inode.c 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include <linux/fiemap.h>
  39. #include <linux/namei.h>
  40. #include "xattr.h"
  41. #include "acl.h"
  42. static int ext3_writepage_trans_blocks(struct inode *inode);
  43. /*
  44. * Test whether an inode is a fast symlink.
  45. */
  46. static int ext3_inode_is_fast_symlink(struct inode *inode)
  47. {
  48. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  49. (inode->i_sb->s_blocksize >> 9) : 0;
  50. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  51. }
  52. /*
  53. * The ext3 forget function must perform a revoke if we are freeing data
  54. * which has been journaled. Metadata (eg. indirect blocks) must be
  55. * revoked in all cases.
  56. *
  57. * "bh" may be NULL: a metadata block may have been freed from memory
  58. * but there may still be a record of it in the journal, and that record
  59. * still needs to be revoked.
  60. */
  61. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  62. struct buffer_head *bh, ext3_fsblk_t blocknr)
  63. {
  64. int err;
  65. might_sleep();
  66. BUFFER_TRACE(bh, "enter");
  67. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  68. "data mode %lx\n",
  69. bh, is_metadata, inode->i_mode,
  70. test_opt(inode->i_sb, DATA_FLAGS));
  71. /* Never use the revoke function if we are doing full data
  72. * journaling: there is no need to, and a V1 superblock won't
  73. * support it. Otherwise, only skip the revoke on un-journaled
  74. * data blocks. */
  75. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  76. (!is_metadata && !ext3_should_journal_data(inode))) {
  77. if (bh) {
  78. BUFFER_TRACE(bh, "call journal_forget");
  79. return ext3_journal_forget(handle, bh);
  80. }
  81. return 0;
  82. }
  83. /*
  84. * data!=journal && (is_metadata || should_journal_data(inode))
  85. */
  86. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  87. err = ext3_journal_revoke(handle, blocknr, bh);
  88. if (err)
  89. ext3_abort(inode->i_sb, __func__,
  90. "error %d when attempting revoke", err);
  91. BUFFER_TRACE(bh, "exit");
  92. return err;
  93. }
  94. /*
  95. * Work out how many blocks we need to proceed with the next chunk of a
  96. * truncate transaction.
  97. */
  98. static unsigned long blocks_for_truncate(struct inode *inode)
  99. {
  100. unsigned long needed;
  101. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  102. /* Give ourselves just enough room to cope with inodes in which
  103. * i_blocks is corrupt: we've seen disk corruptions in the past
  104. * which resulted in random data in an inode which looked enough
  105. * like a regular file for ext3 to try to delete it. Things
  106. * will go a bit crazy if that happens, but at least we should
  107. * try not to panic the whole kernel. */
  108. if (needed < 2)
  109. needed = 2;
  110. /* But we need to bound the transaction so we don't overflow the
  111. * journal. */
  112. if (needed > EXT3_MAX_TRANS_DATA)
  113. needed = EXT3_MAX_TRANS_DATA;
  114. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  115. }
  116. /*
  117. * Truncate transactions can be complex and absolutely huge. So we need to
  118. * be able to restart the transaction at a conventient checkpoint to make
  119. * sure we don't overflow the journal.
  120. *
  121. * start_transaction gets us a new handle for a truncate transaction,
  122. * and extend_transaction tries to extend the existing one a bit. If
  123. * extend fails, we need to propagate the failure up and restart the
  124. * transaction in the top-level truncate loop. --sct
  125. */
  126. static handle_t *start_transaction(struct inode *inode)
  127. {
  128. handle_t *result;
  129. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  130. if (!IS_ERR(result))
  131. return result;
  132. ext3_std_error(inode->i_sb, PTR_ERR(result));
  133. return result;
  134. }
  135. /*
  136. * Try to extend this transaction for the purposes of truncation.
  137. *
  138. * Returns 0 if we managed to create more room. If we can't create more
  139. * room, and the transaction must be restarted we return 1.
  140. */
  141. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  142. {
  143. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  144. return 0;
  145. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  146. return 0;
  147. return 1;
  148. }
  149. /*
  150. * Restart the transaction associated with *handle. This does a commit,
  151. * so before we call here everything must be consistently dirtied against
  152. * this transaction.
  153. */
  154. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  155. {
  156. int ret;
  157. jbd_debug(2, "restarting handle %p\n", handle);
  158. /*
  159. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  160. * At this moment, get_block can be called only for blocks inside
  161. * i_size since page cache has been already dropped and writes are
  162. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  163. */
  164. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  165. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  166. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  167. return ret;
  168. }
  169. /*
  170. * Called at the last iput() if i_nlink is zero.
  171. */
  172. void ext3_delete_inode (struct inode * inode)
  173. {
  174. handle_t *handle;
  175. truncate_inode_pages(&inode->i_data, 0);
  176. if (is_bad_inode(inode))
  177. goto no_delete;
  178. handle = start_transaction(inode);
  179. if (IS_ERR(handle)) {
  180. /*
  181. * If we're going to skip the normal cleanup, we still need to
  182. * make sure that the in-core orphan linked list is properly
  183. * cleaned up.
  184. */
  185. ext3_orphan_del(NULL, inode);
  186. goto no_delete;
  187. }
  188. if (IS_SYNC(inode))
  189. handle->h_sync = 1;
  190. inode->i_size = 0;
  191. if (inode->i_blocks)
  192. ext3_truncate(inode);
  193. /*
  194. * Kill off the orphan record which ext3_truncate created.
  195. * AKPM: I think this can be inside the above `if'.
  196. * Note that ext3_orphan_del() has to be able to cope with the
  197. * deletion of a non-existent orphan - this is because we don't
  198. * know if ext3_truncate() actually created an orphan record.
  199. * (Well, we could do this if we need to, but heck - it works)
  200. */
  201. ext3_orphan_del(handle, inode);
  202. EXT3_I(inode)->i_dtime = get_seconds();
  203. /*
  204. * One subtle ordering requirement: if anything has gone wrong
  205. * (transaction abort, IO errors, whatever), then we can still
  206. * do these next steps (the fs will already have been marked as
  207. * having errors), but we can't free the inode if the mark_dirty
  208. * fails.
  209. */
  210. if (ext3_mark_inode_dirty(handle, inode))
  211. /* If that failed, just do the required in-core inode clear. */
  212. clear_inode(inode);
  213. else
  214. ext3_free_inode(handle, inode);
  215. ext3_journal_stop(handle);
  216. return;
  217. no_delete:
  218. clear_inode(inode); /* We must guarantee clearing of inode... */
  219. }
  220. typedef struct {
  221. __le32 *p;
  222. __le32 key;
  223. struct buffer_head *bh;
  224. } Indirect;
  225. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  226. {
  227. p->key = *(p->p = v);
  228. p->bh = bh;
  229. }
  230. static int verify_chain(Indirect *from, Indirect *to)
  231. {
  232. while (from <= to && from->key == *from->p)
  233. from++;
  234. return (from > to);
  235. }
  236. /**
  237. * ext3_block_to_path - parse the block number into array of offsets
  238. * @inode: inode in question (we are only interested in its superblock)
  239. * @i_block: block number to be parsed
  240. * @offsets: array to store the offsets in
  241. * @boundary: set this non-zero if the referred-to block is likely to be
  242. * followed (on disk) by an indirect block.
  243. *
  244. * To store the locations of file's data ext3 uses a data structure common
  245. * for UNIX filesystems - tree of pointers anchored in the inode, with
  246. * data blocks at leaves and indirect blocks in intermediate nodes.
  247. * This function translates the block number into path in that tree -
  248. * return value is the path length and @offsets[n] is the offset of
  249. * pointer to (n+1)th node in the nth one. If @block is out of range
  250. * (negative or too large) warning is printed and zero returned.
  251. *
  252. * Note: function doesn't find node addresses, so no IO is needed. All
  253. * we need to know is the capacity of indirect blocks (taken from the
  254. * inode->i_sb).
  255. */
  256. /*
  257. * Portability note: the last comparison (check that we fit into triple
  258. * indirect block) is spelled differently, because otherwise on an
  259. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  260. * if our filesystem had 8Kb blocks. We might use long long, but that would
  261. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  262. * i_block would have to be negative in the very beginning, so we would not
  263. * get there at all.
  264. */
  265. static int ext3_block_to_path(struct inode *inode,
  266. long i_block, int offsets[4], int *boundary)
  267. {
  268. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  269. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  270. const long direct_blocks = EXT3_NDIR_BLOCKS,
  271. indirect_blocks = ptrs,
  272. double_blocks = (1 << (ptrs_bits * 2));
  273. int n = 0;
  274. int final = 0;
  275. if (i_block < 0) {
  276. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  277. } else if (i_block < direct_blocks) {
  278. offsets[n++] = i_block;
  279. final = direct_blocks;
  280. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  281. offsets[n++] = EXT3_IND_BLOCK;
  282. offsets[n++] = i_block;
  283. final = ptrs;
  284. } else if ((i_block -= indirect_blocks) < double_blocks) {
  285. offsets[n++] = EXT3_DIND_BLOCK;
  286. offsets[n++] = i_block >> ptrs_bits;
  287. offsets[n++] = i_block & (ptrs - 1);
  288. final = ptrs;
  289. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  290. offsets[n++] = EXT3_TIND_BLOCK;
  291. offsets[n++] = i_block >> (ptrs_bits * 2);
  292. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  293. offsets[n++] = i_block & (ptrs - 1);
  294. final = ptrs;
  295. } else {
  296. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  297. }
  298. if (boundary)
  299. *boundary = final - 1 - (i_block & (ptrs - 1));
  300. return n;
  301. }
  302. /**
  303. * ext3_get_branch - read the chain of indirect blocks leading to data
  304. * @inode: inode in question
  305. * @depth: depth of the chain (1 - direct pointer, etc.)
  306. * @offsets: offsets of pointers in inode/indirect blocks
  307. * @chain: place to store the result
  308. * @err: here we store the error value
  309. *
  310. * Function fills the array of triples <key, p, bh> and returns %NULL
  311. * if everything went OK or the pointer to the last filled triple
  312. * (incomplete one) otherwise. Upon the return chain[i].key contains
  313. * the number of (i+1)-th block in the chain (as it is stored in memory,
  314. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  315. * number (it points into struct inode for i==0 and into the bh->b_data
  316. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  317. * block for i>0 and NULL for i==0. In other words, it holds the block
  318. * numbers of the chain, addresses they were taken from (and where we can
  319. * verify that chain did not change) and buffer_heads hosting these
  320. * numbers.
  321. *
  322. * Function stops when it stumbles upon zero pointer (absent block)
  323. * (pointer to last triple returned, *@err == 0)
  324. * or when it gets an IO error reading an indirect block
  325. * (ditto, *@err == -EIO)
  326. * or when it notices that chain had been changed while it was reading
  327. * (ditto, *@err == -EAGAIN)
  328. * or when it reads all @depth-1 indirect blocks successfully and finds
  329. * the whole chain, all way to the data (returns %NULL, *err == 0).
  330. */
  331. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  332. Indirect chain[4], int *err)
  333. {
  334. struct super_block *sb = inode->i_sb;
  335. Indirect *p = chain;
  336. struct buffer_head *bh;
  337. *err = 0;
  338. /* i_data is not going away, no lock needed */
  339. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  340. if (!p->key)
  341. goto no_block;
  342. while (--depth) {
  343. bh = sb_bread(sb, le32_to_cpu(p->key));
  344. if (!bh)
  345. goto failure;
  346. /* Reader: pointers */
  347. if (!verify_chain(chain, p))
  348. goto changed;
  349. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  350. /* Reader: end */
  351. if (!p->key)
  352. goto no_block;
  353. }
  354. return NULL;
  355. changed:
  356. brelse(bh);
  357. *err = -EAGAIN;
  358. goto no_block;
  359. failure:
  360. *err = -EIO;
  361. no_block:
  362. return p;
  363. }
  364. /**
  365. * ext3_find_near - find a place for allocation with sufficient locality
  366. * @inode: owner
  367. * @ind: descriptor of indirect block.
  368. *
  369. * This function returns the preferred place for block allocation.
  370. * It is used when heuristic for sequential allocation fails.
  371. * Rules are:
  372. * + if there is a block to the left of our position - allocate near it.
  373. * + if pointer will live in indirect block - allocate near that block.
  374. * + if pointer will live in inode - allocate in the same
  375. * cylinder group.
  376. *
  377. * In the latter case we colour the starting block by the callers PID to
  378. * prevent it from clashing with concurrent allocations for a different inode
  379. * in the same block group. The PID is used here so that functionally related
  380. * files will be close-by on-disk.
  381. *
  382. * Caller must make sure that @ind is valid and will stay that way.
  383. */
  384. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  385. {
  386. struct ext3_inode_info *ei = EXT3_I(inode);
  387. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  388. __le32 *p;
  389. ext3_fsblk_t bg_start;
  390. ext3_grpblk_t colour;
  391. /* Try to find previous block */
  392. for (p = ind->p - 1; p >= start; p--) {
  393. if (*p)
  394. return le32_to_cpu(*p);
  395. }
  396. /* No such thing, so let's try location of indirect block */
  397. if (ind->bh)
  398. return ind->bh->b_blocknr;
  399. /*
  400. * It is going to be referred to from the inode itself? OK, just put it
  401. * into the same cylinder group then.
  402. */
  403. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  404. colour = (current->pid % 16) *
  405. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  406. return bg_start + colour;
  407. }
  408. /**
  409. * ext3_find_goal - find a preferred place for allocation.
  410. * @inode: owner
  411. * @block: block we want
  412. * @partial: pointer to the last triple within a chain
  413. *
  414. * Normally this function find the preferred place for block allocation,
  415. * returns it.
  416. */
  417. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  418. Indirect *partial)
  419. {
  420. struct ext3_block_alloc_info *block_i;
  421. block_i = EXT3_I(inode)->i_block_alloc_info;
  422. /*
  423. * try the heuristic for sequential allocation,
  424. * failing that at least try to get decent locality.
