bio.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <scsi/sg.h> /* for struct sg_iovec */
  29. #include <trace/events/block.h>
  30. /*
  31. * Test patch to inline a certain number of bi_io_vec's inside the bio
  32. * itself, to shrink a bio data allocation from two mempool calls to one
  33. */
  34. #define BIO_INLINE_VECS 4
  35. static mempool_t *bio_split_pool __read_mostly;
  36. /*
  37. * if you change this list, also change bvec_alloc or things will
  38. * break badly! cannot be bigger than what you can fit into an
  39. * unsigned short
  40. */
  41. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  42. struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  43. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  44. };
  45. #undef BV
  46. /*
  47. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  48. * IO code that does not need private memory pools.
  49. */
  50. struct bio_set *fs_bio_set;
  51. /*
  52. * Our slab pool management
  53. */
  54. struct bio_slab {
  55. struct kmem_cache *slab;
  56. unsigned int slab_ref;
  57. unsigned int slab_size;
  58. char name[8];
  59. };
  60. static DEFINE_MUTEX(bio_slab_lock);
  61. static struct bio_slab *bio_slabs;
  62. static unsigned int bio_slab_nr, bio_slab_max;
  63. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  64. {
  65. unsigned int sz = sizeof(struct bio) + extra_size;
  66. struct kmem_cache *slab = NULL;
  67. struct bio_slab *bslab;
  68. unsigned int i, entry = -1;
  69. mutex_lock(&bio_slab_lock);
  70. i = 0;
  71. while (i < bio_slab_nr) {
  72. struct bio_slab *bslab = &bio_slabs[i];
  73. if (!bslab->slab && entry == -1)
  74. entry = i;
  75. else if (bslab->slab_size == sz) {
  76. slab = bslab->slab;
  77. bslab->slab_ref++;
  78. break;
  79. }
  80. i++;
  81. }
  82. if (slab)
  83. goto out_unlock;
  84. if (bio_slab_nr == bio_slab_max && entry == -1) {
  85. bio_slab_max <<= 1;
  86. bio_slabs = krealloc(bio_slabs,
  87. bio_slab_max * sizeof(struct bio_slab),
  88. GFP_KERNEL);
  89. if (!bio_slabs)
  90. goto out_unlock;
  91. }
  92. if (entry == -1)
  93. entry = bio_slab_nr++;
  94. bslab = &bio_slabs[entry];
  95. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  96. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  97. if (!slab)
  98. goto out_unlock;
  99. printk("bio: create slab <%s> at %d\n", bslab->name, entry);
  100. bslab->slab = slab;
  101. bslab->slab_ref = 1;
  102. bslab->slab_size = sz;
  103. out_unlock:
  104. mutex_unlock(&bio_slab_lock);
  105. return slab;
  106. }
  107. static void bio_put_slab(struct bio_set *bs)
  108. {
  109. struct bio_slab *bslab = NULL;
  110. unsigned int i;
  111. mutex_lock(&bio_slab_lock);
  112. for (i = 0; i < bio_slab_nr; i++) {
  113. if (bs->bio_slab == bio_slabs[i].slab) {
  114. bslab = &bio_slabs[i];
  115. break;
  116. }
  117. }
  118. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  119. goto out;
  120. WARN_ON(!bslab->slab_ref);
  121. if (--bslab->slab_ref)
  122. goto out;
  123. kmem_cache_destroy(bslab->slab);
  124. bslab->slab = NULL;
  125. out:
  126. mutex_unlock(&bio_slab_lock);
  127. }
  128. unsigned int bvec_nr_vecs(unsigned short idx)
  129. {
  130. return bvec_slabs[idx].nr_vecs;
  131. }
  132. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  133. {
  134. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  135. if (idx == BIOVEC_MAX_IDX)
  136. mempool_free(bv, bs->bvec_pool);
  137. else {
  138. struct biovec_slab *bvs = bvec_slabs + idx;
  139. kmem_cache_free(bvs->slab, bv);
  140. }
  141. }
  142. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  143. struct bio_set *bs)
  144. {
  145. struct bio_vec *bvl;
  146. /*
  147. * see comment near bvec_array define!
  148. */
  149. switch (nr) {
  150. case 1:
  151. *idx = 0;
  152. break;
  153. case 2 ... 4:
  154. *idx = 1;
  155. break;
  156. case 5 ... 16:
  157. *idx = 2;
  158. break;
  159. case 17 ... 64:
  160. *idx = 3;
  161. break;
  162. case 65 ... 128:
  163. *idx = 4;
  164. break;
  165. case 129 ... BIO_MAX_PAGES:
  166. *idx = 5;
  167. break;
  168. default:
  169. return NULL;
  170. }
  171. /*
  172. * idx now points to the pool we want to allocate from. only the
  173. * 1-vec entry pool is mempool backed.
  174. */
  175. if (*idx == BIOVEC_MAX_IDX) {
  176. fallback:
  177. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  178. } else {
  179. struct biovec_slab *bvs = bvec_slabs + *idx;
  180. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  181. /*
  182. * Make this allocation restricted and don't dump info on
  183. * allocation failures, since we'll fallback to the mempool
  184. * in case of failure.
