crypto.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267
  1. /**
  2. * eCryptfs: Linux filesystem encryption layer
  3. *
  4. * Copyright (C) 1997-2004 Erez Zadok
  5. * Copyright (C) 2001-2004 Stony Brook University
  6. * Copyright (C) 2004-2007 International Business Machines Corp.
  7. * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
  8. * Michael C. Thompson <mcthomps@us.ibm.com>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
  23. * 02111-1307, USA.
  24. */
  25. #include <linux/fs.h>
  26. #include <linux/mount.h>
  27. #include <linux/pagemap.h>
  28. #include <linux/random.h>
  29. #include <linux/compiler.h>
  30. #include <linux/key.h>
  31. #include <linux/namei.h>
  32. #include <linux/crypto.h>
  33. #include <linux/file.h>
  34. #include <linux/scatterlist.h>
  35. #include <asm/unaligned.h>
  36. #include "ecryptfs_kernel.h"
  37. static int
  38. ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  39. struct page *dst_page, int dst_offset,
  40. struct page *src_page, int src_offset, int size,
  41. unsigned char *iv);
  42. static int
  43. ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  44. struct page *dst_page, int dst_offset,
  45. struct page *src_page, int src_offset, int size,
  46. unsigned char *iv);
  47. /**
  48. * ecryptfs_to_hex
  49. * @dst: Buffer to take hex character representation of contents of
  50. * src; must be at least of size (src_size * 2)
  51. * @src: Buffer to be converted to a hex string respresentation
  52. * @src_size: number of bytes to convert
  53. */
  54. void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
  55. {
  56. int x;
  57. for (x = 0; x < src_size; x++)
  58. sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
  59. }
  60. /**
  61. * ecryptfs_from_hex
  62. * @dst: Buffer to take the bytes from src hex; must be at least of
  63. * size (src_size / 2)
  64. * @src: Buffer to be converted from a hex string respresentation to raw value
  65. * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  66. */
  67. void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  68. {
  69. int x;
  70. char tmp[3] = { 0, };
  71. for (x = 0; x < dst_size; x++) {
  72. tmp[0] = src[x * 2];
  73. tmp[1] = src[x * 2 + 1];
  74. dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  75. }
  76. }
  77. /**
  78. * ecryptfs_calculate_md5 - calculates the md5 of @src
  79. * @dst: Pointer to 16 bytes of allocated memory
  80. * @crypt_stat: Pointer to crypt_stat struct for the current inode
  81. * @src: Data to be md5'd
  82. * @len: Length of @src
  83. *
  84. * Uses the allocated crypto context that crypt_stat references to
  85. * generate the MD5 sum of the contents of src.
  86. */
  87. static int ecryptfs_calculate_md5(char *dst,
  88. struct ecryptfs_crypt_stat *crypt_stat,
  89. char *src, int len)
  90. {
  91. struct scatterlist sg;
  92. struct hash_desc desc = {
  93. .tfm = crypt_stat->hash_tfm,
  94. .flags = CRYPTO_TFM_REQ_MAY_SLEEP
  95. };
  96. int rc = 0;
  97. mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
  98. sg_init_one(&sg, (u8 *)src, len);
  99. if (!desc.tfm) {
  100. desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
  101. CRYPTO_ALG_ASYNC);
  102. if (IS_ERR(desc.tfm)) {
  103. rc = PTR_ERR(desc.tfm);
  104. ecryptfs_printk(KERN_ERR, "Error attempting to "
  105. "allocate crypto context; rc = [%d]\n",
  106. rc);
  107. goto out;
  108. }
  109. crypt_stat->hash_tfm = desc.tfm;
  110. }
  111. rc = crypto_hash_init(&desc);
  112. if (rc) {
  113. printk(KERN_ERR
  114. "%s: Error initializing crypto hash; rc = [%d]\n",
  115. __func__, rc);
  116. goto out;
  117. }
  118. rc = crypto_hash_update(&desc, &sg, len);
  119. if (rc) {
  120. printk(KERN_ERR
  121. "%s: Error updating crypto hash; rc = [%d]\n",
  122. __func__, rc);
  123. goto out;
  124. }
  125. rc = crypto_hash_final(&desc, dst);
  126. if (rc) {
  127. printk(KERN_ERR
  128. "%s: Error finalizing crypto hash; rc = [%d]\n",
  129. __func__, rc);
  130. goto out;
  131. }
  132. out:
  133. mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
  134. return rc;
  135. }
  136. static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
  137. char *cipher_name,
  138. char *chaining_modifier)
  139. {
  140. int cipher_name_len = strlen(cipher_name);
  141. int chaining_modifier_len = strlen(chaining_modifier);
  142. int algified_name_len;
  143. int rc;
  144. algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
  145. (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
  146. if (!(*algified_name)) {
  147. rc = -ENOMEM;
  148. goto out;
  149. }
  150. snprintf((*algified_name), algified_name_len, "%s(%s)",
  151. chaining_modifier, cipher_name);
  152. rc = 0;
  153. out:
  154. return rc;
  155. }
  156. /**
  157. * ecryptfs_derive_iv
  158. * @iv: destination for the derived iv vale
  159. * @crypt_stat: Pointer to crypt_stat struct for the current inode
  160. * @offset: Offset of the extent whose IV we are to derive
  161. *
  162. * Generate the initialization vector from the given root IV and page
  163. * offset.
  164. *
  165. * Returns zero on success; non-zero on error.
  166. */
  167. int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
  168. loff_t offset)
  169. {
  170. int rc = 0;
  171. char dst[MD5_DIGEST_SIZE];
  172. char src[ECRYPTFS_MAX_IV_BYTES + 16];
  173. if (unlikely(ecryptfs_verbosity > 0)) {
  174. ecryptfs_printk(KERN_DEBUG, "root iv:\n");
  175. ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
  176. }
  177. /* TODO: It is probably secure to just cast the least
  178. * significant bits of the root IV into an unsigned long and
  179. * add the offset to that rather than go through all this
  180. * hashing business. -Halcrow */
  181. memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
  182. memset((src + crypt_stat->iv_bytes), 0, 16);
  183. snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
  184. if (unlikely(ecryptfs_verbosity > 0)) {
  185. ecryptfs_printk(KERN_DEBUG, "source:\n");
  186. ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
  187. }
  188. rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
  189. (crypt_stat->iv_bytes + 16));
  190. if (rc) {
  191. ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
  192. "MD5 while generating IV for a page\n");
  193. goto out;
  194. }
  195. memcpy(iv, dst, crypt_stat->iv_bytes);
  196. if (unlikely(ecryptfs_verbosity > 0)) {
  197. ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
  198. ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
  199. }
  200. out:
  201. return rc;
  202. }
  203. /**
  204. * ecryptfs_init_crypt_stat
  205. * @crypt_stat: Pointer to the crypt_stat struct to initialize.
  206. *
  207. * Initialize the crypt_stat structure.
  208. */
  209. void
  210. ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
  211. {
  212. memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
  213. INIT_LIST_HEAD(&crypt_stat->keysig_list);
  214. mutex_init(&crypt_stat->keysig_list_mutex);
  215. mutex_init(&crypt_stat->cs_mutex);
  216. mutex_init(&crypt_stat->cs_tfm_mutex);
  217. mutex_init(&crypt_stat->cs_hash_tfm_mutex);
  218. crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
  219. }
  220. /**
  221. * ecryptfs_destroy_crypt_stat
  222. * @crypt_stat: Pointer to the crypt_stat struct to initialize.
  223. *
  224. * Releases all memory associated with a crypt_stat struct.
  225. */
  226. void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
  227. {
  228. struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
  229. if (crypt_stat->tfm)
  230. crypto_free_blkcipher(crypt_stat->tfm);
  231. if (crypt_stat->hash_tfm)
  232. crypto_free_hash(crypt_stat->hash_tfm);
  233. list_for_each_entry_safe(key_sig, key_sig_tmp,
  234. &crypt_stat->keysig_list, crypt_stat_list) {
  235. list_del(&key_sig->crypt_stat_list);
  236. kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
  237. }
  238. memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
  239. }
  240. void ecryptfs_destroy_mount_crypt_stat(
  241. struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
  242. {
  243. struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
  244. if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
  245. return;
  246. mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
  247. list_for_each_entry_safe(auth_tok, auth_tok_tmp,
  248. &mount_crypt_stat->global_auth_tok_list,
  249. mount_crypt_stat_list) {
  250. list_del(&auth_tok->mount_crypt_stat_list);
  251. mount_crypt_stat->num_global_auth_toks--;
  252. if (auth_tok->global_auth_tok_key
  253. && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
  254. key_put(auth_tok->global_auth_tok_key);
  255. kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
  256. }
  257. mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
  258. memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
  259. }
  260. /**
  261. * virt_to_scatterlist
  262. * @addr: Virtual address
  263. * @size: Size of data; should be an even multiple of the block size
  264. * @sg: Pointer to scatterlist array; set to NULL to obtain only
  265. * the number of scatterlist structs required in array
  266. * @sg_size: Max array size
  267. *
  268. * Fills in a scatterlist array with page references for a passed
  269. * virtual address.
