dispc.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530
  1. /*
  2. * OMAP2 display controller support
  3. *
  4. * Copyright (C) 2005 Nokia Corporation
  5. * Author: Imre Deak <imre.deak@nokia.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the
  9. * Free Software Foundation; either version 2 of the License, or (at your
  10. * option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/mm.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/clk.h>
  26. #include <linux/io.h>
  27. #include <mach/sram.h>
  28. #include <mach/omapfb.h>
  29. #include <mach/board.h>
  30. #include "dispc.h"
  31. #define MODULE_NAME "dispc"
  32. #define DSS_BASE 0x48050000
  33. #define DSS_SYSCONFIG 0x0010
  34. #define DISPC_BASE 0x48050400
  35. /* DISPC common */
  36. #define DISPC_REVISION 0x0000
  37. #define DISPC_SYSCONFIG 0x0010
  38. #define DISPC_SYSSTATUS 0x0014
  39. #define DISPC_IRQSTATUS 0x0018
  40. #define DISPC_IRQENABLE 0x001C
  41. #define DISPC_CONTROL 0x0040
  42. #define DISPC_CONFIG 0x0044
  43. #define DISPC_CAPABLE 0x0048
  44. #define DISPC_DEFAULT_COLOR0 0x004C
  45. #define DISPC_DEFAULT_COLOR1 0x0050
  46. #define DISPC_TRANS_COLOR0 0x0054
  47. #define DISPC_TRANS_COLOR1 0x0058
  48. #define DISPC_LINE_STATUS 0x005C
  49. #define DISPC_LINE_NUMBER 0x0060
  50. #define DISPC_TIMING_H 0x0064
  51. #define DISPC_TIMING_V 0x0068
  52. #define DISPC_POL_FREQ 0x006C
  53. #define DISPC_DIVISOR 0x0070
  54. #define DISPC_SIZE_DIG 0x0078
  55. #define DISPC_SIZE_LCD 0x007C
  56. #define DISPC_DATA_CYCLE1 0x01D4
  57. #define DISPC_DATA_CYCLE2 0x01D8
  58. #define DISPC_DATA_CYCLE3 0x01DC
  59. /* DISPC GFX plane */
  60. #define DISPC_GFX_BA0 0x0080
  61. #define DISPC_GFX_BA1 0x0084
  62. #define DISPC_GFX_POSITION 0x0088
  63. #define DISPC_GFX_SIZE 0x008C
  64. #define DISPC_GFX_ATTRIBUTES 0x00A0
  65. #define DISPC_GFX_FIFO_THRESHOLD 0x00A4
  66. #define DISPC_GFX_FIFO_SIZE_STATUS 0x00A8
  67. #define DISPC_GFX_ROW_INC 0x00AC
  68. #define DISPC_GFX_PIXEL_INC 0x00B0
  69. #define DISPC_GFX_WINDOW_SKIP 0x00B4
  70. #define DISPC_GFX_TABLE_BA 0x00B8
  71. /* DISPC Video plane 1/2 */
  72. #define DISPC_VID1_BASE 0x00BC
  73. #define DISPC_VID2_BASE 0x014C
  74. /* Offsets into DISPC_VID1/2_BASE */
  75. #define DISPC_VID_BA0 0x0000
  76. #define DISPC_VID_BA1 0x0004
  77. #define DISPC_VID_POSITION 0x0008
  78. #define DISPC_VID_SIZE 0x000C
  79. #define DISPC_VID_ATTRIBUTES 0x0010
  80. #define DISPC_VID_FIFO_THRESHOLD 0x0014
  81. #define DISPC_VID_FIFO_SIZE_STATUS 0x0018
  82. #define DISPC_VID_ROW_INC 0x001C
  83. #define DISPC_VID_PIXEL_INC 0x0020
  84. #define DISPC_VID_FIR 0x0024
  85. #define DISPC_VID_PICTURE_SIZE 0x0028
  86. #define DISPC_VID_ACCU0 0x002C
  87. #define DISPC_VID_ACCU1 0x0030
  88. /* 8 elements in 8 byte increments */
  89. #define DISPC_VID_FIR_COEF_H0 0x0034
  90. /* 8 elements in 8 byte increments */
  91. #define DISPC_VID_FIR_COEF_HV0 0x0038
  92. /* 5 elements in 4 byte increments */
  93. #define DISPC_VID_CONV_COEF0 0x0074
  94. #define DISPC_IRQ_FRAMEMASK 0x0001
  95. #define DISPC_IRQ_VSYNC 0x0002
  96. #define DISPC_IRQ_EVSYNC_EVEN 0x0004
  97. #define DISPC_IRQ_EVSYNC_ODD 0x0008
  98. #define DISPC_IRQ_ACBIAS_COUNT_STAT 0x0010
  99. #define DISPC_IRQ_PROG_LINE_NUM 0x0020
  100. #define DISPC_IRQ_GFX_FIFO_UNDERFLOW 0x0040
  101. #define DISPC_IRQ_GFX_END_WIN 0x0080
  102. #define DISPC_IRQ_PAL_GAMMA_MASK 0x0100
  103. #define DISPC_IRQ_OCP_ERR 0x0200
  104. #define DISPC_IRQ_VID1_FIFO_UNDERFLOW 0x0400
  105. #define DISPC_IRQ_VID1_END_WIN 0x0800
  106. #define DISPC_IRQ_VID2_FIFO_UNDERFLOW 0x1000
  107. #define DISPC_IRQ_VID2_END_WIN 0x2000
  108. #define DISPC_IRQ_SYNC_LOST 0x4000
  109. #define DISPC_IRQ_MASK_ALL 0x7fff
  110. #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
  111. DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
  112. DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
  113. DISPC_IRQ_SYNC_LOST)
  114. #define RFBI_CONTROL 0x48050040
  115. #define MAX_PALETTE_SIZE (256 * 16)
  116. #define FLD_MASK(pos, len) (((1 << len) - 1) << pos)
  117. #define MOD_REG_FLD(reg, mask, val) \
  118. dispc_write_reg((reg), (dispc_read_reg(reg) & ~(mask)) | (val));
  119. #define OMAP2_SRAM_START 0x40200000
  120. /* Maximum size, in reality this is smaller if SRAM is partially locked. */
  121. #define OMAP2_SRAM_SIZE 0xa0000 /* 640k */
  122. /* We support the SDRAM / SRAM types. See OMAPFB_PLANE_MEMTYPE_* in omapfb.h */
  123. #define DISPC_MEMTYPE_NUM 2
  124. #define RESMAP_SIZE(_page_cnt) \
  125. ((_page_cnt + (sizeof(unsigned long) * 8) - 1) / 8)
  126. #define RESMAP_PTR(_res_map, _page_nr) \
  127. (((_res_map)->map) + (_page_nr) / (sizeof(unsigned long) * 8))
  128. #define RESMAP_MASK(_page_nr) \
  129. (1 << ((_page_nr) & (sizeof(unsigned long) * 8 - 1)))
  130. struct resmap {
  131. unsigned long start;
  132. unsigned page_cnt;
  133. unsigned long *map;
  134. };
  135. #define MAX_IRQ_HANDLERS 4
  136. static struct {
  137. void __iomem *base;
  138. struct omapfb_mem_desc mem_desc;
  139. struct resmap *res_map[DISPC_MEMTYPE_NUM];
  140. atomic_t map_count[OMAPFB_PLANE_NUM];