  185. */
  186. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  187. /*
  188. * Try a slab allocation. If this fails and __GFP_WAIT
  189. * is set, retry with the 1-entry mempool
  190. */
  191. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  192. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  193. *idx = BIOVEC_MAX_IDX;
  194. goto fallback;
  195. }
  196. }
  197. return bvl;
  198. }
  199. void bio_free(struct bio *bio, struct bio_set *bs)
  200. {
  201. void *p;
  202. if (bio_has_allocated_vec(bio))
  203. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  204. if (bio_integrity(bio))
  205. bio_integrity_free(bio, bs);
  206. /*
  207. * If we have front padding, adjust the bio pointer before freeing
  208. */
  209. p = bio;
  210. if (bs->front_pad)
  211. p -= bs->front_pad;
  212. mempool_free(p, bs->bio_pool);
  213. }
  214. EXPORT_SYMBOL(bio_free);
  215. void bio_init(struct bio *bio)
  216. {
  217. memset(bio, 0, sizeof(*bio));
  218. bio->bi_flags = 1 << BIO_UPTODATE;
  219. bio->bi_comp_cpu = -1;
  220. atomic_set(&bio->bi_cnt, 1);
  221. }
  222. EXPORT_SYMBOL(bio_init);
  223. /**
  224. * bio_alloc_bioset - allocate a bio for I/O
  225. * @gfp_mask: the GFP_ mask given to the slab allocator
  226. * @nr_iovecs: number of iovecs to pre-allocate
  227. * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
  228. *
  229. * Description:
  230. * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
  231. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  232. * for a &struct bio to become free. If a %NULL @bs is passed in, we will
  233. * fall back to just using @kmalloc to allocate the required memory.
  234. *
  235. * Note that the caller must set ->bi_destructor on succesful return
  236. * of a bio, to do the appropriate freeing of the bio once the reference
  237. * count drops to zero.
  238. **/
  239. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  240. {
  241. unsigned long idx = BIO_POOL_NONE;
  242. struct bio_vec *bvl = NULL;
  243. struct bio *bio;
  244. void *p;
  245. p = mempool_alloc(bs->bio_pool, gfp_mask);
  246. if (unlikely(!p))
  247. return NULL;
  248. bio = p + bs->front_pad;
  249. bio_init(bio);
  250. if (unlikely(!nr_iovecs))
  251. goto out_set;
  252. if (nr_iovecs <= BIO_INLINE_VECS) {
  253. bvl = bio->bi_inline_vecs;
  254. nr_iovecs = BIO_INLINE_VECS;
  255. } else {
  256. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  257. if (unlikely(!bvl))
  258. goto err_free;
  259. nr_iovecs = bvec_nr_vecs(idx);
  260. }
  261. out_set:
  262. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  263. bio->bi_max_vecs = nr_iovecs;
  264. bio->bi_io_vec = bvl;
  265. return bio;
  266. err_free:
  267. mempool_free(p, bs->bio_pool);
  268. return NULL;
  269. }
  270. EXPORT_SYMBOL(bio_alloc_bioset);
  271. static void bio_fs_destructor(struct bio *bio)
  272. {
  273. bio_free(bio, fs_bio_set);
  274. }
  275. /**
  276. * bio_alloc - allocate a new bio, memory pool backed
  277. * @gfp_mask: allocation mask to use
  278. * @nr_iovecs: number of iovecs
  279. *
  280. * bio_alloc will allocate a bio and associated bio_vec array that can hold
  281. * at least @nr_iovecs entries. Allocations will be done from the
  282. * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
  283. *
  284. * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
  285. * a bio. This is due to the mempool guarantees. To make this work, callers
  286. * must never allocate more than 1 bio at a time from this pool. Callers
  287. * that need to allocate more than 1 bio must always submit the previously
  288. * allocated bio for IO before attempting to allocate a new one. Failure to
  289. * do so can cause livelocks under memory pressure.
  290. *
  291. * RETURNS:
  292. * Pointer to new bio on success, NULL on failure.
  293. */
  294. struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
  295. {
  296. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  297. if (bio)
  298. bio->bi_destructor = bio_fs_destructor;
  299. return bio;
  300. }
  301. EXPORT_SYMBOL(bio_alloc);
  302. static void bio_kmalloc_destructor(struct bio *bio)
  303. {
  304. if (bio_integrity(bio))
  305. bio_integrity_free(bio, fs_bio_set);
  306. kfree(bio);
  307. }
  308. /**
  309. * bio_kmalloc - allocate a bio for I/O using kmalloc()
  310. * @gfp_mask: the GFP_ mask given to the slab allocator
  311. * @nr_iovecs: number of iovecs to pre-allocate
  312. *
  313. * Description:
  314. * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
  315. * %__GFP_WAIT, the allocation is guaranteed to succeed.
  316. *
  317. **/
  318. struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
  319. {
  320. struct bio *bio;
  321. bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
  322. gfp_mask);
  323. if (unlikely(!bio))
  324. return NULL;
  325. bio_init(bio);
  326. bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
  327. bio->bi_max_vecs = nr_iovecs;
  328. bio->bi_io_vec = bio->bi_inline_vecs;
  329. bio->bi_destructor = bio_kmalloc_destructor;
  330. return bio;
  331. }
  332. EXPORT_SYMBOL(bio_kmalloc);
  333. void zero_fill_bio(struct bio *bio)
  334. {
  335. unsigned long flags;
  336. struct bio_vec *bv;
  337. int i;
  338. bio_for_each_segment(bv, bio, i) {
  339. char *data = bvec_kmap_irq(bv, &flags);
  340. memset(data, 0, bv->bv_len);
  341. flush_dcache_page(bv->bv_page);
  342. bvec_kunmap_irq(data, &flags);
  343. }
  344. }
  345. EXPORT_SYMBOL(zero_fill_bio);
  346. /**
  347. * bio_put - release a reference to a bio
  348. * @bio: bio to release reference to
  349. *
  350. * Description:
  351. * Put a reference to a &struct bio, either one you have gotten with
  352. * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
  353. **/
  354. void bio_put(struct bio *bio)
  355. {
  356. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  357. /*
  358. * last put frees it
  359. */
  360. if (atomic_dec_and_test(&bio->bi_cnt)) {
  361. bio->bi_next = NULL;
  362. bio->bi_destructor(bio);
  363. }
  364. }
  365. EXPORT_SYMBOL(bio_put);
  366. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  367. {
  368. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  369. blk_recount_segments(q, bio);
  370. return bio->bi_phys_segments;
  371. }
  372. EXPORT_SYMBOL(bio_phys_segments);
  373. /**
  374. * __bio_clone - clone a bio
  375. * @bio: destination bio
  376. * @bio_src: bio to clone
  377. *
  378. * Clone a &bio. Caller will own the returned bio, but not
  379. * the actual data it points to. Reference count of returned
  380. * bio will be one.