  270. *
  271. * Returns the number of scatterlist structs in array used
  272. */
  273. int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
  274. int sg_size)
  275. {
  276. int i = 0;
  277. struct page *pg;
  278. int offset;
  279. int remainder_of_page;
  280. sg_init_table(sg, sg_size);
  281. while (size > 0 && i < sg_size) {
  282. pg = virt_to_page(addr);
  283. offset = offset_in_page(addr);
  284. if (sg)
  285. sg_set_page(&sg[i], pg, 0, offset);
  286. remainder_of_page = PAGE_CACHE_SIZE - offset;
  287. if (size >= remainder_of_page) {
  288. if (sg)
  289. sg[i].length = remainder_of_page;
  290. addr += remainder_of_page;
  291. size -= remainder_of_page;
  292. } else {
  293. if (sg)
  294. sg[i].length = size;
  295. addr += size;
  296. size = 0;
  297. }
  298. i++;
  299. }
  300. if (size > 0)
  301. return -ENOMEM;
  302. return i;
  303. }
  304. /**
  305. * encrypt_scatterlist
  306. * @crypt_stat: Pointer to the crypt_stat struct to initialize.
  307. * @dest_sg: Destination of encrypted data
  308. * @src_sg: Data to be encrypted
  309. * @size: Length of data to be encrypted
  310. * @iv: iv to use during encryption
  311. *
  312. * Returns the number of bytes encrypted; negative value on error
  313. */
  314. static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
  315. struct scatterlist *dest_sg,
  316. struct scatterlist *src_sg, int size,
  317. unsigned char *iv)
  318. {
  319. struct blkcipher_desc desc = {
  320. .tfm = crypt_stat->tfm,
  321. .info = iv,
  322. .flags = CRYPTO_TFM_REQ_MAY_SLEEP
  323. };
  324. int rc = 0;
  325. BUG_ON(!crypt_stat || !crypt_stat->tfm
  326. || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
  327. if (unlikely(ecryptfs_verbosity > 0)) {
  328. ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
  329. crypt_stat->key_size);
  330. ecryptfs_dump_hex(crypt_stat->key,
  331. crypt_stat->key_size);
  332. }
  333. /* Consider doing this once, when the file is opened */
  334. mutex_lock(&crypt_stat->cs_tfm_mutex);
  335. if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
  336. rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
  337. crypt_stat->key_size);
  338. crypt_stat->flags |= ECRYPTFS_KEY_SET;
  339. }
  340. if (rc) {
  341. ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
  342. rc);
  343. mutex_unlock(&crypt_stat->cs_tfm_mutex);
  344. rc = -EINVAL;
  345. goto out;
  346. }
  347. ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
  348. crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
  349. mutex_unlock(&crypt_stat->cs_tfm_mutex);
  350. out:
  351. return rc;
  352. }
  353. /**
  354. * ecryptfs_lower_offset_for_extent
  355. *
  356. * Convert an eCryptfs page index into a lower byte offset
  357. */
  358. static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
  359. struct ecryptfs_crypt_stat *crypt_stat)
  360. {
  361. (*offset) = (crypt_stat->num_header_bytes_at_front
  362. + (crypt_stat->extent_size * extent_num));
  363. }
  364. /**
  365. * ecryptfs_encrypt_extent
  366. * @enc_extent_page: Allocated page into which to encrypt the data in
  367. * @page
  368. * @crypt_stat: crypt_stat containing cryptographic context for the
  369. * encryption operation
  370. * @page: Page containing plaintext data extent to encrypt
  371. * @extent_offset: Page extent offset for use in generating IV
  372. *
  373. * Encrypts one extent of data.
  374. *
  375. * Return zero on success; non-zero otherwise
  376. */
  377. static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
  378. struct ecryptfs_crypt_stat *crypt_stat,
  379. struct page *page,
  380. unsigned long extent_offset)
  381. {
  382. loff_t extent_base;
  383. char extent_iv[ECRYPTFS_MAX_IV_BYTES];
  384. int rc;
  385. extent_base = (((loff_t)page->index)
  386. * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
  387. rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
  388. (extent_base + extent_offset));
  389. if (rc) {
  390. ecryptfs_printk(KERN_ERR, "Error attempting to "
  391. "derive IV for extent [0x%.16x]; "
  392. "rc = [%d]\n", (extent_base + extent_offset),
  393. rc);
  394. goto out;
  395. }
  396. if (unlikely(ecryptfs_verbosity > 0)) {
  397. ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
  398. "with iv:\n");
  399. ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
  400. ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
  401. "encryption:\n");
  402. ecryptfs_dump_hex((char *)
  403. (page_address(page)
  404. + (extent_offset * crypt_stat->extent_size)),
  405. 8);
  406. }
  407. rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
  408. page, (extent_offset
  409. * crypt_stat->extent_size),
  410. crypt_stat->extent_size, extent_iv);
  411. if (rc < 0) {
  412. printk(KERN_ERR "%s: Error attempting to encrypt page with "
  413. "page->index = [%ld], extent_offset = [%ld]; "
  414. "rc = [%d]\n", __func__, page->index, extent_offset,
  415. rc);
  416. goto out;
  417. }
  418. rc = 0;
  419. if (unlikely(ecryptfs_verbosity > 0)) {
  420. ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
  421. "rc = [%d]\n", (extent_base + extent_offset),
  422. rc);
  423. ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
  424. "encryption:\n");
  425. ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
  426. }
  427. out:
  428. return rc;
  429. }
  430. /**
  431. * ecryptfs_encrypt_page
  432. * @page: Page mapped from the eCryptfs inode for the file; contains
  433. * decrypted content that needs to be encrypted (to a temporary
  434. * page; not in place) and written out to the lower file
  435. *
  436. * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
  437. * that eCryptfs pages may straddle the lower pages -- for instance,
  438. * if the file was created on a machine with an 8K page size
  439. * (resulting in an 8K header), and then the file is copied onto a
  440. * host with a 32K page size, then when reading page 0 of the eCryptfs
  441. * file, 24K of page 0 of the lower file will be read and decrypted,
  442. * and then 8K of page 1 of the lower file will be read and decrypted.
  443. *
  444. * Returns zero on success; negative on error
  445. */
  446. int ecryptfs_encrypt_page(struct page *page)
  447. {
  448. struct inode *ecryptfs_inode;
  449. struct ecryptfs_crypt_stat *crypt_stat;
  450. char *enc_extent_virt;
  451. struct page *enc_extent_page = NULL;
  452. loff_t extent_offset;
  453. int rc = 0;
  454. ecryptfs_inode = page->mapping->host;
  455. crypt_stat =
  456. &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
  457. BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
  458. enc_extent_page = alloc_page(GFP_USER);
  459. if (!enc_extent_page) {
  460. rc = -ENOMEM;
  461. ecryptfs_printk(KERN_ERR, "Error allocating memory for "
  462. "encrypted extent\n");
  463. goto out;
  464. }
  465. enc_extent_virt = kmap(enc_extent_page);
  466. for (extent_offset = 0;
  467. extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
  468. extent_offset++) {
  469. loff_t offset;
  470. rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
  471. extent_offset);
  472. if (rc) {
  473. printk(KERN_ERR "%s: Error encrypting extent; "
  474. "rc = [%d]\n", __func__, rc);
  475. goto out;
  476. }
  477. ecryptfs_lower_offset_for_extent(
  478. &offset, ((((loff_t)page->index)
  479. * (PAGE_CACHE_SIZE
  480. / crypt_stat->extent_size))
  481. + extent_offset), crypt_stat);
  482. rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
  483. offset, crypt_stat->extent_size);
  484. if (rc < 0) {
  485. ecryptfs_printk(KERN_ERR, "Error attempting "
  486. "to write lower page; rc = [%d]"
  487. "\n", rc);
  488. goto out;
  489. }
  490. }
  491. rc = 0;
  492. out:
  493. if (enc_extent_page) {
  494. kunmap(enc_extent_page);
  495. __free_page(enc_extent_page);
  496. }
  497. return rc;
  498. }
  499. static int ecryptfs_decrypt_extent(struct page *page,
  500. struct ecryptfs_crypt_stat *crypt_stat,
  501. struct page *enc_extent_page,
  502. unsigned long extent_offset)
  503. {
  504. loff_t extent_base;
  505. char extent_iv[ECRYPTFS_MAX_IV_BYTES];
  506. int rc;
  507. extent_base = (((loff_t)page->index)
  508. * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
  509. rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
  510. (extent_base + extent_offset));
  511. if (rc) {
  512. ecryptfs_printk(KERN_ERR, "Error attempting to "
  513. "derive IV for extent [0x%.16x]; "
  514. "rc = [%d]\n", (extent_base + extent_offset),
  515. rc);
  516. goto out;
  517. }
  518. if (unlikely(ecryptfs_verbosity > 0)) {
  519. ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
  520. "with iv:\n");
  521. ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
  522. ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
  523. "decryption:\n");
  524. ecryptfs_dump_hex((char *)
  525. (page_address(enc_extent_page)
  526. + (extent_offset * crypt_stat->extent_size)),
  527. 8);
  528. }
  529. rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
  530. (extent_offset
  531. * crypt_stat->extent_size),
  532. enc_extent_page, 0,
  533. crypt_stat->extent_size, extent_iv);
  534. if (rc < 0) {
  535. printk(KERN_ERR "%s: Error attempting to decrypt to page with "
  536. "page->index = [%ld], extent_offset = [%ld]; "
  537. "rc = [%d]\n", __func__, page->index, extent_offset,
  538. rc);
  539. goto out;
  540. }
  541. rc = 0;
  542. if (unlikely(ecryptfs_verbosity > 0)) {
  543. ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
  544. "rc = [%d]\n", (extent_base + extent_offset),
  545. rc);
  546. ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
  547. "decryption:\n");
  548. ecryptfs_dump_hex((char *)(page_address(page)
  549. + (extent_offset
  550. * crypt_stat->extent_size)), 8);
  551. }
  552. out:
  553. return rc;
  554. }
  555. /**
  556. * ecryptfs_decrypt_page
  557. * @page: Page mapped from the eCryptfs inode for the file; data read
  558. * and decrypted from the lower file will be written into this
  559. * page
  560. *
  561. * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
  562. * that eCryptfs pages may straddle the lower pages -- for instance,
  563. * if the file was created on a machine with an 8K page size
  564. * (resulting in an 8K header), and then the file is copied onto a
  565. * host with a 32K page size, then when reading page 0 of the eCryptfs
  566. * file, 24K of page 0 of the lower file will be read and decrypted,
  567. * and then 8K of page 1 of the lower file will be read and decrypted.
