relocation.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804
  1. /*
  2. * Copyright (C) 2009 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/rbtree.h>
  23. #include "ctree.h"
  24. #include "disk-io.h"
  25. #include "transaction.h"
  26. #include "volumes.h"
  27. #include "locking.h"
  28. #include "btrfs_inode.h"
  29. #include "async-thread.h"
  30. /*
  31. * backref_node, mapping_node and tree_block start with this
  32. */
  33. struct tree_entry {
  34. struct rb_node rb_node;
  35. u64 bytenr;
  36. };
  37. /*
  38. * present a tree block in the backref cache
  39. */
  40. struct backref_node {
  41. struct rb_node rb_node;
  42. u64 bytenr;
  43. /* objectid tree block owner */
  44. u64 owner;
  45. /* list of upper level blocks reference this block */
  46. struct list_head upper;
  47. /* list of child blocks in the cache */
  48. struct list_head lower;
  49. /* NULL if this node is not tree root */
  50. struct btrfs_root *root;
  51. /* extent buffer got by COW the block */
  52. struct extent_buffer *eb;
  53. /* level of tree block */
  54. unsigned int level:8;
  55. /* 1 if the block is root of old snapshot */
  56. unsigned int old_root:1;
  57. /* 1 if no child blocks in the cache */
  58. unsigned int lowest:1;
  59. /* is the extent buffer locked */
  60. unsigned int locked:1;
  61. /* has the block been processed */
  62. unsigned int processed:1;
  63. /* have backrefs of this block been checked */
  64. unsigned int checked:1;
  65. };
  66. /*
  67. * present a block pointer in the backref cache
  68. */
  69. struct backref_edge {
  70. struct list_head list[2];
  71. struct backref_node *node[2];
  72. u64 blockptr;
  73. };
  74. #define LOWER 0
  75. #define UPPER 1
  76. struct backref_cache {
  77. /* red black tree of all backref nodes in the cache */
  78. struct rb_root rb_root;
  79. /* list of backref nodes with no child block in the cache */
  80. struct list_head pending[BTRFS_MAX_LEVEL];
  81. spinlock_t lock;
  82. };
  83. /*
  84. * map address of tree root to tree
  85. */
  86. struct mapping_node {
  87. struct rb_node rb_node;
  88. u64 bytenr;
  89. void *data;
  90. };
  91. struct mapping_tree {
  92. struct rb_root rb_root;
  93. spinlock_t lock;
  94. };
  95. /*
  96. * present a tree block to process
  97. */
  98. struct tree_block {
  99. struct rb_node rb_node;
  100. u64 bytenr;
  101. struct btrfs_key key;
  102. unsigned int level:8;
  103. unsigned int key_ready:1;
  104. };
  105. /* inode vector */
  106. #define INODEVEC_SIZE 16
  107. struct inodevec {
  108. struct list_head list;
  109. struct inode *inode[INODEVEC_SIZE];
  110. int nr;
  111. };
  112. #define MAX_EXTENTS 128
  113. struct file_extent_cluster {
  114. u64 start;
  115. u64 end;
  116. u64 boundary[MAX_EXTENTS];
  117. unsigned int nr;
  118. };
  119. struct reloc_control {
  120. /* block group to relocate */
  121. struct btrfs_block_group_cache *block_group;
  122. /* extent tree */
  123. struct btrfs_root *extent_root;
  124. /* inode for moving data */
  125. struct inode *data_inode;
  126. struct btrfs_workers workers;
  127. /* tree blocks have been processed */
  128. struct extent_io_tree processed_blocks;
  129. /* map start of tree root to corresponding reloc tree */
  130. struct mapping_tree reloc_root_tree;
  131. /* list of reloc trees */
  132. struct list_head reloc_roots;
  133. u64 search_start;
  134. u64 extents_found;
  135. u64 extents_skipped;
  136. int stage;
  137. int create_reloc_root;
  138. unsigned int found_file_extent:1;
  139. unsigned int found_old_snapshot:1;
  140. };
  141. /* stages of data relocation */
  142. #define MOVE_DATA_EXTENTS 0
  143. #define UPDATE_DATA_PTRS 1
  144. /*
  145. * merge reloc tree to corresponding fs tree in worker threads
  146. */
  147. struct async_merge {
  148. struct btrfs_work work;
  149. struct reloc_control *rc;
  150. struct btrfs_root *root;
  151. struct completion *done;
  152. atomic_t *num_pending;
  153. };
  154. static void mapping_tree_init(struct mapping_tree *tree)
  155. {
  156. tree->rb_root.rb_node = NULL;
  157. spin_lock_init(&tree->lock);
  158. }
  159. static void backref_cache_init(struct backref_cache *cache)
  160. {
  161. int i;
  162. cache->rb_root.rb_node = NULL;
  163. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  164. INIT_LIST_HEAD(&cache->pending[i]);
  165. spin_lock_init(&cache->lock);
  166. }
  167. static void backref_node_init(struct backref_node *node)
  168. {
  169. memset(node, 0, sizeof(*node));
  170. INIT_LIST_HEAD(&node->upper);
  171. INIT_LIST_HEAD(&node->lower);
  172. RB_CLEAR_NODE(&node->rb_node);
  173. }
  174. static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
  175. struct rb_node *node)
  176. {
  177. struct rb_node **p = &root->rb_node;
  178. struct rb_node *parent = NULL;
  179. struct tree_entry *entry;
  180. while (*p) {
  181. parent = *p;
  182. entry = rb_entry(parent, struct tree_entry, rb_node);
  183. if (bytenr < entry->bytenr)
  184. p = &(*p)->rb_left;
  185. else if (bytenr > entry->bytenr)
  186. p = &(*p)->rb_right;
  187. else
  188. return parent;
  189. }
  190. rb_link_node(node, parent, p);
  191. rb_insert_color(node, root);
  192. return NULL;
  193. }
  194. static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
  195. {
  196. struct rb_node *n = root->rb_node;
  197. struct tree_entry *entry;
  198. while (n) {
  199. entry = rb_entry(n, struct tree_entry, rb_node);
  200. if (bytenr < entry->bytenr)
  201. n = n->rb_left;
  202. else if (bytenr > entry->bytenr)
  203. n = n->rb_right;
  204. else
  205. return n;
  206. }
  207. return NULL;
  208. }
  209. /*
  210. * walk up backref nodes until reach node presents tree root
  211. */
  212. static struct backref_node *walk_up_backref(struct backref_node *node,
  213. struct backref_edge *edges[],
  214. int *index)
  215. {
  216. struct backref_edge *edge;
  217. int idx = *index;
  218. while (!list_empty(&node->upper)) {
  219. edge = list_entry(node->upper.next,
  220. struct backref_edge, list[LOWER]);
  221. edges[idx++] = edge;
  222. node = edge->node[UPPER];
  223. }
  224. *index = idx;
  225. return node;
  226. }
  227. /*
  228. * walk down backref nodes to find start of next reference path
  229. */
  230. static struct backref_node *walk_down_backref(struct backref_edge *edges[],
  231. int *index)
  232. {
  233. struct backref_edge *edge;
  234. struct backref_node *lower;
  235. int idx = *index;
  236. while (idx > 0) {
  237. edge = edges[idx - 1];
  238. lower = edge->node[LOWER];
  239. if (list_is_last(&edge->list[LOWER], &lower->upper)) {
  240. idx--;
  241. continue;
  242. }
  243. edge = list_entry(edge->list[LOWER].next,
  244. struct backref_edge, list[LOWER]);
  245. edges[idx - 1] = edge;
  246. *index = idx;
  247. return edge->node[UPPER];
  248. }
  249. *index = 0;
  250. return NULL;
  251. }
  252. static void drop_node_buffer(struct backref_node *node)
  253. {
  254. if (node->eb) {
  255. if (node->locked) {
  256. btrfs_tree_unlock(node->eb);
  257. node->locked = 0;
  258. }
  259. free_extent_buffer(node->eb);
  260. node->eb = NULL;
  261. }
  262. }
  263. static void drop_backref_node(struct backref_cache *tree,
  264. struct backref_node *node)
  265. {
  266. BUG_ON(!node->lowest);
  267. BUG_ON(!list_empty(&node->upper));
  268. drop_node_buffer(node);
  269. list_del(&node->lower);
  270. rb_erase(&node->rb_node, &tree->rb_root);
  271. kfree(node);
  272. }
  273. /*
  274. * remove a backref node from the backref cache
  275. */
  276. static void remove_backref_node(struct backref_cache *cache,
  277. struct backref_node *node)
  278. {
  279. struct backref_node *upper;
  280. struct backref_edge *edge;
  281. if (!node)
  282. return;
  283. BUG_ON(!node->lowest);
  284. while (!list_empty(&node->upper)) {
  285. edge = list_entry(node->upper.next, struct backref_edge,
  286. list[LOWER]);
  287. upper = edge->node[UPPER];
  288. list_del(&edge->list[LOWER]);
  289. list_del(&edge->list[UPPER]);
  290. kfree(edge);
  291. /*
  292. * add the node to pending list if no other
  293. * child block cached.
  294. */
  295. if (list_empty(&upper->lower)) {
  296. list_add_tail(&upper->lower,
  297. &cache->pending[upper->level]);
  298. upper->lowest = 1;
  299. }
  300. }
  301. drop_backref_node(cache, node);
  302. }
  303. /*
  304. * find reloc tree by address of tree root
  305. */
  306. static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
  307. u64 bytenr)
  308. {
  309. struct rb_node *rb_node;
  310. struct mapping_node *node;
  311. struct btrfs_root *root = NULL;
  312. spin_lock(&rc->reloc_root_tree.lock);
  313. rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
  314. if (rb_node) {
  315. node = rb_entry(rb_node, struct mapping_node, rb_node);
  316. root = (struct btrfs_root *)node->data;
  317. }
  318. spin_unlock(&rc->reloc_root_tree.lock);
  319. return root;
  320. }
  321. static int is_cowonly_root(u64 root_objectid)
  322. {
  323. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
  324. root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
  325. root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
  326. root_objectid == BTRFS_DEV_TREE_OBJECTID ||
  327. root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  328. root_objectid == BTRFS_CSUM_TREE_OBJECTID)
  329. return 1;
  330. return 0;
  331. }
  332. static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
  333. u64 root_objectid)
  334. {
  335. struct btrfs_key key;
  336. key.objectid = root_objectid;
  337. key.type = BTRFS_ROOT_ITEM_KEY;
  338. if (is_cowonly_root(root_objectid))
  339. key.offset = 0;
  340. else
  341. key.offset = (u64)-1;
  342. return btrfs_read_fs_root_no_name(fs_info, &key);
  343. }
  344. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  345. static noinline_for_stack
  346. struct btrfs_root *find_tree_root(struct reloc_control *rc,
  347. struct extent_buffer *leaf,
  348. struct btrfs_extent_ref_v0 *ref0)
  349. {
  350. struct btrfs_root *root;
  351. u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
  352. u64 generation = btrfs_ref_generation_v0(leaf, ref0);
  353. BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
  354. root = read_fs_root(rc->extent_root->fs_info, root_objectid);
  355. BUG_ON(IS_ERR(root));
  356. if (root->ref_cows &&
  357. generation != btrfs_root_generation(&root->root_item))
  358. return NULL;
  359. return root;
  360. }
  361. #endif
  362. static noinline_for_stack
  363. int find_inline_backref(struct extent_buffer *leaf, int slot,
  364. unsigned long *ptr, unsigned long *end)
  365. {
  366. struct btrfs_extent_item *ei;
  367. struct btrfs_tree_block_info *bi;
  368. u32 item_size;
  369. item_size = btrfs_item_size_nr(leaf, slot);
  370. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  371. if (item_size < sizeof(*ei)) {
  372. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  373. return 1;
  374. }
  375. #endif
  376. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  377. WARN_ON(!(btrfs_extent_flags(leaf, ei) &
  378. BTRFS_EXTENT_FLAG_TREE_BLOCK));
  379. if (item_size <= sizeof(*ei) + sizeof(*bi)) {
  380. WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
  381. return 1;
  382. }
  383. bi = (struct btrfs_tree_block_info *)(ei + 1);
  384. *ptr = (unsigned long)(bi + 1);
  385. *end = (unsigned long)ei + item_size;
  386. return 0;
  387. }
  388. /*
  389. * build backref tree for a given tree block. root of the backref tree
  390. * corresponds the tree block, leaves of the backref tree correspond
  391. * roots of b-trees that reference the tree block.
  392. *
  393. * the basic idea of this function is check backrefs of a given block
  394. * to find upper level blocks that refernece the block, and then check
  395. * bakcrefs of these upper level blocks recursively. the recursion stop
  396. * when tree root is reached or backrefs for the block is cached.
  397. *
  398. * NOTE: if we find backrefs for a block are cached, we know backrefs
  399. * for all upper level blocks that directly/indirectly reference the
  400. * block are also cached.