  381. */
  382. void __bio_clone(struct bio *bio, struct bio *bio_src)
  383. {
  384. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  385. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  386. /*
  387. * most users will be overriding ->bi_bdev with a new target,
  388. * so we don't set nor calculate new physical/hw segment counts here
  389. */
  390. bio->bi_sector = bio_src->bi_sector;
  391. bio->bi_bdev = bio_src->bi_bdev;
  392. bio->bi_flags |= 1 << BIO_CLONED;
  393. bio->bi_rw = bio_src->bi_rw;
  394. bio->bi_vcnt = bio_src->bi_vcnt;
  395. bio->bi_size = bio_src->bi_size;
  396. bio->bi_idx = bio_src->bi_idx;
  397. }
  398. EXPORT_SYMBOL(__bio_clone);
  399. /**
  400. * bio_clone - clone a bio
  401. * @bio: bio to clone
  402. * @gfp_mask: allocation priority
  403. *
  404. * Like __bio_clone, only also allocates the returned bio
  405. */
  406. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  407. {
  408. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  409. if (!b)
  410. return NULL;
  411. b->bi_destructor = bio_fs_destructor;
  412. __bio_clone(b, bio);
  413. if (bio_integrity(bio)) {
  414. int ret;
  415. ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
  416. if (ret < 0) {
  417. bio_put(b);
  418. return NULL;
  419. }
  420. }
  421. return b;
  422. }
  423. EXPORT_SYMBOL(bio_clone);
  424. /**
  425. * bio_get_nr_vecs - return approx number of vecs
  426. * @bdev: I/O target
  427. *
  428. * Return the approximate number of pages we can send to this target.
  429. * There's no guarantee that you will be able to fit this number of pages
  430. * into a bio, it does not account for dynamic restrictions that vary
  431. * on offset.
  432. */
  433. int bio_get_nr_vecs(struct block_device *bdev)
  434. {
  435. struct request_queue *q = bdev_get_queue(bdev);
  436. int nr_pages;
  437. nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  438. if (nr_pages > queue_max_phys_segments(q))
  439. nr_pages = queue_max_phys_segments(q);
  440. if (nr_pages > queue_max_hw_segments(q))
  441. nr_pages = queue_max_hw_segments(q);
  442. return nr_pages;
  443. }
  444. EXPORT_SYMBOL(bio_get_nr_vecs);
  445. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  446. *page, unsigned int len, unsigned int offset,
  447. unsigned short max_sectors)
  448. {
  449. int retried_segments = 0;
  450. struct bio_vec *bvec;
  451. /*
  452. * cloned bio must not modify vec list
  453. */
  454. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  455. return 0;
  456. if (((bio->bi_size + len) >> 9) > max_sectors)
  457. return 0;
  458. /*
  459. * For filesystems with a blocksize smaller than the pagesize
  460. * we will often be called with the same page as last time and
  461. * a consecutive offset. Optimize this special case.
  462. */
  463. if (bio->bi_vcnt > 0) {
  464. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  465. if (page == prev->bv_page &&
  466. offset == prev->bv_offset + prev->bv_len) {
  467. prev->bv_len += len;
  468. if (q->merge_bvec_fn) {
  469. struct bvec_merge_data bvm = {
  470. .bi_bdev = bio->bi_bdev,
  471. .bi_sector = bio->bi_sector,
  472. .bi_size = bio->bi_size,
  473. .bi_rw = bio->bi_rw,
  474. };
  475. if (q->merge_bvec_fn(q, &bvm, prev) < len) {
  476. prev->bv_len -= len;
  477. return 0;
  478. }
  479. }
  480. goto done;
  481. }
  482. }
  483. if (bio->bi_vcnt >= bio->bi_max_vecs)
  484. return 0;
  485. /*
  486. * we might lose a segment or two here, but rather that than
  487. * make this too complex.
  488. */
  489. while (bio->bi_phys_segments >= queue_max_phys_segments(q)
  490. || bio->bi_phys_segments >= queue_max_hw_segments(q)) {
  491. if (retried_segments)
  492. return 0;
  493. retried_segments = 1;
  494. blk_recount_segments(q, bio);
  495. }
  496. /*
  497. * setup the new entry, we might clear it again later if we
  498. * cannot add the page
  499. */
  500. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  501. bvec->bv_page = page;
  502. bvec->bv_len = len;
  503. bvec->bv_offset = offset;
  504. /*
  505. * if queue has other restrictions (eg varying max sector size
  506. * depending on offset), it can specify a merge_bvec_fn in the
  507. * queue to get further control
  508. */
  509. if (q->merge_bvec_fn) {
  510. struct bvec_merge_data bvm = {
  511. .bi_bdev = bio->bi_bdev,
  512. .bi_sector = bio->bi_sector,
  513. .bi_size = bio->bi_size,
  514. .bi_rw = bio->bi_rw,
  515. };
  516. /*
  517. * merge_bvec_fn() returns number of bytes it can accept
  518. * at this offset
  519. */
  520. if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
  521. bvec->bv_page = NULL;
  522. bvec->bv_len = 0;
  523. bvec->bv_offset = 0;
  524. return 0;
  525. }
  526. }
  527. /* If we may be able to merge these biovecs, force a recount */
  528. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  529. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  530. bio->bi_vcnt++;
  531. bio->bi_phys_segments++;
  532. done:
  533. bio->bi_size += len;
  534. return len;
  535. }
  536. /**
  537. * bio_add_pc_page - attempt to add page to bio
  538. * @q: the target queue
  539. * @bio: destination bio
  540. * @page: page to add
  541. * @len: vec entry length
  542. * @offset: vec entry offset
  543. *
  544. * Attempt to add a page to the bio_vec maplist. This can fail for a
  545. * number of reasons, such as the bio being full or target block
  546. * device limitations. The target block device must allow bio's
  547. * smaller than PAGE_SIZE, so it is always possible to add a single
  548. * page to an empty bio. This should only be used by REQ_PC bios.