  141. dma_addr_t palette_paddr;
  142. void *palette_vaddr;
  143. int ext_mode;
  144. struct {
  145. u32 irq_mask;
  146. void (*callback)(void *);
  147. void *data;
  148. } irq_handlers[MAX_IRQ_HANDLERS];
  149. struct completion frame_done;
  150. int fir_hinc[OMAPFB_PLANE_NUM];
  151. int fir_vinc[OMAPFB_PLANE_NUM];
  152. struct clk *dss_ick, *dss1_fck;
  153. struct clk *dss_54m_fck;
  154. enum omapfb_update_mode update_mode;
  155. struct omapfb_device *fbdev;
  156. struct omapfb_color_key color_key;
  157. } dispc;
  158. static void enable_lcd_clocks(int enable);
  159. static void inline dispc_write_reg(int idx, u32 val)
  160. {
  161. __raw_writel(val, dispc.base + idx);
  162. }
  163. static u32 inline dispc_read_reg(int idx)
  164. {
  165. u32 l = __raw_readl(dispc.base + idx);
  166. return l;
  167. }
  168. /* Select RFBI or bypass mode */
  169. static void enable_rfbi_mode(int enable)
  170. {
  171. u32 l;
  172. l = dispc_read_reg(DISPC_CONTROL);
  173. /* Enable RFBI, GPIO0/1 */
  174. l &= ~((1 << 11) | (1 << 15) | (1 << 16));
  175. l |= enable ? (1 << 11) : 0;
  176. /* RFBI En: GPIO0/1=10 RFBI Dis: GPIO0/1=11 */
  177. l |= 1 << 15;
  178. l |= enable ? 0 : (1 << 16);
  179. dispc_write_reg(DISPC_CONTROL, l);
  180. /* Set bypass mode in RFBI module */
  181. l = __raw_readl(OMAP2_IO_ADDRESS(RFBI_CONTROL));
  182. l |= enable ? 0 : (1 << 1);
  183. __raw_writel(l, OMAP2_IO_ADDRESS(RFBI_CONTROL));
  184. }
  185. static void set_lcd_data_lines(int data_lines)
  186. {
  187. u32 l;
  188. int code = 0;
  189. switch (data_lines) {
  190. case 12:
  191. code = 0;
  192. break;
  193. case 16:
  194. code = 1;
  195. break;
  196. case 18:
  197. code = 2;
  198. break;
  199. case 24:
  200. code = 3;
  201. break;
  202. default:
  203. BUG();
  204. }
  205. l = dispc_read_reg(DISPC_CONTROL);
  206. l &= ~(0x03 << 8);
  207. l |= code << 8;
  208. dispc_write_reg(DISPC_CONTROL, l);
  209. }
  210. static void set_load_mode(int mode)
  211. {
  212. BUG_ON(mode & ~(DISPC_LOAD_CLUT_ONLY | DISPC_LOAD_FRAME_ONLY |
  213. DISPC_LOAD_CLUT_ONCE_FRAME));
  214. MOD_REG_FLD(DISPC_CONFIG, 0x03 << 1, mode << 1);
  215. }
  216. void omap_dispc_set_lcd_size(int x, int y)
  217. {
  218. BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
  219. enable_lcd_clocks(1);
  220. MOD_REG_FLD(DISPC_SIZE_LCD, FLD_MASK(16, 11) | FLD_MASK(0, 11),
  221. ((y - 1) << 16) | (x - 1));
  222. enable_lcd_clocks(0);
  223. }
  224. EXPORT_SYMBOL(omap_dispc_set_lcd_size);
  225. void omap_dispc_set_digit_size(int x, int y)
  226. {
  227. BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
  228. enable_lcd_clocks(1);
  229. MOD_REG_FLD(DISPC_SIZE_DIG, FLD_MASK(16, 11) | FLD_MASK(0, 11),
  230. ((y - 1) << 16) | (x - 1));
  231. enable_lcd_clocks(0);
  232. }
  233. EXPORT_SYMBOL(omap_dispc_set_digit_size);
  234. static void setup_plane_fifo(int plane, int ext_mode)
  235. {
  236. const u32 ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
  237. DISPC_VID1_BASE + DISPC_VID_FIFO_THRESHOLD,
  238. DISPC_VID2_BASE + DISPC_VID_FIFO_THRESHOLD };
  239. const u32 fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
  240. DISPC_VID1_BASE + DISPC_VID_FIFO_SIZE_STATUS,
  241. DISPC_VID2_BASE + DISPC_VID_FIFO_SIZE_STATUS };
  242. int low, high;
  243. u32 l;
  244. BUG_ON(plane > 2);
  245. l = dispc_read_reg(fsz_reg[plane]);
  246. l &= FLD_MASK(0, 11);
  247. if (ext_mode) {
  248. low = l * 3 / 4;
  249. high = l;
  250. } else {
  251. low = l / 4;
  252. high = l * 3 / 4;
  253. }
  254. MOD_REG_FLD(ftrs_reg[plane], FLD_MASK(16, 12) | FLD_MASK(0, 12),
  255. (high << 16) | low);
  256. }
  257. void omap_dispc_enable_lcd_out(int enable)
  258. {
  259. enable_lcd_clocks(1);
  260. MOD_REG_FLD(DISPC_CONTROL, 1, enable ? 1 : 0);
  261. enable_lcd_clocks(0);
  262. }
  263. EXPORT_SYMBOL(omap_dispc_enable_lcd_out);
  264. void omap_dispc_enable_digit_out(int enable)
  265. {
  266. enable_lcd_clocks(1);
  267. MOD_REG_FLD(DISPC_CONTROL, 1 << 1, enable ? 1 << 1 : 0);
  268. enable_lcd_clocks(0);
  269. }
  270. EXPORT_SYMBOL(omap_dispc_enable_digit_out);
  271. static inline int _setup_plane(int plane, int channel_out,
  272. u32 paddr, int screen_width,
  273. int pos_x, int pos_y, int width, int height,
  274. int color_mode)
  275. {
  276. const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
  277. DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  278. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  279. const u32 ba_reg[] = { DISPC_GFX_BA0, DISPC_VID1_BASE + DISPC_VID_BA0,
  280. DISPC_VID2_BASE + DISPC_VID_BA0 };
  281. const u32 ps_reg[] = { DISPC_GFX_POSITION,
  282. DISPC_VID1_BASE + DISPC_VID_POSITION,
  283. DISPC_VID2_BASE + DISPC_VID_POSITION };
  284. const u32 sz_reg[] = { DISPC_GFX_SIZE,
  285. DISPC_VID1_BASE + DISPC_VID_PICTURE_SIZE,
  286. DISPC_VID2_BASE + DISPC_VID_PICTURE_SIZE };
  287. const u32 ri_reg[] = { DISPC_GFX_ROW_INC,
  288. DISPC_VID1_BASE + DISPC_VID_ROW_INC,
  289. DISPC_VID2_BASE + DISPC_VID_ROW_INC };
  290. const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
  291. DISPC_VID2_BASE + DISPC_VID_SIZE };