  401. */
  402. static struct backref_node *build_backref_tree(struct reloc_control *rc,
  403. struct backref_cache *cache,
  404. struct btrfs_key *node_key,
  405. int level, u64 bytenr)
  406. {
  407. struct btrfs_path *path1;
  408. struct btrfs_path *path2;
  409. struct extent_buffer *eb;
  410. struct btrfs_root *root;
  411. struct backref_node *cur;
  412. struct backref_node *upper;
  413. struct backref_node *lower;
  414. struct backref_node *node = NULL;
  415. struct backref_node *exist = NULL;
  416. struct backref_edge *edge;
  417. struct rb_node *rb_node;
  418. struct btrfs_key key;
  419. unsigned long end;
  420. unsigned long ptr;
  421. LIST_HEAD(list);
  422. int ret;
  423. int err = 0;
  424. path1 = btrfs_alloc_path();
  425. path2 = btrfs_alloc_path();
  426. if (!path1 || !path2) {
  427. err = -ENOMEM;
  428. goto out;
  429. }
  430. node = kmalloc(sizeof(*node), GFP_NOFS);
  431. if (!node) {
  432. err = -ENOMEM;
  433. goto out;
  434. }
  435. backref_node_init(node);
  436. node->bytenr = bytenr;
  437. node->owner = 0;
  438. node->level = level;
  439. node->lowest = 1;
  440. cur = node;
  441. again:
  442. end = 0;
  443. ptr = 0;
  444. key.objectid = cur->bytenr;
  445. key.type = BTRFS_EXTENT_ITEM_KEY;
  446. key.offset = (u64)-1;
  447. path1->search_commit_root = 1;
  448. path1->skip_locking = 1;
  449. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
  450. 0, 0);
  451. if (ret < 0) {
  452. err = ret;
  453. goto out;
  454. }
  455. BUG_ON(!ret || !path1->slots[0]);
  456. path1->slots[0]--;
  457. WARN_ON(cur->checked);
  458. if (!list_empty(&cur->upper)) {
  459. /*
  460. * the backref was added previously when processsing
  461. * backref of type BTRFS_TREE_BLOCK_REF_KEY
  462. */
  463. BUG_ON(!list_is_singular(&cur->upper));
  464. edge = list_entry(cur->upper.next, struct backref_edge,
  465. list[LOWER]);
  466. BUG_ON(!list_empty(&edge->list[UPPER]));
  467. exist = edge->node[UPPER];
  468. /*
  469. * add the upper level block to pending list if we need
  470. * check its backrefs
  471. */
  472. if (!exist->checked)
  473. list_add_tail(&edge->list[UPPER], &list);
  474. } else {
  475. exist = NULL;
  476. }
  477. while (1) {
  478. cond_resched();
  479. eb = path1->nodes[0];
  480. if (ptr >= end) {
  481. if (path1->slots[0] >= btrfs_header_nritems(eb)) {
  482. ret = btrfs_next_leaf(rc->extent_root, path1);
  483. if (ret < 0) {
  484. err = ret;
  485. goto out;
  486. }
  487. if (ret > 0)
  488. break;
  489. eb = path1->nodes[0];
  490. }
  491. btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
  492. if (key.objectid != cur->bytenr) {
  493. WARN_ON(exist);
  494. break;
  495. }
  496. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  497. ret = find_inline_backref(eb, path1->slots[0],
  498. &ptr, &end);
  499. if (ret)
  500. goto next;
  501. }
  502. }
  503. if (ptr < end) {
  504. /* update key for inline back ref */
  505. struct btrfs_extent_inline_ref *iref;
  506. iref = (struct btrfs_extent_inline_ref *)ptr;
  507. key.type = btrfs_extent_inline_ref_type(eb, iref);
  508. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  509. WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
  510. key.type != BTRFS_SHARED_BLOCK_REF_KEY);
  511. }
  512. if (exist &&
  513. ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
  514. exist->owner == key.offset) ||
  515. (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
  516. exist->bytenr == key.offset))) {
  517. exist = NULL;
  518. goto next;
  519. }
  520. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  521. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
  522. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  523. if (key.objectid == key.offset &&
  524. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  525. struct btrfs_extent_ref_v0 *ref0;
  526. ref0 = btrfs_item_ptr(eb, path1->slots[0],
  527. struct btrfs_extent_ref_v0);
  528. root = find_tree_root(rc, eb, ref0);
  529. if (root)
  530. cur->root = root;
  531. else
  532. cur->old_root = 1;
  533. break;
  534. }
  535. #else
  536. BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
  537. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
  538. #endif
  539. if (key.objectid == key.offset) {
  540. /*
  541. * only root blocks of reloc trees use
  542. * backref of this type.
  543. */
  544. root = find_reloc_root(rc, cur->bytenr);
  545. BUG_ON(!root);
  546. cur->root = root;
  547. break;
  548. }
  549. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  550. if (!edge) {
  551. err = -ENOMEM;
  552. goto out;
  553. }
  554. rb_node = tree_search(&cache->rb_root, key.offset);
  555. if (!rb_node) {
  556. upper = kmalloc(sizeof(*upper), GFP_NOFS);
  557. if (!upper) {
  558. kfree(edge);
  559. err = -ENOMEM;
  560. goto out;
  561. }
  562. backref_node_init(upper);
  563. upper->bytenr = key.offset;
  564. upper->owner = 0;
  565. upper->level = cur->level + 1;
  566. /*
  567. * backrefs for the upper level block isn't
  568. * cached, add the block to pending list
  569. */
  570. list_add_tail(&edge->list[UPPER], &list);
  571. } else {
  572. upper = rb_entry(rb_node, struct backref_node,
  573. rb_node);
  574. INIT_LIST_HEAD(&edge->list[UPPER]);
  575. }
  576. list_add(&edge->list[LOWER], &cur->upper);
  577. edge->node[UPPER] = upper;
  578. edge->node[LOWER] = cur;
  579. goto next;
  580. } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
  581. goto next;
  582. }
  583. /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
  584. root = read_fs_root(rc->extent_root->fs_info, key.offset);
  585. if (IS_ERR(root)) {
  586. err = PTR_ERR(root);
  587. goto out;
  588. }
  589. if (btrfs_root_level(&root->root_item) == cur->level) {
  590. /* tree root */
  591. BUG_ON(btrfs_root_bytenr(&root->root_item) !=
  592. cur->bytenr);
  593. cur->root = root;
  594. break;
  595. }
  596. level = cur->level + 1;
  597. /*
  598. * searching the tree to find upper level blocks
  599. * reference the block.
  600. */
  601. path2->search_commit_root = 1;
  602. path2->skip_locking = 1;
  603. path2->lowest_level = level;
  604. ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
  605. path2->lowest_level = 0;
  606. if (ret < 0) {
  607. err = ret;
  608. goto out;
  609. }
  610. if (ret > 0 && path2->slots[level] > 0)
  611. path2->slots[level]--;
  612. eb = path2->nodes[level];
  613. WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
  614. cur->bytenr);
  615. lower = cur;
  616. for (; level < BTRFS_MAX_LEVEL; level++) {
  617. if (!path2->nodes[level]) {
  618. BUG_ON(btrfs_root_bytenr(&root->root_item) !=
  619. lower->bytenr);
  620. lower->root = root;
  621. break;
  622. }
  623. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  624. if (!edge) {
  625. err = -ENOMEM;
  626. goto out;
  627. }
  628. eb = path2->nodes[level];
  629. rb_node = tree_search(&cache->rb_root, eb->start);
  630. if (!rb_node) {
  631. upper = kmalloc(sizeof(*upper), GFP_NOFS);
  632. if (!upper) {
  633. kfree(edge);
  634. err = -ENOMEM;
  635. goto out;
  636. }
  637. backref_node_init(upper);
  638. upper->bytenr = eb->start;
  639. upper->owner = btrfs_header_owner(eb);
  640. upper->level = lower->level + 1;
  641. /*
  642. * if we know the block isn't shared
  643. * we can void checking its backrefs.
  644. */
  645. if (btrfs_block_can_be_shared(root, eb))
  646. upper->checked = 0;
  647. else
  648. upper->checked = 1;
  649. /*
  650. * add the block to pending list if we
  651. * need check its backrefs. only block
  652. * at 'cur->level + 1' is added to the
  653. * tail of pending list. this guarantees
  654. * we check backrefs from lower level
  655. * blocks to upper level blocks.
  656. */
  657. if (!upper->checked &&
  658. level == cur->level + 1) {
  659. list_add_tail(&edge->list[UPPER],
  660. &list);
  661. } else
  662. INIT_LIST_HEAD(&edge->list[UPPER]);
  663. } else {
  664. upper = rb_entry(rb_node, struct backref_node,
  665. rb_node);
  666. BUG_ON(!upper->checked);
  667. INIT_LIST_HEAD(&edge->list[UPPER]);
  668. }
  669. list_add_tail(&edge->list[LOWER], &lower->upper);
  670. edge->node[UPPER] = upper;
  671. edge->node[LOWER] = lower;
  672. if (rb_node)
  673. break;
  674. lower = upper;
  675. upper = NULL;
  676. }
  677. btrfs_release_path(root, path2);
  678. next:
  679. if (ptr < end) {
  680. ptr += btrfs_extent_inline_ref_size(key.type);
  681. if (ptr >= end) {
  682. WARN_ON(ptr > end);
  683. ptr = 0;
  684. end = 0;
  685. }
  686. }
  687. if (ptr >= end)
  688. path1->slots[0]++;
  689. }
  690. btrfs_release_path(rc->extent_root, path1);
  691. cur->checked = 1;
  692. WARN_ON(exist);
  693. /* the pending list isn't empty, take the first block to process */
  694. if (!list_empty(&list)) {
  695. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  696. list_del_init(&edge->list[UPPER]);
  697. cur = edge->node[UPPER];
  698. goto again;
  699. }
  700. /*
  701. * everything goes well, connect backref nodes and insert backref nodes
  702. * into the cache.
  703. */
  704. BUG_ON(!node->checked);
  705. rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
  706. BUG_ON(rb_node);
  707. list_for_each_entry(edge, &node->upper, list[LOWER])
  708. list_add_tail(&edge->list[UPPER], &list);
  709. while (!list_empty(&list)) {
  710. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  711. list_del_init(&edge->list[UPPER]);
  712. upper = edge->node[UPPER];
  713. if (!RB_EMPTY_NODE(&upper->rb_node)) {
  714. if (upper->lowest) {
  715. list_del_init(&upper->lower);
  716. upper->lowest = 0;
  717. }
  718. list_add_tail(&edge->list[UPPER], &upper->lower);
  719. continue;
  720. }
  721. BUG_ON(!upper->checked);
  722. rb_node = tree_insert(&cache->rb_root, upper->bytenr,
  723. &upper->rb_node);
  724. BUG_ON(rb_node);
  725. list_add_tail(&edge->list[UPPER], &upper->lower);
  726. list_for_each_entry(edge, &upper->upper, list[LOWER])
  727. list_add_tail(&edge->list[UPPER], &list);
  728. }
  729. out:
  730. btrfs_free_path(path1);
  731. btrfs_free_path(path2);
  732. if (err) {
  733. INIT_LIST_HEAD(&list);
  734. upper = node;
  735. while (upper) {
  736. if (RB_EMPTY_NODE(&upper->rb_node)) {
  737. list_splice_tail(&upper->upper, &list);
  738. kfree(upper);
  739. }
  740. if (list_empty(&list))
  741. break;
  742. edge = list_entry(list.next, struct backref_edge,
  743. list[LOWER]);
  744. upper = edge->node[UPPER];
  745. kfree(edge);
  746. }
  747. return ERR_PTR(err);
  748. }
  749. return node;
  750. }
  751. /*
  752. * helper to add 'address of tree root -> reloc tree' mapping
  753. */
  754. static int __add_reloc_root(struct btrfs_root *root)
  755. {
  756. struct rb_node *rb_node;
  757. struct mapping_node *node;
  758. struct reloc_control *rc = root->fs_info->reloc_ctl;
  759. node = kmalloc(sizeof(*node), GFP_NOFS);
  760. BUG_ON(!node);
  761. node->bytenr = root->node->start;
  762. node->data = root;
  763. spin_lock(&rc->reloc_root_tree.lock);
  764. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  765. node->bytenr, &node->rb_node);
  766. spin_unlock(&rc->reloc_root_tree.lock);
  767. BUG_ON(rb_node);
  768. list_add_tail(&root->root_list, &rc->reloc_roots);
  769. return 0;
  770. }
  771. /*
  772. * helper to update/delete the 'address of tree root -> reloc tree'
  773. * mapping
  774. */
  775. static int __update_reloc_root(struct btrfs_root *root, int del)
  776. {
  777. struct rb_node *rb_node;
  778. struct mapping_node *node = NULL;
  779. struct reloc_control *rc = root->fs_info->reloc_ctl;
  780. spin_lock(&rc->reloc_root_tree.lock);
  781. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  782. root->commit_root->start);
  783. if (rb_node) {
  784. node = rb_entry(rb_node, struct mapping_node, rb_node);
  785. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  786. }
  787. spin_unlock(&rc->reloc_root_tree.lock);
  788. BUG_ON((struct btrfs_root *)node->data != root);
  789. if (!del) {
  790. spin_lock(&rc->reloc_root_tree.lock);
  791. node->bytenr = root->node->start;
  792. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  793. node->bytenr, &node->rb_node);
  794. spin_unlock(&rc->reloc_root_tree.lock);
  795. BUG_ON(rb_node);
  796. } else {
  797. list_del_init(&root->root_list);
  798. kfree(node);
  799. }
  800. return 0;
  801. }
  802. /*
  803. * create reloc tree for a given fs tree. reloc tree is just a
  804. * snapshot of the fs tree with special root objectid.