  425. */
  426. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  427. && (block_i->last_alloc_physical_block != 0)) {
  428. return block_i->last_alloc_physical_block + 1;
  429. }
  430. return ext3_find_near(inode, partial);
  431. }
  432. /**
  433. * ext3_blks_to_allocate: Look up the block map and count the number
  434. * of direct blocks need to be allocated for the given branch.
  435. *
  436. * @branch: chain of indirect blocks
  437. * @k: number of blocks need for indirect blocks
  438. * @blks: number of data blocks to be mapped.
  439. * @blocks_to_boundary: the offset in the indirect block
  440. *
  441. * return the total number of blocks to be allocate, including the
  442. * direct and indirect blocks.
  443. */
  444. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  445. int blocks_to_boundary)
  446. {
  447. unsigned long count = 0;
  448. /*
  449. * Simple case, [t,d]Indirect block(s) has not allocated yet
  450. * then it's clear blocks on that path have not allocated
  451. */
  452. if (k > 0) {
  453. /* right now we don't handle cross boundary allocation */
  454. if (blks < blocks_to_boundary + 1)
  455. count += blks;
  456. else
  457. count += blocks_to_boundary + 1;
  458. return count;
  459. }
  460. count++;
  461. while (count < blks && count <= blocks_to_boundary &&
  462. le32_to_cpu(*(branch[0].p + count)) == 0) {
  463. count++;
  464. }
  465. return count;
  466. }
  467. /**
  468. * ext3_alloc_blocks: multiple allocate blocks needed for a branch
  469. * @indirect_blks: the number of blocks need to allocate for indirect
  470. * blocks
  471. *
  472. * @new_blocks: on return it will store the new block numbers for
  473. * the indirect blocks(if needed) and the first direct block,
  474. * @blks: on return it will store the total number of allocated
  475. * direct blocks
  476. */
  477. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  478. ext3_fsblk_t goal, int indirect_blks, int blks,
  479. ext3_fsblk_t new_blocks[4], int *err)
  480. {
  481. int target, i;
  482. unsigned long count = 0;
  483. int index = 0;
  484. ext3_fsblk_t current_block = 0;
  485. int ret = 0;
  486. /*
  487. * Here we try to allocate the requested multiple blocks at once,
  488. * on a best-effort basis.
  489. * To build a branch, we should allocate blocks for
  490. * the indirect blocks(if not allocated yet), and at least
  491. * the first direct block of this branch. That's the
  492. * minimum number of blocks need to allocate(required)
  493. */
  494. target = blks + indirect_blks;
  495. while (1) {
  496. count = target;
  497. /* allocating blocks for indirect blocks and direct blocks */
  498. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  499. if (*err)
  500. goto failed_out;
  501. target -= count;
  502. /* allocate blocks for indirect blocks */
  503. while (index < indirect_blks && count) {
  504. new_blocks[index++] = current_block++;
  505. count--;
  506. }
  507. if (count > 0)
  508. break;
  509. }
  510. /* save the new block number for the first direct block */
  511. new_blocks[index] = current_block;
  512. /* total number of blocks allocated for direct blocks */
  513. ret = count;
  514. *err = 0;
  515. return ret;
  516. failed_out:
  517. for (i = 0; i <index; i++)
  518. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  519. return ret;
  520. }
  521. /**
  522. * ext3_alloc_branch - allocate and set up a chain of blocks.
  523. * @inode: owner
  524. * @indirect_blks: number of allocated indirect blocks
  525. * @blks: number of allocated direct blocks
  526. * @offsets: offsets (in the blocks) to store the pointers to next.
  527. * @branch: place to store the chain in.
  528. *
  529. * This function allocates blocks, zeroes out all but the last one,
  530. * links them into chain and (if we are synchronous) writes them to disk.
  531. * In other words, it prepares a branch that can be spliced onto the
  532. * inode. It stores the information about that chain in the branch[], in
  533. * the same format as ext3_get_branch() would do. We are calling it after
  534. * we had read the existing part of chain and partial points to the last
  535. * triple of that (one with zero ->key). Upon the exit we have the same
  536. * picture as after the successful ext3_get_block(), except that in one
  537. * place chain is disconnected - *branch->p is still zero (we did not
  538. * set the last link), but branch->key contains the number that should
  539. * be placed into *branch->p to fill that gap.
  540. *
  541. * If allocation fails we free all blocks we've allocated (and forget
  542. * their buffer_heads) and return the error value the from failed
  543. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  544. * as described above and return 0.
  545. */
  546. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  547. int indirect_blks, int *blks, ext3_fsblk_t goal,
  548. int *offsets, Indirect *branch)
  549. {
  550. int blocksize = inode->i_sb->s_blocksize;
  551. int i, n = 0;
  552. int err = 0;
  553. struct buffer_head *bh;
  554. int num;
  555. ext3_fsblk_t new_blocks[4];
  556. ext3_fsblk_t current_block;
  557. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  558. *blks, new_blocks, &err);
  559. if (err)
  560. return err;
  561. branch[0].key = cpu_to_le32(new_blocks[0]);
  562. /*
  563. * metadata blocks and data blocks are allocated.
  564. */
  565. for (n = 1; n <= indirect_blks; n++) {
  566. /*
  567. * Get buffer_head for parent block, zero it out
  568. * and set the pointer to new one, then send
  569. * parent to disk.
  570. */
  571. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  572. branch[n].bh = bh;
  573. lock_buffer(bh);
  574. BUFFER_TRACE(bh, "call get_create_access");
  575. err = ext3_journal_get_create_access(handle, bh);
  576. if (err) {
  577. unlock_buffer(bh);
  578. brelse(bh);
  579. goto failed;
  580. }
  581. memset(bh->b_data, 0, blocksize);
  582. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  583. branch[n].key = cpu_to_le32(new_blocks[n]);
  584. *branch[n].p = branch[n].key;
  585. if ( n == indirect_blks) {
  586. current_block = new_blocks[n];
  587. /*
  588. * End of chain, update the last new metablock of
  589. * the chain to point to the new allocated
  590. * data blocks numbers
  591. */
  592. for (i=1; i < num; i++)
  593. *(branch[n].p + i) = cpu_to_le32(++current_block);
  594. }
  595. BUFFER_TRACE(bh, "marking uptodate");
  596. set_buffer_uptodate(bh);
  597. unlock_buffer(bh);
  598. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  599. err = ext3_journal_dirty_metadata(handle, bh);
  600. if (err)
  601. goto failed;
  602. }
  603. *blks = num;
  604. return err;
  605. failed:
  606. /* Allocation failed, free what we already allocated */
  607. for (i = 1; i <= n ; i++) {
  608. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  609. ext3_journal_forget(handle, branch[i].bh);
  610. }
  611. for (i = 0; i <indirect_blks; i++)
  612. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  613. ext3_free_blocks(handle, inode, new_blocks[i], num);
  614. return err;
  615. }
  616. /**
  617. * ext3_splice_branch - splice the allocated branch onto inode.
  618. * @inode: owner
  619. * @block: (logical) number of block we are adding
  620. * @chain: chain of indirect blocks (with a missing link - see
  621. * ext3_alloc_branch)
  622. * @where: location of missing link
  623. * @num: number of indirect blocks we are adding
  624. * @blks: number of direct blocks we are adding
  625. *
  626. * This function fills the missing link and does all housekeeping needed in
  627. * inode (->i_blocks, etc.). In case of success we end up with the full
  628. * chain to new block and return 0.
  629. */
  630. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  631. long block, Indirect *where, int num, int blks)
  632. {
  633. int i;
  634. int err = 0;
  635. struct ext3_block_alloc_info *block_i;
  636. ext3_fsblk_t current_block;
  637. struct ext3_inode_info *ei = EXT3_I(inode);
  638. block_i = ei->i_block_alloc_info;
  639. /*
  640. * If we're splicing into a [td]indirect block (as opposed to the
  641. * inode) then we need to get write access to the [td]indirect block
  642. * before the splice.
  643. */
  644. if (where->bh) {
  645. BUFFER_TRACE(where->bh, "get_write_access");
  646. err = ext3_journal_get_write_access(handle, where->bh);
  647. if (err)
  648. goto err_out;
  649. }
  650. /* That's it */
  651. *where->p = where->key;
  652. /*
  653. * Update the host buffer_head or inode to point to more just allocated
  654. * direct blocks blocks
  655. */
  656. if (num == 0 && blks > 1) {
  657. current_block = le32_to_cpu(where->key) + 1;
  658. for (i = 1; i < blks; i++)
  659. *(where->p + i ) = cpu_to_le32(current_block++);
  660. }
  661. /*
  662. * update the most recently allocated logical & physical block
  663. * in i_block_alloc_info, to assist find the proper goal block for next
  664. * allocation
  665. */
  666. if (block_i) {
  667. block_i->last_alloc_logical_block = block + blks - 1;
  668. block_i->last_alloc_physical_block =
  669. le32_to_cpu(where[num].key) + blks - 1;
  670. }
  671. /* We are done with atomic stuff, now do the rest of housekeeping */
  672. inode->i_ctime = CURRENT_TIME_SEC;
  673. ext3_mark_inode_dirty(handle, inode);
  674. /* ext3_mark_inode_dirty already updated i_sync_tid */
  675. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  676. /* had we spliced it onto indirect block? */
  677. if (where->bh) {
  678. /*
  679. * If we spliced it onto an indirect block, we haven't
  680. * altered the inode. Note however that if it is being spliced
  681. * onto an indirect block at the very end of the file (the
  682. * file is growing) then we *will* alter the inode to reflect
  683. * the new i_size. But that is not done here - it is done in
  684. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  685. */
  686. jbd_debug(5, "splicing indirect only\n");
  687. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  688. err = ext3_journal_dirty_metadata(handle, where->bh);
  689. if (err)
  690. goto err_out;
  691. } else {
  692. /*
  693. * OK, we spliced it into the inode itself on a direct block.
  694. * Inode was dirtied above.
  695. */
  696. jbd_debug(5, "splicing direct\n");
  697. }
  698. return err;
  699. err_out:
  700. for (i = 1; i <= num; i++) {
  701. BUFFER_TRACE(where[i].bh, "call journal_forget");
  702. ext3_journal_forget(handle, where[i].bh);
  703. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  704. }
  705. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  706. return err;
  707. }
  708. /*
  709. * Allocation strategy is simple: if we have to allocate something, we will
  710. * have to go the whole way to leaf. So let's do it before attaching anything
  711. * to tree, set linkage between the newborn blocks, write them if sync is
  712. * required, recheck the path, free and repeat if check fails, otherwise
  713. * set the last missing link (that will protect us from any truncate-generated
  714. * removals - all blocks on the path are immune now) and possibly force the
  715. * write on the parent block.
  716. * That has a nice additional property: no special recovery from the failed
  717. * allocations is needed - we simply release blocks and do not touch anything
  718. * reachable from inode.
  719. *
  720. * `handle' can be NULL if create == 0.
  721. *
  722. * The BKL may not be held on entry here. Be sure to take it early.
  723. * return > 0, # of blocks mapped or allocated.
  724. * return = 0, if plain lookup failed.
  725. * return < 0, error case.
  726. */
  727. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  728. sector_t iblock, unsigned long maxblocks,
  729. struct buffer_head *bh_result,
  730. int create)
  731. {
  732. int err = -EIO;
  733. int offsets[4];
  734. Indirect chain[4];
  735. Indirect *partial;
  736. ext3_fsblk_t goal;
  737. int indirect_blks;
  738. int blocks_to_boundary = 0;
  739. int depth;
  740. struct ext3_inode_info *ei = EXT3_I(inode);
  741. int count = 0;
  742. ext3_fsblk_t first_block = 0;
  743. J_ASSERT(handle != NULL || create == 0);
  744. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  745. if (depth == 0)
  746. goto out;
  747. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  748. /* Simplest case - block found, no allocation needed */
  749. if (!partial) {
  750. first_block = le32_to_cpu(chain[depth - 1].key);
  751. clear_buffer_new(bh_result);
  752. count++;
  753. /*map more blocks*/
  754. while (count < maxblocks && count <= blocks_to_boundary) {
  755. ext3_fsblk_t blk;
  756. if (!verify_chain(chain, chain + depth - 1)) {
  757. /*
  758. * Indirect block might be removed by
  759. * truncate while we were reading it.
  760. * Handling of that case: forget what we've
  761. * got now. Flag the err as EAGAIN, so it
  762. * will reread.
  763. */
  764. err = -EAGAIN;
  765. count = 0;
  766. break;
  767. }
  768. blk = le32_to_cpu(*(chain[depth-1].p + count));
  769. if (blk == first_block + count)
  770. count++;
  771. else
  772. break;
  773. }
  774. if (err != -EAGAIN)
  775. goto got_it;
  776. }
  777. /* Next simple case - plain lookup or failed read of indirect block */
  778. if (!create || err == -EIO)
  779. goto cleanup;
  780. mutex_lock(&ei->truncate_mutex);
  781. /*
  782. * If the indirect block is missing while we are reading
  783. * the chain(ext3_get_branch() returns -EAGAIN err), or
  784. * if the chain has been changed after we grab the semaphore,
  785. * (either because another process truncated this branch, or
  786. * another get_block allocated this branch) re-grab the chain to see if
  787. * the request block has been allocated or not.
  788. *
  789. * Since we already block the truncate/other get_block
  790. * at this point, we will have the current copy of the chain when we
  791. * splice the branch into the tree.
  792. */
  793. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  794. while (partial > chain) {
  795. brelse(partial->bh);
  796. partial--;
  797. }
  798. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  799. if (!partial) {
  800. count++;
  801. mutex_unlock(&ei->truncate_mutex);
  802. if (err)
  803. goto cleanup;
  804. clear_buffer_new(bh_result);
  805. goto got_it;
  806. }
  807. }
  808. /*
  809. * Okay, we need to do block allocation. Lazily initialize the block
  810. * allocation info here if necessary
  811. */
  812. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  813. ext3_init_block_alloc_info(inode);
  814. goal = ext3_find_goal(inode, iblock, partial);
  815. /* the number of blocks need to allocate for [d,t]indirect blocks */
  816. indirect_blks = (chain + depth) - partial - 1;
  817. /*
  818. * Next look up the indirect map to count the totoal number of
  819. * direct blocks to allocate for this branch.