  549. */
  550. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  551. unsigned int len, unsigned int offset)
  552. {
  553. return __bio_add_page(q, bio, page, len, offset,
  554. queue_max_hw_sectors(q));
  555. }
  556. EXPORT_SYMBOL(bio_add_pc_page);
  557. /**
  558. * bio_add_page - attempt to add page to bio
  559. * @bio: destination bio
  560. * @page: page to add
  561. * @len: vec entry length
  562. * @offset: vec entry offset
  563. *
  564. * Attempt to add a page to the bio_vec maplist. This can fail for a
  565. * number of reasons, such as the bio being full or target block
  566. * device limitations. The target block device must allow bio's
  567. * smaller than PAGE_SIZE, so it is always possible to add a single
  568. * page to an empty bio.
  569. */
  570. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  571. unsigned int offset)
  572. {
  573. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  574. return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
  575. }
  576. EXPORT_SYMBOL(bio_add_page);
  577. struct bio_map_data {
  578. struct bio_vec *iovecs;
  579. struct sg_iovec *sgvecs;
  580. int nr_sgvecs;
  581. int is_our_pages;
  582. };
  583. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  584. struct sg_iovec *iov, int iov_count,
  585. int is_our_pages)
  586. {
  587. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  588. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  589. bmd->nr_sgvecs = iov_count;
  590. bmd->is_our_pages = is_our_pages;
  591. bio->bi_private = bmd;
  592. }
  593. static void bio_free_map_data(struct bio_map_data *bmd)
  594. {
  595. kfree(bmd->iovecs);
  596. kfree(bmd->sgvecs);
  597. kfree(bmd);
  598. }
  599. static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
  600. gfp_t gfp_mask)
  601. {
  602. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
  603. if (!bmd)
  604. return NULL;
  605. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  606. if (!bmd->iovecs) {
  607. kfree(bmd);
  608. return NULL;
  609. }
  610. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  611. if (bmd->sgvecs)
  612. return bmd;
  613. kfree(bmd->iovecs);
  614. kfree(bmd);
  615. return NULL;
  616. }
  617. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  618. struct sg_iovec *iov, int iov_count,
  619. int to_user, int from_user, int do_free_page)
  620. {
  621. int ret = 0, i;
  622. struct bio_vec *bvec;
  623. int iov_idx = 0;
  624. unsigned int iov_off = 0;
  625. __bio_for_each_segment(bvec, bio, i, 0) {
  626. char *bv_addr = page_address(bvec->bv_page);
  627. unsigned int bv_len = iovecs[i].bv_len;
  628. while (bv_len && iov_idx < iov_count) {
  629. unsigned int bytes;
  630. char __user *iov_addr;
  631. bytes = min_t(unsigned int,
  632. iov[iov_idx].iov_len - iov_off, bv_len);
  633. iov_addr = iov[iov_idx].iov_base + iov_off;
  634. if (!ret) {
  635. if (to_user)
  636. ret = copy_to_user(iov_addr, bv_addr,
  637. bytes);
  638. if (from_user)
  639. ret = copy_from_user(bv_addr, iov_addr,
  640. bytes);
  641. if (ret)
  642. ret = -EFAULT;
  643. }
  644. bv_len -= bytes;
  645. bv_addr += bytes;
  646. iov_addr += bytes;
  647. iov_off += bytes;
  648. if (iov[iov_idx].iov_len == iov_off) {
  649. iov_idx++;
  650. iov_off = 0;
  651. }
  652. }
  653. if (do_free_page)
  654. __free_page(bvec->bv_page);
  655. }
  656. return ret;
  657. }
  658. /**
  659. * bio_uncopy_user - finish previously mapped bio
  660. * @bio: bio being terminated
  661. *
  662. * Free pages allocated from bio_copy_user() and write back data
  663. * to user space in case of a read.
  664. */
  665. int bio_uncopy_user(struct bio *bio)
  666. {
  667. struct bio_map_data *bmd = bio->bi_private;
  668. int ret = 0;
  669. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  670. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  671. bmd->nr_sgvecs, bio_data_dir(bio) == READ,
  672. 0, bmd->is_our_pages);
  673. bio_free_map_data(bmd);
  674. bio_put(bio);
  675. return ret;
  676. }
  677. EXPORT_SYMBOL(bio_uncopy_user);
  678. /**
  679. * bio_copy_user_iov - copy user data to bio
  680. * @q: destination block queue
  681. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  682. * @iov: the iovec.
  683. * @iov_count: number of elements in the iovec
  684. * @write_to_vm: bool indicating writing to pages or not
  685. * @gfp_mask: memory allocation flags
  686. *
  687. * Prepares and returns a bio for indirect user io, bouncing data
  688. * to/from kernel pages as necessary. Must be paired with
  689. * call bio_uncopy_user() on io completion.