  568. *
  569. * Returns zero on success; negative on error
  570. */
  571. int ecryptfs_decrypt_page(struct page *page)
  572. {
  573. struct inode *ecryptfs_inode;
  574. struct ecryptfs_crypt_stat *crypt_stat;
  575. char *enc_extent_virt;
  576. struct page *enc_extent_page = NULL;
  577. unsigned long extent_offset;
  578. int rc = 0;
  579. ecryptfs_inode = page->mapping->host;
  580. crypt_stat =
  581. &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
  582. BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
  583. enc_extent_page = alloc_page(GFP_USER);
  584. if (!enc_extent_page) {
  585. rc = -ENOMEM;
  586. ecryptfs_printk(KERN_ERR, "Error allocating memory for "
  587. "encrypted extent\n");
  588. goto out;
  589. }
  590. enc_extent_virt = kmap(enc_extent_page);
  591. for (extent_offset = 0;
  592. extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
  593. extent_offset++) {
  594. loff_t offset;
  595. ecryptfs_lower_offset_for_extent(
  596. &offset, ((page->index * (PAGE_CACHE_SIZE
  597. / crypt_stat->extent_size))
  598. + extent_offset), crypt_stat);
  599. rc = ecryptfs_read_lower(enc_extent_virt, offset,
  600. crypt_stat->extent_size,
  601. ecryptfs_inode);
  602. if (rc < 0) {
  603. ecryptfs_printk(KERN_ERR, "Error attempting "
  604. "to read lower page; rc = [%d]"
  605. "\n", rc);
  606. goto out;
  607. }
  608. rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
  609. extent_offset);
  610. if (rc) {
  611. printk(KERN_ERR "%s: Error encrypting extent; "
  612. "rc = [%d]\n", __func__, rc);
  613. goto out;
  614. }
  615. }
  616. out:
  617. if (enc_extent_page) {
  618. kunmap(enc_extent_page);
  619. __free_page(enc_extent_page);
  620. }
  621. return rc;
  622. }
  623. /**
  624. * decrypt_scatterlist
  625. * @crypt_stat: Cryptographic context
  626. * @dest_sg: The destination scatterlist to decrypt into
  627. * @src_sg: The source scatterlist to decrypt from
  628. * @size: The number of bytes to decrypt
  629. * @iv: The initialization vector to use for the decryption
  630. *
  631. * Returns the number of bytes decrypted; negative value on error
  632. */
  633. static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
  634. struct scatterlist *dest_sg,
  635. struct scatterlist *src_sg, int size,
  636. unsigned char *iv)
  637. {
  638. struct blkcipher_desc desc = {
  639. .tfm = crypt_stat->tfm,
  640. .info = iv,
  641. .flags = CRYPTO_TFM_REQ_MAY_SLEEP
  642. };
  643. int rc = 0;
  644. /* Consider doing this once, when the file is opened */
  645. mutex_lock(&crypt_stat->cs_tfm_mutex);
  646. rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
  647. crypt_stat->key_size);
  648. if (rc) {
  649. ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
  650. rc);
  651. mutex_unlock(&crypt_stat->cs_tfm_mutex);
  652. rc = -EINVAL;
  653. goto out;
  654. }
  655. ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
  656. rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
  657. mutex_unlock(&crypt_stat->cs_tfm_mutex);
  658. if (rc) {
  659. ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
  660. rc);
  661. goto out;
  662. }
  663. rc = size;
  664. out:
  665. return rc;
  666. }
  667. /**
  668. * ecryptfs_encrypt_page_offset
  669. * @crypt_stat: The cryptographic context
  670. * @dst_page: The page to encrypt into
  671. * @dst_offset: The offset in the page to encrypt into
  672. * @src_page: The page to encrypt from
  673. * @src_offset: The offset in the page to encrypt from
  674. * @size: The number of bytes to encrypt
  675. * @iv: The initialization vector to use for the encryption
  676. *
  677. * Returns the number of bytes encrypted
  678. */
  679. static int
  680. ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  681. struct page *dst_page, int dst_offset,
  682. struct page *src_page, int src_offset, int size,
  683. unsigned char *iv)
  684. {
  685. struct scatterlist src_sg, dst_sg;
  686. sg_init_table(&src_sg, 1);
  687. sg_init_table(&dst_sg, 1);
  688. sg_set_page(&src_sg, src_page, size, src_offset);
  689. sg_set_page(&dst_sg, dst_page, size, dst_offset);
  690. return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
  691. }
  692. /**
  693. * ecryptfs_decrypt_page_offset
  694. * @crypt_stat: The cryptographic context
  695. * @dst_page: The page to decrypt into
  696. * @dst_offset: The offset in the page to decrypt into
  697. * @src_page: The page to decrypt from
  698. * @src_offset: The offset in the page to decrypt from
  699. * @size: The number of bytes to decrypt
  700. * @iv: The initialization vector to use for the decryption
  701. *
  702. * Returns the number of bytes decrypted
  703. */
  704. static int
  705. ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
  706. struct page *dst_page, int dst_offset,
  707. struct page *src_page, int src_offset, int size,
  708. unsigned char *iv)
  709. {
  710. struct scatterlist src_sg, dst_sg;
  711. sg_init_table(&src_sg, 1);
  712. sg_set_page(&src_sg, src_page, size, src_offset);
  713. sg_init_table(&dst_sg, 1);
  714. sg_set_page(&dst_sg, dst_page, size, dst_offset);
  715. return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
  716. }
  717. #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
  718. /**
  719. * ecryptfs_init_crypt_ctx
  720. * @crypt_stat: Uninitilized crypt stats structure
  721. *
  722. * Initialize the crypto context.
  723. *
  724. * TODO: Performance: Keep a cache of initialized cipher contexts;
  725. * only init if needed
  726. */
  727. int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
  728. {
  729. char *full_alg_name;
  730. int rc = -EINVAL;
  731. if (!crypt_stat->cipher) {
  732. ecryptfs_printk(KERN_ERR, "No cipher specified\n");
  733. goto out;
  734. }
  735. ecryptfs_printk(KERN_DEBUG,
  736. "Initializing cipher [%s]; strlen = [%d]; "
  737. "key_size_bits = [%d]\n",
  738. crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
  739. crypt_stat->key_size << 3);
  740. if (crypt_stat->tfm) {
  741. rc = 0;
  742. goto out;
  743. }
  744. mutex_lock(&crypt_stat->cs_tfm_mutex);
  745. rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
  746. crypt_stat->cipher, "cbc");
  747. if (rc)
  748. goto out_unlock;
  749. crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
  750. CRYPTO_ALG_ASYNC);
  751. kfree(full_alg_name);
  752. if (IS_ERR(crypt_stat->tfm)) {
  753. rc = PTR_ERR(crypt_stat->tfm);
  754. crypt_stat->tfm = NULL;
  755. ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
  756. "Error initializing cipher [%s]\n",
  757. crypt_stat->cipher);
  758. goto out_unlock;
  759. }
  760. crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
  761. rc = 0;
  762. out_unlock:
  763. mutex_unlock(&crypt_stat->cs_tfm_mutex);
  764. out:
  765. return rc;
  766. }
  767. static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
  768. {
  769. int extent_size_tmp;
  770. crypt_stat->extent_mask = 0xFFFFFFFF;
  771. crypt_stat->extent_shift = 0;
  772. if (crypt_stat->extent_size == 0)
  773. return;
  774. extent_size_tmp = crypt_stat->extent_size;
  775. while ((extent_size_tmp & 0x01) == 0) {
  776. extent_size_tmp >>= 1;
  777. crypt_stat->extent_mask <<= 1;
  778. crypt_stat->extent_shift++;
  779. }
  780. }
  781. void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
  782. {
  783. /* Default values; may be overwritten as we are parsing the
  784. * packets. */
  785. crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
  786. set_extent_mask_and_shift(crypt_stat);
  787. crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
  788. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
  789. crypt_stat->num_header_bytes_at_front = 0;
  790. else {
  791. if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
  792. crypt_stat->num_header_bytes_at_front =
  793. ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
  794. else
  795. crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE;
  796. }
  797. }
  798. /**
  799. * ecryptfs_compute_root_iv
  800. * @crypt_stats
  801. *
  802. * On error, sets the root IV to all 0's.