  820. */
  821. count = ext3_blks_to_allocate(partial, indirect_blks,
  822. maxblocks, blocks_to_boundary);
  823. /*
  824. * Block out ext3_truncate while we alter the tree
  825. */
  826. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  827. offsets + (partial - chain), partial);
  828. /*
  829. * The ext3_splice_branch call will free and forget any buffers
  830. * on the new chain if there is a failure, but that risks using
  831. * up transaction credits, especially for bitmaps where the
  832. * credits cannot be returned. Can we handle this somehow? We
  833. * may need to return -EAGAIN upwards in the worst case. --sct
  834. */
  835. if (!err)
  836. err = ext3_splice_branch(handle, inode, iblock,
  837. partial, indirect_blks, count);
  838. mutex_unlock(&ei->truncate_mutex);
  839. if (err)
  840. goto cleanup;
  841. set_buffer_new(bh_result);
  842. got_it:
  843. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  844. if (count > blocks_to_boundary)
  845. set_buffer_boundary(bh_result);
  846. err = count;
  847. /* Clean up and exit */
  848. partial = chain + depth - 1; /* the whole chain */
  849. cleanup:
  850. while (partial > chain) {
  851. BUFFER_TRACE(partial->bh, "call brelse");
  852. brelse(partial->bh);
  853. partial--;
  854. }
  855. BUFFER_TRACE(bh_result, "returned");
  856. out:
  857. return err;
  858. }
  859. /* Maximum number of blocks we map for direct IO at once. */
  860. #define DIO_MAX_BLOCKS 4096
  861. /*
  862. * Number of credits we need for writing DIO_MAX_BLOCKS:
  863. * We need sb + group descriptor + bitmap + inode -> 4
  864. * For B blocks with A block pointers per block we need:
  865. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  866. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  867. */
  868. #define DIO_CREDITS 25
  869. static int ext3_get_block(struct inode *inode, sector_t iblock,
  870. struct buffer_head *bh_result, int create)
  871. {
  872. handle_t *handle = ext3_journal_current_handle();
  873. int ret = 0, started = 0;
  874. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  875. if (create && !handle) { /* Direct IO write... */
  876. if (max_blocks > DIO_MAX_BLOCKS)
  877. max_blocks = DIO_MAX_BLOCKS;
  878. handle = ext3_journal_start(inode, DIO_CREDITS +
  879. 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
  880. if (IS_ERR(handle)) {
  881. ret = PTR_ERR(handle);
  882. goto out;
  883. }
  884. started = 1;
  885. }
  886. ret = ext3_get_blocks_handle(handle, inode, iblock,
  887. max_blocks, bh_result, create);
  888. if (ret > 0) {
  889. bh_result->b_size = (ret << inode->i_blkbits);
  890. ret = 0;
  891. }
  892. if (started)
  893. ext3_journal_stop(handle);
  894. out:
  895. return ret;
  896. }
  897. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  898. u64 start, u64 len)
  899. {
  900. return generic_block_fiemap(inode, fieinfo, start, len,
  901. ext3_get_block);
  902. }
  903. /*
  904. * `handle' can be NULL if create is zero
  905. */
  906. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  907. long block, int create, int *errp)
  908. {
  909. struct buffer_head dummy;
  910. int fatal = 0, err;
  911. J_ASSERT(handle != NULL || create == 0);
  912. dummy.b_state = 0;
  913. dummy.b_blocknr = -1000;
  914. buffer_trace_init(&dummy.b_history);
  915. err = ext3_get_blocks_handle(handle, inode, block, 1,
  916. &dummy, create);
  917. /*
  918. * ext3_get_blocks_handle() returns number of blocks
  919. * mapped. 0 in case of a HOLE.
  920. */
  921. if (err > 0) {
  922. if (err > 1)
  923. WARN_ON(1);
  924. err = 0;
  925. }
  926. *errp = err;
  927. if (!err && buffer_mapped(&dummy)) {
  928. struct buffer_head *bh;
  929. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  930. if (!bh) {
  931. *errp = -EIO;
  932. goto err;
  933. }
  934. if (buffer_new(&dummy)) {
  935. J_ASSERT(create != 0);
  936. J_ASSERT(handle != NULL);
  937. /*
  938. * Now that we do not always journal data, we should
  939. * keep in mind whether this should always journal the
  940. * new buffer as metadata. For now, regular file
  941. * writes use ext3_get_block instead, so it's not a
  942. * problem.
  943. */
  944. lock_buffer(bh);
  945. BUFFER_TRACE(bh, "call get_create_access");
  946. fatal = ext3_journal_get_create_access(handle, bh);
  947. if (!fatal && !buffer_uptodate(bh)) {
  948. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  949. set_buffer_uptodate(bh);
  950. }
  951. unlock_buffer(bh);
  952. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  953. err = ext3_journal_dirty_metadata(handle, bh);
  954. if (!fatal)
  955. fatal = err;
  956. } else {
  957. BUFFER_TRACE(bh, "not a new buffer");
  958. }
  959. if (fatal) {
  960. *errp = fatal;
  961. brelse(bh);
  962. bh = NULL;
  963. }
  964. return bh;
  965. }
  966. err:
  967. return NULL;
  968. }
  969. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  970. int block, int create, int *err)
  971. {
  972. struct buffer_head * bh;
  973. bh = ext3_getblk(handle, inode, block, create, err);
  974. if (!bh)
  975. return bh;
  976. if (buffer_uptodate(bh))
  977. return bh;
  978. ll_rw_block(READ_META, 1, &bh);
  979. wait_on_buffer(bh);
  980. if (buffer_uptodate(bh))
  981. return bh;
  982. put_bh(bh);
  983. *err = -EIO;
  984. return NULL;
  985. }
  986. static int walk_page_buffers( handle_t *handle,
  987. struct buffer_head *head,
  988. unsigned from,
  989. unsigned to,
  990. int *partial,
  991. int (*fn)( handle_t *handle,
  992. struct buffer_head *bh))
  993. {
  994. struct buffer_head *bh;
  995. unsigned block_start, block_end;
  996. unsigned blocksize = head->b_size;
  997. int err, ret = 0;
  998. struct buffer_head *next;
  999. for ( bh = head, block_start = 0;
  1000. ret == 0 && (bh != head || !block_start);
  1001. block_start = block_end, bh = next)
  1002. {
  1003. next = bh->b_this_page;
  1004. block_end = block_start + blocksize;
  1005. if (block_end <= from || block_start >= to) {
  1006. if (partial && !buffer_uptodate(bh))
  1007. *partial = 1;
  1008. continue;
  1009. }
  1010. err = (*fn)(handle, bh);
  1011. if (!ret)
  1012. ret = err;
  1013. }
  1014. return ret;
  1015. }
  1016. /*
  1017. * To preserve ordering, it is essential that the hole instantiation and
  1018. * the data write be encapsulated in a single transaction. We cannot
  1019. * close off a transaction and start a new one between the ext3_get_block()
  1020. * and the commit_write(). So doing the journal_start at the start of
  1021. * prepare_write() is the right place.
  1022. *
  1023. * Also, this function can nest inside ext3_writepage() ->
  1024. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1025. * has generated enough buffer credits to do the whole page. So we won't
  1026. * block on the journal in that case, which is good, because the caller may
  1027. * be PF_MEMALLOC.
  1028. *
  1029. * By accident, ext3 can be reentered when a transaction is open via
  1030. * quota file writes. If we were to commit the transaction while thus
  1031. * reentered, there can be a deadlock - we would be holding a quota
  1032. * lock, and the commit would never complete if another thread had a
  1033. * transaction open and was blocking on the quota lock - a ranking
  1034. * violation.
  1035. *
  1036. * So what we do is to rely on the fact that journal_stop/journal_start
  1037. * will _not_ run commit under these circumstances because handle->h_ref
  1038. * is elevated. We'll still have enough credits for the tiny quotafile
  1039. * write.
  1040. */
  1041. static int do_journal_get_write_access(handle_t *handle,
  1042. struct buffer_head *bh)
  1043. {
  1044. if (!buffer_mapped(bh) || buffer_freed(bh))
  1045. return 0;
  1046. return ext3_journal_get_write_access(handle, bh);
  1047. }
  1048. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1049. loff_t pos, unsigned len, unsigned flags,
  1050. struct page **pagep, void **fsdata)
  1051. {
  1052. struct inode *inode = mapping->host;
  1053. int ret;
  1054. handle_t *handle;
  1055. int retries = 0;
  1056. struct page *page;
  1057. pgoff_t index;
  1058. unsigned from, to;
  1059. /* Reserve one block more for addition to orphan list in case
  1060. * we allocate blocks but write fails for some reason */
  1061. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1062. index = pos >> PAGE_CACHE_SHIFT;
  1063. from = pos & (PAGE_CACHE_SIZE - 1);
  1064. to = from + len;
  1065. retry:
  1066. page = grab_cache_page_write_begin(mapping, index, flags);
  1067. if (!page)
  1068. return -ENOMEM;
  1069. *pagep = page;
  1070. handle = ext3_journal_start(inode, needed_blocks);
  1071. if (IS_ERR(handle)) {
  1072. unlock_page(page);
  1073. page_cache_release(page);
  1074. ret = PTR_ERR(handle);
  1075. goto out;
  1076. }
  1077. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1078. ext3_get_block);
  1079. if (ret)
  1080. goto write_begin_failed;
  1081. if (ext3_should_journal_data(inode)) {
  1082. ret = walk_page_buffers(handle, page_buffers(page),
  1083. from, to, NULL, do_journal_get_write_access);
  1084. }
  1085. write_begin_failed:
  1086. if (ret) {
  1087. /*
  1088. * block_write_begin may have instantiated a few blocks
  1089. * outside i_size. Trim these off again. Don't need
  1090. * i_size_read because we hold i_mutex.
  1091. *
  1092. * Add inode to orphan list in case we crash before truncate
  1093. * finishes. Do this only if ext3_can_truncate() agrees so
  1094. * that orphan processing code is happy.
  1095. */
  1096. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1097. ext3_orphan_add(handle, inode);
  1098. ext3_journal_stop(handle);
  1099. unlock_page(page);
  1100. page_cache_release(page);
  1101. if (pos + len > inode->i_size)
  1102. ext3_truncate(inode);
  1103. }
  1104. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1105. goto retry;
  1106. out:
  1107. return ret;
  1108. }
  1109. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1110. {
  1111. int err = journal_dirty_data(handle, bh);
  1112. if (err)
  1113. ext3_journal_abort_handle(__func__, __func__,
  1114. bh, handle, err);
  1115. return err;
  1116. }
  1117. /* For ordered writepage and write_end functions */
  1118. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1119. {
  1120. /*
  1121. * Write could have mapped the buffer but it didn't copy the data in
  1122. * yet. So avoid filing such buffer into a transaction.
  1123. */
  1124. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1125. return ext3_journal_dirty_data(handle, bh);
  1126. return 0;
  1127. }
  1128. /* For write_end() in data=journal mode */
  1129. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1130. {
  1131. if (!buffer_mapped(bh) || buffer_freed(bh))
  1132. return 0;
  1133. set_buffer_uptodate(bh);
  1134. return ext3_journal_dirty_metadata(handle, bh);
  1135. }
  1136. /*
  1137. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1138. * for the whole page but later we failed to copy the data in. Update inode
  1139. * size according to what we managed to copy. The rest is going to be
  1140. * truncated in write_end function.
  1141. */
  1142. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1143. {
  1144. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1145. if (pos + copied > inode->i_size)
  1146. i_size_write(inode, pos + copied);
  1147. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1148. EXT3_I(inode)->i_disksize = pos + copied;
  1149. mark_inode_dirty(inode);
  1150. }
  1151. }
  1152. /*
  1153. * We need to pick up the new inode size which generic_commit_write gave us
  1154. * `file' can be NULL - eg, when called from page_symlink().
  1155. *
  1156. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1157. * buffers are managed internally.
  1158. */
  1159. static int ext3_ordered_write_end(struct file *file,
  1160. struct address_space *mapping,
  1161. loff_t pos, unsigned len, unsigned copied,
  1162. struct page *page, void *fsdata)
  1163. {
  1164. handle_t *handle = ext3_journal_current_handle();
  1165. struct inode *inode = file->f_mapping->host;
  1166. unsigned from, to;
  1167. int ret = 0, ret2;
  1168. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1169. from = pos & (PAGE_CACHE_SIZE - 1);
  1170. to = from + copied;
  1171. ret = walk_page_buffers(handle, page_buffers(page),
  1172. from, to, NULL, journal_dirty_data_fn);
  1173. if (ret == 0)
  1174. update_file_sizes(inode, pos, copied);
  1175. /*
  1176. * There may be allocated blocks outside of i_size because
  1177. * we failed to copy some data. Prepare for truncate.
  1178. */
  1179. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1180. ext3_orphan_add(handle, inode);
  1181. ret2 = ext3_journal_stop(handle);
  1182. if (!ret)
  1183. ret = ret2;
  1184. unlock_page(page);
  1185. page_cache_release(page);
  1186. if (pos + len > inode->i_size)
  1187. ext3_truncate(inode);
  1188. return ret ? ret : copied;
  1189. }
  1190. static int ext3_writeback_write_end(struct file *file,
  1191. struct address_space *mapping,
  1192. loff_t pos, unsigned len, unsigned copied,
  1193. struct page *page, void *fsdata)
  1194. {
  1195. handle_t *handle = ext3_journal_current_handle();
  1196. struct inode *inode = file->f_mapping->host;
  1197. int ret;
  1198. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1199. update_file_sizes(inode, pos, copied);
  1200. /*
  1201. * There may be allocated blocks outside of i_size because
  1202. * we failed to copy some data. Prepare for truncate.