  805. */
  806. int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
  807. struct btrfs_root *root)
  808. {
  809. struct btrfs_root *reloc_root;
  810. struct extent_buffer *eb;
  811. struct btrfs_root_item *root_item;
  812. struct btrfs_key root_key;
  813. int ret;
  814. if (root->reloc_root) {
  815. reloc_root = root->reloc_root;
  816. reloc_root->last_trans = trans->transid;
  817. return 0;
  818. }
  819. if (!root->fs_info->reloc_ctl ||
  820. !root->fs_info->reloc_ctl->create_reloc_root ||
  821. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  822. return 0;
  823. root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
  824. BUG_ON(!root_item);
  825. root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  826. root_key.type = BTRFS_ROOT_ITEM_KEY;
  827. root_key.offset = root->root_key.objectid;
  828. ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
  829. BTRFS_TREE_RELOC_OBJECTID);
  830. BUG_ON(ret);
  831. btrfs_set_root_last_snapshot(&root->root_item, trans->transid - 1);
  832. memcpy(root_item, &root->root_item, sizeof(*root_item));
  833. btrfs_set_root_refs(root_item, 1);
  834. btrfs_set_root_bytenr(root_item, eb->start);
  835. btrfs_set_root_level(root_item, btrfs_header_level(eb));
  836. btrfs_set_root_generation(root_item, trans->transid);
  837. memset(&root_item->drop_progress, 0, sizeof(struct btrfs_disk_key));
  838. root_item->drop_level = 0;
  839. btrfs_tree_unlock(eb);
  840. free_extent_buffer(eb);
  841. ret = btrfs_insert_root(trans, root->fs_info->tree_root,
  842. &root_key, root_item);
  843. BUG_ON(ret);
  844. kfree(root_item);
  845. reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
  846. &root_key);
  847. BUG_ON(IS_ERR(reloc_root));
  848. reloc_root->last_trans = trans->transid;
  849. __add_reloc_root(reloc_root);
  850. root->reloc_root = reloc_root;
  851. return 0;
  852. }
  853. /*
  854. * update root item of reloc tree
  855. */
  856. int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
  857. struct btrfs_root *root)
  858. {
  859. struct btrfs_root *reloc_root;
  860. struct btrfs_root_item *root_item;
  861. int del = 0;
  862. int ret;
  863. if (!root->reloc_root)
  864. return 0;
  865. reloc_root = root->reloc_root;
  866. root_item = &reloc_root->root_item;
  867. if (btrfs_root_refs(root_item) == 0) {
  868. root->reloc_root = NULL;
  869. del = 1;
  870. }
  871. __update_reloc_root(reloc_root, del);
  872. if (reloc_root->commit_root != reloc_root->node) {
  873. btrfs_set_root_node(root_item, reloc_root->node);
  874. free_extent_buffer(reloc_root->commit_root);
  875. reloc_root->commit_root = btrfs_root_node(reloc_root);
  876. }
  877. ret = btrfs_update_root(trans, root->fs_info->tree_root,
  878. &reloc_root->root_key, root_item);
  879. BUG_ON(ret);
  880. return 0;
  881. }
  882. /*
  883. * helper to find first cached inode with inode number >= objectid
  884. * in a subvolume
  885. */
  886. static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
  887. {
  888. struct rb_node *node;
  889. struct rb_node *prev;
  890. struct btrfs_inode *entry;
  891. struct inode *inode;
  892. spin_lock(&root->inode_lock);
  893. again:
  894. node = root->inode_tree.rb_node;
  895. prev = NULL;
  896. while (node) {
  897. prev = node;
  898. entry = rb_entry(node, struct btrfs_inode, rb_node);
  899. if (objectid < entry->vfs_inode.i_ino)
  900. node = node->rb_left;
  901. else if (objectid > entry->vfs_inode.i_ino)
  902. node = node->rb_right;
  903. else
  904. break;
  905. }
  906. if (!node) {
  907. while (prev) {
  908. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  909. if (objectid <= entry->vfs_inode.i_ino) {
  910. node = prev;
  911. break;
  912. }
  913. prev = rb_next(prev);
  914. }
  915. }
  916. while (node) {
  917. entry = rb_entry(node, struct btrfs_inode, rb_node);
  918. inode = igrab(&entry->vfs_inode);
  919. if (inode) {
  920. spin_unlock(&root->inode_lock);
  921. return inode;
  922. }
  923. objectid = entry->vfs_inode.i_ino + 1;
  924. if (cond_resched_lock(&root->inode_lock))
  925. goto again;
  926. node = rb_next(node);
  927. }
  928. spin_unlock(&root->inode_lock);
  929. return NULL;
  930. }
  931. static int in_block_group(u64 bytenr,
  932. struct btrfs_block_group_cache *block_group)
  933. {
  934. if (bytenr >= block_group->key.objectid &&
  935. bytenr < block_group->key.objectid + block_group->key.offset)
  936. return 1;
  937. return 0;
  938. }
  939. /*
  940. * get new location of data
  941. */
  942. static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
  943. u64 bytenr, u64 num_bytes)
  944. {
  945. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  946. struct btrfs_path *path;
  947. struct btrfs_file_extent_item *fi;
  948. struct extent_buffer *leaf;
  949. int ret;
  950. path = btrfs_alloc_path();
  951. if (!path)
  952. return -ENOMEM;
  953. bytenr -= BTRFS_I(reloc_inode)->index_cnt;
  954. ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
  955. bytenr, 0);
  956. if (ret < 0)
  957. goto out;
  958. if (ret > 0) {
  959. ret = -ENOENT;
  960. goto out;
  961. }
  962. leaf = path->nodes[0];
  963. fi = btrfs_item_ptr(leaf, path->slots[0],
  964. struct btrfs_file_extent_item);
  965. BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
  966. btrfs_file_extent_compression(leaf, fi) ||
  967. btrfs_file_extent_encryption(leaf, fi) ||
  968. btrfs_file_extent_other_encoding(leaf, fi));
  969. if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
  970. ret = 1;
  971. goto out;
  972. }
  973. if (new_bytenr)
  974. *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  975. ret = 0;
  976. out:
  977. btrfs_free_path(path);
  978. return ret;
  979. }
  980. /*
  981. * update file extent items in the tree leaf to point to
  982. * the new locations.
  983. */
  984. static int replace_file_extents(struct btrfs_trans_handle *trans,
  985. struct reloc_control *rc,
  986. struct btrfs_root *root,
  987. struct extent_buffer *leaf,
  988. struct list_head *inode_list)
  989. {
  990. struct btrfs_key key;
  991. struct btrfs_file_extent_item *fi;
  992. struct inode *inode = NULL;
  993. struct inodevec *ivec = NULL;
  994. u64 parent;
  995. u64 bytenr;
  996. u64 new_bytenr;
  997. u64 num_bytes;
  998. u64 end;
  999. u32 nritems;
  1000. u32 i;
  1001. int ret;
  1002. int first = 1;
  1003. int dirty = 0;
  1004. if (rc->stage != UPDATE_DATA_PTRS)
  1005. return 0;
  1006. /* reloc trees always use full backref */
  1007. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1008. parent = leaf->start;
  1009. else
  1010. parent = 0;
  1011. nritems = btrfs_header_nritems(leaf);
  1012. for (i = 0; i < nritems; i++) {
  1013. cond_resched();
  1014. btrfs_item_key_to_cpu(leaf, &key, i);
  1015. if (key.type != BTRFS_EXTENT_DATA_KEY)
  1016. continue;
  1017. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1018. if (btrfs_file_extent_type(leaf, fi) ==
  1019. BTRFS_FILE_EXTENT_INLINE)
  1020. continue;
  1021. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1022. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1023. if (bytenr == 0)
  1024. continue;
  1025. if (!in_block_group(bytenr, rc->block_group))
  1026. continue;
  1027. /*
  1028. * if we are modifying block in fs tree, wait for readpage
  1029. * to complete and drop the extent cache
  1030. */
  1031. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  1032. if (!ivec || ivec->nr == INODEVEC_SIZE) {
  1033. ivec = kmalloc(sizeof(*ivec), GFP_NOFS);
  1034. BUG_ON(!ivec);
  1035. ivec->nr = 0;
  1036. list_add_tail(&ivec->list, inode_list);
  1037. }
  1038. if (first) {
  1039. inode = find_next_inode(root, key.objectid);
  1040. if (inode)
  1041. ivec->inode[ivec->nr++] = inode;
  1042. first = 0;
  1043. } else if (inode && inode->i_ino < key.objectid) {
  1044. inode = find_next_inode(root, key.objectid);
  1045. if (inode)
  1046. ivec->inode[ivec->nr++] = inode;
  1047. }
  1048. if (inode && inode->i_ino == key.objectid) {
  1049. end = key.offset +
  1050. btrfs_file_extent_num_bytes(leaf, fi);
  1051. WARN_ON(!IS_ALIGNED(key.offset,
  1052. root->sectorsize));
  1053. WARN_ON(!IS_ALIGNED(end, root->sectorsize));
  1054. end--;
  1055. ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
  1056. key.offset, end,
  1057. GFP_NOFS);
  1058. if (!ret)
  1059. continue;
  1060. btrfs_drop_extent_cache(inode, key.offset, end,
  1061. 1);
  1062. unlock_extent(&BTRFS_I(inode)->io_tree,
  1063. key.offset, end, GFP_NOFS);
  1064. }
  1065. }
  1066. ret = get_new_location(rc->data_inode, &new_bytenr,
  1067. bytenr, num_bytes);
  1068. if (ret > 0)
  1069. continue;
  1070. BUG_ON(ret < 0);
  1071. btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
  1072. dirty = 1;
  1073. key.offset -= btrfs_file_extent_offset(leaf, fi);
  1074. ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
  1075. num_bytes, parent,
  1076. btrfs_header_owner(leaf),
  1077. key.objectid, key.offset);
  1078. BUG_ON(ret);
  1079. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1080. parent, btrfs_header_owner(leaf),
  1081. key.objectid, key.offset);
  1082. BUG_ON(ret);
  1083. }
  1084. if (dirty)
  1085. btrfs_mark_buffer_dirty(leaf);
  1086. return 0;
  1087. }
  1088. static noinline_for_stack
  1089. int memcmp_node_keys(struct extent_buffer *eb, int slot,
  1090. struct btrfs_path *path, int level)
  1091. {
  1092. struct btrfs_disk_key key1;
  1093. struct btrfs_disk_key key2;
  1094. btrfs_node_key(eb, &key1, slot);
  1095. btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
  1096. return memcmp(&key1, &key2, sizeof(key1));
  1097. }
  1098. /*
  1099. * try to replace tree blocks in fs tree with the new blocks
  1100. * in reloc tree. tree blocks haven't been modified since the
  1101. * reloc tree was create can be replaced.
  1102. *
  1103. * if a block was replaced, level of the block + 1 is returned.
  1104. * if no block got replaced, 0 is returned. if there are other
  1105. * errors, a negative error number is returned.
  1106. */
  1107. static int replace_path(struct btrfs_trans_handle *trans,
  1108. struct btrfs_root *dest, struct btrfs_root *src,
  1109. struct btrfs_path *path, struct btrfs_key *next_key,
  1110. struct extent_buffer **leaf,
  1111. int lowest_level, int max_level)
  1112. {
  1113. struct extent_buffer *eb;
  1114. struct extent_buffer *parent;
  1115. struct btrfs_key key;
  1116. u64 old_bytenr;
  1117. u64 new_bytenr;
  1118. u64 old_ptr_gen;
  1119. u64 new_ptr_gen;
  1120. u64 last_snapshot;
  1121. u32 blocksize;
  1122. int level;
  1123. int ret;
  1124. int slot;
  1125. BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  1126. BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
  1127. BUG_ON(lowest_level > 1 && leaf);
  1128. last_snapshot = btrfs_root_last_snapshot(&src->root_item);
  1129. slot = path->slots[lowest_level];
  1130. btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
  1131. eb = btrfs_lock_root_node(dest);
  1132. btrfs_set_lock_blocking(eb);
  1133. level = btrfs_header_level(eb);
  1134. if (level < lowest_level) {
  1135. btrfs_tree_unlock(eb);
  1136. free_extent_buffer(eb);
  1137. return 0;
  1138. }
  1139. ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
  1140. BUG_ON(ret);
  1141. btrfs_set_lock_blocking(eb);
  1142. if (next_key) {
  1143. next_key->objectid = (u64)-1;
  1144. next_key->type = (u8)-1;
  1145. next_key->offset = (u64)-1;
  1146. }
  1147. parent = eb;
  1148. while (1) {
  1149. level = btrfs_header_level(parent);
  1150. BUG_ON(level < lowest_level);
  1151. ret = btrfs_bin_search(parent, &key, level, &slot);
  1152. if (ret && slot > 0)
  1153. slot--;
  1154. if (next_key && slot + 1 < btrfs_header_nritems(parent))
  1155. btrfs_node_key_to_cpu(parent, next_key, slot + 1);
  1156. old_bytenr = btrfs_node_blockptr(parent, slot);
  1157. blocksize = btrfs_level_size(dest, level - 1);
  1158. old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
  1159. if (level <= max_level) {
  1160. eb = path->nodes[level];
  1161. new_bytenr = btrfs_node_blockptr(eb,
  1162. path->slots[level]);
  1163. new_ptr_gen = btrfs_node_ptr_generation(eb,
  1164. path->slots[level]);
  1165. } else {
  1166. new_bytenr = 0;
  1167. new_ptr_gen = 0;
  1168. }
  1169. if (new_bytenr > 0 && new_bytenr == old_bytenr) {
  1170. WARN_ON(1);
  1171. ret = level;
  1172. break;
  1173. }
  1174. if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
  1175. memcmp_node_keys(parent, slot, path, level)) {
  1176. if (level <= lowest_level && !leaf) {
  1177. ret = 0;
  1178. break;
  1179. }
  1180. eb = read_tree_block(dest, old_bytenr, blocksize,
  1181. old_ptr_gen);
  1182. btrfs_tree_lock(eb);
  1183. ret = btrfs_cow_block(trans, dest, eb, parent,
  1184. slot, &eb);
  1185. BUG_ON(ret);
  1186. btrfs_set_lock_blocking(eb);
  1187. if (level <= lowest_level) {
  1188. *leaf = eb;
  1189. ret = 0;
  1190. break;
  1191. }
  1192. btrfs_tree_unlock(parent);
  1193. free_extent_buffer(parent);
  1194. parent = eb;
  1195. continue;
  1196. }
  1197. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1198. path->slots[level]);
  1199. btrfs_release_path(src, path);
  1200. path->lowest_level = level;
  1201. ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
  1202. path->lowest_level = 0;
  1203. BUG_ON(ret);
  1204. /*
  1205. * swap blocks in fs tree and reloc tree.