  803. */
  804. int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
  805. {
  806. int rc = 0;
  807. char dst[MD5_DIGEST_SIZE];
  808. BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
  809. BUG_ON(crypt_stat->iv_bytes <= 0);
  810. if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
  811. rc = -EINVAL;
  812. ecryptfs_printk(KERN_WARNING, "Session key not valid; "
  813. "cannot generate root IV\n");
  814. goto out;
  815. }
  816. rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
  817. crypt_stat->key_size);
  818. if (rc) {
  819. ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
  820. "MD5 while generating root IV\n");
  821. goto out;
  822. }
  823. memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
  824. out:
  825. if (rc) {
  826. memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
  827. crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
  828. }
  829. return rc;
  830. }
  831. static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
  832. {
  833. get_random_bytes(crypt_stat->key, crypt_stat->key_size);
  834. crypt_stat->flags |= ECRYPTFS_KEY_VALID;
  835. ecryptfs_compute_root_iv(crypt_stat);
  836. if (unlikely(ecryptfs_verbosity > 0)) {
  837. ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
  838. ecryptfs_dump_hex(crypt_stat->key,
  839. crypt_stat->key_size);
  840. }
  841. }
  842. /**
  843. * ecryptfs_copy_mount_wide_flags_to_inode_flags
  844. * @crypt_stat: The inode's cryptographic context
  845. * @mount_crypt_stat: The mount point's cryptographic context
  846. *
  847. * This function propagates the mount-wide flags to individual inode
  848. * flags.
  849. */
  850. static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
  851. struct ecryptfs_crypt_stat *crypt_stat,
  852. struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
  853. {
  854. if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
  855. crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
  856. if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
  857. crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
  858. if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
  859. crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
  860. if (mount_crypt_stat->flags
  861. & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
  862. crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
  863. else if (mount_crypt_stat->flags
  864. & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
  865. crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
  866. }
  867. }
  868. static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
  869. struct ecryptfs_crypt_stat *crypt_stat,
  870. struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
  871. {
  872. struct ecryptfs_global_auth_tok *global_auth_tok;
  873. int rc = 0;
  874. mutex_lock(&crypt_stat->keysig_list_mutex);
  875. mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
  876. list_for_each_entry(global_auth_tok,
  877. &mount_crypt_stat->global_auth_tok_list,
  878. mount_crypt_stat_list) {
  879. if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
  880. continue;
  881. rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
  882. if (rc) {
  883. printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
  884. goto out;
  885. }
  886. }
  887. out:
  888. mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
  889. mutex_unlock(&crypt_stat->keysig_list_mutex);
  890. return rc;
  891. }
  892. /**
  893. * ecryptfs_set_default_crypt_stat_vals
  894. * @crypt_stat: The inode's cryptographic context
  895. * @mount_crypt_stat: The mount point's cryptographic context
  896. *
  897. * Default values in the event that policy does not override them.
  898. */
  899. static void ecryptfs_set_default_crypt_stat_vals(
  900. struct ecryptfs_crypt_stat *crypt_stat,
  901. struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
  902. {
  903. ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
  904. mount_crypt_stat);
  905. ecryptfs_set_default_sizes(crypt_stat);
  906. strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
  907. crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
  908. crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
  909. crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
  910. crypt_stat->mount_crypt_stat = mount_crypt_stat;
  911. }
  912. /**
  913. * ecryptfs_new_file_context
  914. * @ecryptfs_dentry: The eCryptfs dentry
  915. *
  916. * If the crypto context for the file has not yet been established,
  917. * this is where we do that. Establishing a new crypto context
  918. * involves the following decisions:
  919. * - What cipher to use?
  920. * - What set of authentication tokens to use?
  921. * Here we just worry about getting enough information into the
  922. * authentication tokens so that we know that they are available.
  923. * We associate the available authentication tokens with the new file
  924. * via the set of signatures in the crypt_stat struct. Later, when
  925. * the headers are actually written out, we may again defer to
  926. * userspace to perform the encryption of the session key; for the
  927. * foreseeable future, this will be the case with public key packets.
  928. *
  929. * Returns zero on success; non-zero otherwise
  930. */
  931. int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
  932. {
  933. struct ecryptfs_crypt_stat *crypt_stat =
  934. &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
  935. struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
  936. &ecryptfs_superblock_to_private(
  937. ecryptfs_dentry->d_sb)->mount_crypt_stat;
  938. int cipher_name_len;
  939. int rc = 0;
  940. ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
  941. crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
  942. ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
  943. mount_crypt_stat);
  944. rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
  945. mount_crypt_stat);
  946. if (rc) {
  947. printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
  948. "to the inode key sigs; rc = [%d]\n", rc);
  949. goto out;
  950. }
  951. cipher_name_len =
  952. strlen(mount_crypt_stat->global_default_cipher_name);
  953. memcpy(crypt_stat->cipher,
  954. mount_crypt_stat->global_default_cipher_name,
  955. cipher_name_len);
  956. crypt_stat->cipher[cipher_name_len] = '\0';
  957. crypt_stat->key_size =
  958. mount_crypt_stat->global_default_cipher_key_size;
  959. ecryptfs_generate_new_key(crypt_stat);
  960. rc = ecryptfs_init_crypt_ctx(crypt_stat);
  961. if (rc)
  962. ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
  963. "context for cipher [%s]: rc = [%d]\n",
  964. crypt_stat->cipher, rc);
  965. out:
  966. return rc;
  967. }
  968. /**
  969. * contains_ecryptfs_marker - check for the ecryptfs marker
  970. * @data: The data block in which to check
  971. *
  972. * Returns one if marker found; zero if not found
  973. */
  974. static int contains_ecryptfs_marker(char *data)
  975. {
  976. u32 m_1, m_2;
  977. m_1 = get_unaligned_be32(data);
  978. m_2 = get_unaligned_be32(data + 4);
  979. if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
  980. return 1;
  981. ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
  982. "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
  983. MAGIC_ECRYPTFS_MARKER);
  984. ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
  985. "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
  986. return 0;
  987. }
  988. struct ecryptfs_flag_map_elem {
  989. u32 file_flag;
  990. u32 local_flag;
  991. };
  992. /* Add support for additional flags by adding elements here. */
  993. static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
  994. {0x00000001, ECRYPTFS_ENABLE_HMAC},
  995. {0x00000002, ECRYPTFS_ENCRYPTED},
  996. {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
  997. {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
  998. };
  999. /**
  1000. * ecryptfs_process_flags
  1001. * @crypt_stat: The cryptographic context
  1002. * @page_virt: Source data to be parsed
  1003. * @bytes_read: Updated with the number of bytes read
  1004. *
  1005. * Returns zero on success; non-zero if the flag set is invalid
  1006. */
  1007. static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
  1008. char *page_virt, int *bytes_read)
  1009. {
  1010. int rc = 0;
  1011. int i;
  1012. u32 flags;
  1013. flags = get_unaligned_be32(page_virt);
  1014. for (i = 0; i < ((sizeof(ecryptfs_flag_map)
  1015. / sizeof(struct ecryptfs_flag_map_elem))); i++)
  1016. if (flags & ecryptfs_flag_map[i].file_flag) {
  1017. crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
  1018. } else
  1019. crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
  1020. /* Version is in top 8 bits of the 32-bit flag vector */
  1021. crypt_stat->file_version = ((flags >> 24) & 0xFF);
  1022. (*bytes_read) = 4;
  1023. return rc;
  1024. }
  1025. /**
  1026. * write_ecryptfs_marker
  1027. * @page_virt: The pointer to in a page to begin writing the marker
  1028. * @written: Number of bytes written
  1029. *
  1030. * Marker = 0x3c81b7f5
  1031. */
  1032. static void write_ecryptfs_marker(char *page_virt, size_t *written)
  1033. {
  1034. u32 m_1, m_2;
  1035. get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
  1036. m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
  1037. put_unaligned_be32(m_1, page_virt);
  1038. page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
  1039. put_unaligned_be32(m_2, page_virt);
  1040. (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
  1041. }
  1042. static void
  1043. write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
  1044. size_t *written)
  1045. {
  1046. u32 flags = 0;
  1047. int i;
  1048. for (i = 0; i < ((sizeof(ecryptfs_flag_map)
  1049. / sizeof(struct ecryptfs_flag_map_elem))); i++)
  1050. if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
  1051. flags |= ecryptfs_flag_map[i].file_flag;
  1052. /* Version is in top 8 bits of the 32-bit flag vector */
  1053. flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
  1054. put_unaligned_be32(flags, page_virt);
  1055. (*written) = 4;
  1056. }
  1057. struct ecryptfs_cipher_code_str_map_elem {
  1058. char cipher_str[16];
  1059. u8 cipher_code;
  1060. };
  1061. /* Add support for additional ciphers by adding elements here. The