  1203. */
  1204. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1205. ext3_orphan_add(handle, inode);
  1206. ret = ext3_journal_stop(handle);
  1207. unlock_page(page);
  1208. page_cache_release(page);
  1209. if (pos + len > inode->i_size)
  1210. ext3_truncate(inode);
  1211. return ret ? ret : copied;
  1212. }
  1213. static int ext3_journalled_write_end(struct file *file,
  1214. struct address_space *mapping,
  1215. loff_t pos, unsigned len, unsigned copied,
  1216. struct page *page, void *fsdata)
  1217. {
  1218. handle_t *handle = ext3_journal_current_handle();
  1219. struct inode *inode = mapping->host;
  1220. int ret = 0, ret2;
  1221. int partial = 0;
  1222. unsigned from, to;
  1223. from = pos & (PAGE_CACHE_SIZE - 1);
  1224. to = from + len;
  1225. if (copied < len) {
  1226. if (!PageUptodate(page))
  1227. copied = 0;
  1228. page_zero_new_buffers(page, from + copied, to);
  1229. to = from + copied;
  1230. }
  1231. ret = walk_page_buffers(handle, page_buffers(page), from,
  1232. to, &partial, write_end_fn);
  1233. if (!partial)
  1234. SetPageUptodate(page);
  1235. if (pos + copied > inode->i_size)
  1236. i_size_write(inode, pos + copied);
  1237. /*
  1238. * There may be allocated blocks outside of i_size because
  1239. * we failed to copy some data. Prepare for truncate.
  1240. */
  1241. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1242. ext3_orphan_add(handle, inode);
  1243. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1244. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1245. EXT3_I(inode)->i_disksize = inode->i_size;
  1246. ret2 = ext3_mark_inode_dirty(handle, inode);
  1247. if (!ret)
  1248. ret = ret2;
  1249. }
  1250. ret2 = ext3_journal_stop(handle);
  1251. if (!ret)
  1252. ret = ret2;
  1253. unlock_page(page);
  1254. page_cache_release(page);
  1255. if (pos + len > inode->i_size)
  1256. ext3_truncate(inode);
  1257. return ret ? ret : copied;
  1258. }
  1259. /*
  1260. * bmap() is special. It gets used by applications such as lilo and by
  1261. * the swapper to find the on-disk block of a specific piece of data.
  1262. *
  1263. * Naturally, this is dangerous if the block concerned is still in the
  1264. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1265. * filesystem and enables swap, then they may get a nasty shock when the
  1266. * data getting swapped to that swapfile suddenly gets overwritten by
  1267. * the original zero's written out previously to the journal and
  1268. * awaiting writeback in the kernel's buffer cache.
  1269. *
  1270. * So, if we see any bmap calls here on a modified, data-journaled file,
  1271. * take extra steps to flush any blocks which might be in the cache.
  1272. */
  1273. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1274. {
  1275. struct inode *inode = mapping->host;
  1276. journal_t *journal;
  1277. int err;
  1278. if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
  1279. /*
  1280. * This is a REALLY heavyweight approach, but the use of
  1281. * bmap on dirty files is expected to be extremely rare:
  1282. * only if we run lilo or swapon on a freshly made file
  1283. * do we expect this to happen.
  1284. *
  1285. * (bmap requires CAP_SYS_RAWIO so this does not
  1286. * represent an unprivileged user DOS attack --- we'd be
  1287. * in trouble if mortal users could trigger this path at
  1288. * will.)
  1289. *
  1290. * NB. EXT3_STATE_JDATA is not set on files other than
  1291. * regular files. If somebody wants to bmap a directory
  1292. * or symlink and gets confused because the buffer
  1293. * hasn't yet been flushed to disk, they deserve
  1294. * everything they get.
  1295. */
  1296. EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
  1297. journal = EXT3_JOURNAL(inode);
  1298. journal_lock_updates(journal);
  1299. err = journal_flush(journal);
  1300. journal_unlock_updates(journal);
  1301. if (err)
  1302. return 0;
  1303. }
  1304. return generic_block_bmap(mapping,block,ext3_get_block);
  1305. }
  1306. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1307. {
  1308. get_bh(bh);
  1309. return 0;
  1310. }
  1311. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1312. {
  1313. put_bh(bh);
  1314. return 0;
  1315. }
  1316. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1317. {
  1318. return !buffer_mapped(bh);
  1319. }
  1320. /*
  1321. * Note that we always start a transaction even if we're not journalling
  1322. * data. This is to preserve ordering: any hole instantiation within
  1323. * __block_write_full_page -> ext3_get_block() should be journalled
  1324. * along with the data so we don't crash and then get metadata which
  1325. * refers to old data.
  1326. *
  1327. * In all journalling modes block_write_full_page() will start the I/O.
  1328. *
  1329. * Problem:
  1330. *
  1331. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1332. * ext3_writepage()
  1333. *
  1334. * Similar for:
  1335. *
  1336. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1337. *
  1338. * Same applies to ext3_get_block(). We will deadlock on various things like
  1339. * lock_journal and i_truncate_mutex.
  1340. *
  1341. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1342. * allocations fail.
  1343. *
  1344. * 16May01: If we're reentered then journal_current_handle() will be
  1345. * non-zero. We simply *return*.
  1346. *
  1347. * 1 July 2001: @@@ FIXME:
  1348. * In journalled data mode, a data buffer may be metadata against the
  1349. * current transaction. But the same file is part of a shared mapping
  1350. * and someone does a writepage() on it.
  1351. *
  1352. * We will move the buffer onto the async_data list, but *after* it has
  1353. * been dirtied. So there's a small window where we have dirty data on
  1354. * BJ_Metadata.
  1355. *
  1356. * Note that this only applies to the last partial page in the file. The
  1357. * bit which block_write_full_page() uses prepare/commit for. (That's
  1358. * broken code anyway: it's wrong for msync()).
  1359. *
  1360. * It's a rare case: affects the final partial page, for journalled data
  1361. * where the file is subject to bith write() and writepage() in the same
  1362. * transction. To fix it we'll need a custom block_write_full_page().
  1363. * We'll probably need that anyway for journalling writepage() output.
  1364. *
  1365. * We don't honour synchronous mounts for writepage(). That would be
  1366. * disastrous. Any write() or metadata operation will sync the fs for
  1367. * us.
  1368. *
  1369. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1370. * we don't need to open a transaction here.
  1371. */
  1372. static int ext3_ordered_writepage(struct page *page,
  1373. struct writeback_control *wbc)
  1374. {
  1375. struct inode *inode = page->mapping->host;
  1376. struct buffer_head *page_bufs;
  1377. handle_t *handle = NULL;
  1378. int ret = 0;
  1379. int err;
  1380. J_ASSERT(PageLocked(page));
  1381. /*
  1382. * We give up here if we're reentered, because it might be for a
  1383. * different filesystem.
  1384. */
  1385. if (ext3_journal_current_handle())
  1386. goto out_fail;
  1387. if (!page_has_buffers(page)) {
  1388. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1389. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1390. page_bufs = page_buffers(page);
  1391. } else {
  1392. page_bufs = page_buffers(page);
  1393. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1394. NULL, buffer_unmapped)) {
  1395. /* Provide NULL get_block() to catch bugs if buffers
  1396. * weren't really mapped */
  1397. return block_write_full_page(page, NULL, wbc);
  1398. }
  1399. }
  1400. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1401. if (IS_ERR(handle)) {
  1402. ret = PTR_ERR(handle);
  1403. goto out_fail;
  1404. }
  1405. walk_page_buffers(handle, page_bufs, 0,
  1406. PAGE_CACHE_SIZE, NULL, bget_one);
  1407. ret = block_write_full_page(page, ext3_get_block, wbc);
  1408. /*
  1409. * The page can become unlocked at any point now, and
  1410. * truncate can then come in and change things. So we
  1411. * can't touch *page from now on. But *page_bufs is
  1412. * safe due to elevated refcount.
  1413. */
  1414. /*
  1415. * And attach them to the current transaction. But only if
  1416. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1417. * and generally junk.
  1418. */
  1419. if (ret == 0) {
  1420. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1421. NULL, journal_dirty_data_fn);
  1422. if (!ret)
  1423. ret = err;
  1424. }
  1425. walk_page_buffers(handle, page_bufs, 0,
  1426. PAGE_CACHE_SIZE, NULL, bput_one);
  1427. err = ext3_journal_stop(handle);
  1428. if (!ret)
  1429. ret = err;
  1430. return ret;
  1431. out_fail:
  1432. redirty_page_for_writepage(wbc, page);
  1433. unlock_page(page);
  1434. return ret;
  1435. }
  1436. static int ext3_writeback_writepage(struct page *page,
  1437. struct writeback_control *wbc)
  1438. {
  1439. struct inode *inode = page->mapping->host;
  1440. handle_t *handle = NULL;
  1441. int ret = 0;
  1442. int err;
  1443. if (ext3_journal_current_handle())
  1444. goto out_fail;
  1445. if (page_has_buffers(page)) {
  1446. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1447. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1448. /* Provide NULL get_block() to catch bugs if buffers
  1449. * weren't really mapped */
  1450. return block_write_full_page(page, NULL, wbc);
  1451. }
  1452. }
  1453. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1454. if (IS_ERR(handle)) {
  1455. ret = PTR_ERR(handle);
  1456. goto out_fail;
  1457. }
  1458. if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
  1459. ret = nobh_writepage(page, ext3_get_block, wbc);
  1460. else
  1461. ret = block_write_full_page(page, ext3_get_block, wbc);
  1462. err = ext3_journal_stop(handle);
  1463. if (!ret)
  1464. ret = err;
  1465. return ret;
  1466. out_fail:
  1467. redirty_page_for_writepage(wbc, page);
  1468. unlock_page(page);
  1469. return ret;
  1470. }
  1471. static int ext3_journalled_writepage(struct page *page,
  1472. struct writeback_control *wbc)
  1473. {
  1474. struct inode *inode = page->mapping->host;
  1475. handle_t *handle = NULL;
  1476. int ret = 0;
  1477. int err;
  1478. if (ext3_journal_current_handle())
  1479. goto no_write;
  1480. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1481. if (IS_ERR(handle)) {
  1482. ret = PTR_ERR(handle);
  1483. goto no_write;
  1484. }
  1485. if (!page_has_buffers(page) || PageChecked(page)) {
  1486. /*
  1487. * It's mmapped pagecache. Add buffers and journal it. There
  1488. * doesn't seem much point in redirtying the page here.
  1489. */
  1490. ClearPageChecked(page);
  1491. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1492. ext3_get_block);
  1493. if (ret != 0) {
  1494. ext3_journal_stop(handle);
  1495. goto out_unlock;
  1496. }
  1497. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1498. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1499. err = walk_page_buffers(handle, page_buffers(page), 0,
  1500. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1501. if (ret == 0)
  1502. ret = err;
  1503. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1504. unlock_page(page);
  1505. } else {
  1506. /*
  1507. * It may be a page full of checkpoint-mode buffers. We don't
  1508. * really know unless we go poke around in the buffer_heads.
  1509. * But block_write_full_page will do the right thing.
  1510. */
  1511. ret = block_write_full_page(page, ext3_get_block, wbc);
  1512. }
  1513. err = ext3_journal_stop(handle);
  1514. if (!ret)
  1515. ret = err;
  1516. out:
  1517. return ret;
  1518. no_write:
  1519. redirty_page_for_writepage(wbc, page);
  1520. out_unlock:
  1521. unlock_page(page);
  1522. goto out;
  1523. }
  1524. static int ext3_readpage(struct file *file, struct page *page)
  1525. {
  1526. return mpage_readpage(page, ext3_get_block);
  1527. }
  1528. static int
  1529. ext3_readpages(struct file *file, struct address_space *mapping,
  1530. struct list_head *pages, unsigned nr_pages)
  1531. {
  1532. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1533. }
  1534. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1535. {
  1536. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1537. /*
  1538. * If it's a full truncate we just forget about the pending dirtying
  1539. */
  1540. if (offset == 0)
  1541. ClearPageChecked(page);
  1542. journal_invalidatepage(journal, page, offset);
  1543. }
  1544. static int ext3_releasepage(struct page *page, gfp_t wait)
  1545. {
  1546. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1547. WARN_ON(PageChecked(page));
  1548. if (!page_has_buffers(page))
  1549. return 0;
  1550. return journal_try_to_free_buffers(journal, page, wait);
  1551. }
  1552. /*
  1553. * If the O_DIRECT write will extend the file then add this inode to the
  1554. * orphan list. So recovery will truncate it back to the original size
  1555. * if the machine crashes during the write.
  1556. *
  1557. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1558. * crashes then stale disk data _may_ be exposed inside the file. But current
  1559. * VFS code falls back into buffered path in that case so we are safe.
  1560. */
  1561. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1562. const struct iovec *iov, loff_t offset,
  1563. unsigned long nr_segs)
  1564. {
  1565. struct file *file = iocb->ki_filp;
  1566. struct inode *inode = file->f_mapping->host;
  1567. struct ext3_inode_info *ei = EXT3_I(inode);
  1568. handle_t *handle;
  1569. ssize_t ret;
  1570. int orphan = 0;
  1571. size_t count = iov_length(iov, nr_segs);
  1572. int retries = 0;
  1573. if (rw == WRITE) {
  1574. loff_t final_size = offset + count;
  1575. if (final_size > inode->i_size) {
  1576. /* Credits for sb + inode write */
  1577. handle = ext3_journal_start(inode, 2);
  1578. if (IS_ERR(handle)) {
  1579. ret = PTR_ERR(handle);
  1580. goto out;
  1581. }
  1582. ret = ext3_orphan_add(handle, inode);
  1583. if (ret) {
  1584. ext3_journal_stop(handle);
  1585. goto out;
  1586. }
  1587. orphan = 1;
  1588. ei->i_disksize = inode->i_size;
  1589. ext3_journal_stop(handle);
  1590. }
  1591. }
  1592. retry:
  1593. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1594. offset, nr_segs,
  1595. ext3_get_block, NULL);
  1596. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1597. goto retry;
  1598. if (orphan) {
  1599. int err;
  1600. /* Credits for sb + inode write */
  1601. handle = ext3_journal_start(inode, 2);
  1602. if (IS_ERR(handle)) {
  1603. /* This is really bad luck. We've written the data
  1604. * but cannot extend i_size. Bail out and pretend
  1605. * the write failed... */
  1606. ret = PTR_ERR(handle);
  1607. goto out;
  1608. }
  1609. if (inode->i_nlink)
  1610. ext3_orphan_del(handle, inode);
  1611. if (ret > 0) {
  1612. loff_t end = offset + ret;
  1613. if (end > inode->i_size) {
  1614. ei->i_disksize = end;
  1615. i_size_write(inode, end);
  1616. /*
  1617. * We're going to return a positive `ret'
  1618. * here due to non-zero-length I/O, so there's
  1619. * no way of reporting error returns from
  1620. * ext3_mark_inode_dirty() to userspace. So
  1621. * ignore it.