  292. int chout_shift, burst_shift;
  293. int chout_val;
  294. int color_code;
  295. int bpp;
  296. int cconv_en;
  297. int set_vsize;
  298. u32 l;
  299. #ifdef VERBOSE
  300. dev_dbg(dispc.fbdev->dev, "plane %d channel %d paddr %#08x scr_width %d"
  301. " pos_x %d pos_y %d width %d height %d color_mode %d\n",
  302. plane, channel_out, paddr, screen_width, pos_x, pos_y,
  303. width, height, color_mode);
  304. #endif
  305. set_vsize = 0;
  306. switch (plane) {
  307. case OMAPFB_PLANE_GFX:
  308. burst_shift = 6;
  309. chout_shift = 8;
  310. break;
  311. case OMAPFB_PLANE_VID1:
  312. case OMAPFB_PLANE_VID2:
  313. burst_shift = 14;
  314. chout_shift = 16;
  315. set_vsize = 1;
  316. break;
  317. default:
  318. return -EINVAL;
  319. }
  320. switch (channel_out) {
  321. case OMAPFB_CHANNEL_OUT_LCD:
  322. chout_val = 0;
  323. break;
  324. case OMAPFB_CHANNEL_OUT_DIGIT:
  325. chout_val = 1;
  326. break;
  327. default:
  328. return -EINVAL;
  329. }
  330. cconv_en = 0;
  331. switch (color_mode) {
  332. case OMAPFB_COLOR_RGB565:
  333. color_code = DISPC_RGB_16_BPP;
  334. bpp = 16;
  335. break;
  336. case OMAPFB_COLOR_YUV422:
  337. if (plane == 0)
  338. return -EINVAL;
  339. color_code = DISPC_UYVY_422;
  340. cconv_en = 1;
  341. bpp = 16;
  342. break;
  343. case OMAPFB_COLOR_YUY422:
  344. if (plane == 0)
  345. return -EINVAL;
  346. color_code = DISPC_YUV2_422;
  347. cconv_en = 1;
  348. bpp = 16;
  349. break;
  350. default:
  351. return -EINVAL;
  352. }
  353. l = dispc_read_reg(at_reg[plane]);
  354. l &= ~(0x0f << 1);
  355. l |= color_code << 1;
  356. l &= ~(1 << 9);
  357. l |= cconv_en << 9;
  358. l &= ~(0x03 << burst_shift);
  359. l |= DISPC_BURST_8x32 << burst_shift;
  360. l &= ~(1 << chout_shift);
  361. l |= chout_val << chout_shift;
  362. dispc_write_reg(at_reg[plane], l);
  363. dispc_write_reg(ba_reg[plane], paddr);
  364. MOD_REG_FLD(ps_reg[plane],
  365. FLD_MASK(16, 11) | FLD_MASK(0, 11), (pos_y << 16) | pos_x);
  366. MOD_REG_FLD(sz_reg[plane], FLD_MASK(16, 11) | FLD_MASK(0, 11),
  367. ((height - 1) << 16) | (width - 1));
  368. if (set_vsize) {
  369. /* Set video size if set_scale hasn't set it */
  370. if (!dispc.fir_vinc[plane])
  371. MOD_REG_FLD(vs_reg[plane],
  372. FLD_MASK(16, 11), (height - 1) << 16);
  373. if (!dispc.fir_hinc[plane])
  374. MOD_REG_FLD(vs_reg[plane],
  375. FLD_MASK(0, 11), width - 1);
  376. }
  377. dispc_write_reg(ri_reg[plane], (screen_width - width) * bpp / 8 + 1);
  378. return height * screen_width * bpp / 8;
  379. }
  380. static int omap_dispc_setup_plane(int plane, int channel_out,
  381. unsigned long offset,
  382. int screen_width,
  383. int pos_x, int pos_y, int width, int height,
  384. int color_mode)
  385. {
  386. u32 paddr;
  387. int r;
  388. if ((unsigned)plane > dispc.mem_desc.region_cnt)
  389. return -EINVAL;
  390. paddr = dispc.mem_desc.region[plane].paddr + offset;
  391. enable_lcd_clocks(1);
  392. r = _setup_plane(plane, channel_out, paddr,
  393. screen_width,
  394. pos_x, pos_y, width, height, color_mode);
  395. enable_lcd_clocks(0);
  396. return r;
  397. }
  398. static void write_firh_reg(int plane, int reg, u32 value)
  399. {
  400. u32 base;
  401. if (plane == 1)
  402. base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_H0;
  403. else
  404. base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_H0;
  405. dispc_write_reg(base + reg * 8, value);
  406. }
  407. static void write_firhv_reg(int plane, int reg, u32 value)
  408. {
  409. u32 base;
  410. if (plane == 1)
  411. base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_HV0;
  412. else
  413. base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_HV0;
  414. dispc_write_reg(base + reg * 8, value);
  415. }
  416. static void set_upsampling_coef_table(int plane)
  417. {
  418. const u32 coef[][2] = {
  419. { 0x00800000, 0x00800000 },
  420. { 0x0D7CF800, 0x037B02FF },
  421. { 0x1E70F5FF, 0x0C6F05FE },
  422. { 0x335FF5FE, 0x205907FB },
  423. { 0xF74949F7, 0x00404000 },
  424. { 0xF55F33FB, 0x075920FE },
  425. { 0xF5701EFE, 0x056F0CFF },
  426. { 0xF87C0DFF, 0x027B0300 },
  427. };
  428. int i;
  429. for (i = 0; i < 8; i++) {
  430. write_firh_reg(plane, i, coef[i][0]);
  431. write_firhv_reg(plane, i, coef[i][1]);
  432. }
  433. }
  434. static int omap_dispc_set_scale(int plane,
  435. int orig_width, int orig_height,
  436. int out_width, int out_height)
  437. {
  438. const u32 at_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  439. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  440. const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
  441. DISPC_VID2_BASE + DISPC_VID_SIZE };
  442. const u32 fir_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_FIR,
  443. DISPC_VID2_BASE + DISPC_VID_FIR };
  444. u32 l;
  445. int fir_hinc;
  446. int fir_vinc;
  447. if ((unsigned)plane > OMAPFB_PLANE_NUM)
  448. return -ENODEV;
  449. if (plane == OMAPFB_PLANE_GFX &&
  450. (out_width != orig_width || out_height != orig_height))
  451. return -EINVAL;
  452. enable_lcd_clocks(1);
  453. if (orig_width < out_width) {
  454. /*
  455. * Upsampling.