  1062. * cipher_code is whatever OpenPGP applicatoins use to identify the
  1063. * ciphers. List in order of probability. */
  1064. static struct ecryptfs_cipher_code_str_map_elem
  1065. ecryptfs_cipher_code_str_map[] = {
  1066. {"aes",RFC2440_CIPHER_AES_128 },
  1067. {"blowfish", RFC2440_CIPHER_BLOWFISH},
  1068. {"des3_ede", RFC2440_CIPHER_DES3_EDE},
  1069. {"cast5", RFC2440_CIPHER_CAST_5},
  1070. {"twofish", RFC2440_CIPHER_TWOFISH},
  1071. {"cast6", RFC2440_CIPHER_CAST_6},
  1072. {"aes", RFC2440_CIPHER_AES_192},
  1073. {"aes", RFC2440_CIPHER_AES_256}
  1074. };
  1075. /**
  1076. * ecryptfs_code_for_cipher_string
  1077. * @cipher_name: The string alias for the cipher
  1078. * @key_bytes: Length of key in bytes; used for AES code selection
  1079. *
  1080. * Returns zero on no match, or the cipher code on match
  1081. */
  1082. u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
  1083. {
  1084. int i;
  1085. u8 code = 0;
  1086. struct ecryptfs_cipher_code_str_map_elem *map =
  1087. ecryptfs_cipher_code_str_map;
  1088. if (strcmp(cipher_name, "aes") == 0) {
  1089. switch (key_bytes) {
  1090. case 16:
  1091. code = RFC2440_CIPHER_AES_128;
  1092. break;
  1093. case 24:
  1094. code = RFC2440_CIPHER_AES_192;
  1095. break;
  1096. case 32:
  1097. code = RFC2440_CIPHER_AES_256;
  1098. }
  1099. } else {
  1100. for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
  1101. if (strcmp(cipher_name, map[i].cipher_str) == 0) {
  1102. code = map[i].cipher_code;
  1103. break;
  1104. }
  1105. }
  1106. return code;
  1107. }
  1108. /**
  1109. * ecryptfs_cipher_code_to_string
  1110. * @str: Destination to write out the cipher name
  1111. * @cipher_code: The code to convert to cipher name string
  1112. *
  1113. * Returns zero on success
  1114. */
  1115. int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
  1116. {
  1117. int rc = 0;
  1118. int i;
  1119. str[0] = '\0';
  1120. for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
  1121. if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
  1122. strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
  1123. if (str[0] == '\0') {
  1124. ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
  1125. "[%d]\n", cipher_code);
  1126. rc = -EINVAL;
  1127. }
  1128. return rc;
  1129. }
  1130. int ecryptfs_read_and_validate_header_region(char *data,
  1131. struct inode *ecryptfs_inode)
  1132. {
  1133. struct ecryptfs_crypt_stat *crypt_stat =
  1134. &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
  1135. int rc;
  1136. if (crypt_stat->extent_size == 0)
  1137. crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
  1138. rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
  1139. ecryptfs_inode);
  1140. if (rc < 0) {
  1141. printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
  1142. __func__, rc);
  1143. goto out;
  1144. }
  1145. if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
  1146. rc = -EINVAL;
  1147. } else
  1148. rc = 0;
  1149. out:
  1150. return rc;
  1151. }
  1152. void
  1153. ecryptfs_write_header_metadata(char *virt,
  1154. struct ecryptfs_crypt_stat *crypt_stat,
  1155. size_t *written)
  1156. {
  1157. u32 header_extent_size;
  1158. u16 num_header_extents_at_front;
  1159. header_extent_size = (u32)crypt_stat->extent_size;
  1160. num_header_extents_at_front =
  1161. (u16)(crypt_stat->num_header_bytes_at_front
  1162. / crypt_stat->extent_size);
  1163. put_unaligned_be32(header_extent_size, virt);
  1164. virt += 4;
  1165. put_unaligned_be16(num_header_extents_at_front, virt);
  1166. (*written) = 6;
  1167. }
  1168. struct kmem_cache *ecryptfs_header_cache_1;
  1169. struct kmem_cache *ecryptfs_header_cache_2;
  1170. /**
  1171. * ecryptfs_write_headers_virt
  1172. * @page_virt: The virtual address to write the headers to
  1173. * @max: The size of memory allocated at page_virt
  1174. * @size: Set to the number of bytes written by this function
  1175. * @crypt_stat: The cryptographic context
  1176. * @ecryptfs_dentry: The eCryptfs dentry
  1177. *
  1178. * Format version: 1
  1179. *
  1180. * Header Extent:
  1181. * Octets 0-7: Unencrypted file size (big-endian)
  1182. * Octets 8-15: eCryptfs special marker
  1183. * Octets 16-19: Flags
  1184. * Octet 16: File format version number (between 0 and 255)
  1185. * Octets 17-18: Reserved
  1186. * Octet 19: Bit 1 (lsb): Reserved
  1187. * Bit 2: Encrypted?
  1188. * Bits 3-8: Reserved
  1189. * Octets 20-23: Header extent size (big-endian)
  1190. * Octets 24-25: Number of header extents at front of file
  1191. * (big-endian)
  1192. * Octet 26: Begin RFC 2440 authentication token packet set
  1193. * Data Extent 0:
  1194. * Lower data (CBC encrypted)
  1195. * Data Extent 1:
  1196. * Lower data (CBC encrypted)
  1197. * ...
  1198. *
  1199. * Returns zero on success
  1200. */
  1201. static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
  1202. size_t *size,
  1203. struct ecryptfs_crypt_stat *crypt_stat,
  1204. struct dentry *ecryptfs_dentry)
  1205. {
  1206. int rc;
  1207. size_t written;
  1208. size_t offset;
  1209. offset = ECRYPTFS_FILE_SIZE_BYTES;
  1210. write_ecryptfs_marker((page_virt + offset), &written);
  1211. offset += written;
  1212. write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
  1213. offset += written;
  1214. ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
  1215. &written);
  1216. offset += written;
  1217. rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
  1218. ecryptfs_dentry, &written,
  1219. max - offset);
  1220. if (rc)
  1221. ecryptfs_printk(KERN_WARNING, "Error generating key packet "
  1222. "set; rc = [%d]\n", rc);
  1223. if (size) {
  1224. offset += written;
  1225. *size = offset;
  1226. }
  1227. return rc;
  1228. }
  1229. static int
  1230. ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
  1231. char *virt, size_t virt_len)
  1232. {
  1233. int rc;
  1234. rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
  1235. 0, virt_len);
  1236. if (rc < 0)
  1237. printk(KERN_ERR "%s: Error attempting to write header "
  1238. "information to lower file; rc = [%d]\n", __func__, rc);
  1239. else
  1240. rc = 0;
  1241. return rc;
  1242. }
  1243. static int
  1244. ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
  1245. char *page_virt, size_t size)
  1246. {
  1247. int rc;
  1248. rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
  1249. size, 0);
  1250. return rc;
  1251. }
  1252. static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
  1253. unsigned int order)
  1254. {
  1255. struct page *page;
  1256. page = alloc_pages(gfp_mask | __GFP_ZERO, order);
  1257. if (page)
  1258. return (unsigned long) page_address(page);
  1259. return 0;
  1260. }
  1261. /**
  1262. * ecryptfs_write_metadata
  1263. * @ecryptfs_dentry: The eCryptfs dentry
  1264. *
  1265. * Write the file headers out. This will likely involve a userspace
  1266. * callout, in which the session key is encrypted with one or more
  1267. * public keys and/or the passphrase necessary to do the encryption is
  1268. * retrieved via a prompt. Exactly what happens at this point should
  1269. * be policy-dependent.
  1270. *
  1271. * Returns zero on success; non-zero on error
  1272. */
  1273. int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
  1274. {
  1275. struct ecryptfs_crypt_stat *crypt_stat =
  1276. &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
  1277. unsigned int order;
  1278. char *virt;
  1279. size_t virt_len;
  1280. size_t size = 0;
  1281. int rc = 0;
  1282. if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
  1283. if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
  1284. printk(KERN_ERR "Key is invalid; bailing out\n");
  1285. rc = -EINVAL;
  1286. goto out;
  1287. }
  1288. } else {
  1289. printk(KERN_WARNING "%s: Encrypted flag not set\n",
  1290. __func__);
  1291. rc = -EINVAL;
  1292. goto out;
  1293. }
  1294. virt_len = crypt_stat->num_header_bytes_at_front;
  1295. order = get_order(virt_len);
  1296. /* Released in this function */
  1297. virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
  1298. if (!virt) {
  1299. printk(KERN_ERR "%s: Out of memory\n", __func__);
  1300. rc = -ENOMEM;
  1301. goto out;
  1302. }
  1303. rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
  1304. ecryptfs_dentry);
  1305. if (unlikely(rc)) {
  1306. printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
  1307. __func__, rc);
  1308. goto out_free;
  1309. }
  1310. if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
  1311. rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
  1312. size);
  1313. else
  1314. rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
  1315. virt_len);
  1316. if (rc) {
  1317. printk(KERN_ERR "%s: Error writing metadata out to lower file; "
  1318. "rc = [%d]\n", __func__, rc);
  1319. goto out_free;
  1320. }
  1321. out_free:
  1322. free_pages((unsigned long)virt, order);
  1323. out:
  1324. return rc;
  1325. }
  1326. #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
  1327. #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
  1328. static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
  1329. char *virt, int *bytes_read,
  1330. int validate_header_size)
  1331. {
  1332. int rc = 0;
  1333. u32 header_extent_size;
  1334. u16 num_header_extents_at_front;
  1335. header_extent_size = get_unaligned_be32(virt);
  1336. virt += sizeof(__be32);
  1337. num_header_extents_at_front = get_unaligned_be16(virt);
  1338. crypt_stat->num_header_bytes_at_front =
  1339. (((size_t)num_header_extents_at_front
  1340. * (size_t)header_extent_size));
  1341. (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
  1342. if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
  1343. && (crypt_stat->num_header_bytes_at_front
  1344. < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
  1345. rc = -EINVAL;
  1346. printk(KERN_WARNING "Invalid header size: [%zd]\n",
  1347. crypt_stat->num_header_bytes_at_front);
  1348. }
  1349. return rc;
  1350. }
  1351. /**
  1352. * set_default_header_data
  1353. * @crypt_stat: The cryptographic context
  1354. *
  1355. * For version 0 file format; this function is only for backwards
  1356. * compatibility for files created with the prior versions of
  1357. * eCryptfs.