  690. */
  691. struct bio *bio_copy_user_iov(struct request_queue *q,
  692. struct rq_map_data *map_data,
  693. struct sg_iovec *iov, int iov_count,
  694. int write_to_vm, gfp_t gfp_mask)
  695. {
  696. struct bio_map_data *bmd;
  697. struct bio_vec *bvec;
  698. struct page *page;
  699. struct bio *bio;
  700. int i, ret;
  701. int nr_pages = 0;
  702. unsigned int len = 0;
  703. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  704. for (i = 0; i < iov_count; i++) {
  705. unsigned long uaddr;
  706. unsigned long end;
  707. unsigned long start;
  708. uaddr = (unsigned long)iov[i].iov_base;
  709. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  710. start = uaddr >> PAGE_SHIFT;
  711. nr_pages += end - start;
  712. len += iov[i].iov_len;
  713. }
  714. if (offset)
  715. nr_pages++;
  716. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  717. if (!bmd)
  718. return ERR_PTR(-ENOMEM);
  719. ret = -ENOMEM;
  720. bio = bio_kmalloc(gfp_mask, nr_pages);
  721. if (!bio)
  722. goto out_bmd;
  723. bio->bi_rw |= (!write_to_vm << BIO_RW);
  724. ret = 0;
  725. if (map_data) {
  726. nr_pages = 1 << map_data->page_order;
  727. i = map_data->offset / PAGE_SIZE;
  728. }
  729. while (len) {
  730. unsigned int bytes = PAGE_SIZE;
  731. bytes -= offset;
  732. if (bytes > len)
  733. bytes = len;
  734. if (map_data) {
  735. if (i == map_data->nr_entries * nr_pages) {
  736. ret = -ENOMEM;
  737. break;
  738. }
  739. page = map_data->pages[i / nr_pages];
  740. page += (i % nr_pages);
  741. i++;
  742. } else {
  743. page = alloc_page(q->bounce_gfp | gfp_mask);
  744. if (!page) {
  745. ret = -ENOMEM;
  746. break;
  747. }
  748. }
  749. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  750. break;
  751. len -= bytes;
  752. offset = 0;
  753. }
  754. if (ret)
  755. goto cleanup;
  756. /*
  757. * success
  758. */
  759. if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
  760. (map_data && map_data->from_user)) {
  761. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
  762. if (ret)
  763. goto cleanup;
  764. }
  765. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  766. return bio;
  767. cleanup:
  768. if (!map_data)
  769. bio_for_each_segment(bvec, bio, i)
  770. __free_page(bvec->bv_page);
  771. bio_put(bio);
  772. out_bmd:
  773. bio_free_map_data(bmd);
  774. return ERR_PTR(ret);
  775. }
  776. /**
  777. * bio_copy_user - copy user data to bio
  778. * @q: destination block queue
  779. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  780. * @uaddr: start of user address
  781. * @len: length in bytes
  782. * @write_to_vm: bool indicating writing to pages or not
  783. * @gfp_mask: memory allocation flags
  784. *
  785. * Prepares and returns a bio for indirect user io, bouncing data
  786. * to/from kernel pages as necessary. Must be paired with
  787. * call bio_uncopy_user() on io completion.
  788. */
  789. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  790. unsigned long uaddr, unsigned int len,
  791. int write_to_vm, gfp_t gfp_mask)
  792. {
  793. struct sg_iovec iov;
  794. iov.iov_base = (void __user *)uaddr;
  795. iov.iov_len = len;
  796. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  797. }
  798. EXPORT_SYMBOL(bio_copy_user);
  799. static struct bio *__bio_map_user_iov(struct request_queue *q,
  800. struct block_device *bdev,
  801. struct sg_iovec *iov, int iov_count,
  802. int write_to_vm, gfp_t gfp_mask)
  803. {
  804. int i, j;
  805. int nr_pages = 0;
  806. struct page **pages;
  807. struct bio *bio;
  808. int cur_page = 0;
  809. int ret, offset;
  810. for (i = 0; i < iov_count; i++) {
  811. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  812. unsigned long len = iov[i].iov_len;
  813. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  814. unsigned long start = uaddr >> PAGE_SHIFT;
  815. nr_pages += end - start;
  816. /*
  817. * buffer must be aligned to at least hardsector size for now
  818. */
  819. if (uaddr & queue_dma_alignment(q))
  820. return ERR_PTR(-EINVAL);
  821. }
  822. if (!nr_pages)
  823. return ERR_PTR(-EINVAL);
  824. bio = bio_kmalloc(gfp_mask, nr_pages);
  825. if (!bio)
  826. return ERR_PTR(-ENOMEM);
  827. ret = -ENOMEM;
  828. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  829. if (!pages)
  830. goto out;
  831. for (i = 0; i < iov_count; i++) {
  832. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  833. unsigned long len = iov[i].iov_len;
  834. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  835. unsigned long start = uaddr >> PAGE_SHIFT;
  836. const int local_nr_pages = end - start;
  837. const int page_limit = cur_page + local_nr_pages;
  838. ret = get_user_pages_fast(uaddr, local_nr_pages,
  839. write_to_vm, &pages[cur_page]);
  840. if (ret < local_nr_pages) {
  841. ret = -EFAULT;
  842. goto out_unmap;
  843. }
  844. offset = uaddr & ~PAGE_MASK;
  845. for (j = cur_page; j < page_limit; j++) {
  846. unsigned int bytes = PAGE_SIZE - offset;
  847. if (len <= 0)
  848. break;
  849. if (bytes > len)
  850. bytes = len;
  851. /*
  852. * sorry...
  853. */
  854. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  855. bytes)
  856. break;
  857. len -= bytes;
  858. offset = 0;
  859. }
  860. cur_page = j;
  861. /*
  862. * release the pages we didn't map into the bio, if any
  863. */
  864. while (j < page_limit)
  865. page_cache_release(pages[j++]);
  866. }
  867. kfree(pages);
  868. /*
  869. * set data direction, and check if mapped pages need bouncing
  870. */
  871. if (!write_to_vm)
  872. bio->bi_rw |= (1 << BIO_RW);
  873. bio->bi_bdev = bdev;
  874. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  875. return bio;
  876. out_unmap:
  877. for (i = 0; i < nr_pages; i++) {
  878. if(!pages[i])
  879. break;
  880. page_cache_release(pages[i]);
  881. }
  882. out:
  883. kfree(pages);
  884. bio_put(bio);
  885. return ERR_PTR(ret);
  886. }
  887. /**
  888. * bio_map_user - map user address into bio
  889. * @q: the struct request_queue for the bio
  890. * @bdev: destination block device
  891. * @uaddr: start of user address
  892. * @len: length in bytes
  893. * @write_to_vm: bool indicating writing to pages or not
  894. * @gfp_mask: memory allocation flags
  895. *
  896. * Map the user space address into a bio suitable for io to a block
  897. * device. Returns an error pointer in case of error.