  456. * Currently you can only scale both dimensions in one way.
  457. */
  458. if (orig_height > out_height ||
  459. orig_width * 8 < out_width ||
  460. orig_height * 8 < out_height) {
  461. enable_lcd_clocks(0);
  462. return -EINVAL;
  463. }
  464. set_upsampling_coef_table(plane);
  465. } else if (orig_width > out_width) {
  466. /* Downsampling not yet supported
  467. */
  468. enable_lcd_clocks(0);
  469. return -EINVAL;
  470. }
  471. if (!orig_width || orig_width == out_width)
  472. fir_hinc = 0;
  473. else
  474. fir_hinc = 1024 * orig_width / out_width;
  475. if (!orig_height || orig_height == out_height)
  476. fir_vinc = 0;
  477. else
  478. fir_vinc = 1024 * orig_height / out_height;
  479. dispc.fir_hinc[plane] = fir_hinc;
  480. dispc.fir_vinc[plane] = fir_vinc;
  481. MOD_REG_FLD(fir_reg[plane],
  482. FLD_MASK(16, 12) | FLD_MASK(0, 12),
  483. ((fir_vinc & 4095) << 16) |
  484. (fir_hinc & 4095));
  485. dev_dbg(dispc.fbdev->dev, "out_width %d out_height %d orig_width %d "
  486. "orig_height %d fir_hinc %d fir_vinc %d\n",
  487. out_width, out_height, orig_width, orig_height,
  488. fir_hinc, fir_vinc);
  489. MOD_REG_FLD(vs_reg[plane],
  490. FLD_MASK(16, 11) | FLD_MASK(0, 11),
  491. ((out_height - 1) << 16) | (out_width - 1));
  492. l = dispc_read_reg(at_reg[plane]);
  493. l &= ~(0x03 << 5);
  494. l |= fir_hinc ? (1 << 5) : 0;
  495. l |= fir_vinc ? (1 << 6) : 0;
  496. dispc_write_reg(at_reg[plane], l);
  497. enable_lcd_clocks(0);
  498. return 0;
  499. }
  500. static int omap_dispc_enable_plane(int plane, int enable)
  501. {
  502. const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
  503. DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
  504. DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
  505. if ((unsigned int)plane > dispc.mem_desc.region_cnt)
  506. return -EINVAL;
  507. enable_lcd_clocks(1);
  508. MOD_REG_FLD(at_reg[plane], 1, enable ? 1 : 0);
  509. enable_lcd_clocks(0);
  510. return 0;
  511. }
  512. static int omap_dispc_set_color_key(struct omapfb_color_key *ck)
  513. {
  514. u32 df_reg, tr_reg;
  515. int shift, val;
  516. switch (ck->channel_out) {
  517. case OMAPFB_CHANNEL_OUT_LCD:
  518. df_reg = DISPC_DEFAULT_COLOR0;
  519. tr_reg = DISPC_TRANS_COLOR0;
  520. shift = 10;
  521. break;
  522. case OMAPFB_CHANNEL_OUT_DIGIT:
  523. df_reg = DISPC_DEFAULT_COLOR1;
  524. tr_reg = DISPC_TRANS_COLOR1;
  525. shift = 12;
  526. break;
  527. default:
  528. return -EINVAL;
  529. }
  530. switch (ck->key_type) {
  531. case OMAPFB_COLOR_KEY_DISABLED:
  532. val = 0;
  533. break;
  534. case OMAPFB_COLOR_KEY_GFX_DST:
  535. val = 1;
  536. break;
  537. case OMAPFB_COLOR_KEY_VID_SRC:
  538. val = 3;
  539. break;
  540. default:
  541. return -EINVAL;
  542. }
  543. enable_lcd_clocks(1);
  544. MOD_REG_FLD(DISPC_CONFIG, FLD_MASK(shift, 2), val << shift);
  545. if (val != 0)
  546. dispc_write_reg(tr_reg, ck->trans_key);
  547. dispc_write_reg(df_reg, ck->background);
  548. enable_lcd_clocks(0);
  549. dispc.color_key = *ck;
  550. return 0;
  551. }
  552. static int omap_dispc_get_color_key(struct omapfb_color_key *ck)
  553. {
  554. *ck = dispc.color_key;
  555. return 0;
  556. }
  557. static void load_palette(void)
  558. {
  559. }
  560. static int omap_dispc_set_update_mode(enum omapfb_update_mode mode)
  561. {
  562. int r = 0;
  563. if (mode != dispc.update_mode) {
  564. switch (mode) {
  565. case OMAPFB_AUTO_UPDATE:
  566. case OMAPFB_MANUAL_UPDATE:
  567. enable_lcd_clocks(1);
  568. omap_dispc_enable_lcd_out(1);
  569. dispc.update_mode = mode;
  570. break;
  571. case OMAPFB_UPDATE_DISABLED:
  572. init_completion(&dispc.frame_done);
  573. omap_dispc_enable_lcd_out(0);
  574. if (!wait_for_completion_timeout(&dispc.frame_done,
  575. msecs_to_jiffies(500))) {
  576. dev_err(dispc.fbdev->dev,
  577. "timeout waiting for FRAME DONE\n");
  578. }
  579. dispc.update_mode = mode;
  580. enable_lcd_clocks(0);
  581. break;
  582. default:
  583. r = -EINVAL;
  584. }
  585. }
  586. return r;
  587. }
  588. static void omap_dispc_get_caps(int plane, struct omapfb_caps *caps)
  589. {
  590. caps->ctrl |= OMAPFB_CAPS_PLANE_RELOCATE_MEM;
  591. if (plane > 0)
  592. caps->ctrl |= OMAPFB_CAPS_PLANE_SCALE;
  593. caps->plane_color |= (1 << OMAPFB_COLOR_RGB565) |
  594. (1 << OMAPFB_COLOR_YUV422) |
  595. (1 << OMAPFB_COLOR_YUY422);
  596. if (plane == 0)
  597. caps->plane_color |= (1 << OMAPFB_COLOR_CLUT_8BPP) |
  598. (1 << OMAPFB_COLOR_CLUT_4BPP) |
  599. (1 << OMAPFB_COLOR_CLUT_2BPP) |
  600. (1 << OMAPFB_COLOR_CLUT_1BPP) |
  601. (1 << OMAPFB_COLOR_RGB444);
  602. }
  603. static enum omapfb_update_mode omap_dispc_get_update_mode(void)
  604. {
  605. return dispc.update_mode;
  606. }
  607. static void setup_color_conv_coef(void)
  608. {
  609. u32 mask = FLD_MASK(16, 11) | FLD_MASK(0, 11);
  610. int cf1_reg = DISPC_VID1_BASE + DISPC_VID_CONV_COEF0;
  611. int cf2_reg = DISPC_VID2_BASE + DISPC_VID_CONV_COEF0;
  612. int at1_reg = DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES;
  613. int at2_reg = DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES;