  1358. */
  1359. static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
  1360. {
  1361. crypt_stat->num_header_bytes_at_front =
  1362. ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
  1363. }
  1364. /**
  1365. * ecryptfs_read_headers_virt
  1366. * @page_virt: The virtual address into which to read the headers
  1367. * @crypt_stat: The cryptographic context
  1368. * @ecryptfs_dentry: The eCryptfs dentry
  1369. * @validate_header_size: Whether to validate the header size while reading
  1370. *
  1371. * Read/parse the header data. The header format is detailed in the
  1372. * comment block for the ecryptfs_write_headers_virt() function.
  1373. *
  1374. * Returns zero on success
  1375. */
  1376. static int ecryptfs_read_headers_virt(char *page_virt,
  1377. struct ecryptfs_crypt_stat *crypt_stat,
  1378. struct dentry *ecryptfs_dentry,
  1379. int validate_header_size)
  1380. {
  1381. int rc = 0;
  1382. int offset;
  1383. int bytes_read;
  1384. ecryptfs_set_default_sizes(crypt_stat);
  1385. crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
  1386. ecryptfs_dentry->d_sb)->mount_crypt_stat;
  1387. offset = ECRYPTFS_FILE_SIZE_BYTES;
  1388. rc = contains_ecryptfs_marker(page_virt + offset);
  1389. if (rc == 0) {
  1390. rc = -EINVAL;
  1391. goto out;
  1392. }
  1393. offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
  1394. rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
  1395. &bytes_read);
  1396. if (rc) {
  1397. ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
  1398. goto out;
  1399. }
  1400. if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
  1401. ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
  1402. "file version [%d] is supported by this "
  1403. "version of eCryptfs\n",
  1404. crypt_stat->file_version,
  1405. ECRYPTFS_SUPPORTED_FILE_VERSION);
  1406. rc = -EINVAL;
  1407. goto out;
  1408. }
  1409. offset += bytes_read;
  1410. if (crypt_stat->file_version >= 1) {
  1411. rc = parse_header_metadata(crypt_stat, (page_virt + offset),
  1412. &bytes_read, validate_header_size);
  1413. if (rc) {
  1414. ecryptfs_printk(KERN_WARNING, "Error reading header "
  1415. "metadata; rc = [%d]\n", rc);
  1416. }
  1417. offset += bytes_read;
  1418. } else
  1419. set_default_header_data(crypt_stat);
  1420. rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
  1421. ecryptfs_dentry);
  1422. out:
  1423. return rc;
  1424. }
  1425. /**
  1426. * ecryptfs_read_xattr_region
  1427. * @page_virt: The vitual address into which to read the xattr data
  1428. * @ecryptfs_inode: The eCryptfs inode
  1429. *
  1430. * Attempts to read the crypto metadata from the extended attribute
  1431. * region of the lower file.
  1432. *
  1433. * Returns zero on success; non-zero on error
  1434. */
  1435. int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
  1436. {
  1437. struct dentry *lower_dentry =
  1438. ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
  1439. ssize_t size;
  1440. int rc = 0;
  1441. size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
  1442. page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
  1443. if (size < 0) {
  1444. if (unlikely(ecryptfs_verbosity > 0))
  1445. printk(KERN_INFO "Error attempting to read the [%s] "
  1446. "xattr from the lower file; return value = "
  1447. "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
  1448. rc = -EINVAL;
  1449. goto out;
  1450. }
  1451. out:
  1452. return rc;
  1453. }
  1454. int ecryptfs_read_and_validate_xattr_region(char *page_virt,
  1455. struct dentry *ecryptfs_dentry)
  1456. {
  1457. int rc;
  1458. rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
  1459. if (rc)
  1460. goto out;
  1461. if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
  1462. printk(KERN_WARNING "Valid data found in [%s] xattr, but "
  1463. "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
  1464. rc = -EINVAL;
  1465. }
  1466. out:
  1467. return rc;
  1468. }
  1469. /**
  1470. * ecryptfs_read_metadata
  1471. *
  1472. * Common entry point for reading file metadata. From here, we could
  1473. * retrieve the header information from the header region of the file,
  1474. * the xattr region of the file, or some other repostory that is
  1475. * stored separately from the file itself. The current implementation
  1476. * supports retrieving the metadata information from the file contents
  1477. * and from the xattr region.
  1478. *
  1479. * Returns zero if valid headers found and parsed; non-zero otherwise
  1480. */
  1481. int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
  1482. {
  1483. int rc = 0;
  1484. char *page_virt = NULL;
  1485. struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
  1486. struct ecryptfs_crypt_stat *crypt_stat =
  1487. &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
  1488. struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
  1489. &ecryptfs_superblock_to_private(
  1490. ecryptfs_dentry->d_sb)->mount_crypt_stat;
  1491. ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
  1492. mount_crypt_stat);
  1493. /* Read the first page from the underlying file */
  1494. page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
  1495. if (!page_virt) {
  1496. rc = -ENOMEM;
  1497. printk(KERN_ERR "%s: Unable to allocate page_virt\n",
  1498. __func__);
  1499. goto out;
  1500. }
  1501. rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
  1502. ecryptfs_inode);
  1503. if (rc >= 0)
  1504. rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
  1505. ecryptfs_dentry,
  1506. ECRYPTFS_VALIDATE_HEADER_SIZE);
  1507. if (rc) {
  1508. rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
  1509. if (rc) {
  1510. printk(KERN_DEBUG "Valid eCryptfs headers not found in "
  1511. "file header region or xattr region\n");
  1512. rc = -EINVAL;
  1513. goto out;
  1514. }
  1515. rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
  1516. ecryptfs_dentry,
  1517. ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
  1518. if (rc) {
  1519. printk(KERN_DEBUG "Valid eCryptfs headers not found in "
  1520. "file xattr region either\n");
  1521. rc = -EINVAL;
  1522. }
  1523. if (crypt_stat->mount_crypt_stat->flags
  1524. & ECRYPTFS_XATTR_METADATA_ENABLED) {
  1525. crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
  1526. } else {
  1527. printk(KERN_WARNING "Attempt to access file with "
  1528. "crypto metadata only in the extended attribute "
  1529. "region, but eCryptfs was mounted without "
  1530. "xattr support enabled. eCryptfs will not treat "
  1531. "this like an encrypted file.\n");
  1532. rc = -EINVAL;
  1533. }
  1534. }
  1535. out:
  1536. if (page_virt) {
  1537. memset(page_virt, 0, PAGE_CACHE_SIZE);
  1538. kmem_cache_free(ecryptfs_header_cache_1, page_virt);
  1539. }
  1540. return rc;
  1541. }
  1542. /**
  1543. * ecryptfs_encrypt_filename - encrypt filename
  1544. *
  1545. * CBC-encrypts the filename. We do not want to encrypt the same
  1546. * filename with the same key and IV, which may happen with hard
  1547. * links, so we prepend random bits to each filename.
  1548. *
  1549. * Returns zero on success; non-zero otherwise
  1550. */
  1551. static int
  1552. ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
  1553. struct ecryptfs_crypt_stat *crypt_stat,
  1554. struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
  1555. {
  1556. int rc = 0;
  1557. filename->encrypted_filename = NULL;
  1558. filename->encrypted_filename_size = 0;
  1559. if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
  1560. || (mount_crypt_stat && (mount_crypt_stat->flags
  1561. & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
  1562. size_t packet_size;
  1563. size_t remaining_bytes;
  1564. rc = ecryptfs_write_tag_70_packet(
  1565. NULL, NULL,
  1566. &filename->encrypted_filename_size,
  1567. mount_crypt_stat, NULL,
  1568. filename->filename_size);
  1569. if (rc) {
  1570. printk(KERN_ERR "%s: Error attempting to get packet "
  1571. "size for tag 72; rc = [%d]\n", __func__,
  1572. rc);
  1573. filename->encrypted_filename_size = 0;
  1574. goto out;
  1575. }
  1576. filename->encrypted_filename =
  1577. kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
  1578. if (!filename->encrypted_filename) {
  1579. printk(KERN_ERR "%s: Out of memory whilst attempting "
  1580. "to kmalloc [%zd] bytes\n", __func__,
  1581. filename->encrypted_filename_size);
  1582. rc = -ENOMEM;
  1583. goto out;
  1584. }
  1585. remaining_bytes = filename->encrypted_filename_size;
  1586. rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
  1587. &remaining_bytes,
  1588. &packet_size,
  1589. mount_crypt_stat,
  1590. filename->filename,
  1591. filename->filename_size);
  1592. if (rc) {
  1593. printk(KERN_ERR "%s: Error attempting to generate "
  1594. "tag 70 packet; rc = [%d]\n", __func__,
  1595. rc);
  1596. kfree(filename->encrypted_filename);
  1597. filename->encrypted_filename = NULL;
  1598. filename->encrypted_filename_size = 0;
  1599. goto out;
  1600. }
  1601. filename->encrypted_filename_size = packet_size;
  1602. } else {
  1603. printk(KERN_ERR "%s: No support for requested filename "
  1604. "encryption method in this release\n", __func__);
  1605. rc = -EOPNOTSUPP;
  1606. goto out;
  1607. }
  1608. out:
  1609. return rc;
  1610. }
  1611. static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
  1612. const char *name, size_t name_size)
  1613. {
  1614. int rc = 0;
  1615. (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
  1616. if (!(*copied_name)) {
  1617. rc = -ENOMEM;
  1618. goto out;
  1619. }
  1620. memcpy((void *)(*copied_name), (void *)name, name_size);
  1621. (*copied_name)[(name_size)] = '\0'; /* Only for convenience
  1622. * in printing out the
  1623. * string in debug
  1624. * messages */
  1625. (*copied_name_size) = name_size;
  1626. out:
  1627. return rc;
  1628. }
  1629. /**
  1630. * ecryptfs_process_key_cipher - Perform key cipher initialization.