  1206. */
  1207. btrfs_set_node_blockptr(parent, slot, new_bytenr);
  1208. btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
  1209. btrfs_mark_buffer_dirty(parent);
  1210. btrfs_set_node_blockptr(path->nodes[level],
  1211. path->slots[level], old_bytenr);
  1212. btrfs_set_node_ptr_generation(path->nodes[level],
  1213. path->slots[level], old_ptr_gen);
  1214. btrfs_mark_buffer_dirty(path->nodes[level]);
  1215. ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
  1216. path->nodes[level]->start,
  1217. src->root_key.objectid, level - 1, 0);
  1218. BUG_ON(ret);
  1219. ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
  1220. 0, dest->root_key.objectid, level - 1,
  1221. 0);
  1222. BUG_ON(ret);
  1223. ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
  1224. path->nodes[level]->start,
  1225. src->root_key.objectid, level - 1, 0);
  1226. BUG_ON(ret);
  1227. ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
  1228. 0, dest->root_key.objectid, level - 1,
  1229. 0);
  1230. BUG_ON(ret);
  1231. btrfs_unlock_up_safe(path, 0);
  1232. ret = level;
  1233. break;
  1234. }
  1235. btrfs_tree_unlock(parent);
  1236. free_extent_buffer(parent);
  1237. return ret;
  1238. }
  1239. /*
  1240. * helper to find next relocated block in reloc tree
  1241. */
  1242. static noinline_for_stack
  1243. int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1244. int *level)
  1245. {
  1246. struct extent_buffer *eb;
  1247. int i;
  1248. u64 last_snapshot;
  1249. u32 nritems;
  1250. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1251. for (i = 0; i < *level; i++) {
  1252. free_extent_buffer(path->nodes[i]);
  1253. path->nodes[i] = NULL;
  1254. }
  1255. for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
  1256. eb = path->nodes[i];
  1257. nritems = btrfs_header_nritems(eb);
  1258. while (path->slots[i] + 1 < nritems) {
  1259. path->slots[i]++;
  1260. if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
  1261. last_snapshot)
  1262. continue;
  1263. *level = i;
  1264. return 0;
  1265. }
  1266. free_extent_buffer(path->nodes[i]);
  1267. path->nodes[i] = NULL;
  1268. }
  1269. return 1;
  1270. }
  1271. /*
  1272. * walk down reloc tree to find relocated block of lowest level
  1273. */
  1274. static noinline_for_stack
  1275. int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1276. int *level)
  1277. {
  1278. struct extent_buffer *eb = NULL;
  1279. int i;
  1280. u64 bytenr;
  1281. u64 ptr_gen = 0;
  1282. u64 last_snapshot;
  1283. u32 blocksize;
  1284. u32 nritems;
  1285. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1286. for (i = *level; i > 0; i--) {
  1287. eb = path->nodes[i];
  1288. nritems = btrfs_header_nritems(eb);
  1289. while (path->slots[i] < nritems) {
  1290. ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
  1291. if (ptr_gen > last_snapshot)
  1292. break;
  1293. path->slots[i]++;
  1294. }
  1295. if (path->slots[i] >= nritems) {
  1296. if (i == *level)
  1297. break;
  1298. *level = i + 1;
  1299. return 0;
  1300. }
  1301. if (i == 1) {
  1302. *level = i;
  1303. return 0;
  1304. }
  1305. bytenr = btrfs_node_blockptr(eb, path->slots[i]);
  1306. blocksize = btrfs_level_size(root, i - 1);
  1307. eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
  1308. BUG_ON(btrfs_header_level(eb) != i - 1);
  1309. path->nodes[i - 1] = eb;
  1310. path->slots[i - 1] = 0;
  1311. }
  1312. return 1;
  1313. }
  1314. /*
  1315. * invalidate extent cache for file extents whose key in range of
  1316. * [min_key, max_key)
  1317. */
  1318. static int invalidate_extent_cache(struct btrfs_root *root,
  1319. struct btrfs_key *min_key,
  1320. struct btrfs_key *max_key)
  1321. {
  1322. struct inode *inode = NULL;
  1323. u64 objectid;
  1324. u64 start, end;
  1325. objectid = min_key->objectid;
  1326. while (1) {
  1327. cond_resched();
  1328. iput(inode);
  1329. if (objectid > max_key->objectid)
  1330. break;
  1331. inode = find_next_inode(root, objectid);
  1332. if (!inode)
  1333. break;
  1334. if (inode->i_ino > max_key->objectid) {
  1335. iput(inode);
  1336. break;
  1337. }
  1338. objectid = inode->i_ino + 1;
  1339. if (!S_ISREG(inode->i_mode))
  1340. continue;
  1341. if (unlikely(min_key->objectid == inode->i_ino)) {
  1342. if (min_key->type > BTRFS_EXTENT_DATA_KEY)
  1343. continue;
  1344. if (min_key->type < BTRFS_EXTENT_DATA_KEY)
  1345. start = 0;
  1346. else {
  1347. start = min_key->offset;
  1348. WARN_ON(!IS_ALIGNED(start, root->sectorsize));
  1349. }
  1350. } else {
  1351. start = 0;
  1352. }
  1353. if (unlikely(max_key->objectid == inode->i_ino)) {
  1354. if (max_key->type < BTRFS_EXTENT_DATA_KEY)
  1355. continue;
  1356. if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
  1357. end = (u64)-1;
  1358. } else {
  1359. if (max_key->offset == 0)
  1360. continue;
  1361. end = max_key->offset;
  1362. WARN_ON(!IS_ALIGNED(end, root->sectorsize));
  1363. end--;
  1364. }
  1365. } else {
  1366. end = (u64)-1;
  1367. }
  1368. /* the lock_extent waits for readpage to complete */
  1369. lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
  1370. btrfs_drop_extent_cache(inode, start, end, 1);
  1371. unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
  1372. }
  1373. return 0;
  1374. }
  1375. static int find_next_key(struct btrfs_path *path, int level,
  1376. struct btrfs_key *key)
  1377. {
  1378. while (level < BTRFS_MAX_LEVEL) {
  1379. if (!path->nodes[level])
  1380. break;
  1381. if (path->slots[level] + 1 <
  1382. btrfs_header_nritems(path->nodes[level])) {
  1383. btrfs_node_key_to_cpu(path->nodes[level], key,
  1384. path->slots[level] + 1);
  1385. return 0;
  1386. }
  1387. level++;
  1388. }
  1389. return 1;
  1390. }
  1391. /*
  1392. * merge the relocated tree blocks in reloc tree with corresponding
  1393. * fs tree.
  1394. */
  1395. static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
  1396. struct btrfs_root *root)
  1397. {
  1398. LIST_HEAD(inode_list);
  1399. struct btrfs_key key;
  1400. struct btrfs_key next_key;
  1401. struct btrfs_trans_handle *trans;
  1402. struct btrfs_root *reloc_root;
  1403. struct btrfs_root_item *root_item;
  1404. struct btrfs_path *path;
  1405. struct extent_buffer *leaf = NULL;
  1406. unsigned long nr;
  1407. int level;
  1408. int max_level;
  1409. int replaced = 0;
  1410. int ret;
  1411. int err = 0;
  1412. path = btrfs_alloc_path();
  1413. if (!path)
  1414. return -ENOMEM;
  1415. reloc_root = root->reloc_root;
  1416. root_item = &reloc_root->root_item;
  1417. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  1418. level = btrfs_root_level(root_item);
  1419. extent_buffer_get(reloc_root->node);
  1420. path->nodes[level] = reloc_root->node;
  1421. path->slots[level] = 0;
  1422. } else {
  1423. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  1424. level = root_item->drop_level;
  1425. BUG_ON(level == 0);
  1426. path->lowest_level = level;
  1427. ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
  1428. path->lowest_level = 0;
  1429. if (ret < 0) {
  1430. btrfs_free_path(path);
  1431. return ret;
  1432. }
  1433. btrfs_node_key_to_cpu(path->nodes[level], &next_key,
  1434. path->slots[level]);
  1435. WARN_ON(memcmp(&key, &next_key, sizeof(key)));
  1436. btrfs_unlock_up_safe(path, 0);
  1437. }
  1438. if (level == 0 && rc->stage == UPDATE_DATA_PTRS) {
  1439. trans = btrfs_start_transaction(root, 1);
  1440. leaf = path->nodes[0];
  1441. btrfs_item_key_to_cpu(leaf, &key, 0);
  1442. btrfs_release_path(reloc_root, path);
  1443. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1444. if (ret < 0) {
  1445. err = ret;
  1446. goto out;
  1447. }
  1448. leaf = path->nodes[0];
  1449. btrfs_unlock_up_safe(path, 1);
  1450. ret = replace_file_extents(trans, rc, root, leaf,
  1451. &inode_list);
  1452. if (ret < 0)
  1453. err = ret;
  1454. goto out;
  1455. }
  1456. memset(&next_key, 0, sizeof(next_key));
  1457. while (1) {
  1458. leaf = NULL;
  1459. replaced = 0;
  1460. trans = btrfs_start_transaction(root, 1);
  1461. max_level = level;
  1462. ret = walk_down_reloc_tree(reloc_root, path, &level);
  1463. if (ret < 0) {
  1464. err = ret;
  1465. goto out;
  1466. }
  1467. if (ret > 0)
  1468. break;
  1469. if (!find_next_key(path, level, &key) &&
  1470. btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
  1471. ret = 0;
  1472. } else if (level == 1 && rc->stage == UPDATE_DATA_PTRS) {
  1473. ret = replace_path(trans, root, reloc_root,
  1474. path, &next_key, &leaf,
  1475. level, max_level);
  1476. } else {
  1477. ret = replace_path(trans, root, reloc_root,
  1478. path, &next_key, NULL,
  1479. level, max_level);
  1480. }
  1481. if (ret < 0) {
  1482. err = ret;
  1483. goto out;
  1484. }
  1485. if (ret > 0) {
  1486. level = ret;
  1487. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1488. path->slots[level]);
  1489. replaced = 1;
  1490. } else if (leaf) {
  1491. /*
  1492. * no block got replaced, try replacing file extents
  1493. */
  1494. btrfs_item_key_to_cpu(leaf, &key, 0);
  1495. ret = replace_file_extents(trans, rc, root, leaf,
  1496. &inode_list);
  1497. btrfs_tree_unlock(leaf);
  1498. free_extent_buffer(leaf);
  1499. BUG_ON(ret < 0);
  1500. }
  1501. ret = walk_up_reloc_tree(reloc_root, path, &level);
  1502. if (ret > 0)
  1503. break;
  1504. BUG_ON(level == 0);
  1505. /*
  1506. * save the merging progress in the drop_progress.
  1507. * this is OK since root refs == 1 in this case.
  1508. */
  1509. btrfs_node_key(path->nodes[level], &root_item->drop_progress,
  1510. path->slots[level]);
  1511. root_item->drop_level = level;
  1512. nr = trans->blocks_used;
  1513. btrfs_end_transaction(trans, root);
  1514. btrfs_btree_balance_dirty(root, nr);
  1515. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  1516. invalidate_extent_cache(root, &key, &next_key);
  1517. }
  1518. /*
  1519. * handle the case only one block in the fs tree need to be
  1520. * relocated and the block is tree root.
  1521. */
  1522. leaf = btrfs_lock_root_node(root);
  1523. ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
  1524. btrfs_tree_unlock(leaf);
  1525. free_extent_buffer(leaf);
  1526. if (ret < 0)
  1527. err = ret;
  1528. out:
  1529. btrfs_free_path(path);
  1530. if (err == 0) {
  1531. memset(&root_item->drop_progress, 0,
  1532. sizeof(root_item->drop_progress));
  1533. root_item->drop_level = 0;
  1534. btrfs_set_root_refs(root_item, 0);
  1535. }
  1536. nr = trans->blocks_used;
  1537. btrfs_end_transaction(trans, root);
  1538. btrfs_btree_balance_dirty(root, nr);
  1539. /*
  1540. * put inodes while we aren't holding the tree locks
  1541. */
  1542. while (!list_empty(&inode_list)) {
  1543. struct inodevec *ivec;
  1544. ivec = list_entry(inode_list.next, struct inodevec, list);
  1545. list_del(&ivec->list);
  1546. while (ivec->nr > 0) {
  1547. ivec->nr--;
  1548. iput(ivec->inode[ivec->nr]);
  1549. }
  1550. kfree(ivec);
  1551. }
  1552. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  1553. invalidate_extent_cache(root, &key, &next_key);
  1554. return err;
  1555. }
  1556. /*
  1557. * callback for the work threads.
  1558. * this function merges reloc tree with corresponding fs tree,
  1559. * and then drops the reloc tree.
  1560. */
  1561. static void merge_func(struct btrfs_work *work)
  1562. {
  1563. struct btrfs_trans_handle *trans;
  1564. struct btrfs_root *root;
  1565. struct btrfs_root *reloc_root;
  1566. struct async_merge *async;
  1567. async = container_of(work, struct async_merge, work);
  1568. reloc_root = async->root;
  1569. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  1570. root = read_fs_root(reloc_root->fs_info,
  1571. reloc_root->root_key.offset);
  1572. BUG_ON(IS_ERR(root));
  1573. BUG_ON(root->reloc_root != reloc_root);
  1574. merge_reloc_root(async->rc, root);
  1575. trans = btrfs_start_transaction(root, 1);
  1576. btrfs_update_reloc_root(trans, root);
  1577. btrfs_end_transaction(trans, root);
  1578. }
  1579. btrfs_drop_snapshot(reloc_root, 0);
  1580. if (atomic_dec_and_test(async->num_pending))
  1581. complete(async->done);
  1582. kfree(async);
  1583. }
  1584. static int merge_reloc_roots(struct reloc_control *rc)
  1585. {
  1586. struct async_merge *async;
  1587. struct btrfs_root *root;
  1588. struct completion done;
  1589. atomic_t num_pending;
  1590. init_completion(&done);
  1591. atomic_set(&num_pending, 1);
  1592. while (!list_empty(&rc->reloc_roots)) {
  1593. root = list_entry(rc->reloc_roots.next,
  1594. struct btrfs_root, root_list);
  1595. list_del_init(&root->root_list);
  1596. async = kmalloc(sizeof(*async), GFP_NOFS);
  1597. BUG_ON(!async);
  1598. async->work.func = merge_func;
  1599. async->work.flags = 0;
  1600. async->rc = rc;
  1601. async->root = root;
  1602. async->done = &done;
  1603. async->num_pending = &num_pending;
  1604. atomic_inc(&num_pending);
  1605. btrfs_queue_worker(&rc->workers, &async->work);
  1606. }
  1607. if (!atomic_dec_and_test(&num_pending))
  1608. wait_for_completion(&done);
  1609. BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
  1610. return 0;
  1611. }
  1612. static void free_block_list(struct rb_root *blocks)
  1613. {
  1614. struct tree_block *block;
  1615. struct rb_node *rb_node;
  1616. while ((rb_node = rb_first(blocks))) {
  1617. block = rb_entry(rb_node, struct tree_block, rb_node);
  1618. rb_erase(rb_node, blocks);
  1619. kfree(block);
  1620. }
  1621. }
  1622. static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
  1623. struct btrfs_root *reloc_root)
  1624. {
  1625. struct btrfs_root *root;
  1626. if (reloc_root->last_trans == trans->transid)
  1627. return 0;
  1628. root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
  1629. BUG_ON(IS_ERR(root));
  1630. BUG_ON(root->reloc_root != reloc_root);
  1631. return btrfs_record_root_in_trans(trans, root);
  1632. }
  1633. /*
  1634. * select one tree from trees that references the block.
  1635. * for blocks in refernce counted trees, we preper reloc tree.
  1636. * if no reloc tree found and reloc_only is true, NULL is returned.
  1637. */
  1638. static struct btrfs_root *__select_one_root(struct btrfs_trans_handle *trans,
  1639. struct backref_node *node,
  1640. struct backref_edge *edges[],
  1641. int *nr, int reloc_only)
  1642. {
  1643. struct backref_node *next;
  1644. struct btrfs_root *root;
  1645. int index;
  1646. int loop = 0;
  1647. again:
  1648. index = 0;
  1649. next = node;
  1650. while (1) {
  1651. cond_resched();
  1652. next = walk_up_backref(next, edges, &index);
  1653. root = next->root;
  1654. if (!root) {
  1655. BUG_ON(!node->old_root);
  1656. goto skip;
  1657. }
  1658. /* no other choice for non-refernce counted tree */
  1659. if (!root->ref_cows) {
  1660. BUG_ON(reloc_only);
  1661. break;
  1662. }
  1663. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  1664. record_reloc_root_in_trans(trans, root);
  1665. break;
  1666. }
  1667. if (loop) {
  1668. btrfs_record_root_in_trans(trans, root);
  1669. break;
  1670. }
  1671. if (reloc_only || next != node) {
  1672. if (!root->reloc_root)
  1673. btrfs_record_root_in_trans(trans, root);
  1674. root = root->reloc_root;
  1675. /*
  1676. * if the reloc tree was created in current
  1677. * transation, there is no node in backref tree
  1678. * corresponds to the root of the reloc tree.