  1622. */
  1623. ext3_mark_inode_dirty(handle, inode);
  1624. }
  1625. }
  1626. err = ext3_journal_stop(handle);
  1627. if (ret == 0)
  1628. ret = err;
  1629. }
  1630. out:
  1631. return ret;
  1632. }
  1633. /*
  1634. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1635. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1636. * much here because ->set_page_dirty is called under VFS locks. The page is
  1637. * not necessarily locked.
  1638. *
  1639. * We cannot just dirty the page and leave attached buffers clean, because the
  1640. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1641. * or jbddirty because all the journalling code will explode.
  1642. *
  1643. * So what we do is to mark the page "pending dirty" and next time writepage
  1644. * is called, propagate that into the buffers appropriately.
  1645. */
  1646. static int ext3_journalled_set_page_dirty(struct page *page)
  1647. {
  1648. SetPageChecked(page);
  1649. return __set_page_dirty_nobuffers(page);
  1650. }
  1651. static const struct address_space_operations ext3_ordered_aops = {
  1652. .readpage = ext3_readpage,
  1653. .readpages = ext3_readpages,
  1654. .writepage = ext3_ordered_writepage,
  1655. .sync_page = block_sync_page,
  1656. .write_begin = ext3_write_begin,
  1657. .write_end = ext3_ordered_write_end,
  1658. .bmap = ext3_bmap,
  1659. .invalidatepage = ext3_invalidatepage,
  1660. .releasepage = ext3_releasepage,
  1661. .direct_IO = ext3_direct_IO,
  1662. .migratepage = buffer_migrate_page,
  1663. .is_partially_uptodate = block_is_partially_uptodate,
  1664. .error_remove_page = generic_error_remove_page,
  1665. };
  1666. static const struct address_space_operations ext3_writeback_aops = {
  1667. .readpage = ext3_readpage,
  1668. .readpages = ext3_readpages,
  1669. .writepage = ext3_writeback_writepage,
  1670. .sync_page = block_sync_page,
  1671. .write_begin = ext3_write_begin,
  1672. .write_end = ext3_writeback_write_end,
  1673. .bmap = ext3_bmap,
  1674. .invalidatepage = ext3_invalidatepage,
  1675. .releasepage = ext3_releasepage,
  1676. .direct_IO = ext3_direct_IO,
  1677. .migratepage = buffer_migrate_page,
  1678. .is_partially_uptodate = block_is_partially_uptodate,
  1679. .error_remove_page = generic_error_remove_page,
  1680. };
  1681. static const struct address_space_operations ext3_journalled_aops = {
  1682. .readpage = ext3_readpage,
  1683. .readpages = ext3_readpages,
  1684. .writepage = ext3_journalled_writepage,
  1685. .sync_page = block_sync_page,
  1686. .write_begin = ext3_write_begin,
  1687. .write_end = ext3_journalled_write_end,
  1688. .set_page_dirty = ext3_journalled_set_page_dirty,
  1689. .bmap = ext3_bmap,
  1690. .invalidatepage = ext3_invalidatepage,
  1691. .releasepage = ext3_releasepage,
  1692. .is_partially_uptodate = block_is_partially_uptodate,
  1693. .error_remove_page = generic_error_remove_page,
  1694. };
  1695. void ext3_set_aops(struct inode *inode)
  1696. {
  1697. if (ext3_should_order_data(inode))
  1698. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1699. else if (ext3_should_writeback_data(inode))
  1700. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1701. else
  1702. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1703. }
  1704. /*
  1705. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1706. * up to the end of the block which corresponds to `from'.
  1707. * This required during truncate. We need to physically zero the tail end
  1708. * of that block so it doesn't yield old data if the file is later grown.
  1709. */
  1710. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1711. struct address_space *mapping, loff_t from)
  1712. {
  1713. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1714. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1715. unsigned blocksize, iblock, length, pos;
  1716. struct inode *inode = mapping->host;
  1717. struct buffer_head *bh;
  1718. int err = 0;
  1719. blocksize = inode->i_sb->s_blocksize;
  1720. length = blocksize - (offset & (blocksize - 1));
  1721. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1722. /*
  1723. * For "nobh" option, we can only work if we don't need to
  1724. * read-in the page - otherwise we create buffers to do the IO.
  1725. */
  1726. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1727. ext3_should_writeback_data(inode) && PageUptodate(page)) {
  1728. zero_user(page, offset, length);
  1729. set_page_dirty(page);
  1730. goto unlock;
  1731. }
  1732. if (!page_has_buffers(page))
  1733. create_empty_buffers(page, blocksize, 0);
  1734. /* Find the buffer that contains "offset" */
  1735. bh = page_buffers(page);
  1736. pos = blocksize;
  1737. while (offset >= pos) {
  1738. bh = bh->b_this_page;
  1739. iblock++;
  1740. pos += blocksize;
  1741. }
  1742. err = 0;
  1743. if (buffer_freed(bh)) {
  1744. BUFFER_TRACE(bh, "freed: skip");
  1745. goto unlock;
  1746. }
  1747. if (!buffer_mapped(bh)) {
  1748. BUFFER_TRACE(bh, "unmapped");
  1749. ext3_get_block(inode, iblock, bh, 0);
  1750. /* unmapped? It's a hole - nothing to do */
  1751. if (!buffer_mapped(bh)) {
  1752. BUFFER_TRACE(bh, "still unmapped");
  1753. goto unlock;
  1754. }
  1755. }
  1756. /* Ok, it's mapped. Make sure it's up-to-date */
  1757. if (PageUptodate(page))
  1758. set_buffer_uptodate(bh);
  1759. if (!buffer_uptodate(bh)) {
  1760. err = -EIO;
  1761. ll_rw_block(READ, 1, &bh);
  1762. wait_on_buffer(bh);
  1763. /* Uhhuh. Read error. Complain and punt. */
  1764. if (!buffer_uptodate(bh))
  1765. goto unlock;
  1766. }
  1767. if (ext3_should_journal_data(inode)) {
  1768. BUFFER_TRACE(bh, "get write access");
  1769. err = ext3_journal_get_write_access(handle, bh);
  1770. if (err)
  1771. goto unlock;
  1772. }
  1773. zero_user(page, offset, length);
  1774. BUFFER_TRACE(bh, "zeroed end of block");
  1775. err = 0;
  1776. if (ext3_should_journal_data(inode)) {
  1777. err = ext3_journal_dirty_metadata(handle, bh);
  1778. } else {
  1779. if (ext3_should_order_data(inode))
  1780. err = ext3_journal_dirty_data(handle, bh);
  1781. mark_buffer_dirty(bh);
  1782. }
  1783. unlock:
  1784. unlock_page(page);
  1785. page_cache_release(page);
  1786. return err;
  1787. }
  1788. /*
  1789. * Probably it should be a library function... search for first non-zero word
  1790. * or memcmp with zero_page, whatever is better for particular architecture.
  1791. * Linus?
  1792. */
  1793. static inline int all_zeroes(__le32 *p, __le32 *q)
  1794. {
  1795. while (p < q)
  1796. if (*p++)
  1797. return 0;
  1798. return 1;
  1799. }
  1800. /**
  1801. * ext3_find_shared - find the indirect blocks for partial truncation.
  1802. * @inode: inode in question
  1803. * @depth: depth of the affected branch
  1804. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1805. * @chain: place to store the pointers to partial indirect blocks
  1806. * @top: place to the (detached) top of branch
  1807. *
  1808. * This is a helper function used by ext3_truncate().
  1809. *
  1810. * When we do truncate() we may have to clean the ends of several
  1811. * indirect blocks but leave the blocks themselves alive. Block is
  1812. * partially truncated if some data below the new i_size is refered
  1813. * from it (and it is on the path to the first completely truncated
  1814. * data block, indeed). We have to free the top of that path along
  1815. * with everything to the right of the path. Since no allocation
  1816. * past the truncation point is possible until ext3_truncate()
  1817. * finishes, we may safely do the latter, but top of branch may
  1818. * require special attention - pageout below the truncation point
  1819. * might try to populate it.
  1820. *
  1821. * We atomically detach the top of branch from the tree, store the
  1822. * block number of its root in *@top, pointers to buffer_heads of
  1823. * partially truncated blocks - in @chain[].bh and pointers to
  1824. * their last elements that should not be removed - in
  1825. * @chain[].p. Return value is the pointer to last filled element
  1826. * of @chain.
  1827. *
  1828. * The work left to caller to do the actual freeing of subtrees:
  1829. * a) free the subtree starting from *@top
  1830. * b) free the subtrees whose roots are stored in
  1831. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1832. * c) free the subtrees growing from the inode past the @chain[0].
  1833. * (no partially truncated stuff there). */
  1834. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1835. int offsets[4], Indirect chain[4], __le32 *top)
  1836. {
  1837. Indirect *partial, *p;
  1838. int k, err;
  1839. *top = 0;
  1840. /* Make k index the deepest non-null offest + 1 */
  1841. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1842. ;
  1843. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1844. /* Writer: pointers */
  1845. if (!partial)
  1846. partial = chain + k-1;
  1847. /*
  1848. * If the branch acquired continuation since we've looked at it -
  1849. * fine, it should all survive and (new) top doesn't belong to us.
  1850. */
  1851. if (!partial->key && *partial->p)
  1852. /* Writer: end */
  1853. goto no_top;
  1854. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1855. ;
  1856. /*
  1857. * OK, we've found the last block that must survive. The rest of our
  1858. * branch should be detached before unlocking. However, if that rest
  1859. * of branch is all ours and does not grow immediately from the inode
  1860. * it's easier to cheat and just decrement partial->p.
  1861. */
  1862. if (p == chain + k - 1 && p > chain) {
  1863. p->p--;
  1864. } else {
  1865. *top = *p->p;
  1866. /* Nope, don't do this in ext3. Must leave the tree intact */
  1867. #if 0
  1868. *p->p = 0;
  1869. #endif
  1870. }
  1871. /* Writer: end */
  1872. while(partial > p) {
  1873. brelse(partial->bh);
  1874. partial--;
  1875. }
  1876. no_top:
  1877. return partial;
  1878. }
  1879. /*
  1880. * Zero a number of block pointers in either an inode or an indirect block.
  1881. * If we restart the transaction we must again get write access to the
  1882. * indirect block for further modification.
  1883. *
  1884. * We release `count' blocks on disk, but (last - first) may be greater
  1885. * than `count' because there can be holes in there.
  1886. */
  1887. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1888. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1889. unsigned long count, __le32 *first, __le32 *last)
  1890. {
  1891. __le32 *p;
  1892. if (try_to_extend_transaction(handle, inode)) {
  1893. if (bh) {
  1894. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1895. ext3_journal_dirty_metadata(handle, bh);
  1896. }
  1897. ext3_mark_inode_dirty(handle, inode);
  1898. truncate_restart_transaction(handle, inode);
  1899. if (bh) {
  1900. BUFFER_TRACE(bh, "retaking write access");
  1901. ext3_journal_get_write_access(handle, bh);
  1902. }
  1903. }
  1904. /*
  1905. * Any buffers which are on the journal will be in memory. We find
  1906. * them on the hash table so journal_revoke() will run journal_forget()
  1907. * on them. We've already detached each block from the file, so
  1908. * bforget() in journal_forget() should be safe.
  1909. *
  1910. * AKPM: turn on bforget in journal_forget()!!!
  1911. */
  1912. for (p = first; p < last; p++) {
  1913. u32 nr = le32_to_cpu(*p);
  1914. if (nr) {
  1915. struct buffer_head *bh;
  1916. *p = 0;
  1917. bh = sb_find_get_block(inode->i_sb, nr);
  1918. ext3_forget(handle, 0, inode, bh, nr);
  1919. }
  1920. }
  1921. ext3_free_blocks(handle, inode, block_to_free, count);
  1922. }
  1923. /**
  1924. * ext3_free_data - free a list of data blocks
  1925. * @handle: handle for this transaction
  1926. * @inode: inode we are dealing with
  1927. * @this_bh: indirect buffer_head which contains *@first and *@last
  1928. * @first: array of block numbers
  1929. * @last: points immediately past the end of array
  1930. *
  1931. * We are freeing all blocks refered from that array (numbers are stored as
  1932. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1933. *
  1934. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1935. * blocks are contiguous then releasing them at one time will only affect one
  1936. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1937. * actually use a lot of journal space.
  1938. *
  1939. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1940. * block pointers.
  1941. */
  1942. static void ext3_free_data(handle_t *handle, struct inode *inode,
  1943. struct buffer_head *this_bh,
  1944. __le32 *first, __le32 *last)
  1945. {
  1946. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1947. unsigned long count = 0; /* Number of blocks in the run */
  1948. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1949. corresponding to
  1950. block_to_free */
  1951. ext3_fsblk_t nr; /* Current block # */
  1952. __le32 *p; /* Pointer into inode/ind
  1953. for current block */
  1954. int err;
  1955. if (this_bh) { /* For indirect block */
  1956. BUFFER_TRACE(this_bh, "get_write_access");
  1957. err = ext3_journal_get_write_access(handle, this_bh);
  1958. /* Important: if we can't update the indirect pointers
  1959. * to the blocks, we can't free them. */
  1960. if (err)
  1961. return;
  1962. }
  1963. for (p = first; p < last; p++) {
  1964. nr = le32_to_cpu(*p);
  1965. if (nr) {
  1966. /* accumulate blocks to free if they're contiguous */
  1967. if (count == 0) {
  1968. block_to_free = nr;
  1969. block_to_free_p = p;
  1970. count = 1;
  1971. } else if (nr == block_to_free + count) {
  1972. count++;
  1973. } else {
  1974. ext3_clear_blocks(handle, inode, this_bh,
  1975. block_to_free,
  1976. count, block_to_free_p, p);
  1977. block_to_free = nr;
  1978. block_to_free_p = p;
  1979. count = 1;
  1980. }
  1981. }
  1982. }
  1983. if (count > 0)
  1984. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  1985. count, block_to_free_p, p);
  1986. if (this_bh) {
  1987. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  1988. /*
  1989. * The buffer head should have an attached journal head at this
  1990. * point. However, if the data is corrupted and an indirect
  1991. * block pointed to itself, it would have been detached when
  1992. * the block was cleared. Check for this instead of OOPSing.