  898. */
  899. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  900. unsigned long uaddr, unsigned int len, int write_to_vm,
  901. gfp_t gfp_mask)
  902. {
  903. struct sg_iovec iov;
  904. iov.iov_base = (void __user *)uaddr;
  905. iov.iov_len = len;
  906. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  907. }
  908. EXPORT_SYMBOL(bio_map_user);
  909. /**
  910. * bio_map_user_iov - map user sg_iovec table into bio
  911. * @q: the struct request_queue for the bio
  912. * @bdev: destination block device
  913. * @iov: the iovec.
  914. * @iov_count: number of elements in the iovec
  915. * @write_to_vm: bool indicating writing to pages or not
  916. * @gfp_mask: memory allocation flags
  917. *
  918. * Map the user space address into a bio suitable for io to a block
  919. * device. Returns an error pointer in case of error.
  920. */
  921. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  922. struct sg_iovec *iov, int iov_count,
  923. int write_to_vm, gfp_t gfp_mask)
  924. {
  925. struct bio *bio;
  926. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  927. gfp_mask);
  928. if (IS_ERR(bio))
  929. return bio;
  930. /*
  931. * subtle -- if __bio_map_user() ended up bouncing a bio,
  932. * it would normally disappear when its bi_end_io is run.
  933. * however, we need it for the unmap, so grab an extra
  934. * reference to it
  935. */
  936. bio_get(bio);
  937. return bio;
  938. }
  939. static void __bio_unmap_user(struct bio *bio)
  940. {
  941. struct bio_vec *bvec;
  942. int i;
  943. /*
  944. * make sure we dirty pages we wrote to
  945. */
  946. __bio_for_each_segment(bvec, bio, i, 0) {
  947. if (bio_data_dir(bio) == READ)
  948. set_page_dirty_lock(bvec->bv_page);
  949. page_cache_release(bvec->bv_page);
  950. }
  951. bio_put(bio);
  952. }
  953. /**
  954. * bio_unmap_user - unmap a bio
  955. * @bio: the bio being unmapped
  956. *
  957. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  958. * a process context.
  959. *
  960. * bio_unmap_user() may sleep.
  961. */
  962. void bio_unmap_user(struct bio *bio)
  963. {
  964. __bio_unmap_user(bio);
  965. bio_put(bio);
  966. }
  967. EXPORT_SYMBOL(bio_unmap_user);
  968. static void bio_map_kern_endio(struct bio *bio, int err)
  969. {
  970. bio_put(bio);
  971. }
  972. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  973. unsigned int len, gfp_t gfp_mask)
  974. {
  975. unsigned long kaddr = (unsigned long)data;
  976. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  977. unsigned long start = kaddr >> PAGE_SHIFT;
  978. const int nr_pages = end - start;
  979. int offset, i;
  980. struct bio *bio;
  981. bio = bio_kmalloc(gfp_mask, nr_pages);
  982. if (!bio)
  983. return ERR_PTR(-ENOMEM);
  984. offset = offset_in_page(kaddr);
  985. for (i = 0; i < nr_pages; i++) {
  986. unsigned int bytes = PAGE_SIZE - offset;
  987. if (len <= 0)
  988. break;
  989. if (bytes > len)
  990. bytes = len;
  991. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  992. offset) < bytes)
  993. break;
  994. data += bytes;
  995. len -= bytes;
  996. offset = 0;
  997. }
  998. bio->bi_end_io = bio_map_kern_endio;
  999. return bio;
  1000. }
  1001. /**
  1002. * bio_map_kern - map kernel address into bio
  1003. * @q: the struct request_queue for the bio
  1004. * @data: pointer to buffer to map
  1005. * @len: length in bytes
  1006. * @gfp_mask: allocation flags for bio allocation
  1007. *
  1008. * Map the kernel address into a bio suitable for io to a block
  1009. * device. Returns an error pointer in case of error.
  1010. */
  1011. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  1012. gfp_t gfp_mask)
  1013. {
  1014. struct bio *bio;
  1015. bio = __bio_map_kern(q, data, len, gfp_mask);
  1016. if (IS_ERR(bio))
  1017. return bio;
  1018. if (bio->bi_size == len)
  1019. return bio;
  1020. /*
  1021. * Don't support partial mappings.
  1022. */
  1023. bio_put(bio);
  1024. return ERR_PTR(-EINVAL);
  1025. }
  1026. EXPORT_SYMBOL(bio_map_kern);
  1027. static void bio_copy_kern_endio(struct bio *bio, int err)
  1028. {
  1029. struct bio_vec *bvec;
  1030. const int read = bio_data_dir(bio) == READ;
  1031. struct bio_map_data *bmd = bio->bi_private;
  1032. int i;
  1033. char *p = bmd->sgvecs[0].iov_base;
  1034. __bio_for_each_segment(bvec, bio, i, 0) {
  1035. char *addr = page_address(bvec->bv_page);
  1036. int len = bmd->iovecs[i].bv_len;
  1037. if (read)
  1038. memcpy(p, addr, len);
  1039. __free_page(bvec->bv_page);
  1040. p += len;
  1041. }
  1042. bio_free_map_data(bmd);
  1043. bio_put(bio);
  1044. }
  1045. /**
  1046. * bio_copy_kern - copy kernel address into bio
  1047. * @q: the struct request_queue for the bio
  1048. * @data: pointer to buffer to copy
  1049. * @len: length in bytes
  1050. * @gfp_mask: allocation flags for bio and page allocation
  1051. * @reading: data direction is READ
  1052. *
  1053. * copy the kernel address into a bio suitable for io to a block
  1054. * device. Returns an error pointer in case of error.
  1055. */
  1056. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1057. gfp_t gfp_mask, int reading)
  1058. {
  1059. struct bio *bio;
  1060. struct bio_vec *bvec;
  1061. int i;
  1062. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1063. if (IS_ERR(bio))
  1064. return bio;
  1065. if (!reading) {
  1066. void *p = data;
  1067. bio_for_each_segment(bvec, bio, i) {
  1068. char *addr = page_address(bvec->bv_page);
  1069. memcpy(addr, p, bvec->bv_len);
  1070. p += bvec->bv_len;
  1071. }
  1072. }
  1073. bio->bi_end_io = bio_copy_kern_endio;
  1074. return bio;
  1075. }
  1076. EXPORT_SYMBOL(bio_copy_kern);
  1077. /*
  1078. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1079. * for performing direct-IO in BIOs.