  614. const struct color_conv_coef {
  615. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  616. int full_range;
  617. } ctbl_bt601_5 = {
  618. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  619. };
  620. const struct color_conv_coef *ct;
  621. #define CVAL(x, y) (((x & 2047) << 16) | (y & 2047))
  622. ct = &ctbl_bt601_5;
  623. MOD_REG_FLD(cf1_reg, mask, CVAL(ct->rcr, ct->ry));
  624. MOD_REG_FLD(cf1_reg + 4, mask, CVAL(ct->gy, ct->rcb));
  625. MOD_REG_FLD(cf1_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
  626. MOD_REG_FLD(cf1_reg + 12, mask, CVAL(ct->bcr, ct->by));
  627. MOD_REG_FLD(cf1_reg + 16, mask, CVAL(0, ct->bcb));
  628. MOD_REG_FLD(cf2_reg, mask, CVAL(ct->rcr, ct->ry));
  629. MOD_REG_FLD(cf2_reg + 4, mask, CVAL(ct->gy, ct->rcb));
  630. MOD_REG_FLD(cf2_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
  631. MOD_REG_FLD(cf2_reg + 12, mask, CVAL(ct->bcr, ct->by));
  632. MOD_REG_FLD(cf2_reg + 16, mask, CVAL(0, ct->bcb));
  633. #undef CVAL
  634. MOD_REG_FLD(at1_reg, (1 << 11), ct->full_range);
  635. MOD_REG_FLD(at2_reg, (1 << 11), ct->full_range);
  636. }
  637. static void calc_ck_div(int is_tft, int pck, int *lck_div, int *pck_div)
  638. {
  639. unsigned long fck, lck;
  640. *lck_div = 1;
  641. pck = max(1, pck);
  642. fck = clk_get_rate(dispc.dss1_fck);
  643. lck = fck;
  644. *pck_div = (lck + pck - 1) / pck;
  645. if (is_tft)
  646. *pck_div = max(2, *pck_div);
  647. else
  648. *pck_div = max(3, *pck_div);
  649. if (*pck_div > 255) {
  650. *pck_div = 255;
  651. lck = pck * *pck_div;
  652. *lck_div = fck / lck;
  653. BUG_ON(*lck_div < 1);
  654. if (*lck_div > 255) {
  655. *lck_div = 255;
  656. dev_warn(dispc.fbdev->dev, "pixclock %d kHz too low.\n",
  657. pck / 1000);
  658. }
  659. }
  660. }
  661. static void set_lcd_tft_mode(int enable)
  662. {
  663. u32 mask;
  664. mask = 1 << 3;
  665. MOD_REG_FLD(DISPC_CONTROL, mask, enable ? mask : 0);
  666. }
  667. static void set_lcd_timings(void)
  668. {
  669. u32 l;
  670. int lck_div, pck_div;
  671. struct lcd_panel *panel = dispc.fbdev->panel;
  672. int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
  673. unsigned long fck;
  674. l = dispc_read_reg(DISPC_TIMING_H);
  675. l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
  676. l |= ( max(1, (min(64, panel->hsw))) - 1 ) << 0;
  677. l |= ( max(1, (min(256, panel->hfp))) - 1 ) << 8;
  678. l |= ( max(1, (min(256, panel->hbp))) - 1 ) << 20;
  679. dispc_write_reg(DISPC_TIMING_H, l);
  680. l = dispc_read_reg(DISPC_TIMING_V);
  681. l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
  682. l |= ( max(1, (min(64, panel->vsw))) - 1 ) << 0;
  683. l |= ( max(0, (min(255, panel->vfp))) - 0 ) << 8;
  684. l |= ( max(0, (min(255, panel->vbp))) - 0 ) << 20;
  685. dispc_write_reg(DISPC_TIMING_V, l);
  686. l = dispc_read_reg(DISPC_POL_FREQ);
  687. l &= ~FLD_MASK(12, 6);
  688. l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 12;
  689. l |= panel->acb & 0xff;
  690. dispc_write_reg(DISPC_POL_FREQ, l);
  691. calc_ck_div(is_tft, panel->pixel_clock * 1000, &lck_div, &pck_div);
  692. l = dispc_read_reg(DISPC_DIVISOR);
  693. l &= ~(FLD_MASK(16, 8) | FLD_MASK(0, 8));
  694. l |= (lck_div << 16) | (pck_div << 0);
  695. dispc_write_reg(DISPC_DIVISOR, l);
  696. /* update panel info with the exact clock */
  697. fck = clk_get_rate(dispc.dss1_fck);
  698. panel->pixel_clock = fck / lck_div / pck_div / 1000;
  699. }
  700. static void recalc_irq_mask(void)
  701. {
  702. int i;
  703. unsigned long irq_mask = DISPC_IRQ_MASK_ERROR;
  704. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  705. if (!dispc.irq_handlers[i].callback)
  706. continue;
  707. irq_mask |= dispc.irq_handlers[i].irq_mask;
  708. }
  709. enable_lcd_clocks(1);
  710. MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
  711. enable_lcd_clocks(0);
  712. }
  713. int omap_dispc_request_irq(unsigned long irq_mask, void (*callback)(void *data),
  714. void *data)
  715. {
  716. int i;
  717. BUG_ON(callback == NULL);
  718. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  719. if (dispc.irq_handlers[i].callback)
  720. continue;
  721. dispc.irq_handlers[i].irq_mask = irq_mask;
  722. dispc.irq_handlers[i].callback = callback;
  723. dispc.irq_handlers[i].data = data;
  724. recalc_irq_mask();
  725. return 0;
  726. }
  727. return -EBUSY;
  728. }
  729. EXPORT_SYMBOL(omap_dispc_request_irq);
  730. void omap_dispc_free_irq(unsigned long irq_mask, void (*callback)(void *data),
  731. void *data)
  732. {
  733. int i;
  734. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  735. if (dispc.irq_handlers[i].callback == callback &&
  736. dispc.irq_handlers[i].data == data) {
  737. dispc.irq_handlers[i].irq_mask = 0;
  738. dispc.irq_handlers[i].callback = NULL;
  739. dispc.irq_handlers[i].data = NULL;
  740. recalc_irq_mask();
  741. return;
  742. }
  743. }
  744. BUG();
  745. }
  746. EXPORT_SYMBOL(omap_dispc_free_irq);
  747. static irqreturn_t omap_dispc_irq_handler(int irq, void *dev)
  748. {
  749. u32 stat;
  750. int i = 0;
  751. enable_lcd_clocks(1);