  1993. */
  1994. if (bh2jh(this_bh))
  1995. ext3_journal_dirty_metadata(handle, this_bh);
  1996. else
  1997. ext3_error(inode->i_sb, "ext3_free_data",
  1998. "circular indirect block detected, "
  1999. "inode=%lu, block=%llu",
  2000. inode->i_ino,
  2001. (unsigned long long)this_bh->b_blocknr);
  2002. }
  2003. }
  2004. /**
  2005. * ext3_free_branches - free an array of branches
  2006. * @handle: JBD handle for this transaction
  2007. * @inode: inode we are dealing with
  2008. * @parent_bh: the buffer_head which contains *@first and *@last
  2009. * @first: array of block numbers
  2010. * @last: pointer immediately past the end of array
  2011. * @depth: depth of the branches to free
  2012. *
  2013. * We are freeing all blocks refered from these branches (numbers are
  2014. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2015. * appropriately.
  2016. */
  2017. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2018. struct buffer_head *parent_bh,
  2019. __le32 *first, __le32 *last, int depth)
  2020. {
  2021. ext3_fsblk_t nr;
  2022. __le32 *p;
  2023. if (is_handle_aborted(handle))
  2024. return;
  2025. if (depth--) {
  2026. struct buffer_head *bh;
  2027. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2028. p = last;
  2029. while (--p >= first) {
  2030. nr = le32_to_cpu(*p);
  2031. if (!nr)
  2032. continue; /* A hole */
  2033. /* Go read the buffer for the next level down */
  2034. bh = sb_bread(inode->i_sb, nr);
  2035. /*
  2036. * A read failure? Report error and clear slot
  2037. * (should be rare).
  2038. */
  2039. if (!bh) {
  2040. ext3_error(inode->i_sb, "ext3_free_branches",
  2041. "Read failure, inode=%lu, block="E3FSBLK,
  2042. inode->i_ino, nr);
  2043. continue;
  2044. }
  2045. /* This zaps the entire block. Bottom up. */
  2046. BUFFER_TRACE(bh, "free child branches");
  2047. ext3_free_branches(handle, inode, bh,
  2048. (__le32*)bh->b_data,
  2049. (__le32*)bh->b_data + addr_per_block,
  2050. depth);
  2051. /*
  2052. * We've probably journalled the indirect block several
  2053. * times during the truncate. But it's no longer
  2054. * needed and we now drop it from the transaction via
  2055. * journal_revoke().
  2056. *
  2057. * That's easy if it's exclusively part of this
  2058. * transaction. But if it's part of the committing
  2059. * transaction then journal_forget() will simply
  2060. * brelse() it. That means that if the underlying
  2061. * block is reallocated in ext3_get_block(),
  2062. * unmap_underlying_metadata() will find this block
  2063. * and will try to get rid of it. damn, damn.
  2064. *
  2065. * If this block has already been committed to the
  2066. * journal, a revoke record will be written. And
  2067. * revoke records must be emitted *before* clearing
  2068. * this block's bit in the bitmaps.
  2069. */
  2070. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2071. /*
  2072. * Everything below this this pointer has been
  2073. * released. Now let this top-of-subtree go.
  2074. *
  2075. * We want the freeing of this indirect block to be
  2076. * atomic in the journal with the updating of the
  2077. * bitmap block which owns it. So make some room in
  2078. * the journal.
  2079. *
  2080. * We zero the parent pointer *after* freeing its
  2081. * pointee in the bitmaps, so if extend_transaction()
  2082. * for some reason fails to put the bitmap changes and
  2083. * the release into the same transaction, recovery
  2084. * will merely complain about releasing a free block,
  2085. * rather than leaking blocks.
  2086. */
  2087. if (is_handle_aborted(handle))
  2088. return;
  2089. if (try_to_extend_transaction(handle, inode)) {
  2090. ext3_mark_inode_dirty(handle, inode);
  2091. truncate_restart_transaction(handle, inode);
  2092. }
  2093. ext3_free_blocks(handle, inode, nr, 1);
  2094. if (parent_bh) {
  2095. /*
  2096. * The block which we have just freed is
  2097. * pointed to by an indirect block: journal it
  2098. */
  2099. BUFFER_TRACE(parent_bh, "get_write_access");
  2100. if (!ext3_journal_get_write_access(handle,
  2101. parent_bh)){
  2102. *p = 0;
  2103. BUFFER_TRACE(parent_bh,
  2104. "call ext3_journal_dirty_metadata");
  2105. ext3_journal_dirty_metadata(handle,
  2106. parent_bh);
  2107. }
  2108. }
  2109. }
  2110. } else {
  2111. /* We have reached the bottom of the tree. */
  2112. BUFFER_TRACE(parent_bh, "free data blocks");
  2113. ext3_free_data(handle, inode, parent_bh, first, last);
  2114. }
  2115. }
  2116. int ext3_can_truncate(struct inode *inode)
  2117. {
  2118. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2119. return 0;
  2120. if (S_ISREG(inode->i_mode))
  2121. return 1;
  2122. if (S_ISDIR(inode->i_mode))
  2123. return 1;
  2124. if (S_ISLNK(inode->i_mode))
  2125. return !ext3_inode_is_fast_symlink(inode);
  2126. return 0;
  2127. }
  2128. /*
  2129. * ext3_truncate()
  2130. *
  2131. * We block out ext3_get_block() block instantiations across the entire
  2132. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2133. * simultaneously on behalf of the same inode.
  2134. *
  2135. * As we work through the truncate and commmit bits of it to the journal there
  2136. * is one core, guiding principle: the file's tree must always be consistent on
  2137. * disk. We must be able to restart the truncate after a crash.
  2138. *
  2139. * The file's tree may be transiently inconsistent in memory (although it
  2140. * probably isn't), but whenever we close off and commit a journal transaction,
  2141. * the contents of (the filesystem + the journal) must be consistent and
  2142. * restartable. It's pretty simple, really: bottom up, right to left (although
  2143. * left-to-right works OK too).
  2144. *
  2145. * Note that at recovery time, journal replay occurs *before* the restart of
  2146. * truncate against the orphan inode list.
  2147. *
  2148. * The committed inode has the new, desired i_size (which is the same as
  2149. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2150. * that this inode's truncate did not complete and it will again call
  2151. * ext3_truncate() to have another go. So there will be instantiated blocks
  2152. * to the right of the truncation point in a crashed ext3 filesystem. But
  2153. * that's fine - as long as they are linked from the inode, the post-crash
  2154. * ext3_truncate() run will find them and release them.
  2155. */
  2156. void ext3_truncate(struct inode *inode)
  2157. {
  2158. handle_t *handle;
  2159. struct ext3_inode_info *ei = EXT3_I(inode);
  2160. __le32 *i_data = ei->i_data;
  2161. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2162. struct address_space *mapping = inode->i_mapping;
  2163. int offsets[4];
  2164. Indirect chain[4];
  2165. Indirect *partial;
  2166. __le32 nr = 0;
  2167. int n;
  2168. long last_block;
  2169. unsigned blocksize = inode->i_sb->s_blocksize;
  2170. struct page *page;
  2171. if (!ext3_can_truncate(inode))
  2172. goto out_notrans;
  2173. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2174. ei->i_state |= EXT3_STATE_FLUSH_ON_CLOSE;
  2175. /*
  2176. * We have to lock the EOF page here, because lock_page() nests
  2177. * outside journal_start().
  2178. */
  2179. if ((inode->i_size & (blocksize - 1)) == 0) {
  2180. /* Block boundary? Nothing to do */
  2181. page = NULL;
  2182. } else {
  2183. page = grab_cache_page(mapping,
  2184. inode->i_size >> PAGE_CACHE_SHIFT);
  2185. if (!page)
  2186. goto out_notrans;
  2187. }
  2188. handle = start_transaction(inode);
  2189. if (IS_ERR(handle)) {
  2190. if (page) {
  2191. clear_highpage(page);
  2192. flush_dcache_page(page);
  2193. unlock_page(page);
  2194. page_cache_release(page);
  2195. }
  2196. goto out_notrans;
  2197. }
  2198. last_block = (inode->i_size + blocksize-1)
  2199. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2200. if (page)
  2201. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2202. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2203. if (n == 0)
  2204. goto out_stop; /* error */
  2205. /*
  2206. * OK. This truncate is going to happen. We add the inode to the
  2207. * orphan list, so that if this truncate spans multiple transactions,
  2208. * and we crash, we will resume the truncate when the filesystem
  2209. * recovers. It also marks the inode dirty, to catch the new size.
  2210. *
  2211. * Implication: the file must always be in a sane, consistent
  2212. * truncatable state while each transaction commits.
  2213. */
  2214. if (ext3_orphan_add(handle, inode))
  2215. goto out_stop;
  2216. /*
  2217. * The orphan list entry will now protect us from any crash which
  2218. * occurs before the truncate completes, so it is now safe to propagate
  2219. * the new, shorter inode size (held for now in i_size) into the
  2220. * on-disk inode. We do this via i_disksize, which is the value which
  2221. * ext3 *really* writes onto the disk inode.
  2222. */
  2223. ei->i_disksize = inode->i_size;
  2224. /*
  2225. * From here we block out all ext3_get_block() callers who want to
  2226. * modify the block allocation tree.
  2227. */
  2228. mutex_lock(&ei->truncate_mutex);
  2229. if (n == 1) { /* direct blocks */
  2230. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2231. i_data + EXT3_NDIR_BLOCKS);
  2232. goto do_indirects;
  2233. }
  2234. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2235. /* Kill the top of shared branch (not detached) */
  2236. if (nr) {
  2237. if (partial == chain) {
  2238. /* Shared branch grows from the inode */
  2239. ext3_free_branches(handle, inode, NULL,
  2240. &nr, &nr+1, (chain+n-1) - partial);
  2241. *partial->p = 0;
  2242. /*
  2243. * We mark the inode dirty prior to restart,
  2244. * and prior to stop. No need for it here.
  2245. */
  2246. } else {
  2247. /* Shared branch grows from an indirect block */
  2248. BUFFER_TRACE(partial->bh, "get_write_access");
  2249. ext3_free_branches(handle, inode, partial->bh,
  2250. partial->p,
  2251. partial->p+1, (chain+n-1) - partial);
  2252. }
  2253. }
  2254. /* Clear the ends of indirect blocks on the shared branch */
  2255. while (partial > chain) {
  2256. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2257. (__le32*)partial->bh->b_data+addr_per_block,
  2258. (chain+n-1) - partial);
  2259. BUFFER_TRACE(partial->bh, "call brelse");
  2260. brelse (partial->bh);
  2261. partial--;
  2262. }
  2263. do_indirects:
  2264. /* Kill the remaining (whole) subtrees */
  2265. switch (offsets[0]) {
  2266. default:
  2267. nr = i_data[EXT3_IND_BLOCK];
  2268. if (nr) {
  2269. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2270. i_data[EXT3_IND_BLOCK] = 0;
  2271. }
  2272. case EXT3_IND_BLOCK:
  2273. nr = i_data[EXT3_DIND_BLOCK];
  2274. if (nr) {
  2275. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2276. i_data[EXT3_DIND_BLOCK] = 0;
  2277. }
  2278. case EXT3_DIND_BLOCK:
  2279. nr = i_data[EXT3_TIND_BLOCK];
  2280. if (nr) {
  2281. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2282. i_data[EXT3_TIND_BLOCK] = 0;
  2283. }
  2284. case EXT3_TIND_BLOCK:
  2285. ;
  2286. }
  2287. ext3_discard_reservation(inode);
  2288. mutex_unlock(&ei->truncate_mutex);
  2289. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2290. ext3_mark_inode_dirty(handle, inode);
  2291. /*
  2292. * In a multi-transaction truncate, we only make the final transaction
  2293. * synchronous
  2294. */
  2295. if (IS_SYNC(inode))
  2296. handle->h_sync = 1;
  2297. out_stop:
  2298. /*
  2299. * If this was a simple ftruncate(), and the file will remain alive
  2300. * then we need to clear up the orphan record which we created above.
  2301. * However, if this was a real unlink then we were called by
  2302. * ext3_delete_inode(), and we allow that function to clean up the
  2303. * orphan info for us.
  2304. */
  2305. if (inode->i_nlink)
  2306. ext3_orphan_del(handle, inode);
  2307. ext3_journal_stop(handle);
  2308. return;
  2309. out_notrans:
  2310. /*
  2311. * Delete the inode from orphan list so that it doesn't stay there
  2312. * forever and trigger assertion on umount.
  2313. */
  2314. if (inode->i_nlink)
  2315. ext3_orphan_del(NULL, inode);
  2316. }
  2317. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2318. unsigned long ino, struct ext3_iloc *iloc)
  2319. {
  2320. unsigned long block_group;
  2321. unsigned long offset;
  2322. ext3_fsblk_t block;
  2323. struct ext3_group_desc *gdp;
  2324. if (!ext3_valid_inum(sb, ino)) {
  2325. /*
  2326. * This error is already checked for in namei.c unless we are
  2327. * looking at an NFS filehandle, in which case no error
  2328. * report is needed
  2329. */
  2330. return 0;
  2331. }
  2332. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2333. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2334. if (!gdp)
  2335. return 0;
  2336. /*
  2337. * Figure out the offset within the block group inode table
  2338. */
  2339. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2340. EXT3_INODE_SIZE(sb);
  2341. block = le32_to_cpu(gdp->bg_inode_table) +
  2342. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2343. iloc->block_group = block_group;
  2344. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2345. return block;
  2346. }
  2347. /*
  2348. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2349. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2350. * data in memory that is needed to recreate the on-disk version of this
  2351. * inode.