  1679. */
  1680. if (btrfs_root_last_snapshot(&root->root_item) ==
  1681. trans->transid - 1)
  1682. break;
  1683. }
  1684. skip:
  1685. root = NULL;
  1686. next = walk_down_backref(edges, &index);
  1687. if (!next || next->level <= node->level)
  1688. break;
  1689. }
  1690. if (!root && !loop && !reloc_only) {
  1691. loop = 1;
  1692. goto again;
  1693. }
  1694. if (root)
  1695. *nr = index;
  1696. else
  1697. *nr = 0;
  1698. return root;
  1699. }
  1700. static noinline_for_stack
  1701. struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
  1702. struct backref_node *node)
  1703. {
  1704. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  1705. int nr;
  1706. return __select_one_root(trans, node, edges, &nr, 0);
  1707. }
  1708. static noinline_for_stack
  1709. struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
  1710. struct backref_node *node,
  1711. struct backref_edge *edges[], int *nr)
  1712. {
  1713. return __select_one_root(trans, node, edges, nr, 1);
  1714. }
  1715. static void grab_path_buffers(struct btrfs_path *path,
  1716. struct backref_node *node,
  1717. struct backref_edge *edges[], int nr)
  1718. {
  1719. int i = 0;
  1720. while (1) {
  1721. drop_node_buffer(node);
  1722. node->eb = path->nodes[node->level];
  1723. BUG_ON(!node->eb);
  1724. if (path->locks[node->level])
  1725. node->locked = 1;
  1726. path->nodes[node->level] = NULL;
  1727. path->locks[node->level] = 0;
  1728. if (i >= nr)
  1729. break;
  1730. edges[i]->blockptr = node->eb->start;
  1731. node = edges[i]->node[UPPER];
  1732. i++;
  1733. }
  1734. }
  1735. /*
  1736. * relocate a block tree, and then update pointers in upper level
  1737. * blocks that reference the block to point to the new location.
  1738. *
  1739. * if called by link_to_upper, the block has already been relocated.
  1740. * in that case this function just updates pointers.
  1741. */
  1742. static int do_relocation(struct btrfs_trans_handle *trans,
  1743. struct backref_node *node,
  1744. struct btrfs_key *key,
  1745. struct btrfs_path *path, int lowest)
  1746. {
  1747. struct backref_node *upper;
  1748. struct backref_edge *edge;
  1749. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  1750. struct btrfs_root *root;
  1751. struct extent_buffer *eb;
  1752. u32 blocksize;
  1753. u64 bytenr;
  1754. u64 generation;
  1755. int nr;
  1756. int slot;
  1757. int ret;
  1758. int err = 0;
  1759. BUG_ON(lowest && node->eb);
  1760. path->lowest_level = node->level + 1;
  1761. list_for_each_entry(edge, &node->upper, list[LOWER]) {
  1762. cond_resched();
  1763. if (node->eb && node->eb->start == edge->blockptr)
  1764. continue;
  1765. upper = edge->node[UPPER];
  1766. root = select_reloc_root(trans, upper, edges, &nr);
  1767. if (!root)
  1768. continue;
  1769. if (upper->eb && !upper->locked)
  1770. drop_node_buffer(upper);
  1771. if (!upper->eb) {
  1772. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  1773. if (ret < 0) {
  1774. err = ret;
  1775. break;
  1776. }
  1777. BUG_ON(ret > 0);
  1778. slot = path->slots[upper->level];
  1779. btrfs_unlock_up_safe(path, upper->level + 1);
  1780. grab_path_buffers(path, upper, edges, nr);
  1781. btrfs_release_path(NULL, path);
  1782. } else {
  1783. ret = btrfs_bin_search(upper->eb, key, upper->level,
  1784. &slot);
  1785. BUG_ON(ret);
  1786. }
  1787. bytenr = btrfs_node_blockptr(upper->eb, slot);
  1788. if (!lowest) {
  1789. if (node->eb->start == bytenr) {
  1790. btrfs_tree_unlock(upper->eb);
  1791. upper->locked = 0;
  1792. continue;
  1793. }
  1794. } else {
  1795. BUG_ON(node->bytenr != bytenr);
  1796. }
  1797. blocksize = btrfs_level_size(root, node->level);
  1798. generation = btrfs_node_ptr_generation(upper->eb, slot);
  1799. eb = read_tree_block(root, bytenr, blocksize, generation);
  1800. btrfs_tree_lock(eb);
  1801. btrfs_set_lock_blocking(eb);
  1802. if (!node->eb) {
  1803. ret = btrfs_cow_block(trans, root, eb, upper->eb,
  1804. slot, &eb);
  1805. if (ret < 0) {
  1806. err = ret;
  1807. break;
  1808. }
  1809. btrfs_set_lock_blocking(eb);
  1810. node->eb = eb;
  1811. node->locked = 1;
  1812. } else {
  1813. btrfs_set_node_blockptr(upper->eb, slot,
  1814. node->eb->start);
  1815. btrfs_set_node_ptr_generation(upper->eb, slot,
  1816. trans->transid);
  1817. btrfs_mark_buffer_dirty(upper->eb);
  1818. ret = btrfs_inc_extent_ref(trans, root,
  1819. node->eb->start, blocksize,
  1820. upper->eb->start,
  1821. btrfs_header_owner(upper->eb),
  1822. node->level, 0);
  1823. BUG_ON(ret);
  1824. ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
  1825. BUG_ON(ret);
  1826. }
  1827. if (!lowest) {
  1828. btrfs_tree_unlock(upper->eb);
  1829. upper->locked = 0;
  1830. }
  1831. }
  1832. path->lowest_level = 0;
  1833. return err;
  1834. }
  1835. static int link_to_upper(struct btrfs_trans_handle *trans,
  1836. struct backref_node *node,
  1837. struct btrfs_path *path)
  1838. {
  1839. struct btrfs_key key;
  1840. if (!node->eb || list_empty(&node->upper))
  1841. return 0;
  1842. btrfs_node_key_to_cpu(node->eb, &key, 0);
  1843. return do_relocation(trans, node, &key, path, 0);
  1844. }
  1845. static int finish_pending_nodes(struct btrfs_trans_handle *trans,
  1846. struct backref_cache *cache,
  1847. struct btrfs_path *path)
  1848. {
  1849. struct backref_node *node;
  1850. int level;
  1851. int ret;
  1852. int err = 0;
  1853. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  1854. while (!list_empty(&cache->pending[level])) {
  1855. node = list_entry(cache->pending[level].next,
  1856. struct backref_node, lower);
  1857. BUG_ON(node->level != level);
  1858. ret = link_to_upper(trans, node, path);
  1859. if (ret < 0)
  1860. err = ret;
  1861. /*
  1862. * this remove the node from the pending list and
  1863. * may add some other nodes to the level + 1
  1864. * pending list
  1865. */
  1866. remove_backref_node(cache, node);
  1867. }
  1868. }
  1869. BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
  1870. return err;
  1871. }
  1872. static void mark_block_processed(struct reloc_control *rc,
  1873. struct backref_node *node)
  1874. {
  1875. u32 blocksize;
  1876. if (node->level == 0 ||
  1877. in_block_group(node->bytenr, rc->block_group)) {
  1878. blocksize = btrfs_level_size(rc->extent_root, node->level);
  1879. set_extent_bits(&rc->processed_blocks, node->bytenr,
  1880. node->bytenr + blocksize - 1, EXTENT_DIRTY,
  1881. GFP_NOFS);
  1882. }
  1883. node->processed = 1;
  1884. }
  1885. /*
  1886. * mark a block and all blocks directly/indirectly reference the block
  1887. * as processed.
  1888. */
  1889. static void update_processed_blocks(struct reloc_control *rc,
  1890. struct backref_node *node)
  1891. {
  1892. struct backref_node *next = node;
  1893. struct backref_edge *edge;
  1894. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  1895. int index = 0;
  1896. while (next) {
  1897. cond_resched();
  1898. while (1) {
  1899. if (next->processed)
  1900. break;
  1901. mark_block_processed(rc, next);
  1902. if (list_empty(&next->upper))
  1903. break;
  1904. edge = list_entry(next->upper.next,
  1905. struct backref_edge, list[LOWER]);
  1906. edges[index++] = edge;
  1907. next = edge->node[UPPER];
  1908. }
  1909. next = walk_down_backref(edges, &index);
  1910. }
  1911. }
  1912. static int tree_block_processed(u64 bytenr, u32 blocksize,
  1913. struct reloc_control *rc)
  1914. {
  1915. if (test_range_bit(&rc->processed_blocks, bytenr,
  1916. bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
  1917. return 1;
  1918. return 0;
  1919. }
  1920. /*
  1921. * check if there are any file extent pointers in the leaf point to
  1922. * data require processing
  1923. */
  1924. static int check_file_extents(struct reloc_control *rc,
  1925. u64 bytenr, u32 blocksize, u64 ptr_gen)
  1926. {
  1927. struct btrfs_key found_key;
  1928. struct btrfs_file_extent_item *fi;
  1929. struct extent_buffer *leaf;
  1930. u32 nritems;
  1931. int i;
  1932. int ret = 0;
  1933. leaf = read_tree_block(rc->extent_root, bytenr, blocksize, ptr_gen);
  1934. nritems = btrfs_header_nritems(leaf);
  1935. for (i = 0; i < nritems; i++) {
  1936. cond_resched();
  1937. btrfs_item_key_to_cpu(leaf, &found_key, i);
  1938. if (found_key.type != BTRFS_EXTENT_DATA_KEY)
  1939. continue;
  1940. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1941. if (btrfs_file_extent_type(leaf, fi) ==
  1942. BTRFS_FILE_EXTENT_INLINE)
  1943. continue;
  1944. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1945. if (bytenr == 0)
  1946. continue;
  1947. if (in_block_group(bytenr, rc->block_group)) {
  1948. ret = 1;
  1949. break;
  1950. }
  1951. }
  1952. free_extent_buffer(leaf);
  1953. return ret;
  1954. }
  1955. /*
  1956. * scan child blocks of a given block to find blocks require processing
  1957. */
  1958. static int add_child_blocks(struct btrfs_trans_handle *trans,
  1959. struct reloc_control *rc,
  1960. struct backref_node *node,
  1961. struct rb_root *blocks)
  1962. {
  1963. struct tree_block *block;
  1964. struct rb_node *rb_node;
  1965. u64 bytenr;
  1966. u64 ptr_gen;
  1967. u32 blocksize;
  1968. u32 nritems;
  1969. int i;
  1970. int err = 0;
  1971. nritems = btrfs_header_nritems(node->eb);
  1972. blocksize = btrfs_level_size(rc->extent_root, node->level - 1);
  1973. for (i = 0; i < nritems; i++) {
  1974. cond_resched();
  1975. bytenr = btrfs_node_blockptr(node->eb, i);
  1976. ptr_gen = btrfs_node_ptr_generation(node->eb, i);
  1977. if (ptr_gen == trans->transid)
  1978. continue;
  1979. if (!in_block_group(bytenr, rc->block_group) &&
  1980. (node->level > 1 || rc->stage == MOVE_DATA_EXTENTS))
  1981. continue;
  1982. if (tree_block_processed(bytenr, blocksize, rc))
  1983. continue;
  1984. readahead_tree_block(rc->extent_root,
  1985. bytenr, blocksize, ptr_gen);
  1986. }
  1987. for (i = 0; i < nritems; i++) {
  1988. cond_resched();
  1989. bytenr = btrfs_node_blockptr(node->eb, i);
  1990. ptr_gen = btrfs_node_ptr_generation(node->eb, i);
  1991. if (ptr_gen == trans->transid)
  1992. continue;
  1993. if (!in_block_group(bytenr, rc->block_group) &&
  1994. (node->level > 1 || rc->stage == MOVE_DATA_EXTENTS))
  1995. continue;
  1996. if (tree_block_processed(bytenr, blocksize, rc))
  1997. continue;
  1998. if (!in_block_group(bytenr, rc->block_group) &&
  1999. !check_file_extents(rc, bytenr, blocksize, ptr_gen))
  2000. continue;
  2001. block = kmalloc(sizeof(*block), GFP_NOFS);
  2002. if (!block) {
  2003. err = -ENOMEM;
  2004. break;
  2005. }
  2006. block->bytenr = bytenr;
  2007. btrfs_node_key_to_cpu(node->eb, &block->key, i);
  2008. block->level = node->level - 1;
  2009. block->key_ready = 1;
  2010. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  2011. BUG_ON(rb_node);
  2012. }
  2013. if (err)
  2014. free_block_list(blocks);
  2015. return err;
  2016. }
  2017. /*
  2018. * find adjacent blocks require processing
  2019. */
  2020. static noinline_for_stack
  2021. int add_adjacent_blocks(struct btrfs_trans_handle *trans,
  2022. struct reloc_control *rc,
  2023. struct backref_cache *cache,
  2024. struct rb_root *blocks, int level,
  2025. struct backref_node **upper)
  2026. {
  2027. struct backref_node *node;
  2028. int ret = 0;
  2029. WARN_ON(!list_empty(&cache->pending[level]));
  2030. if (list_empty(&cache->pending[level + 1]))
  2031. return 1;
  2032. node = list_entry(cache->pending[level + 1].next,
  2033. struct backref_node, lower);
  2034. if (node->eb)
  2035. ret = add_child_blocks(trans, rc, node, blocks);
  2036. *upper = node;
  2037. return ret;
  2038. }
  2039. static int get_tree_block_key(struct reloc_control *rc,
  2040. struct tree_block *block)
  2041. {
  2042. struct extent_buffer *eb;
  2043. BUG_ON(block->key_ready);
  2044. eb = read_tree_block(rc->extent_root, block->bytenr,
  2045. block->key.objectid, block->key.offset);
  2046. WARN_ON(btrfs_header_level(eb) != block->level);
  2047. if (block->level == 0)
  2048. btrfs_item_key_to_cpu(eb, &block->key, 0);
  2049. else
  2050. btrfs_node_key_to_cpu(eb, &block->key, 0);
  2051. free_extent_buffer(eb);
  2052. block->key_ready = 1;
  2053. return 0;
  2054. }
  2055. static int reada_tree_block(struct reloc_control *rc,
  2056. struct tree_block *block)
  2057. {
  2058. BUG_ON(block->key_ready);
  2059. readahead_tree_block(rc->extent_root, block->bytenr,
  2060. block->key.objectid, block->key.offset);
  2061. return 0;
  2062. }
  2063. /*
  2064. * helper function to relocate a tree block
  2065. */
  2066. static int relocate_tree_block(struct btrfs_trans_handle *trans,
  2067. struct reloc_control *rc,
  2068. struct backref_node *node,
  2069. struct btrfs_key *key,
  2070. struct btrfs_path *path)
  2071. {
  2072. struct btrfs_root *root;
  2073. int ret;
  2074. root = select_one_root(trans, node);
  2075. if (unlikely(!root)) {
  2076. rc->found_old_snapshot = 1;
  2077. update_processed_blocks(rc, node);
  2078. return 0;
  2079. }
  2080. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  2081. ret = do_relocation(trans, node, key, path, 1);
  2082. if (ret < 0)
  2083. goto out;
  2084. if (node->level == 0 && rc->stage == UPDATE_DATA_PTRS) {
  2085. ret = replace_file_extents(trans, rc, root,
  2086. node->eb, NULL);
  2087. if (ret < 0)
  2088. goto out;
  2089. }
  2090. drop_node_buffer(node);
  2091. } else if (!root->ref_cows) {
  2092. path->lowest_level = node->level;
  2093. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2094. btrfs_release_path(root, path);
  2095. if (ret < 0)
  2096. goto out;
  2097. } else if (root != node->root) {
  2098. WARN_ON(node->level > 0 || rc->stage != UPDATE_DATA_PTRS);
  2099. }
  2100. update_processed_blocks(rc, node);
  2101. ret = 0;
  2102. out:
  2103. drop_node_buffer(node);
  2104. return ret;
  2105. }
  2106. /*
  2107. * relocate a list of blocks
  2108. */
  2109. static noinline_for_stack
  2110. int relocate_tree_blocks(struct btrfs_trans_handle *trans,
  2111. struct reloc_control *rc, struct rb_root *blocks)
  2112. {
  2113. struct backref_cache *cache;
  2114. struct backref_node *node;
  2115. struct btrfs_path *path;
  2116. struct tree_block *block;
  2117. struct rb_node *rb_node;
  2118. int level = -1;
  2119. int ret;
  2120. int err = 0;
  2121. path = btrfs_alloc_path();
  2122. if (!path)
  2123. return -ENOMEM;
  2124. cache = kmalloc(sizeof(*cache), GFP_NOFS);
  2125. if (!cache) {
  2126. btrfs_free_path(path);
  2127. return -ENOMEM;
  2128. }
  2129. backref_cache_init(cache);
  2130. rb_node = rb_first(blocks);
  2131. while (rb_node) {
  2132. block = rb_entry(rb_node, struct tree_block, rb_node);
  2133. if (level == -1)
  2134. level = block->level;
  2135. else
  2136. BUG_ON(level != block->level);
  2137. if (!block->key_ready)
  2138. reada_tree_block(rc, block);
  2139. rb_node = rb_next(rb_node);
  2140. }
  2141. rb_node = rb_first(blocks);
  2142. while (rb_node) {
  2143. block = rb_entry(rb_node, struct tree_block, rb_node);
  2144. if (!block->key_ready)
  2145. get_tree_block_key(rc, block);
  2146. rb_node = rb_next(rb_node);
  2147. }
  2148. rb_node = rb_first(blocks);
  2149. while (rb_node) {
  2150. block = rb_entry(rb_node, struct tree_block, rb_node);
  2151. node = build_backref_tree(rc, cache, &block->key,
  2152. block->level, block->bytenr);
  2153. if (IS_ERR(node)) {
  2154. err = PTR_ERR(node);
  2155. goto out;
  2156. }
  2157. ret = relocate_tree_block(trans, rc, node, &block->key,
  2158. path);
  2159. if (ret < 0) {
  2160. err = ret;
  2161. goto out;
  2162. }
  2163. remove_backref_node(cache, node);
  2164. rb_node = rb_next(rb_node);
  2165. }
  2166. if (level > 0)
  2167. goto out;
  2168. free_block_list(blocks);
  2169. /*
  2170. * now backrefs of some upper level tree blocks have been cached,
  2171. * try relocating blocks referenced by these upper level blocks.