  752. stat = dispc_read_reg(DISPC_IRQSTATUS);
  753. if (stat & DISPC_IRQ_FRAMEMASK)
  754. complete(&dispc.frame_done);
  755. if (stat & DISPC_IRQ_MASK_ERROR) {
  756. if (printk_ratelimit()) {
  757. dev_err(dispc.fbdev->dev, "irq error status %04x\n",
  758. stat & 0x7fff);
  759. }
  760. }
  761. for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
  762. if (unlikely(dispc.irq_handlers[i].callback &&
  763. (stat & dispc.irq_handlers[i].irq_mask)))
  764. dispc.irq_handlers[i].callback(
  765. dispc.irq_handlers[i].data);
  766. }
  767. dispc_write_reg(DISPC_IRQSTATUS, stat);
  768. enable_lcd_clocks(0);
  769. return IRQ_HANDLED;
  770. }
  771. static int get_dss_clocks(void)
  772. {
  773. dispc.dss_ick = clk_get(dispc.fbdev->dev, "ick");
  774. if (IS_ERR(dispc.dss_ick)) {
  775. dev_err(dispc.fbdev->dev, "can't get ick\n");
  776. return PTR_ERR(dispc.dss_ick);
  777. }
  778. dispc.dss1_fck = clk_get(dispc.fbdev->dev, "dss1_fck");
  779. if (IS_ERR(dispc.dss1_fck)) {
  780. dev_err(dispc.fbdev->dev, "can't get dss1_fck\n");
  781. clk_put(dispc.dss_ick);
  782. return PTR_ERR(dispc.dss1_fck);
  783. }
  784. dispc.dss_54m_fck = clk_get(dispc.fbdev->dev, "tv_fck");
  785. if (IS_ERR(dispc.dss_54m_fck)) {
  786. dev_err(dispc.fbdev->dev, "can't get tv_fck\n");
  787. clk_put(dispc.dss_ick);
  788. clk_put(dispc.dss1_fck);
  789. return PTR_ERR(dispc.dss_54m_fck);
  790. }
  791. return 0;
  792. }
  793. static void put_dss_clocks(void)
  794. {
  795. clk_put(dispc.dss_54m_fck);
  796. clk_put(dispc.dss1_fck);
  797. clk_put(dispc.dss_ick);
  798. }
  799. static void enable_lcd_clocks(int enable)
  800. {
  801. if (enable) {
  802. clk_enable(dispc.dss_ick);
  803. clk_enable(dispc.dss1_fck);
  804. } else {
  805. clk_disable(dispc.dss1_fck);
  806. clk_disable(dispc.dss_ick);
  807. }
  808. }
  809. static void enable_digit_clocks(int enable)
  810. {
  811. if (enable)
  812. clk_enable(dispc.dss_54m_fck);
  813. else
  814. clk_disable(dispc.dss_54m_fck);
  815. }
  816. static void omap_dispc_suspend(void)
  817. {
  818. if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
  819. init_completion(&dispc.frame_done);
  820. omap_dispc_enable_lcd_out(0);
  821. if (!wait_for_completion_timeout(&dispc.frame_done,
  822. msecs_to_jiffies(500))) {
  823. dev_err(dispc.fbdev->dev,
  824. "timeout waiting for FRAME DONE\n");
  825. }
  826. enable_lcd_clocks(0);
  827. }
  828. }
  829. static void omap_dispc_resume(void)
  830. {
  831. if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
  832. enable_lcd_clocks(1);
  833. if (!dispc.ext_mode) {
  834. set_lcd_timings();
  835. load_palette();
  836. }
  837. omap_dispc_enable_lcd_out(1);
  838. }
  839. }
  840. static int omap_dispc_update_window(struct fb_info *fbi,
  841. struct omapfb_update_window *win,
  842. void (*complete_callback)(void *arg),
  843. void *complete_callback_data)
  844. {
  845. return dispc.update_mode == OMAPFB_UPDATE_DISABLED ? -ENODEV : 0;
  846. }
  847. static int mmap_kern(struct omapfb_mem_region *region)
  848. {
  849. struct vm_struct *kvma;
  850. struct vm_area_struct vma;
  851. pgprot_t pgprot;
  852. unsigned long vaddr;
  853. kvma = get_vm_area(region->size, VM_IOREMAP);
  854. if (kvma == NULL) {
  855. dev_err(dispc.fbdev->dev, "can't get kernel vm area\n");
  856. return -ENOMEM;
  857. }
  858. vma.vm_mm = &init_mm;
  859. vaddr = (unsigned long)kvma->addr;
  860. pgprot = pgprot_writecombine(pgprot_kernel);
  861. vma.vm_start = vaddr;
  862. vma.vm_end = vaddr + region->size;
  863. if (io_remap_pfn_range(&vma, vaddr, region->paddr >> PAGE_SHIFT,
  864. region->size, pgprot) < 0) {
  865. dev_err(dispc.fbdev->dev, "kernel mmap for FBMEM failed\n");
  866. return -EAGAIN;
  867. }
  868. region->vaddr = (void *)vaddr;
  869. return 0;
  870. }
  871. static void mmap_user_open(struct vm_area_struct *vma)
  872. {
  873. int plane = (int)vma->vm_private_data;
  874. atomic_inc(&dispc.map_count[plane]);
  875. }
  876. static void mmap_user_close(struct vm_area_struct *vma)
  877. {
  878. int plane = (int)vma->vm_private_data;
  879. atomic_dec(&dispc.map_count[plane]);
  880. }
  881. static const struct vm_operations_struct mmap_user_ops = {
  882. .open = mmap_user_open,
  883. .close = mmap_user_close,
  884. };
  885. static int omap_dispc_mmap_user(struct fb_info *info,
  886. struct vm_area_struct *vma)
  887. {
  888. struct omapfb_plane_struct *plane = info->par;
  889. unsigned long off;
  890. unsigned long start;
  891. u32 len;
  892. if (vma->vm_end - vma->vm_start == 0)
  893. return 0;
  894. if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
  895. return -EINVAL;
  896. off = vma->vm_pgoff << PAGE_SHIFT;
  897. start = info->fix.smem_start;
  898. len = info->fix.smem_len;
  899. if (off >= len)
  900. return -EINVAL;
  901. if ((vma->vm_end - vma->vm_start + off) > len)
  902. return -EINVAL;
  903. off += start;
  904. vma->vm_pgoff = off >> PAGE_SHIFT;
  905. vma->vm_flags |= VM_IO | VM_RESERVED;
  906. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  907. vma->vm_ops = &mmap_user_ops;