  1631. * @key_tfm: Crypto context for key material, set by this function
  1632. * @cipher_name: Name of the cipher
  1633. * @key_size: Size of the key in bytes
  1634. *
  1635. * Returns zero on success. Any crypto_tfm structs allocated here
  1636. * should be released by other functions, such as on a superblock put
  1637. * event, regardless of whether this function succeeds for fails.
  1638. */
  1639. static int
  1640. ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
  1641. char *cipher_name, size_t *key_size)
  1642. {
  1643. char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
  1644. char *full_alg_name;
  1645. int rc;
  1646. *key_tfm = NULL;
  1647. if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
  1648. rc = -EINVAL;
  1649. printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
  1650. "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
  1651. goto out;
  1652. }
  1653. rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
  1654. "ecb");
  1655. if (rc)
  1656. goto out;
  1657. *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
  1658. kfree(full_alg_name);
  1659. if (IS_ERR(*key_tfm)) {
  1660. rc = PTR_ERR(*key_tfm);
  1661. printk(KERN_ERR "Unable to allocate crypto cipher with name "
  1662. "[%s]; rc = [%d]\n", full_alg_name, rc);
  1663. goto out;
  1664. }
  1665. crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
  1666. if (*key_size == 0) {
  1667. struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
  1668. *key_size = alg->max_keysize;
  1669. }
  1670. get_random_bytes(dummy_key, *key_size);
  1671. rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
  1672. if (rc) {
  1673. printk(KERN_ERR "Error attempting to set key of size [%zd] for "
  1674. "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
  1675. rc);
  1676. rc = -EINVAL;
  1677. goto out;
  1678. }
  1679. out:
  1680. return rc;
  1681. }
  1682. struct kmem_cache *ecryptfs_key_tfm_cache;
  1683. static struct list_head key_tfm_list;
  1684. struct mutex key_tfm_list_mutex;
  1685. int ecryptfs_init_crypto(void)
  1686. {
  1687. mutex_init(&key_tfm_list_mutex);
  1688. INIT_LIST_HEAD(&key_tfm_list);
  1689. return 0;
  1690. }
  1691. /**
  1692. * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
  1693. *
  1694. * Called only at module unload time
  1695. */
  1696. int ecryptfs_destroy_crypto(void)
  1697. {
  1698. struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
  1699. mutex_lock(&key_tfm_list_mutex);
  1700. list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
  1701. key_tfm_list) {
  1702. list_del(&key_tfm->key_tfm_list);
  1703. if (key_tfm->key_tfm)
  1704. crypto_free_blkcipher(key_tfm->key_tfm);
  1705. kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
  1706. }
  1707. mutex_unlock(&key_tfm_list_mutex);
  1708. return 0;
  1709. }
  1710. int
  1711. ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
  1712. size_t key_size)
  1713. {
  1714. struct ecryptfs_key_tfm *tmp_tfm;
  1715. int rc = 0;
  1716. BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
  1717. tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
  1718. if (key_tfm != NULL)
  1719. (*key_tfm) = tmp_tfm;
  1720. if (!tmp_tfm) {
  1721. rc = -ENOMEM;
  1722. printk(KERN_ERR "Error attempting to allocate from "
  1723. "ecryptfs_key_tfm_cache\n");
  1724. goto out;
  1725. }
  1726. mutex_init(&tmp_tfm->key_tfm_mutex);
  1727. strncpy(tmp_tfm->cipher_name, cipher_name,
  1728. ECRYPTFS_MAX_CIPHER_NAME_SIZE);
  1729. tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
  1730. tmp_tfm->key_size = key_size;
  1731. rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
  1732. tmp_tfm->cipher_name,
  1733. &tmp_tfm->key_size);
  1734. if (rc) {
  1735. printk(KERN_ERR "Error attempting to initialize key TFM "
  1736. "cipher with name = [%s]; rc = [%d]\n",
  1737. tmp_tfm->cipher_name, rc);
  1738. kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
  1739. if (key_tfm != NULL)
  1740. (*key_tfm) = NULL;
  1741. goto out;
  1742. }
  1743. list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
  1744. out:
  1745. return rc;
  1746. }
  1747. /**
  1748. * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
  1749. * @cipher_name: the name of the cipher to search for
  1750. * @key_tfm: set to corresponding tfm if found
  1751. *
  1752. * Searches for cached key_tfm matching @cipher_name
  1753. * Must be called with &key_tfm_list_mutex held
  1754. * Returns 1 if found, with @key_tfm set
  1755. * Returns 0 if not found, with @key_tfm set to NULL
  1756. */
  1757. int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
  1758. {
  1759. struct ecryptfs_key_tfm *tmp_key_tfm;
  1760. BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
  1761. list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
  1762. if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
  1763. if (key_tfm)
  1764. (*key_tfm) = tmp_key_tfm;
  1765. return 1;
  1766. }
  1767. }
  1768. if (key_tfm)
  1769. (*key_tfm) = NULL;
  1770. return 0;
  1771. }
  1772. /**
  1773. * ecryptfs_get_tfm_and_mutex_for_cipher_name
  1774. *
  1775. * @tfm: set to cached tfm found, or new tfm created
  1776. * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
  1777. * @cipher_name: the name of the cipher to search for and/or add
  1778. *
  1779. * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
  1780. * Searches for cached item first, and creates new if not found.
  1781. * Returns 0 on success, non-zero if adding new cipher failed
  1782. */
  1783. int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
  1784. struct mutex **tfm_mutex,
  1785. char *cipher_name)
  1786. {
  1787. struct ecryptfs_key_tfm *key_tfm;
  1788. int rc = 0;
  1789. (*tfm) = NULL;
  1790. (*tfm_mutex) = NULL;
  1791. mutex_lock(&key_tfm_list_mutex);
  1792. if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
  1793. rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
  1794. if (rc) {
  1795. printk(KERN_ERR "Error adding new key_tfm to list; "
  1796. "rc = [%d]\n", rc);
  1797. goto out;
  1798. }
  1799. }
  1800. (*tfm) = key_tfm->key_tfm;
  1801. (*tfm_mutex) = &key_tfm->key_tfm_mutex;
  1802. out:
  1803. mutex_unlock(&key_tfm_list_mutex);
  1804. return rc;
  1805. }
  1806. /* 64 characters forming a 6-bit target field */
  1807. static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
  1808. "EFGHIJKLMNOPQRST"
  1809. "UVWXYZabcdefghij"
  1810. "klmnopqrstuvwxyz");
  1811. /* We could either offset on every reverse map or just pad some 0x00's
  1812. * at the front here */
  1813. static const unsigned char filename_rev_map[] = {
  1814. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
  1815. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
  1816. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
  1817. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
  1818. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
  1819. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
  1820. 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
  1821. 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
  1822. 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
  1823. 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
  1824. 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
  1825. 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
  1826. 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
  1827. 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
  1828. 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
  1829. 0x3D, 0x3E, 0x3F
  1830. };
  1831. /**
  1832. * ecryptfs_encode_for_filename
  1833. * @dst: Destination location for encoded filename
  1834. * @dst_size: Size of the encoded filename in bytes
  1835. * @src: Source location for the filename to encode
  1836. * @src_size: Size of the source in bytes
  1837. */
  1838. void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
  1839. unsigned char *src, size_t src_size)
  1840. {
  1841. size_t num_blocks;
  1842. size_t block_num = 0;
  1843. size_t dst_offset = 0;
  1844. unsigned char last_block[3];
  1845. if (src_size == 0) {
  1846. (*dst_size) = 0;
  1847. goto out;
  1848. }
  1849. num_blocks = (src_size / 3);
  1850. if ((src_size % 3) == 0) {
  1851. memcpy(last_block, (&src[src_size - 3]), 3);
  1852. } else {
  1853. num_blocks++;
  1854. last_block[2] = 0x00;
  1855. switch (src_size % 3) {
  1856. case 1:
  1857. last_block[0] = src[src_size - 1];
  1858. last_block[1] = 0x00;
  1859. break;
  1860. case 2:
  1861. last_block[0] = src[src_size - 2];
  1862. last_block[1] = src[src_size - 1];
  1863. }
  1864. }
  1865. (*dst_size) = (num_blocks * 4);
  1866. if (!dst)
  1867. goto out;
  1868. while (block_num < num_blocks) {
  1869. unsigned char *src_block;
  1870. unsigned char dst_block[4];
  1871. if (block_num == (num_blocks - 1))
  1872. src_block = last_block;
  1873. else
  1874. src_block = &src[block_num * 3];
  1875. dst_block[0] = ((src_block[0] >> 2) & 0x3F);
  1876. dst_block[1] = (((src_block[0] << 4) & 0x30)
  1877. | ((src_block[1] >> 4) & 0x0F));
  1878. dst_block[2] = (((src_block[1] << 2) & 0x3C)
  1879. | ((src_block[2] >> 6) & 0x03));
  1880. dst_block[3] = (src_block[2] & 0x3F);
  1881. dst[dst_offset++] = portable_filename_chars[dst_block[0]];
  1882. dst[dst_offset++] = portable_filename_chars[dst_block[1]];
  1883. dst[dst_offset++] = portable_filename_chars[dst_block[2]];
  1884. dst[dst_offset++] = portable_filename_chars[dst_block[3]];
  1885. block_num++;
  1886. }
  1887. out:
  1888. return;
  1889. }
  1890. /**
  1891. * ecryptfs_decode_from_filename
  1892. * @dst: If NULL, this function only sets @dst_size and returns. If
  1893. * non-NULL, this function decodes the encoded octets in @src
  1894. * into the memory that @dst points to.
