're really interested in the case where a file is being extended.
  5072. * i_size has been changed by generic_commit_write() and we thus need
  5073. * to include the updated inode in the current transaction.
  5074. *
  5075. * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
  5076. * are allocated to the file.
  5077. *
  5078. * If the inode is marked synchronous, we don't honour that here - doing
  5079. * so would cause a commit on atime updates, which we don't bother doing.
  5080. * We handle synchronous inodes at the highest possible level.
  5081. */
  5082. void ext4_dirty_inode(struct inode *inode)
  5083. {
  5084. handle_t *handle;
  5085. handle = ext4_journal_start(inode, 2);
  5086. if (IS_ERR(handle))
  5087. goto out;
  5088. ext4_mark_inode_dirty(handle, inode);
  5089. ext4_journal_stop(handle);
  5090. out:
  5091. return;
  5092. }
  5093. #if 0
  5094. /*
  5095. * Bind an inode's backing buffer_head into this transaction, to prevent
  5096. * it from being flushed to disk early. Unlike
  5097. * ext4_reserve_inode_write, this leaves behind no bh reference and
  5098. * returns no iloc structure, so the caller needs to repeat the iloc
  5099. * lookup to mark the inode dirty later.
  5100. */
  5101. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  5102. {
  5103. struct ext4_iloc iloc;
  5104. int err = 0;
  5105. if (handle) {
  5106. err = ext4_get_inode_loc(inode, &iloc);
  5107. if (!err) {
  5108. BUFFER_TRACE(iloc.bh, "get_write_access");
  5109. err = jbd2_journal_get_write_access(handle, iloc.bh);
  5110. if (!err)
  5111. err = ext4_handle_dirty_metadata(handle,
  5112. inode,
  5113. iloc.bh);
  5114. brelse(iloc.bh);
  5115. }
  5116. }
  5117. ext4_std_error(inode->i_sb, err);
  5118. return err;
  5119. }
  5120. #endif
  5121. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  5122. {
  5123. journal_t *journal;
  5124. handle_t *handle;
  5125. int err;
  5126. /*
  5127. * We have to be very careful here: changing a data block's
  5128. * journaling status dynamically is dangerous. If we write a
  5129. * data block to the journal, change the status and then delete
  5130. * that block, we risk forgetting to revoke the old log record
  5131. * from the journal and so a subsequent replay can corrupt data.
  5132. * So, first we make sure that the journal is empty and that
  5133. * nobody is changing anything.
  5134. */
  5135. journal = EXT4_JOURNAL(inode);
  5136. if (!journal)
  5137. return 0;
  5138. if (is_journal_aborted(journal))
  5139. return -EROFS;
  5140. jbd2_journal_lock_updates(journal);
  5141. jbd2_journal_flush(journal);
  5142. /*
  5143. * OK, there are no updates running now, and all cached data is
  5144. * synced to disk. We are now in a completely consistent state
  5145. * which doesn't have anything in the journal, and we know that
  5146. * no filesystem updates are running, so it is safe to modify
  5147. * the inode's in-core data-journaling state flag now.
  5148. */
  5149. if (val)
  5150. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  5151. else
  5152. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  5153. ext4_set_aops(inode);
  5154. jbd2_journal_unlock_updates(journal);
  5155. /* Finally we can mark the inode as dirty. */
  5156. handle = ext4_journal_start(inode, 1);
  5157. if (IS_ERR(handle))
  5158. return PTR_ERR(handle);
  5159. err = ext4_mark_inode_dirty(handle, inode);
  5160. ext4_handle_sync(handle);
  5161. ext4_journal_stop(handle);
  5162. ext4_std_error(inode->i_sb, err);
  5163. return err;
  5164. }
  5165. static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
  5166. {
  5167. return !buffer_mapped(bh);
  5168. }
  5169. int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  5170. {
  5171. struct page *page = vmf->page;
  5172. loff_t size;
  5173. unsigned long len;
  5174. int ret = -EINVAL;
  5175. void *fsdata;
  5176. struct file *file = vma->vm_file;
  5177. struct inode *inode = file->f_path.dentry->d_inode;
  5178. struct address_space *mapping = inode->i_mapping;
  5179. /*
  5180. * Get i_alloc_sem to stop truncates messing with the inode. We cannot
  5181. * get i_mutex because we are already holding mmap_sem.
  5182. */
  5183. down_read(&inode->i_alloc_sem);
  5184. size = i_size_read(inode);
  5185. if (page->mapping != mapping || size <= page_offset(page)
  5186. || !PageUptodate(page)) {
  5187. /* page got truncated from under us? */
  5188. goto out_unlock;
  5189. }
  5190. ret = 0;
  5191. if (PageMappedToDisk(page))
  5192. goto out_unlock;
  5193. if (page->index == size >> PAGE_CACHE_SHIFT)
  5194. len = size & ~PAGE_CACHE_MASK;
  5195. else
  5196. len = PAGE_CACHE_SIZE;
  5197. lock_page(page);
  5198. /*
  5199. * return if we have all the buffers mapped. This avoid
  5200. * the need to call write_begin/write_end which does a
  5201. * journal_start/journal_stop which can block and take
  5202. * long time
  5203. */
  5204. if (page_has_buffers(page)) {
  5205. if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
  5206. ext4_bh_unmapped)) {
  5207. unlock_page(page);
  5208. goto out_unlock;
  5209. }
  5210. }
  5211. unlock_page(page);
  5212. /*
  5213. * OK, we need to fill the hole... Do write_begin write_end
  5214. * to do block allocation/reservation.We are not holding
  5215. * inode.i__mutex here. That allow * parallel write_begin,
  5216. * write_end call. lock_page prevent this from happening
  5217. * on the same page though
  5218. */
  5219. ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
  5220. len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
  5221. if (ret < 0)
  5222. goto out_unlock;
  5223. ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
  5224. len, len, page, fsdata);
  5225. if (ret < 0)
  5226. goto out_unlock;
  5227. ret = 0;
  5228. out_unlock:
  5229. if (ret)
  5230. ret = VM_FAULT_SIGBUS;
  5231. up_read(&inode->i_alloc_sem);
  5232. return ret;
  5233. }