  2352. */
  2353. static int __ext3_get_inode_loc(struct inode *inode,
  2354. struct ext3_iloc *iloc, int in_mem)
  2355. {
  2356. ext3_fsblk_t block;
  2357. struct buffer_head *bh;
  2358. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2359. if (!block)
  2360. return -EIO;
  2361. bh = sb_getblk(inode->i_sb, block);
  2362. if (!bh) {
  2363. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2364. "unable to read inode block - "
  2365. "inode=%lu, block="E3FSBLK,
  2366. inode->i_ino, block);
  2367. return -EIO;
  2368. }
  2369. if (!buffer_uptodate(bh)) {
  2370. lock_buffer(bh);
  2371. /*
  2372. * If the buffer has the write error flag, we have failed
  2373. * to write out another inode in the same block. In this
  2374. * case, we don't have to read the block because we may
  2375. * read the old inode data successfully.
  2376. */
  2377. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2378. set_buffer_uptodate(bh);
  2379. if (buffer_uptodate(bh)) {
  2380. /* someone brought it uptodate while we waited */
  2381. unlock_buffer(bh);
  2382. goto has_buffer;
  2383. }
  2384. /*
  2385. * If we have all information of the inode in memory and this
  2386. * is the only valid inode in the block, we need not read the
  2387. * block.
  2388. */
  2389. if (in_mem) {
  2390. struct buffer_head *bitmap_bh;
  2391. struct ext3_group_desc *desc;
  2392. int inodes_per_buffer;
  2393. int inode_offset, i;
  2394. int block_group;
  2395. int start;
  2396. block_group = (inode->i_ino - 1) /
  2397. EXT3_INODES_PER_GROUP(inode->i_sb);
  2398. inodes_per_buffer = bh->b_size /
  2399. EXT3_INODE_SIZE(inode->i_sb);
  2400. inode_offset = ((inode->i_ino - 1) %
  2401. EXT3_INODES_PER_GROUP(inode->i_sb));
  2402. start = inode_offset & ~(inodes_per_buffer - 1);
  2403. /* Is the inode bitmap in cache? */
  2404. desc = ext3_get_group_desc(inode->i_sb,
  2405. block_group, NULL);
  2406. if (!desc)
  2407. goto make_io;
  2408. bitmap_bh = sb_getblk(inode->i_sb,
  2409. le32_to_cpu(desc->bg_inode_bitmap));
  2410. if (!bitmap_bh)
  2411. goto make_io;
  2412. /*
  2413. * If the inode bitmap isn't in cache then the
  2414. * optimisation may end up performing two reads instead
  2415. * of one, so skip it.
  2416. */
  2417. if (!buffer_uptodate(bitmap_bh)) {
  2418. brelse(bitmap_bh);
  2419. goto make_io;
  2420. }
  2421. for (i = start; i < start + inodes_per_buffer; i++) {
  2422. if (i == inode_offset)
  2423. continue;
  2424. if (ext3_test_bit(i, bitmap_bh->b_data))
  2425. break;
  2426. }
  2427. brelse(bitmap_bh);
  2428. if (i == start + inodes_per_buffer) {
  2429. /* all other inodes are free, so skip I/O */
  2430. memset(bh->b_data, 0, bh->b_size);
  2431. set_buffer_uptodate(bh);
  2432. unlock_buffer(bh);
  2433. goto has_buffer;
  2434. }
  2435. }
  2436. make_io:
  2437. /*
  2438. * There are other valid inodes in the buffer, this inode
  2439. * has in-inode xattrs, or we don't have this inode in memory.
  2440. * Read the block from disk.
  2441. */
  2442. get_bh(bh);
  2443. bh->b_end_io = end_buffer_read_sync;
  2444. submit_bh(READ_META, bh);
  2445. wait_on_buffer(bh);
  2446. if (!buffer_uptodate(bh)) {
  2447. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2448. "unable to read inode block - "
  2449. "inode=%lu, block="E3FSBLK,
  2450. inode->i_ino, block);
  2451. brelse(bh);
  2452. return -EIO;
  2453. }
  2454. }
  2455. has_buffer:
  2456. iloc->bh = bh;
  2457. return 0;
  2458. }
  2459. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2460. {
  2461. /* We have all inode data except xattrs in memory here. */
  2462. return __ext3_get_inode_loc(inode, iloc,
  2463. !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
  2464. }
  2465. void ext3_set_inode_flags(struct inode *inode)
  2466. {
  2467. unsigned int flags = EXT3_I(inode)->i_flags;
  2468. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2469. if (flags & EXT3_SYNC_FL)
  2470. inode->i_flags |= S_SYNC;
  2471. if (flags & EXT3_APPEND_FL)
  2472. inode->i_flags |= S_APPEND;
  2473. if (flags & EXT3_IMMUTABLE_FL)
  2474. inode->i_flags |= S_IMMUTABLE;
  2475. if (flags & EXT3_NOATIME_FL)
  2476. inode->i_flags |= S_NOATIME;
  2477. if (flags & EXT3_DIRSYNC_FL)
  2478. inode->i_flags |= S_DIRSYNC;
  2479. }
  2480. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2481. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2482. {
  2483. unsigned int flags = ei->vfs_inode.i_flags;
  2484. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2485. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2486. if (flags & S_SYNC)
  2487. ei->i_flags |= EXT3_SYNC_FL;
  2488. if (flags & S_APPEND)
  2489. ei->i_flags |= EXT3_APPEND_FL;
  2490. if (flags & S_IMMUTABLE)
  2491. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2492. if (flags & S_NOATIME)
  2493. ei->i_flags |= EXT3_NOATIME_FL;
  2494. if (flags & S_DIRSYNC)
  2495. ei->i_flags |= EXT3_DIRSYNC_FL;
  2496. }
  2497. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2498. {
  2499. struct ext3_iloc iloc;
  2500. struct ext3_inode *raw_inode;
  2501. struct ext3_inode_info *ei;
  2502. struct buffer_head *bh;
  2503. struct inode *inode;
  2504. journal_t *journal = EXT3_SB(sb)->s_journal;
  2505. transaction_t *transaction;
  2506. long ret;
  2507. int block;
  2508. inode = iget_locked(sb, ino);
  2509. if (!inode)
  2510. return ERR_PTR(-ENOMEM);
  2511. if (!(inode->i_state & I_NEW))
  2512. return inode;
  2513. ei = EXT3_I(inode);
  2514. ei->i_block_alloc_info = NULL;
  2515. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2516. if (ret < 0)
  2517. goto bad_inode;
  2518. bh = iloc.bh;
  2519. raw_inode = ext3_raw_inode(&iloc);
  2520. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2521. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2522. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2523. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2524. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2525. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2526. }
  2527. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2528. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2529. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2530. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2531. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2532. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2533. ei->i_state = 0;
  2534. ei->i_dir_start_lookup = 0;
  2535. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2536. /* We now have enough fields to check if the inode was active or not.
  2537. * This is needed because nfsd might try to access dead inodes
  2538. * the test is that same one that e2fsck uses
  2539. * NeilBrown 1999oct15
  2540. */
  2541. if (inode->i_nlink == 0) {
  2542. if (inode->i_mode == 0 ||
  2543. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2544. /* this inode is deleted */
  2545. brelse (bh);
  2546. ret = -ESTALE;
  2547. goto bad_inode;
  2548. }
  2549. /* The only unlinked inodes we let through here have
  2550. * valid i_mode and are being read by the orphan
  2551. * recovery code: that's fine, we're about to complete
  2552. * the process of deleting those. */
  2553. }
  2554. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2555. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2556. #ifdef EXT3_FRAGMENTS
  2557. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2558. ei->i_frag_no = raw_inode->i_frag;
  2559. ei->i_frag_size = raw_inode->i_fsize;
  2560. #endif
  2561. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2562. if (!S_ISREG(inode->i_mode)) {
  2563. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2564. } else {
  2565. inode->i_size |=
  2566. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2567. }
  2568. ei->i_disksize = inode->i_size;
  2569. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2570. ei->i_block_group = iloc.block_group;
  2571. /*
  2572. * NOTE! The in-memory inode i_data array is in little-endian order
  2573. * even on big-endian machines: we do NOT byteswap the block numbers!
  2574. */
  2575. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2576. ei->i_data[block] = raw_inode->i_block[block];
  2577. INIT_LIST_HEAD(&ei->i_orphan);
  2578. /*
  2579. * Set transaction id's of transactions that have to be committed
  2580. * to finish f[data]sync. We set them to currently running transaction
  2581. * as we cannot be sure that the inode or some of its metadata isn't
  2582. * part of the transaction - the inode could have been reclaimed and
  2583. * now it is reread from disk.
  2584. */
  2585. if (journal) {
  2586. tid_t tid;
  2587. spin_lock(&journal->j_state_lock);
  2588. if (journal->j_running_transaction)
  2589. transaction = journal->j_running_transaction;
  2590. else
  2591. transaction = journal->j_committing_transaction;
  2592. if (transaction)
  2593. tid = transaction->t_tid;
  2594. else
  2595. tid = journal->j_commit_sequence;
  2596. spin_unlock(&journal->j_state_lock);
  2597. atomic_set(&ei->i_sync_tid, tid);
  2598. atomic_set(&ei->i_datasync_tid, tid);
  2599. }
  2600. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2601. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2602. /*
  2603. * When mke2fs creates big inodes it does not zero out
  2604. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2605. * so ignore those first few inodes.
  2606. */
  2607. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2608. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2609. EXT3_INODE_SIZE(inode->i_sb)) {
  2610. brelse (bh);
  2611. ret = -EIO;
  2612. goto bad_inode;
  2613. }
  2614. if (ei->i_extra_isize == 0) {
  2615. /* The extra space is currently unused. Use it. */
  2616. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2617. EXT3_GOOD_OLD_INODE_SIZE;
  2618. } else {
  2619. __le32 *magic = (void *)raw_inode +
  2620. EXT3_GOOD_OLD_INODE_SIZE +
  2621. ei->i_extra_isize;
  2622. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2623. ei->i_state |= EXT3_STATE_XATTR;
  2624. }
  2625. } else
  2626. ei->i_extra_isize = 0;
  2627. if (S_ISREG(inode->i_mode)) {
  2628. inode->i_op = &ext3_file_inode_operations;
  2629. inode->i_fop = &ext3_file_operations;
  2630. ext3_set_aops(inode);
  2631. } else if (S_ISDIR(inode->i_mode)) {
  2632. inode->i_op = &ext3_dir_inode_operations;
  2633. inode->i_fop = &ext3_dir_operations;
  2634. } else if (S_ISLNK(inode->i_mode)) {
  2635. if (ext3_inode_is_fast_symlink(inode)) {
  2636. inode->i_op = &ext3_fast_symlink_inode_operations;
  2637. nd_terminate_link(ei->i_data, inode->i_size,
  2638. sizeof(ei->i_data) - 1);
  2639. } else {
  2640. inode->i_op = &ext3_symlink_inode_operations;
  2641. ext3_set_aops(inode);
  2642. }
  2643. } else {
  2644. inode->i_op = &ext3_special_inode_operations;
  2645. if (raw_inode->i_block[0])
  2646. init_special_inode(inode, inode->i_mode,
  2647. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2648. else
  2649. init_special_inode(inode, inode->i_mode,
  2650. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2651. }
  2652. brelse (iloc.bh);
  2653. ext3_set_inode_flags(inode);
  2654. unlock_new_inode(inode);
  2655. return inode;
  2656. bad_inode:
  2657. iget_failed(inode);
  2658. return ERR_PTR(ret);
  2659. }
  2660. /*
  2661. * Post the struct inode info into an on-disk inode location in the
  2662. * buffer-cache. This gobbles the caller's reference to the
  2663. * buffer_head in the inode location struct.
  2664. *
  2665. * The caller must have write access to iloc->bh.
  2666. */
  2667. static int ext3_do_update_inode(handle_t *handle,
  2668. struct inode *inode,
  2669. struct ext3_iloc *iloc)
  2670. {
  2671. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2672. struct ext3_inode_info *ei = EXT3_I(inode);
  2673. struct buffer_head *bh = iloc->bh;
  2674. int err = 0, rc, block;
  2675. again:
  2676. /* we can't allow multiple procs in here at once, its a bit racey */
  2677. lock_buffer(bh);
  2678. /* For fields not not tracking in the in-memory inode,
  2679. * initialise them to zero for new inodes. */
  2680. if (ei->i_state & EXT3_STATE_NEW)
  2681. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2682. ext3_get_inode_flags(ei);
  2683. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2684. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2685. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2686. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2687. /*
  2688. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2689. * re-used with the upper 16 bits of the uid/gid intact
  2690. */
  2691. if(!ei->i_dtime) {
  2692. raw_inode->i_uid_high =
  2693. cpu_to_le16(high_16_bits(inode->i_uid));
  2694. raw_inode->i_gid_high =
  2695. cpu_to_le16(high_16_bits(inode->i_gid));
  2696. } else {
  2697. raw_inode->i_uid_high = 0;
  2698. raw_inode->i_gid_high = 0;
  2699. }
  2700. } else {
  2701. raw_inode->i_uid_low =
  2702. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2703. raw_inode->i_gid_low =
  2704. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2705. raw_inode->i_uid_high = 0;
  2706. raw_inode->i_gid_high = 0;
  2707. }
  2708. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2709. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2710. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2711. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2712. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2713. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2714. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2715. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2716. #ifdef EXT3_FRAGMENTS
  2717. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2718. raw_inode->i_frag = ei->i_frag_no;
  2719. raw_inode->i_fsize = ei->i_frag_size;
  2720. #endif
  2721. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2722. if (!S_ISREG(inode->i_mode)) {
  2723. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2724. } else {
  2725. raw_inode->i_size_high =
  2726. cpu_to_le32(ei->i_disksize >> 32);
  2727. if (ei->i_disksize > 0x7fffffffULL) {
  2728. struct super_block *sb = inode->i_sb;
  2729. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2730. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2731. EXT3_SB(sb)->s_es->s_rev_level ==
  2732. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2733. /* If this is the first large file
  2734. * created, add a flag to the superblock.