  2172. */
  2173. while (1) {
  2174. struct backref_node *upper = NULL;
  2175. if (trans->transaction->in_commit ||
  2176. trans->transaction->delayed_refs.flushing)
  2177. break;
  2178. ret = add_adjacent_blocks(trans, rc, cache, blocks, level,
  2179. &upper);
  2180. if (ret < 0)
  2181. err = ret;
  2182. if (ret != 0)
  2183. break;
  2184. rb_node = rb_first(blocks);
  2185. while (rb_node) {
  2186. block = rb_entry(rb_node, struct tree_block, rb_node);
  2187. if (trans->transaction->in_commit ||
  2188. trans->transaction->delayed_refs.flushing)
  2189. goto out;
  2190. BUG_ON(!block->key_ready);
  2191. node = build_backref_tree(rc, cache, &block->key,
  2192. level, block->bytenr);
  2193. if (IS_ERR(node)) {
  2194. err = PTR_ERR(node);
  2195. goto out;
  2196. }
  2197. ret = relocate_tree_block(trans, rc, node,
  2198. &block->key, path);
  2199. if (ret < 0) {
  2200. err = ret;
  2201. goto out;
  2202. }
  2203. remove_backref_node(cache, node);
  2204. rb_node = rb_next(rb_node);
  2205. }
  2206. free_block_list(blocks);
  2207. if (upper) {
  2208. ret = link_to_upper(trans, upper, path);
  2209. if (ret < 0) {
  2210. err = ret;
  2211. break;
  2212. }
  2213. remove_backref_node(cache, upper);
  2214. }
  2215. }
  2216. out:
  2217. free_block_list(blocks);
  2218. ret = finish_pending_nodes(trans, cache, path);
  2219. if (ret < 0)
  2220. err = ret;
  2221. kfree(cache);
  2222. btrfs_free_path(path);
  2223. return err;
  2224. }
  2225. static noinline_for_stack
  2226. int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
  2227. u64 block_start)
  2228. {
  2229. struct btrfs_root *root = BTRFS_I(inode)->root;
  2230. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  2231. struct extent_map *em;
  2232. int ret = 0;
  2233. em = alloc_extent_map(GFP_NOFS);
  2234. if (!em)
  2235. return -ENOMEM;
  2236. em->start = start;
  2237. em->len = end + 1 - start;
  2238. em->block_len = em->len;
  2239. em->block_start = block_start;
  2240. em->bdev = root->fs_info->fs_devices->latest_bdev;
  2241. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  2242. lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
  2243. while (1) {
  2244. write_lock(&em_tree->lock);
  2245. ret = add_extent_mapping(em_tree, em);
  2246. write_unlock(&em_tree->lock);
  2247. if (ret != -EEXIST) {
  2248. free_extent_map(em);
  2249. break;
  2250. }
  2251. btrfs_drop_extent_cache(inode, start, end, 0);
  2252. }
  2253. unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
  2254. return ret;
  2255. }
  2256. static int relocate_file_extent_cluster(struct inode *inode,
  2257. struct file_extent_cluster *cluster)
  2258. {
  2259. u64 page_start;
  2260. u64 page_end;
  2261. u64 offset = BTRFS_I(inode)->index_cnt;
  2262. unsigned long index;
  2263. unsigned long last_index;
  2264. unsigned int dirty_page = 0;
  2265. struct page *page;
  2266. struct file_ra_state *ra;
  2267. int nr = 0;
  2268. int ret = 0;
  2269. if (!cluster->nr)
  2270. return 0;
  2271. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  2272. if (!ra)
  2273. return -ENOMEM;
  2274. index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
  2275. last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
  2276. mutex_lock(&inode->i_mutex);
  2277. i_size_write(inode, cluster->end + 1 - offset);
  2278. ret = setup_extent_mapping(inode, cluster->start - offset,
  2279. cluster->end - offset, cluster->start);
  2280. if (ret)
  2281. goto out_unlock;
  2282. file_ra_state_init(ra, inode->i_mapping);
  2283. WARN_ON(cluster->start != cluster->boundary[0]);
  2284. while (index <= last_index) {
  2285. page = find_lock_page(inode->i_mapping, index);
  2286. if (!page) {
  2287. page_cache_sync_readahead(inode->i_mapping,
  2288. ra, NULL, index,
  2289. last_index + 1 - index);
  2290. page = grab_cache_page(inode->i_mapping, index);
  2291. if (!page) {
  2292. ret = -ENOMEM;
  2293. goto out_unlock;
  2294. }
  2295. }
  2296. if (PageReadahead(page)) {
  2297. page_cache_async_readahead(inode->i_mapping,
  2298. ra, NULL, page, index,
  2299. last_index + 1 - index);
  2300. }
  2301. if (!PageUptodate(page)) {
  2302. btrfs_readpage(NULL, page);
  2303. lock_page(page);
  2304. if (!PageUptodate(page)) {
  2305. unlock_page(page);
  2306. page_cache_release(page);
  2307. ret = -EIO;
  2308. goto out_unlock;
  2309. }
  2310. }
  2311. page_start = (u64)page->index << PAGE_CACHE_SHIFT;
  2312. page_end = page_start + PAGE_CACHE_SIZE - 1;
  2313. lock_extent(&BTRFS_I(inode)->io_tree,
  2314. page_start, page_end, GFP_NOFS);
  2315. set_page_extent_mapped(page);
  2316. if (nr < cluster->nr &&
  2317. page_start + offset == cluster->boundary[nr]) {
  2318. set_extent_bits(&BTRFS_I(inode)->io_tree,
  2319. page_start, page_end,
  2320. EXTENT_BOUNDARY, GFP_NOFS);
  2321. nr++;
  2322. }
  2323. btrfs_set_extent_delalloc(inode, page_start, page_end);
  2324. set_page_dirty(page);
  2325. dirty_page++;
  2326. unlock_extent(&BTRFS_I(inode)->io_tree,
  2327. page_start, page_end, GFP_NOFS);
  2328. unlock_page(page);
  2329. page_cache_release(page);
  2330. index++;
  2331. if (nr < cluster->nr &&
  2332. page_end + 1 + offset == cluster->boundary[nr]) {
  2333. balance_dirty_pages_ratelimited_nr(inode->i_mapping,
  2334. dirty_page);
  2335. dirty_page = 0;
  2336. }
  2337. }
  2338. if (dirty_page) {
  2339. balance_dirty_pages_ratelimited_nr(inode->i_mapping,
  2340. dirty_page);
  2341. }
  2342. WARN_ON(nr != cluster->nr);
  2343. out_unlock:
  2344. mutex_unlock(&inode->i_mutex);
  2345. kfree(ra);
  2346. return ret;
  2347. }
  2348. static noinline_for_stack
  2349. int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
  2350. struct file_extent_cluster *cluster)
  2351. {
  2352. int ret;
  2353. if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
  2354. ret = relocate_file_extent_cluster(inode, cluster);
  2355. if (ret)
  2356. return ret;
  2357. cluster->nr = 0;
  2358. }
  2359. if (!cluster->nr)
  2360. cluster->start = extent_key->objectid;
  2361. else
  2362. BUG_ON(cluster->nr >= MAX_EXTENTS);
  2363. cluster->end = extent_key->objectid + extent_key->offset - 1;
  2364. cluster->boundary[cluster->nr] = extent_key->objectid;
  2365. cluster->nr++;
  2366. if (cluster->nr >= MAX_EXTENTS) {
  2367. ret = relocate_file_extent_cluster(inode, cluster);
  2368. if (ret)
  2369. return ret;
  2370. cluster->nr = 0;
  2371. }
  2372. return 0;
  2373. }
  2374. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2375. static int get_ref_objectid_v0(struct reloc_control *rc,
  2376. struct btrfs_path *path,
  2377. struct btrfs_key *extent_key,
  2378. u64 *ref_objectid, int *path_change)
  2379. {
  2380. struct btrfs_key key;
  2381. struct extent_buffer *leaf;
  2382. struct btrfs_extent_ref_v0 *ref0;
  2383. int ret;
  2384. int slot;
  2385. leaf = path->nodes[0];
  2386. slot = path->slots[0];
  2387. while (1) {
  2388. if (slot >= btrfs_header_nritems(leaf)) {
  2389. ret = btrfs_next_leaf(rc->extent_root, path);
  2390. if (ret < 0)
  2391. return ret;
  2392. BUG_ON(ret > 0);
  2393. leaf = path->nodes[0];
  2394. slot = path->slots[0];
  2395. if (path_change)
  2396. *path_change = 1;
  2397. }
  2398. btrfs_item_key_to_cpu(leaf, &key, slot);
  2399. if (key.objectid != extent_key->objectid)
  2400. return -ENOENT;
  2401. if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
  2402. slot++;
  2403. continue;
  2404. }
  2405. ref0 = btrfs_item_ptr(leaf, slot,
  2406. struct btrfs_extent_ref_v0);
  2407. *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
  2408. break;
  2409. }
  2410. return 0;
  2411. }
  2412. #endif
  2413. /*
  2414. * helper to add a tree block to the list.