  1080. *
  1081. * The problem is that we cannot run set_page_dirty() from interrupt context
  1082. * because the required locks are not interrupt-safe. So what we can do is to
  1083. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1084. * check that the pages are still dirty. If so, fine. If not, redirty them
  1085. * in process context.
  1086. *
  1087. * We special-case compound pages here: normally this means reads into hugetlb
  1088. * pages. The logic in here doesn't really work right for compound pages
  1089. * because the VM does not uniformly chase down the head page in all cases.
  1090. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1091. * handle them at all. So we skip compound pages here at an early stage.
  1092. *
  1093. * Note that this code is very hard to test under normal circumstances because
  1094. * direct-io pins the pages with get_user_pages(). This makes
  1095. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1096. * But other code (eg, pdflush) could clean the pages if they are mapped
  1097. * pagecache.
  1098. *
  1099. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1100. * deferred bio dirtying paths.
  1101. */
  1102. /*
  1103. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1104. */
  1105. void bio_set_pages_dirty(struct bio *bio)
  1106. {
  1107. struct bio_vec *bvec = bio->bi_io_vec;
  1108. int i;
  1109. for (i = 0; i < bio->bi_vcnt; i++) {
  1110. struct page *page = bvec[i].bv_page;
  1111. if (page && !PageCompound(page))
  1112. set_page_dirty_lock(page);
  1113. }
  1114. }
  1115. static void bio_release_pages(struct bio *bio)
  1116. {
  1117. struct bio_vec *bvec = bio->bi_io_vec;
  1118. int i;
  1119. for (i = 0; i < bio->bi_vcnt; i++) {
  1120. struct page *page = bvec[i].bv_page;
  1121. if (page)
  1122. put_page(page);
  1123. }
  1124. }
  1125. /*
  1126. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1127. * If they are, then fine. If, however, some pages are clean then they must
  1128. * have been written out during the direct-IO read. So we take another ref on
  1129. * the BIO and the offending pages and re-dirty the pages in process context.
  1130. *
  1131. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1132. * here on. It will run one page_cache_release() against each page and will
  1133. * run one bio_put() against the BIO.
  1134. */
  1135. static void bio_dirty_fn(struct work_struct *work);
  1136. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1137. static DEFINE_SPINLOCK(bio_dirty_lock);
  1138. static struct bio *bio_dirty_list;
  1139. /*
  1140. * This runs in process context
  1141. */
  1142. static void bio_dirty_fn(struct work_struct *work)
  1143. {
  1144. unsigned long flags;
  1145. struct bio *bio;
  1146. spin_lock_irqsave(&bio_dirty_lock, flags);
  1147. bio = bio_dirty_list;
  1148. bio_dirty_list = NULL;
  1149. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1150. while (bio) {
  1151. struct bio *next = bio->bi_private;
  1152. bio_set_pages_dirty(bio);
  1153. bio_release_pages(bio);
  1154. bio_put(bio);
  1155. bio = next;
  1156. }
  1157. }
  1158. void bio_check_pages_dirty(struct bio *bio)
  1159. {
  1160. struct bio_vec *bvec = bio->bi_io_vec;
  1161. int nr_clean_pages = 0;
  1162. int i;
  1163. for (i = 0; i < bio->bi_vcnt; i++) {
  1164. struct page *page = bvec[i].bv_page;
  1165. if (PageDirty(page) || PageCompound(page)) {
  1166. page_cache_release(page);
  1167. bvec[i].bv_page = NULL;
  1168. } else {
  1169. nr_clean_pages++;
  1170. }
  1171. }
  1172. if (nr_clean_pages) {
  1173. unsigned long flags;
  1174. spin_lock_irqsave(&bio_dirty_lock, flags);
  1175. bio->bi_private = bio_dirty_list;
  1176. bio_dirty_list = bio;
  1177. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1178. schedule_work(&bio_dirty_work);
  1179. } else {
  1180. bio_put(bio);
  1181. }
  1182. }
  1183. /**
  1184. * bio_endio - end I/O on a bio
  1185. * @bio: bio
  1186. * @error: error, if any
  1187. *
  1188. * Description:
  1189. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1190. * preferred way to end I/O on a bio, it takes care of clearing
  1191. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1192. * established -Exxxx (-EIO, for instance) error values in case
  1193. * something went wrong. Noone should call bi_end_io() directly on a
  1194. * bio unless they own it and thus know that it has an end_io
  1195. * function.