  908. vma->vm_private_data = (void *)plane->idx;
  909. if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
  910. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  911. return -EAGAIN;
  912. /* vm_ops.open won't be called for mmap itself. */
  913. atomic_inc(&dispc.map_count[plane->idx]);
  914. return 0;
  915. }
  916. static void unmap_kern(struct omapfb_mem_region *region)
  917. {
  918. vunmap(region->vaddr);
  919. }
  920. static int alloc_palette_ram(void)
  921. {
  922. dispc.palette_vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
  923. MAX_PALETTE_SIZE, &dispc.palette_paddr, GFP_KERNEL);
  924. if (dispc.palette_vaddr == NULL) {
  925. dev_err(dispc.fbdev->dev, "failed to alloc palette memory\n");
  926. return -ENOMEM;
  927. }
  928. return 0;
  929. }
  930. static void free_palette_ram(void)
  931. {
  932. dma_free_writecombine(dispc.fbdev->dev, MAX_PALETTE_SIZE,
  933. dispc.palette_vaddr, dispc.palette_paddr);
  934. }
  935. static int alloc_fbmem(struct omapfb_mem_region *region)
  936. {
  937. region->vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
  938. region->size, &region->paddr, GFP_KERNEL);
  939. if (region->vaddr == NULL) {
  940. dev_err(dispc.fbdev->dev, "unable to allocate FB DMA memory\n");
  941. return -ENOMEM;
  942. }
  943. return 0;
  944. }
  945. static void free_fbmem(struct omapfb_mem_region *region)
  946. {
  947. dma_free_writecombine(dispc.fbdev->dev, region->size,
  948. region->vaddr, region->paddr);
  949. }
  950. static struct resmap *init_resmap(unsigned long start, size_t size)
  951. {
  952. unsigned page_cnt;
  953. struct resmap *res_map;
  954. page_cnt = PAGE_ALIGN(size) / PAGE_SIZE;
  955. res_map =
  956. kzalloc(sizeof(struct resmap) + RESMAP_SIZE(page_cnt), GFP_KERNEL);
  957. if (res_map == NULL)
  958. return NULL;
  959. res_map->start = start;
  960. res_map->page_cnt = page_cnt;
  961. res_map->map = (unsigned long *)(res_map + 1);
  962. return res_map;
  963. }
  964. static void cleanup_resmap(struct resmap *res_map)
  965. {
  966. kfree(res_map);
  967. }
  968. static inline int resmap_mem_type(unsigned long start)
  969. {
  970. if (start >= OMAP2_SRAM_START &&
  971. start < OMAP2_SRAM_START + OMAP2_SRAM_SIZE)
  972. return OMAPFB_MEMTYPE_SRAM;
  973. else
  974. return OMAPFB_MEMTYPE_SDRAM;
  975. }
  976. static inline int resmap_page_reserved(struct resmap *res_map, unsigned page_nr)
  977. {
  978. return *RESMAP_PTR(res_map, page_nr) & RESMAP_MASK(page_nr) ? 1 : 0;
  979. }
  980. static inline void resmap_reserve_page(struct resmap *res_map, unsigned page_nr)
  981. {
  982. BUG_ON(resmap_page_reserved(res_map, page_nr));
  983. *RESMAP_PTR(res_map, page_nr) |= RESMAP_MASK(page_nr);
  984. }
  985. static inline void resmap_free_page(struct resmap *res_map, unsigned page_nr)
  986. {
  987. BUG_ON(!resmap_page_reserved(res_map, page_nr));
  988. *RESMAP_PTR(res_map, page_nr) &= ~RESMAP_MASK(page_nr);
  989. }
  990. static void resmap_reserve_region(unsigned long start, size_t size)
  991. {
  992. struct resmap *res_map;
  993. unsigned start_page;
  994. unsigned end_page;
  995. int mtype;
  996. unsigned i;
  997. mtype = resmap_mem_type(start);
  998. res_map = dispc.res_map[mtype];
  999. dev_dbg(dispc.fbdev->dev, "reserve mem type %d start %08lx size %d\n",
  1000. mtype, start, size);
  1001. start_page = (start - res_map->start) / PAGE_SIZE;
  1002. end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
  1003. for (i = start_page; i < end_page; i++)
  1004. resmap_reserve_page(res_map, i);
  1005. }
  1006. static void resmap_free_region(unsigned long start, size_t size)
  1007. {
  1008. struct resmap *res_map;
  1009. unsigned start_page;
  1010. unsigned end_page;
  1011. unsigned i;
  1012. int mtype;
  1013. mtype = resmap_mem_type(start);
  1014. res_map = dispc.res_map[mtype];
  1015. dev_dbg(dispc.fbdev->dev, "free mem type %d start %08lx size %d\n",
  1016. mtype, start, size);
  1017. start_page = (start - res_map->start) / PAGE_SIZE;
  1018. end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
  1019. for (i = start_page; i < end_page; i++)
  1020. resmap_free_page(res_map, i);
  1021. }
  1022. static unsigned long resmap_alloc_region(int mtype, size_t size)
  1023. {
  1024. unsigned i;
  1025. unsigned total;
  1026. unsigned start_page;
  1027. unsigned long start;
  1028. struct resmap *res_map = dispc.res_map[mtype];
  1029. BUG_ON(mtype >= DISPC_MEMTYPE_NUM || res_map == NULL || !size);
  1030. size = PAGE_ALIGN(size) / PAGE_SIZE;
  1031. start_page = 0;
  1032. total = 0;
  1033. for (i = 0; i < res_map->page_cnt; i++) {
  1034. if (resmap_page_reserved(res_map, i)) {
  1035. start_page = i + 1;
  1036. total = 0;
  1037. } else if (++total == size)
  1038. break;
  1039. }
  1040. if (total < size)
  1041. return 0;
  1042. start = res_map->start + start_page * PAGE_SIZE;
  1043. resmap_reserve_region(start, size * PAGE_SIZE);
  1044. return start;
  1045. }
  1046. /* Note that this will only work for user mappings, we don't deal with
  1047. * kernel mappings here, so fbcon will keep using the old region.