  2415. * the major work is getting the generation and level of the block
  2416. */
  2417. static int add_tree_block(struct reloc_control *rc,
  2418. struct btrfs_key *extent_key,
  2419. struct btrfs_path *path,
  2420. struct rb_root *blocks)
  2421. {
  2422. struct extent_buffer *eb;
  2423. struct btrfs_extent_item *ei;
  2424. struct btrfs_tree_block_info *bi;
  2425. struct tree_block *block;
  2426. struct rb_node *rb_node;
  2427. u32 item_size;
  2428. int level = -1;
  2429. int generation;
  2430. eb = path->nodes[0];
  2431. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  2432. if (item_size >= sizeof(*ei) + sizeof(*bi)) {
  2433. ei = btrfs_item_ptr(eb, path->slots[0],
  2434. struct btrfs_extent_item);
  2435. bi = (struct btrfs_tree_block_info *)(ei + 1);
  2436. generation = btrfs_extent_generation(eb, ei);
  2437. level = btrfs_tree_block_level(eb, bi);
  2438. } else {
  2439. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2440. u64 ref_owner;
  2441. int ret;
  2442. BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2443. ret = get_ref_objectid_v0(rc, path, extent_key,
  2444. &ref_owner, NULL);
  2445. BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
  2446. level = (int)ref_owner;
  2447. /* FIXME: get real generation */
  2448. generation = 0;
  2449. #else
  2450. BUG();
  2451. #endif
  2452. }
  2453. btrfs_release_path(rc->extent_root, path);
  2454. BUG_ON(level == -1);
  2455. block = kmalloc(sizeof(*block), GFP_NOFS);
  2456. if (!block)
  2457. return -ENOMEM;
  2458. block->bytenr = extent_key->objectid;
  2459. block->key.objectid = extent_key->offset;
  2460. block->key.offset = generation;
  2461. block->level = level;
  2462. block->key_ready = 0;
  2463. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  2464. BUG_ON(rb_node);
  2465. return 0;
  2466. }
  2467. /*
  2468. * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
  2469. */
  2470. static int __add_tree_block(struct reloc_control *rc,
  2471. u64 bytenr, u32 blocksize,
  2472. struct rb_root *blocks)
  2473. {
  2474. struct btrfs_path *path;
  2475. struct btrfs_key key;
  2476. int ret;
  2477. if (tree_block_processed(bytenr, blocksize, rc))
  2478. return 0;
  2479. if (tree_search(blocks, bytenr))
  2480. return 0;
  2481. path = btrfs_alloc_path();
  2482. if (!path)
  2483. return -ENOMEM;
  2484. key.objectid = bytenr;
  2485. key.type = BTRFS_EXTENT_ITEM_KEY;
  2486. key.offset = blocksize;
  2487. path->search_commit_root = 1;
  2488. path->skip_locking = 1;
  2489. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
  2490. if (ret < 0)
  2491. goto out;
  2492. BUG_ON(ret);
  2493. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  2494. ret = add_tree_block(rc, &key, path, blocks);
  2495. out:
  2496. btrfs_free_path(path);
  2497. return ret;
  2498. }
  2499. /*
  2500. * helper to check if the block use full backrefs for pointers in it
  2501. */
  2502. static int block_use_full_backref(struct reloc_control *rc,
  2503. struct extent_buffer *eb)
  2504. {
  2505. struct btrfs_path *path;
  2506. struct btrfs_extent_item *ei;
  2507. struct btrfs_key key;
  2508. u64 flags;
  2509. int ret;
  2510. if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
  2511. btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
  2512. return 1;
  2513. path = btrfs_alloc_path();
  2514. BUG_ON(!path);
  2515. key.objectid = eb->start;
  2516. key.type = BTRFS_EXTENT_ITEM_KEY;
  2517. key.offset = eb->len;
  2518. path->search_commit_root = 1;
  2519. path->skip_locking = 1;
  2520. ret = btrfs_search_slot(NULL, rc->extent_root,
  2521. &key, path, 0, 0);
  2522. BUG_ON(ret);
  2523. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2524. struct btrfs_extent_item);
  2525. flags = btrfs_extent_flags(path->nodes[0], ei);
  2526. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  2527. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  2528. ret = 1;
  2529. else
  2530. ret = 0;
  2531. btrfs_free_path(path);
  2532. return ret;
  2533. }
  2534. /*
  2535. * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
  2536. * this function scans fs tree to find blocks reference the data extent
  2537. */
  2538. static int find_data_references(struct reloc_control *rc,
  2539. struct btrfs_key *extent_key,
  2540. struct extent_buffer *leaf,
  2541. struct btrfs_extent_data_ref *ref,
  2542. struct rb_root *blocks)
  2543. {
  2544. struct btrfs_path *path;
  2545. struct tree_block *block;
  2546. struct btrfs_root *root;
  2547. struct btrfs_file_extent_item *fi;
  2548. struct rb_node *rb_node;
  2549. struct btrfs_key key;
  2550. u64 ref_root;
  2551. u64 ref_objectid;
  2552. u64 ref_offset;
  2553. u32 ref_count;
  2554. u32 nritems;
  2555. int err = 0;
  2556. int added = 0;
  2557. int counted;
  2558. int ret;
  2559. path = btrfs_alloc_path();
  2560. if (!path)
  2561. return -ENOMEM;
  2562. ref_root = btrfs_extent_data_ref_root(leaf, ref);
  2563. ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
  2564. ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
  2565. ref_count = btrfs_extent_data_ref_count(leaf, ref);
  2566. root = read_fs_root(rc->extent_root->fs_info, ref_root);
  2567. if (IS_ERR(root)) {
  2568. err = PTR_ERR(root);
  2569. goto out;
  2570. }
  2571. key.objectid = ref_objectid;
  2572. key.offset = ref_offset;
  2573. key.type = BTRFS_EXTENT_DATA_KEY;
  2574. path->search_commit_root = 1;
  2575. path->skip_locking = 1;
  2576. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2577. if (ret < 0) {
  2578. err = ret;
  2579. goto out;
  2580. }
  2581. leaf = path->nodes[0];
  2582. nritems = btrfs_header_nritems(leaf);
  2583. /*
  2584. * the references in tree blocks that use full backrefs
  2585. * are not counted in
  2586. */
  2587. if (block_use_full_backref(rc, leaf))
  2588. counted = 0;
  2589. else
  2590. counted = 1;
  2591. rb_node = tree_search(blocks, leaf->start);
  2592. if (rb_node) {
  2593. if (counted)
  2594. added = 1;
  2595. else
  2596. path->slots[0] = nritems;
  2597. }
  2598. while (ref_count > 0) {
  2599. while (path->slots[0] >= nritems) {
  2600. ret = btrfs_next_leaf(root, path);
  2601. if (ret < 0) {
  2602. err = ret;
  2603. goto out;
  2604. }
  2605. if (ret > 0) {
  2606. WARN_ON(1);
  2607. goto out;
  2608. }
  2609. leaf = path->nodes[0];
  2610. nritems = btrfs_header_nritems(leaf);
  2611. added = 0;
  2612. if (block_use_full_backref(rc, leaf))
  2613. counted = 0;
  2614. else
  2615. counted = 1;
  2616. rb_node = tree_search(blocks, leaf->start);
  2617. if (rb_node) {
  2618. if (counted)
  2619. added = 1;
  2620. else
  2621. path->slots[0] = nritems;
  2622. }
  2623. }
  2624. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2625. if (key.objectid != ref_objectid ||
  2626. key.type != BTRFS_EXTENT_DATA_KEY) {
  2627. WARN_ON(1);
  2628. break;
  2629. }
  2630. fi = btrfs_item_ptr(leaf, path->slots[0],
  2631. struct btrfs_file_extent_item);
  2632. if (btrfs_file_extent_type(leaf, fi) ==
  2633. BTRFS_FILE_EXTENT_INLINE)
  2634. goto next;
  2635. if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
  2636. extent_key->objectid)
  2637. goto next;
  2638. key.offset -= btrfs_file_extent_offset(leaf, fi);
  2639. if (key.offset != ref_offset)
  2640. goto next;
  2641. if (counted)
  2642. ref_count--;
  2643. if (added)
  2644. goto next;
  2645. if (!tree_block_processed(leaf->start, leaf->len, rc)) {
  2646. block = kmalloc(sizeof(*block), GFP_NOFS);
  2647. if (!block) {
  2648. err = -ENOMEM;
  2649. break;
  2650. }
  2651. block->bytenr = leaf->start;
  2652. btrfs_item_key_to_cpu(leaf, &block->key, 0);
  2653. block->level = 0;
  2654. block->key_ready = 1;
  2655. rb_node = tree_insert(blocks, block->bytenr,
  2656. &block->rb_node);
  2657. BUG_ON(rb_node);
  2658. }
  2659. if (counted)
  2660. added = 1;
  2661. else
  2662. path->slots[0] = nritems;
  2663. next:
  2664. path->slots[0]++;
  2665. }
  2666. out:
  2667. btrfs_free_path(path);
  2668. return err;
  2669. }
  2670. /*
  2671. * hepler to find all tree blocks that reference a given data extent
  2672. */
  2673. static noinline_for_stack
  2674. int add_data_references(struct reloc_control *rc,
  2675. struct btrfs_key *extent_key,
  2676. struct btrfs_path *path,
  2677. struct rb_root *blocks)
  2678. {
  2679. struct btrfs_key key;
  2680. struct extent_buffer *eb;
  2681. struct btrfs_extent_data_ref *dref;
  2682. struct btrfs_extent_inline_ref *iref;
  2683. unsigned long ptr;
  2684. unsigned long end;
  2685. u32 blocksize;
  2686. int ret;
  2687. int err = 0;
  2688. ret = get_new_location(rc->data_inode, NULL, extent_key->objectid,
  2689. extent_key->offset);
  2690. BUG_ON(ret < 0);
  2691. if (ret > 0) {
  2692. /* the relocated data is fragmented */
  2693. rc->extents_skipped++;
  2694. btrfs_release_path(rc->extent_root, path);
  2695. return 0;
  2696. }
  2697. blocksize = btrfs_level_size(rc->extent_root, 0);
  2698. eb = path->nodes[0];
  2699. ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
  2700. end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
  2701. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2702. if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
  2703. ptr = end;
  2704. else
  2705. #endif
  2706. ptr += sizeof(struct btrfs_extent_item);
  2707. while (ptr < end) {
  2708. iref = (struct btrfs_extent_inline_ref *)ptr;
  2709. key.type = btrfs_extent_inline_ref_type(eb, iref);
  2710. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  2711. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  2712. ret = __add_tree_block(rc, key.offset, blocksize,
  2713. blocks);
  2714. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  2715. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2716. ret = find_data_references(rc, extent_key,
  2717. eb, dref, blocks);
  2718. } else {
  2719. BUG();
  2720. }
  2721. ptr += btrfs_extent_inline_ref_size(key.type);
  2722. }
  2723. WARN_ON(ptr > end);
  2724. while (1) {
  2725. cond_resched();
  2726. eb = path->nodes[0];
  2727. if (path->slots[0] >= btrfs_header_nritems(eb)) {
  2728. ret = btrfs_next_leaf(rc->extent_root, path);
  2729. if (ret < 0) {
  2730. err = ret;
  2731. break;
  2732. }
  2733. if (ret > 0)
  2734. break;
  2735. eb = path->nodes[0];
  2736. }
  2737. btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
  2738. if (key.objectid != extent_key->objectid)
  2739. break;
  2740. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2741. if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
  2742. key.type == BTRFS_EXTENT_REF_V0_KEY) {
  2743. #else
  2744. BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
  2745. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  2746. #endif
  2747. ret = __add_tree_block(rc, key.offset, blocksize,
  2748. blocks);
  2749. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  2750. dref = btrfs_item_ptr(eb, path->slots[0],
  2751. struct btrfs_extent_data_ref);
  2752. ret = find_data_references(rc, extent_key,
  2753. eb, dref, blocks);
  2754. } else {
  2755. ret = 0;
  2756. }
  2757. if (ret) {
  2758. err = ret;
  2759. break;
  2760. }
  2761. path->slots[0]++;
  2762. }
  2763. btrfs_release_path(rc->extent_root, path);
  2764. if (err)
  2765. free_block_list(blocks);
  2766. return err;
  2767. }
  2768. /*
  2769. * hepler to find next unprocessed extent
  2770. */
  2771. static noinline_for_stack
  2772. int find_next_extent(struct btrfs_trans_handle *trans,
  2773. struct reloc_control *rc, struct btrfs_path *path)
  2774. {
  2775. struct btrfs_key key;
  2776. struct extent_buffer *leaf;
  2777. u64 start, end, last;
  2778. int ret;
  2779. last = rc->block_group->key.objectid + rc->block_group->key.offset;
  2780. while (1) {
  2781. cond_resched();
  2782. if (rc->search_start >= last) {
  2783. ret = 1;
  2784. break;
  2785. }
  2786. key.objectid = rc->search_start;
  2787. key.type = BTRFS_EXTENT_ITEM_KEY;
  2788. key.offset = 0;
  2789. path->search_commit_root = 1;
  2790. path->skip_locking = 1;
  2791. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
  2792. 0, 0);
  2793. if (ret < 0)
  2794. break;
  2795. next:
  2796. leaf = path->nodes[0];
  2797. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  2798. ret = btrfs_next_leaf(rc->extent_root, path);
  2799. if (ret != 0)
  2800. break;
  2801. leaf = path->nodes[0];
  2802. }
  2803. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2804. if (key.objectid >= last) {
  2805. ret = 1;
  2806. break;
  2807. }
  2808. if (key.type != BTRFS_EXTENT_ITEM_KEY ||
  2809. key.objectid + key.offset <= rc->search_start) {
  2810. path->slots[0]++;
  2811. goto next;
  2812. }
  2813. ret = find_first_extent_bit(&rc->processed_blocks,
  2814. key.objectid, &start, &end,
  2815. EXTENT_DIRTY);
  2816. if (ret == 0 && start <= key.objectid) {
  2817. btrfs_release_path(rc->extent_root, path);
  2818. rc->search_start = end + 1;
  2819. } else {
  2820. rc->search_start = key.objectid + key.offset;
  2821. return 0;
  2822. }
  2823. }
  2824. btrfs_release_path(rc->extent_root, path);
  2825. return ret;
  2826. }
  2827. static void set_reloc_control(struct reloc_control *rc)
  2828. {
  2829. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2830. mutex_lock(&fs_info->trans_mutex);
  2831. fs_info->reloc_ctl = rc;
  2832. mutex_unlock(&fs_info->trans_mutex);
  2833. }
  2834. static void unset_reloc_control(struct reloc_control *rc)
  2835. {
  2836. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2837. mutex_lock(&fs_info->trans_mutex);
  2838. fs_info->reloc_ctl = NULL;
  2839. mutex_unlock(&fs_info->trans_mutex);
  2840. }
  2841. static int check_extent_flags(u64 flags)
  2842. {
  2843. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  2844. (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  2845. return 1;
  2846. if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
  2847. !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  2848. return 1;
  2849. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  2850. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  2851. return 1;
  2852. return 0;
  2853. }
  2854. static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
  2855. {
  2856. struct rb_root blocks = RB_ROOT;
  2857. struct btrfs_key key;
  2858. struct file_extent_cluster *cluster;
  2859. struct btrfs_trans_handle *trans = NULL;
  2860. struct btrfs_path *path;
  2861. struct btrfs_extent_item *ei;
  2862. unsigned long nr;
  2863. u64 flags;
  2864. u32 item_size;
  2865. int ret;
  2866. int err = 0;
  2867. cluster = kzalloc(sizeof(*cluster), GFP_NOFS);
  2868. if (!cluster)
  2869. return -ENOMEM;
  2870. path = btrfs_alloc_path();
  2871. if (!path)
  2872. return -ENOMEM;
  2873. rc->extents_found = 0;
  2874. rc->extents_skipped = 0;
  2875. rc->search_start = rc->block_group->key.objectid;
  2876. clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
  2877. GFP_NOFS);
  2878. rc->create_reloc_root = 1;
  2879. set_reloc_control(rc);
  2880. trans = btrfs_start_transaction(rc->extent_root, 1);
  2881. btrfs_commit_transaction(trans, rc->extent_root);
  2882. while (1) {
  2883. trans = btrfs_start_transaction(rc->extent_root, 1);
  2884. ret = find_next_extent(trans, rc, path);
  2885. if (ret < 0)
  2886. err = ret;
  2887. if (ret != 0)
  2888. break;
  2889. rc->extents_found++;
  2890. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2891. struct btrfs_extent_item);
  2892. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  2893. item_size = btrfs_item_size_nr(path->nodes[0],
  2894. path->slots[0]);
  2895. if (item_size >= sizeof(*ei)) {
  2896. flags = btrfs_extent_flags(path->nodes[0], ei);
  2897. ret = check_extent_flags(flags);
  2898. BUG_ON(ret);
  2899. } else {
  2900. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2901. u64 ref_owner;
  2902. int path_change = 0;
  2903. BUG_ON(item_size !=
  2904. sizeof(struct btrfs_extent_item_v0));
  2905. ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
  2906. &path_change);
  2907. if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
  2908. flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  2909. else
  2910. flags = BTRFS_EXTENT_FLAG_DATA;
  2911. if (path_change) {
  2912. btrfs_release_path(rc->extent_root, path);
  2913. path->search_commit_root = 1;
  2914. path->skip_locking = 1;
  2915. ret = btrfs_search_slot(NULL, rc->extent_root,
  2916. &key, path, 0, 0);
  2917. if (ret < 0) {
  2918. err = ret;
  2919. break;
  2920. }
  2921. BUG_ON(ret > 0);
  2922. }
  2923. #else
  2924. BUG();
  2925. #endif
  2926. }
  2927. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  2928. ret = add_tree_block(rc, &key, path, &blocks);
  2929. } else if (rc->stage == UPDATE_DATA_PTRS &&
  2930. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  2931. ret = add_data_references(rc, &key, path, &blocks);
  2932. } else {
  2933. btrfs_release_path(rc->extent_root, path);
  2934. ret = 0;
  2935. }
  2936. if (ret < 0) {
  2937. err = 0;
  2938. break;
  2939. }
  2940. if (!RB_EMPTY_ROOT(&blocks)) {
  2941. ret = relocate_tree_blocks(trans, rc, &blocks);
  2942. if (ret < 0) {
  2943. err = ret;
  2944. break;
  2945. }
  2946. }
  2947. nr = trans->blocks_used;
  2948. btrfs_end_transaction(trans, rc->extent_root);
  2949. trans = NULL;
  2950. btrfs_btree_balance_dirty(rc->extent_root, nr);
  2951. if (rc->stage == MOVE_DATA_EXTENTS &&
  2952. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  2953. rc->found_file_extent = 1;
  2954. ret = relocate_data_extent(rc->data_inode,
  2955. &key, cluster);
  2956. if (ret < 0) {
  2957. err = ret;
  2958. break;
  2959. }
  2960. }
  2961. }
  2962. btrfs_free_path(path);
  2963. if (trans) {
  2964. nr = trans->blocks_used;
  2965. btrfs_end_transaction(trans, rc->extent_root);
  2966. btrfs_btree_balance_dirty(rc->extent_root, nr);
  2967. }
  2968. if (!err) {
  2969. ret = relocate_file_extent_cluster(rc->data_inode, cluster);
  2970. if (ret < 0)
  2971. err = ret;
  2972. }
  2973. kfree(cluster);
  2974. rc->create_reloc_root = 0;
  2975. smp_mb();
  2976. if (rc->extents_found > 0) {
  2977. trans = btrfs_start_transaction(rc->extent_root, 1);
  2978. btrfs_commit_transaction(trans, rc->extent_root);
  2979. }
  2980. merge_reloc_roots(rc);
  2981. unset_reloc_control(rc);
  2982. /* get rid of pinned extents */
  2983. trans = btrfs_start_transaction(rc->extent_root, 1);
  2984. btrfs_commit_transaction(trans, rc->extent_root);
  2985. return err;
  2986. }
  2987. static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
  2988. struct btrfs_root *root, u64 objectid)
  2989. {
  2990. struct btrfs_path *path;
  2991. struct btrfs_inode_item *item;
  2992. struct extent_buffer *leaf;
  2993. int ret;
  2994. path = btrfs_alloc_path();
  2995. if (!path)
  2996. return -ENOMEM;
  2997. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  2998. if (ret)
  2999. goto out;
  3000. leaf = path->nodes[0];
  3001. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
  3002. memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
  3003. btrfs_set_inode_generation(leaf, item, 1);
  3004. btrfs_set_inode_size(leaf, item, 0);
  3005. btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
  3006. btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
  3007. btrfs_mark_buffer_dirty(leaf);
  3008. btrfs_release_path(root, path);
  3009. out:
  3010. btrfs_free_path(path);
  3011. return ret;
  3012. }
  3013. /*
  3014. * helper to create inode for data relocation.