  1895. * @dst_size: Set to the size of the decoded string.
  1896. * @src: The encoded set of octets to decode.
  1897. * @src_size: The size of the encoded set of octets to decode.
  1898. */
  1899. static void
  1900. ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
  1901. const unsigned char *src, size_t src_size)
  1902. {
  1903. u8 current_bit_offset = 0;
  1904. size_t src_byte_offset = 0;
  1905. size_t dst_byte_offset = 0;
  1906. if (dst == NULL) {
  1907. /* Not exact; conservatively long. Every block of 4
  1908. * encoded characters decodes into a block of 3
  1909. * decoded characters. This segment of code provides
  1910. * the caller with the maximum amount of allocated
  1911. * space that @dst will need to point to in a
  1912. * subsequent call. */
  1913. (*dst_size) = (((src_size + 1) * 3) / 4);
  1914. goto out;
  1915. }
  1916. while (src_byte_offset < src_size) {
  1917. unsigned char src_byte =
  1918. filename_rev_map[(int)src[src_byte_offset]];
  1919. switch (current_bit_offset) {
  1920. case 0:
  1921. dst[dst_byte_offset] = (src_byte << 2);
  1922. current_bit_offset = 6;
  1923. break;
  1924. case 6:
  1925. dst[dst_byte_offset++] |= (src_byte >> 4);
  1926. dst[dst_byte_offset] = ((src_byte & 0xF)
  1927. << 4);
  1928. current_bit_offset = 4;
  1929. break;
  1930. case 4:
  1931. dst[dst_byte_offset++] |= (src_byte >> 2);
  1932. dst[dst_byte_offset] = (src_byte << 6);
  1933. current_bit_offset = 2;
  1934. break;
  1935. case 2:
  1936. dst[dst_byte_offset++] |= (src_byte);
  1937. dst[dst_byte_offset] = 0;
  1938. current_bit_offset = 0;
  1939. break;
  1940. }
  1941. src_byte_offset++;
  1942. }
  1943. (*dst_size) = dst_byte_offset;
  1944. out:
  1945. return;
  1946. }
  1947. /**
  1948. * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
  1949. * @crypt_stat: The crypt_stat struct associated with the file anem to encode
  1950. * @name: The plaintext name
  1951. * @length: The length of the plaintext
  1952. * @encoded_name: The encypted name
  1953. *
  1954. * Encrypts and encodes a filename into something that constitutes a
  1955. * valid filename for a filesystem, with printable characters.
  1956. *
  1957. * We assume that we have a properly initialized crypto context,
  1958. * pointed to by crypt_stat->tfm.
  1959. *
  1960. * Returns zero on success; non-zero on otherwise
  1961. */
  1962. int ecryptfs_encrypt_and_encode_filename(
  1963. char **encoded_name,
  1964. size_t *encoded_name_size,
  1965. struct ecryptfs_crypt_stat *crypt_stat,
  1966. struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
  1967. const char *name, size_t name_size)
  1968. {
  1969. size_t encoded_name_no_prefix_size;
  1970. int rc = 0;
  1971. (*encoded_name) = NULL;
  1972. (*encoded_name_size) = 0;
  1973. if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
  1974. || (mount_crypt_stat && (mount_crypt_stat->flags
  1975. & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
  1976. struct ecryptfs_filename *filename;
  1977. filename = kzalloc(sizeof(*filename), GFP_KERNEL);
  1978. if (!filename) {
  1979. printk(KERN_ERR "%s: Out of memory whilst attempting "
  1980. "to kzalloc [%zd] bytes\n", __func__,
  1981. sizeof(*filename));
  1982. rc = -ENOMEM;
  1983. goto out;
  1984. }
  1985. filename->filename = (char *)name;
  1986. filename->filename_size = name_size;
  1987. rc = ecryptfs_encrypt_filename(filename, crypt_stat,
  1988. mount_crypt_stat);
  1989. if (rc) {
  1990. printk(KERN_ERR "%s: Error attempting to encrypt "
  1991. "filename; rc = [%d]\n", __func__, rc);
  1992. kfree(filename);
  1993. goto out;
  1994. }
  1995. ecryptfs_encode_for_filename(
  1996. NULL, &encoded_name_no_prefix_size,
  1997. filename->encrypted_filename,
  1998. filename->encrypted_filename_size);
  1999. if ((crypt_stat && (crypt_stat->flags
  2000. & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
  2001. || (mount_crypt_stat
  2002. && (mount_crypt_stat->flags
  2003. & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
  2004. (*encoded_name_size) =
  2005. (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
  2006. + encoded_name_no_prefix_size);
  2007. else
  2008. (*encoded_name_size) =
  2009. (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
  2010. + encoded_name_no_prefix_size);
  2011. (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
  2012. if (!(*encoded_name)) {
  2013. printk(KERN_ERR "%s: Out of memory whilst attempting "
  2014. "to kzalloc [%zd] bytes\n", __func__,
  2015. (*encoded_name_size));
  2016. rc = -ENOMEM;
  2017. kfree(filename->encrypted_filename);
  2018. kfree(filename);
  2019. goto out;
  2020. }
  2021. if ((crypt_stat && (crypt_stat->flags
  2022. & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
  2023. || (mount_crypt_stat
  2024. && (mount_crypt_stat->flags
  2025. & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
  2026. memcpy((*encoded_name),
  2027. ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
  2028. ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
  2029. ecryptfs_encode_for_filename(
  2030. ((*encoded_name)
  2031. + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
  2032. &encoded_name_no_prefix_size,
  2033. filename->encrypted_filename,
  2034. filename->encrypted_filename_size);
  2035. (*encoded_name_size) =
  2036. (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
  2037. + encoded_name_no_prefix_size);
  2038. (*encoded_name)[(*encoded_name_size)] = '\0';
  2039. (*encoded_name_size)++;
  2040. } else {
  2041. rc = -EOPNOTSUPP;
  2042. }
  2043. if (rc) {
  2044. printk(KERN_ERR "%s: Error attempting to encode "
  2045. "encrypted filename; rc = [%d]\n", __func__,
  2046. rc);
  2047. kfree((*encoded_name));
  2048. (*encoded_name) = NULL;
  2049. (*encoded_name_size) = 0;
  2050. }
  2051. kfree(filename->encrypted_filename);
  2052. kfree(filename);
  2053. } else {
  2054. rc = ecryptfs_copy_filename(encoded_name,
  2055. encoded_name_size,
  2056. name, name_size);
  2057. }
  2058. out:
  2059. return rc;
  2060. }
  2061. /**
  2062. * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
  2063. * @plaintext_name: The plaintext name
  2064. * @plaintext_name_size: The plaintext name size
  2065. * @ecryptfs_dir_dentry: eCryptfs directory dentry
  2066. * @name: The filename in cipher text
  2067. * @name_size: The cipher text name size
  2068. *
  2069. * Decrypts and decodes the filename.
  2070. *
  2071. * Returns zero on error; non-zero otherwise
  2072. */
  2073. int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
  2074. size_t *plaintext_name_size,
  2075. struct dentry *ecryptfs_dir_dentry,
  2076. const char *name, size_t name_size)
  2077. {
  2078. struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
  2079. &ecryptfs_superblock_to_private(
  2080. ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
  2081. char *decoded_name;
  2082. size_t decoded_name_size;
  2083. size_t packet_size;
  2084. int rc = 0;
  2085. if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
  2086. && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
  2087. && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
  2088. && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
  2089. ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
  2090. const char *orig_name = name;
  2091. size_t orig_name_size = name_size;
  2092. name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
  2093. name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
  2094. ecryptfs_decode_from_filename(NULL, &decoded_name_size,
  2095. name, name_size);
  2096. decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
  2097. if (!decoded_name) {
  2098. printk(KERN_ERR "%s: Out of memory whilst attempting "
  2099. "to kmalloc [%zd] bytes\n", __func__,
  2100. decoded_name_size);
  2101. rc = -ENOMEM;
  2102. goto out;
  2103. }
  2104. ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
  2105. name, name_size);
  2106. rc = ecryptfs_parse_tag_70_packet(plaintext_name,
  2107. plaintext_name_size,
  2108. &packet_size,
  2109. mount_crypt_stat,
  2110. decoded_name,
  2111. decoded_name_size);
  2112. if (rc) {
  2113. printk(KERN_INFO "%s: Could not parse tag 70 packet "
  2114. "from filename; copying through filename "
  2115. "as-is\n", __func__);
  2116. rc = ecryptfs_copy_filename(plaintext_name,
  2117. plaintext_name_size,
  2118. orig_name, orig_name_size);
  2119. goto out_free;
  2120. }
  2121. } else {
  2122. rc = ecryptfs_copy_filename(plaintext_name,
  2123. plaintext_name_size,
  2124. name, name_size);
  2125. goto out;
  2126. }
  2127. out_free:
  2128. kfree(decoded_name);
  2129. out:
  2130. return rc;
  2131. }