  1196. **/
  1197. void bio_endio(struct bio *bio, int error)
  1198. {
  1199. if (error)
  1200. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1201. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1202. error = -EIO;
  1203. if (bio->bi_end_io)
  1204. bio->bi_end_io(bio, error);
  1205. }
  1206. EXPORT_SYMBOL(bio_endio);
  1207. void bio_pair_release(struct bio_pair *bp)
  1208. {
  1209. if (atomic_dec_and_test(&bp->cnt)) {
  1210. struct bio *master = bp->bio1.bi_private;
  1211. bio_endio(master, bp->error);
  1212. mempool_free(bp, bp->bio2.bi_private);
  1213. }
  1214. }
  1215. EXPORT_SYMBOL(bio_pair_release);
  1216. static void bio_pair_end_1(struct bio *bi, int err)
  1217. {
  1218. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1219. if (err)
  1220. bp->error = err;
  1221. bio_pair_release(bp);
  1222. }
  1223. static void bio_pair_end_2(struct bio *bi, int err)
  1224. {
  1225. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1226. if (err)
  1227. bp->error = err;
  1228. bio_pair_release(bp);
  1229. }
  1230. /*
  1231. * split a bio - only worry about a bio with a single page in its iovec
  1232. */
  1233. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1234. {
  1235. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1236. if (!bp)
  1237. return bp;
  1238. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1239. bi->bi_sector + first_sectors);
  1240. BUG_ON(bi->bi_vcnt != 1);
  1241. BUG_ON(bi->bi_idx != 0);
  1242. atomic_set(&bp->cnt, 3);
  1243. bp->error = 0;
  1244. bp->bio1 = *bi;
  1245. bp->bio2 = *bi;
  1246. bp->bio2.bi_sector += first_sectors;
  1247. bp->bio2.bi_size -= first_sectors << 9;
  1248. bp->bio1.bi_size = first_sectors << 9;
  1249. bp->bv1 = bi->bi_io_vec[0];
  1250. bp->bv2 = bi->bi_io_vec[0];
  1251. bp->bv2.bv_offset += first_sectors << 9;
  1252. bp->bv2.bv_len -= first_sectors << 9;
  1253. bp->bv1.bv_len = first_sectors << 9;
  1254. bp->bio1.bi_io_vec = &bp->bv1;
  1255. bp->bio2.bi_io_vec = &bp->bv2;
  1256. bp->bio1.bi_max_vecs = 1;
  1257. bp->bio2.bi_max_vecs = 1;
  1258. bp->bio1.bi_end_io = bio_pair_end_1;
  1259. bp->bio2.bi_end_io = bio_pair_end_2;
  1260. bp->bio1.bi_private = bi;
  1261. bp->bio2.bi_private = bio_split_pool;
  1262. if (bio_integrity(bi))
  1263. bio_integrity_split(bi, bp, first_sectors);
  1264. return bp;
  1265. }
  1266. EXPORT_SYMBOL(bio_split);
  1267. /**
  1268. * bio_sector_offset - Find hardware sector offset in bio
  1269. * @bio: bio to inspect
  1270. * @index: bio_vec index
  1271. * @offset: offset in bv_page
  1272. *
  1273. * Return the number of hardware sectors between beginning of bio
  1274. * and an end point indicated by a bio_vec index and an offset
  1275. * within that vector's page.
  1276. */
  1277. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1278. unsigned int offset)
  1279. {
  1280. unsigned int sector_sz;
  1281. struct bio_vec *bv;
  1282. sector_t sectors;
  1283. int i;
  1284. sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
  1285. sectors = 0;
  1286. if (index >= bio->bi_idx)
  1287. index = bio->bi_vcnt - 1;
  1288. __bio_for_each_segment(bv, bio, i, 0) {
  1289. if (i == index) {
  1290. if (offset > bv->bv_offset)
  1291. sectors += (offset - bv->bv_offset) / sector_sz;
  1292. break;
  1293. }
  1294. sectors += bv->bv_len / sector_sz;
  1295. }
  1296. return sectors;
  1297. }
  1298. EXPORT_SYMBOL(bio_sector_offset);
  1299. /*
  1300. * create memory pools for biovec's in a bio_set.
  1301. * use the global biovec slabs created for general use.
  1302. */
  1303. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1304. {
  1305. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1306. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1307. if (!bs->bvec_pool)
  1308. return -ENOMEM;
  1309. return 0;
  1310. }
  1311. static void biovec_free_pools(struct bio_set *bs)
  1312. {
  1313. mempool_destroy(bs->bvec_pool);
  1314. }
  1315. void bioset_free(struct bio_set *bs)
  1316. {
  1317. if (bs->bio_pool)
  1318. mempool_destroy(bs->bio_pool);
  1319. bioset_integrity_free(bs);
  1320. biovec_free_pools(bs);
  1321. bio_put_slab(bs);
  1322. kfree(bs);
  1323. }
  1324. EXPORT_SYMBOL(bioset_free);
  1325. /**
  1326. * bioset_create - Create a bio_set
  1327. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1328. * @front_pad: Number of bytes to allocate in front of the returned bio
  1329. *
  1330. * Description:
  1331. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1332. * to ask for a number of bytes to be allocated in front of the bio.
  1333. * Front pad allocation is useful for embedding the bio inside
  1334. * another structure, to avoid allocating extra data to go with the bio.
  1335. * Note that the bio must be embedded at the END of that structure always,
  1336. * or things will break badly.
  1337. */
  1338. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1339. {
  1340. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1341. struct bio_set *bs;
  1342. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1343. if (!bs)
  1344. return NULL;
  1345. bs->front_pad = front_pad;
  1346. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1347. if (!bs->bio_slab) {
  1348. kfree(bs);
  1349. return NULL;
  1350. }
  1351. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1352. if (!bs->bio_pool)
  1353. goto bad;
  1354. if (bioset_integrity_create(bs, pool_size))
  1355. goto bad;
  1356. if (!biovec_create_pools(bs, pool_size))
  1357. return bs;
  1358. bad:
  1359. bioset_free(bs);
  1360. return NULL;
  1361. }
  1362. EXPORT_SYMBOL(bioset_create);
  1363. static void __init biovec_init_slabs(void)
  1364. {
  1365. int i;
  1366. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1367. int size;
  1368. struct biovec_slab *bvs = bvec_slabs + i;
  1369. #ifndef CONFIG_BLK_DEV_INTEGRITY
  1370. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1371. bvs->slab = NULL;
  1372. continue;
  1373. }
  1374. #endif
  1375. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1376. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1377. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1378. }
  1379. }
  1380. static int __init init_bio(void)
  1381. {
  1382. bio_slab_max = 2;
  1383. bio_slab_nr = 0;
  1384. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1385. if (!bio_slabs)
  1386. panic("bio: can't allocate bios\n");
  1387. bio_integrity_init();
  1388. biovec_init_slabs();
  1389. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1390. if (!fs_bio_set)
  1391. panic("bio: can't allocate bios\n");
  1392. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1393. sizeof(struct bio_pair));
  1394. if (!bio_split_pool)
  1395. panic("bio: can't create split pool\n");
  1396. return 0;
  1397. }
  1398. subsys_initcall(init_bio);