  3015. * the inode is in data relocation tree and its link count is 0
  3016. */
  3017. static struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
  3018. struct btrfs_block_group_cache *group)
  3019. {
  3020. struct inode *inode = NULL;
  3021. struct btrfs_trans_handle *trans;
  3022. struct btrfs_root *root;
  3023. struct btrfs_key key;
  3024. unsigned long nr;
  3025. u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
  3026. int err = 0;
  3027. root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3028. if (IS_ERR(root))
  3029. return ERR_CAST(root);
  3030. trans = btrfs_start_transaction(root, 1);
  3031. BUG_ON(!trans);
  3032. err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
  3033. if (err)
  3034. goto out;
  3035. err = __insert_orphan_inode(trans, root, objectid);
  3036. BUG_ON(err);
  3037. key.objectid = objectid;
  3038. key.type = BTRFS_INODE_ITEM_KEY;
  3039. key.offset = 0;
  3040. inode = btrfs_iget(root->fs_info->sb, &key, root);
  3041. BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
  3042. BTRFS_I(inode)->index_cnt = group->key.objectid;
  3043. err = btrfs_orphan_add(trans, inode);
  3044. out:
  3045. nr = trans->blocks_used;
  3046. btrfs_end_transaction(trans, root);
  3047. btrfs_btree_balance_dirty(root, nr);
  3048. if (err) {
  3049. if (inode)
  3050. iput(inode);
  3051. inode = ERR_PTR(err);
  3052. }
  3053. return inode;
  3054. }
  3055. /*
  3056. * function to relocate all extents in a block group.
  3057. */
  3058. int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
  3059. {
  3060. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  3061. struct reloc_control *rc;
  3062. int ret;
  3063. int err = 0;
  3064. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3065. if (!rc)
  3066. return -ENOMEM;
  3067. mapping_tree_init(&rc->reloc_root_tree);
  3068. extent_io_tree_init(&rc->processed_blocks, NULL, GFP_NOFS);
  3069. INIT_LIST_HEAD(&rc->reloc_roots);
  3070. rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
  3071. BUG_ON(!rc->block_group);
  3072. btrfs_init_workers(&rc->workers, "relocate",
  3073. fs_info->thread_pool_size, NULL);
  3074. rc->extent_root = extent_root;
  3075. btrfs_prepare_block_group_relocation(extent_root, rc->block_group);
  3076. rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
  3077. if (IS_ERR(rc->data_inode)) {
  3078. err = PTR_ERR(rc->data_inode);
  3079. rc->data_inode = NULL;
  3080. goto out;
  3081. }
  3082. printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
  3083. (unsigned long long)rc->block_group->key.objectid,
  3084. (unsigned long long)rc->block_group->flags);
  3085. btrfs_start_delalloc_inodes(fs_info->tree_root);
  3086. btrfs_wait_ordered_extents(fs_info->tree_root, 0);
  3087. while (1) {
  3088. rc->extents_found = 0;
  3089. rc->extents_skipped = 0;
  3090. mutex_lock(&fs_info->cleaner_mutex);
  3091. btrfs_clean_old_snapshots(fs_info->tree_root);
  3092. ret = relocate_block_group(rc);
  3093. mutex_unlock(&fs_info->cleaner_mutex);
  3094. if (ret < 0) {
  3095. err = ret;
  3096. break;
  3097. }
  3098. if (rc->extents_found == 0)
  3099. break;
  3100. printk(KERN_INFO "btrfs: found %llu extents\n",
  3101. (unsigned long long)rc->extents_found);
  3102. if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
  3103. btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
  3104. invalidate_mapping_pages(rc->data_inode->i_mapping,
  3105. 0, -1);
  3106. rc->stage = UPDATE_DATA_PTRS;
  3107. } else if (rc->stage == UPDATE_DATA_PTRS &&
  3108. rc->extents_skipped >= rc->extents_found) {
  3109. iput(rc->data_inode);
  3110. rc->data_inode = create_reloc_inode(fs_info,
  3111. rc->block_group);
  3112. if (IS_ERR(rc->data_inode)) {
  3113. err = PTR_ERR(rc->data_inode);
  3114. rc->data_inode = NULL;
  3115. break;
  3116. }
  3117. rc->stage = MOVE_DATA_EXTENTS;
  3118. rc->found_file_extent = 0;
  3119. }
  3120. }
  3121. filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
  3122. rc->block_group->key.objectid,
  3123. rc->block_group->key.objectid +
  3124. rc->block_group->key.offset - 1);
  3125. WARN_ON(rc->block_group->pinned > 0);
  3126. WARN_ON(rc->block_group->reserved > 0);
  3127. WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
  3128. out:
  3129. iput(rc->data_inode);
  3130. btrfs_stop_workers(&rc->workers);
  3131. btrfs_put_block_group(rc->block_group);
  3132. kfree(rc);
  3133. return err;
  3134. }
  3135. static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
  3136. {
  3137. struct btrfs_trans_handle *trans;
  3138. int ret;
  3139. trans = btrfs_start_transaction(root->fs_info->tree_root, 1);
  3140. memset(&root->root_item.drop_progress, 0,
  3141. sizeof(root->root_item.drop_progress));
  3142. root->root_item.drop_level = 0;
  3143. btrfs_set_root_refs(&root->root_item, 0);
  3144. ret = btrfs_update_root(trans, root->fs_info->tree_root,
  3145. &root->root_key, &root->root_item);
  3146. BUG_ON(ret);
  3147. ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
  3148. BUG_ON(ret);
  3149. return 0;
  3150. }
  3151. /*
  3152. * recover relocation interrupted by system crash.
  3153. *
  3154. * this function resumes merging reloc trees with corresponding fs trees.
  3155. * this is important for keeping the sharing of tree blocks
  3156. */
  3157. int btrfs_recover_relocation(struct btrfs_root *root)
  3158. {
  3159. LIST_HEAD(reloc_roots);
  3160. struct btrfs_key key;
  3161. struct btrfs_root *fs_root;
  3162. struct btrfs_root *reloc_root;
  3163. struct btrfs_path *path;
  3164. struct extent_buffer *leaf;
  3165. struct reloc_control *rc = NULL;
  3166. struct btrfs_trans_handle *trans;
  3167. int ret;
  3168. int err = 0;
  3169. path = btrfs_alloc_path();
  3170. if (!path)
  3171. return -ENOMEM;
  3172. key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  3173. key.type = BTRFS_ROOT_ITEM_KEY;
  3174. key.offset = (u64)-1;
  3175. while (1) {
  3176. ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
  3177. path, 0, 0);
  3178. if (ret < 0) {
  3179. err = ret;
  3180. goto out;
  3181. }
  3182. if (ret > 0) {
  3183. if (path->slots[0] == 0)
  3184. break;
  3185. path->slots[0]--;
  3186. }
  3187. leaf = path->nodes[0];
  3188. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3189. btrfs_release_path(root->fs_info->tree_root, path);
  3190. if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
  3191. key.type != BTRFS_ROOT_ITEM_KEY)
  3192. break;
  3193. reloc_root = btrfs_read_fs_root_no_radix(root, &key);
  3194. if (IS_ERR(reloc_root)) {
  3195. err = PTR_ERR(reloc_root);
  3196. goto out;
  3197. }
  3198. list_add(&reloc_root->root_list, &reloc_roots);
  3199. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  3200. fs_root = read_fs_root(root->fs_info,
  3201. reloc_root->root_key.offset);
  3202. if (IS_ERR(fs_root)) {
  3203. ret = PTR_ERR(fs_root);
  3204. if (ret != -ENOENT) {
  3205. err = ret;
  3206. goto out;
  3207. }
  3208. mark_garbage_root(reloc_root);
  3209. }
  3210. }
  3211. if (key.offset == 0)
  3212. break;
  3213. key.offset--;
  3214. }
  3215. btrfs_release_path(root->fs_info->tree_root, path);
  3216. if (list_empty(&reloc_roots))
  3217. goto out;
  3218. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3219. if (!rc) {
  3220. err = -ENOMEM;
  3221. goto out;
  3222. }
  3223. mapping_tree_init(&rc->reloc_root_tree);
  3224. INIT_LIST_HEAD(&rc->reloc_roots);
  3225. btrfs_init_workers(&rc->workers, "relocate",
  3226. root->fs_info->thread_pool_size, NULL);
  3227. rc->extent_root = root->fs_info->extent_root;
  3228. set_reloc_control(rc);
  3229. while (!list_empty(&reloc_roots)) {
  3230. reloc_root = list_entry(reloc_roots.next,
  3231. struct btrfs_root, root_list);
  3232. list_del(&reloc_root->root_list);
  3233. if (btrfs_root_refs(&reloc_root->root_item) == 0) {
  3234. list_add_tail(&reloc_root->root_list,
  3235. &rc->reloc_roots);
  3236. continue;
  3237. }
  3238. fs_root = read_fs_root(root->fs_info,
  3239. reloc_root->root_key.offset);
  3240. BUG_ON(IS_ERR(fs_root));
  3241. __add_reloc_root(reloc_root);
  3242. fs_root->reloc_root = reloc_root;
  3243. }
  3244. trans = btrfs_start_transaction(rc->extent_root, 1);
  3245. btrfs_commit_transaction(trans, rc->extent_root);
  3246. merge_reloc_roots(rc);
  3247. unset_reloc_control(rc);
  3248. trans = btrfs_start_transaction(rc->extent_root, 1);
  3249. btrfs_commit_transaction(trans, rc->extent_root);
  3250. out:
  3251. if (rc) {
  3252. btrfs_stop_workers(&rc->workers);
  3253. kfree(rc);
  3254. }
  3255. while (!list_empty(&reloc_roots)) {
  3256. reloc_root = list_entry(reloc_roots.next,
  3257. struct btrfs_root, root_list);
  3258. list_del(&reloc_root->root_list);
  3259. free_extent_buffer(reloc_root->node);
  3260. free_extent_buffer(reloc_root->commit_root);
  3261. kfree(reloc_root);
  3262. }
  3263. btrfs_free_path(path);
  3264. if (err == 0) {
  3265. /* cleanup orphan inode in data relocation tree */
  3266. fs_root = read_fs_root(root->fs_info,
  3267. BTRFS_DATA_RELOC_TREE_OBJECTID);
  3268. if (IS_ERR(fs_root))
  3269. err = PTR_ERR(fs_root);
  3270. }
  3271. return err;
  3272. }
  3273. /*
  3274. * helper to add ordered checksum for data relocation.
  3275. *
  3276. * cloning checksum properly handles the nodatasum extents.
  3277. * it also saves CPU time to re-calculate the checksum.
  3278. */
  3279. int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
  3280. {
  3281. struct btrfs_ordered_sum *sums;
  3282. struct btrfs_sector_sum *sector_sum;
  3283. struct btrfs_ordered_extent *ordered;
  3284. struct btrfs_root *root = BTRFS_I(inode)->root;
  3285. size_t offset;
  3286. int ret;
  3287. u64 disk_bytenr;
  3288. LIST_HEAD(list);
  3289. ordered = btrfs_lookup_ordered_extent(inode, file_pos);
  3290. BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
  3291. disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
  3292. ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
  3293. disk_bytenr + len - 1, &list);
  3294. while (!list_empty(&list)) {
  3295. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  3296. list_del_init(&sums->list);
  3297. sector_sum = sums->sums;
  3298. sums->bytenr = ordered->start;
  3299. offset = 0;
  3300. while (offset < sums->len) {
  3301. sector_sum->bytenr += ordered->start - disk_bytenr;
  3302. sector_sum++;
  3303. offset += root->sectorsize;
  3304. }
  3305. btrfs_add_ordered_sum(inode, ordered, sums);
  3306. }
  3307. btrfs_put_ordered_extent(ordered);
  3308. return 0;
  3309. }