  2735. */
  2736. unlock_buffer(bh);
  2737. err = ext3_journal_get_write_access(handle,
  2738. EXT3_SB(sb)->s_sbh);
  2739. if (err)
  2740. goto out_brelse;
  2741. ext3_update_dynamic_rev(sb);
  2742. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2743. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2744. handle->h_sync = 1;
  2745. err = ext3_journal_dirty_metadata(handle,
  2746. EXT3_SB(sb)->s_sbh);
  2747. /* get our lock and start over */
  2748. goto again;
  2749. }
  2750. }
  2751. }
  2752. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2753. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2754. if (old_valid_dev(inode->i_rdev)) {
  2755. raw_inode->i_block[0] =
  2756. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2757. raw_inode->i_block[1] = 0;
  2758. } else {
  2759. raw_inode->i_block[0] = 0;
  2760. raw_inode->i_block[1] =
  2761. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2762. raw_inode->i_block[2] = 0;
  2763. }
  2764. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2765. raw_inode->i_block[block] = ei->i_data[block];
  2766. if (ei->i_extra_isize)
  2767. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2768. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2769. unlock_buffer(bh);
  2770. rc = ext3_journal_dirty_metadata(handle, bh);
  2771. if (!err)
  2772. err = rc;
  2773. ei->i_state &= ~EXT3_STATE_NEW;
  2774. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2775. out_brelse:
  2776. brelse (bh);
  2777. ext3_std_error(inode->i_sb, err);
  2778. return err;
  2779. }
  2780. /*
  2781. * ext3_write_inode()
  2782. *
  2783. * We are called from a few places:
  2784. *
  2785. * - Within generic_file_write() for O_SYNC files.
  2786. * Here, there will be no transaction running. We wait for any running
  2787. * trasnaction to commit.
  2788. *
  2789. * - Within sys_sync(), kupdate and such.
  2790. * We wait on commit, if tol to.
  2791. *
  2792. * - Within prune_icache() (PF_MEMALLOC == true)
  2793. * Here we simply return. We can't afford to block kswapd on the
  2794. * journal commit.
  2795. *
  2796. * In all cases it is actually safe for us to return without doing anything,
  2797. * because the inode has been copied into a raw inode buffer in
  2798. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2799. * knfsd.
  2800. *
  2801. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2802. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2803. * which we are interested.
  2804. *
  2805. * It would be a bug for them to not do this. The code:
  2806. *
  2807. * mark_inode_dirty(inode)
  2808. * stuff();
  2809. * inode->i_size = expr;
  2810. *
  2811. * is in error because a kswapd-driven write_inode() could occur while
  2812. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2813. * will no longer be on the superblock's dirty inode list.
  2814. */
  2815. int ext3_write_inode(struct inode *inode, int wait)
  2816. {
  2817. if (current->flags & PF_MEMALLOC)
  2818. return 0;
  2819. if (ext3_journal_current_handle()) {
  2820. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2821. dump_stack();
  2822. return -EIO;
  2823. }
  2824. if (!wait)
  2825. return 0;
  2826. return ext3_force_commit(inode->i_sb);
  2827. }
  2828. /*
  2829. * ext3_setattr()
  2830. *
  2831. * Called from notify_change.
  2832. *
  2833. * We want to trap VFS attempts to truncate the file as soon as
  2834. * possible. In particular, we want to make sure that when the VFS
  2835. * shrinks i_size, we put the inode on the orphan list and modify
  2836. * i_disksize immediately, so that during the subsequent flushing of
  2837. * dirty pages and freeing of disk blocks, we can guarantee that any
  2838. * commit will leave the blocks being flushed in an unused state on
  2839. * disk. (On recovery, the inode will get truncated and the blocks will
  2840. * be freed, so we have a strong guarantee that no future commit will
  2841. * leave these blocks visible to the user.)
  2842. *
  2843. * Called with inode->sem down.
  2844. */
  2845. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2846. {
  2847. struct inode *inode = dentry->d_inode;
  2848. int error, rc = 0;
  2849. const unsigned int ia_valid = attr->ia_valid;
  2850. error = inode_change_ok(inode, attr);
  2851. if (error)
  2852. return error;
  2853. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2854. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2855. handle_t *handle;
  2856. /* (user+group)*(old+new) structure, inode write (sb,
  2857. * inode block, ? - but truncate inode update has it) */
  2858. handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2859. EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2860. if (IS_ERR(handle)) {
  2861. error = PTR_ERR(handle);
  2862. goto err_out;
  2863. }
  2864. error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
  2865. if (error) {
  2866. ext3_journal_stop(handle);
  2867. return error;
  2868. }
  2869. /* Update corresponding info in inode so that everything is in
  2870. * one transaction */
  2871. if (attr->ia_valid & ATTR_UID)
  2872. inode->i_uid = attr->ia_uid;
  2873. if (attr->ia_valid & ATTR_GID)
  2874. inode->i_gid = attr->ia_gid;
  2875. error = ext3_mark_inode_dirty(handle, inode);
  2876. ext3_journal_stop(handle);
  2877. }
  2878. if (S_ISREG(inode->i_mode) &&
  2879. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2880. handle_t *handle;
  2881. handle = ext3_journal_start(inode, 3);
  2882. if (IS_ERR(handle)) {
  2883. error = PTR_ERR(handle);
  2884. goto err_out;
  2885. }
  2886. error = ext3_orphan_add(handle, inode);
  2887. EXT3_I(inode)->i_disksize = attr->ia_size;
  2888. rc = ext3_mark_inode_dirty(handle, inode);
  2889. if (!error)
  2890. error = rc;
  2891. ext3_journal_stop(handle);
  2892. }
  2893. rc = inode_setattr(inode, attr);
  2894. if (!rc && (ia_valid & ATTR_MODE))
  2895. rc = ext3_acl_chmod(inode);
  2896. err_out:
  2897. ext3_std_error(inode->i_sb, error);
  2898. if (!error)
  2899. error = rc;
  2900. return error;
  2901. }
  2902. /*
  2903. * How many blocks doth make a writepage()?
  2904. *
  2905. * With N blocks per page, it may be:
  2906. * N data blocks
  2907. * 2 indirect block
  2908. * 2 dindirect
  2909. * 1 tindirect
  2910. * N+5 bitmap blocks (from the above)
  2911. * N+5 group descriptor summary blocks
  2912. * 1 inode block
  2913. * 1 superblock.
  2914. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2915. *
  2916. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2917. *
  2918. * With ordered or writeback data it's the same, less the N data blocks.
  2919. *
  2920. * If the inode's direct blocks can hold an integral number of pages then a
  2921. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2922. * and dindirect block, and the "5" above becomes "3".
  2923. *
  2924. * This still overestimates under most circumstances. If we were to pass the
  2925. * start and end offsets in here as well we could do block_to_path() on each
  2926. * block and work out the exact number of indirects which are touched. Pah.
  2927. */
  2928. static int ext3_writepage_trans_blocks(struct inode *inode)
  2929. {
  2930. int bpp = ext3_journal_blocks_per_page(inode);
  2931. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  2932. int ret;
  2933. if (ext3_should_journal_data(inode))
  2934. ret = 3 * (bpp + indirects) + 2;
  2935. else
  2936. ret = 2 * (bpp + indirects) + 2;
  2937. #ifdef CONFIG_QUOTA
  2938. /* We know that structure was already allocated during vfs_dq_init so
  2939. * we will be updating only the data blocks + inodes */
  2940. ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2941. #endif
  2942. return ret;
  2943. }
  2944. /*
  2945. * The caller must have previously called ext3_reserve_inode_write().
  2946. * Give this, we know that the caller already has write access to iloc->bh.
  2947. */
  2948. int ext3_mark_iloc_dirty(handle_t *handle,
  2949. struct inode *inode, struct ext3_iloc *iloc)
  2950. {
  2951. int err = 0;
  2952. /* the do_update_inode consumes one bh->b_count */
  2953. get_bh(iloc->bh);
  2954. /* ext3_do_update_inode() does journal_dirty_metadata */
  2955. err = ext3_do_update_inode(handle, inode, iloc);
  2956. put_bh(iloc->bh);
  2957. return err;
  2958. }
  2959. /*
  2960. * On success, We end up with an outstanding reference count against
  2961. * iloc->bh. This _must_ be cleaned up later.
  2962. */
  2963. int
  2964. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  2965. struct ext3_iloc *iloc)
  2966. {
  2967. int err = 0;
  2968. if (handle) {
  2969. err = ext3_get_inode_loc(inode, iloc);
  2970. if (!err) {
  2971. BUFFER_TRACE(iloc->bh, "get_write_access");
  2972. err = ext3_journal_get_write_access(handle, iloc->bh);
  2973. if (err) {
  2974. brelse(iloc->bh);
  2975. iloc->bh = NULL;
  2976. }
  2977. }
  2978. }
  2979. ext3_std_error(inode->i_sb, err);
  2980. return err;
  2981. }
  2982. /*
  2983. * What we do here is to mark the in-core inode as clean with respect to inode
  2984. * dirtiness (it may still be data-dirty).
  2985. * This means that the in-core inode may be reaped by prune_icache
  2986. * without having to perform any I/O. This is a very good thing,
  2987. * because *any* task may call prune_icache - even ones which
  2988. * have a transaction open against a different journal.
  2989. *
  2990. * Is this cheating? Not really. Sure, we haven't written the
  2991. * inode out, but prune_icache isn't a user-visible syncing function.
  2992. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2993. * we start and wait on commits.
  2994. *
  2995. * Is this efficient/effective? Well, we're being nice to the system
  2996. * by cleaning up our inodes proactively so they can be reaped
  2997. * without I/O. But we are potentially leaving up to five seconds'
  2998. * worth of inodes floating about which prune_icache wants us to
  2999. * write out. One way to fix that would be to get prune_icache()
  3000. * to do a write_super() to free up some memory. It has the desired
  3001. * effect.
  3002. */
  3003. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3004. {
  3005. struct ext3_iloc iloc;
  3006. int err;
  3007. might_sleep();
  3008. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3009. if (!err)
  3010. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3011. return err;
  3012. }
  3013. /*
  3014. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3015. *
  3016. * We're really interested in the case where a file is being extended.
  3017. * i_size has been changed by generic_commit_write() and we thus need
  3018. * to include the updated inode in the current transaction.
  3019. *
  3020. * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
  3021. * are allocated to the file.
  3022. *
  3023. * If the inode is marked synchronous, we don't honour that here - doing
  3024. * so would cause a commit on atime updates, which we don't bother doing.
  3025. * We handle synchronous inodes at the highest possible level.
  3026. */
  3027. void ext3_dirty_inode(struct inode *inode)
  3028. {
  3029. handle_t *current_handle = ext3_journal_current_handle();
  3030. handle_t *handle;
  3031. handle = ext3_journal_start(inode, 2);
  3032. if (IS_ERR(handle))
  3033. goto out;
  3034. if (current_handle &&
  3035. current_handle->h_transaction != handle->h_transaction) {
  3036. /* This task has a transaction open against a different fs */
  3037. printk(KERN_EMERG "%s: transactions do not match!\n",
  3038. __func__);
  3039. } else {
  3040. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3041. current_handle);
  3042. ext3_mark_inode_dirty(handle, inode);
  3043. }
  3044. ext3_journal_stop(handle);
  3045. out:
  3046. return;
  3047. }
  3048. #if 0
  3049. /*
  3050. * Bind an inode's backing buffer_head into this transaction, to prevent
  3051. * it from being flushed to disk early. Unlike
  3052. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3053. * returns no iloc structure, so the caller needs to repeat the iloc
  3054. * lookup to mark the inode dirty later.
  3055. */
  3056. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3057. {
  3058. struct ext3_iloc iloc;
  3059. int err = 0;
  3060. if (handle) {
  3061. err = ext3_get_inode_loc(inode, &iloc);
  3062. if (!err) {
  3063. BUFFER_TRACE(iloc.bh, "get_write_access");
  3064. err = journal_get_write_access(handle, iloc.bh);
  3065. if (!err)
  3066. err = ext3_journal_dirty_metadata(handle,
  3067. iloc.bh);
  3068. brelse(iloc.bh);
  3069. }
  3070. }
  3071. ext3_std_error(inode->i_sb, err);
  3072. return err;
  3073. }
  3074. #endif
  3075. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3076. {
  3077. journal_t *journal;
  3078. handle_t *handle;
  3079. int err;
  3080. /*
  3081. * We have to be very careful here: changing a data block's
  3082. * journaling status dynamically is dangerous. If we write a
  3083. * data block to the journal, change the status and then delete
  3084. * that block, we risk forgetting to revoke the old log record
  3085. * from the journal and so a subsequent replay can corrupt data.
  3086. * So, first we make sure that the journal is empty and that
  3087. * nobody is changing anything.
  3088. */
  3089. journal = EXT3_JOURNAL(inode);
  3090. if (is_journal_aborted(journal))
  3091. return -EROFS;
  3092. journal_lock_updates(journal);
  3093. journal_flush(journal);
  3094. /*
  3095. * OK, there are no updates running now, and all cached data is
  3096. * synced to disk. We are now in a completely consistent state
  3097. * which doesn't have anything in the journal, and we know that
  3098. * no filesystem updates are running, so it is safe to modify
  3099. * the inode's in-core data-journaling state flag now.
  3100. */
  3101. if (val)
  3102. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3103. else
  3104. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3105. ext3_set_aops(inode);
  3106. journal_unlock_updates(journal);
  3107. /* Finally we can mark the inode as dirty. */
  3108. handle = ext3_journal_start(inode, 1);
  3109. if (IS_ERR(handle))
  3110. return PTR_ERR(handle);
  3111. err = ext3_mark_inode_dirty(handle, inode);
  3112. handle->h_sync = 1;
  3113. ext3_journal_stop(handle);
  3114. ext3_std_error(inode->i_sb, err);
  3115. return err;
  3116. }