  1048. */
  1049. static int omap_dispc_setup_mem(int plane, size_t size, int mem_type,
  1050. unsigned long *paddr)
  1051. {
  1052. struct omapfb_mem_region *rg;
  1053. unsigned long new_addr = 0;
  1054. if ((unsigned)plane > dispc.mem_desc.region_cnt)
  1055. return -EINVAL;
  1056. if (mem_type >= DISPC_MEMTYPE_NUM)
  1057. return -EINVAL;
  1058. if (dispc.res_map[mem_type] == NULL)
  1059. return -ENOMEM;
  1060. rg = &dispc.mem_desc.region[plane];
  1061. if (size == rg->size && mem_type == rg->type)
  1062. return 0;
  1063. if (atomic_read(&dispc.map_count[plane]))
  1064. return -EBUSY;
  1065. if (rg->size != 0)
  1066. resmap_free_region(rg->paddr, rg->size);
  1067. if (size != 0) {
  1068. new_addr = resmap_alloc_region(mem_type, size);
  1069. if (!new_addr) {
  1070. /* Reallocate old region. */
  1071. resmap_reserve_region(rg->paddr, rg->size);
  1072. return -ENOMEM;
  1073. }
  1074. }
  1075. rg->paddr = new_addr;
  1076. rg->size = size;
  1077. rg->type = mem_type;
  1078. *paddr = new_addr;
  1079. return 0;
  1080. }
  1081. static int setup_fbmem(struct omapfb_mem_desc *req_md)
  1082. {
  1083. struct omapfb_mem_region *rg;
  1084. int i;
  1085. int r;
  1086. unsigned long mem_start[DISPC_MEMTYPE_NUM];
  1087. unsigned long mem_end[DISPC_MEMTYPE_NUM];
  1088. if (!req_md->region_cnt) {
  1089. dev_err(dispc.fbdev->dev, "no memory regions defined\n");
  1090. return -ENOENT;
  1091. }
  1092. rg = &req_md->region[0];
  1093. memset(mem_start, 0xff, sizeof(mem_start));
  1094. memset(mem_end, 0, sizeof(mem_end));
  1095. for (i = 0; i < req_md->region_cnt; i++, rg++) {
  1096. int mtype;
  1097. if (rg->paddr) {
  1098. rg->alloc = 0;
  1099. if (rg->vaddr == NULL) {
  1100. rg->map = 1;
  1101. if ((r = mmap_kern(rg)) < 0)
  1102. return r;
  1103. }
  1104. } else {
  1105. if (rg->type != OMAPFB_MEMTYPE_SDRAM) {
  1106. dev_err(dispc.fbdev->dev,
  1107. "unsupported memory type\n");
  1108. return -EINVAL;
  1109. }
  1110. rg->alloc = rg->map = 1;
  1111. if ((r = alloc_fbmem(rg)) < 0)
  1112. return r;
  1113. }
  1114. mtype = rg->type;
  1115. if (rg->paddr < mem_start[mtype])
  1116. mem_start[mtype] = rg->paddr;
  1117. if (rg->paddr + rg->size > mem_end[mtype])
  1118. mem_end[mtype] = rg->paddr + rg->size;
  1119. }
  1120. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1121. unsigned long start;
  1122. size_t size;
  1123. if (mem_end[i] == 0)
  1124. continue;
  1125. start = mem_start[i];
  1126. size = mem_end[i] - start;
  1127. dispc.res_map[i] = init_resmap(start, size);
  1128. r = -ENOMEM;
  1129. if (dispc.res_map[i] == NULL)
  1130. goto fail;
  1131. /* Initial state is that everything is reserved. This
  1132. * includes possible holes as well, which will never be
  1133. * freed.
  1134. */
  1135. resmap_reserve_region(start, size);
  1136. }
  1137. dispc.mem_desc = *req_md;
  1138. return 0;
  1139. fail:
  1140. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1141. if (dispc.res_map[i] != NULL)
  1142. cleanup_resmap(dispc.res_map[i]);
  1143. }
  1144. return r;
  1145. }
  1146. static void cleanup_fbmem(void)
  1147. {
  1148. struct omapfb_mem_region *rg;
  1149. int i;
  1150. for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
  1151. if (dispc.res_map[i] != NULL)
  1152. cleanup_resmap(dispc.res_map[i]);
  1153. }
  1154. rg = &dispc.mem_desc.region[0];
  1155. for (i = 0; i < dispc.mem_desc.region_cnt; i++, rg++) {
  1156. if (rg->alloc)
  1157. free_fbmem(rg);
  1158. else {
  1159. if (rg->map)
  1160. unmap_kern(rg);
  1161. }
  1162. }
  1163. }
  1164. static int omap_dispc_init(struct omapfb_device *fbdev, int ext_mode,
  1165. struct omapfb_mem_desc *req_vram)
  1166. {
  1167. int r;
  1168. u32 l;
  1169. struct lcd_panel *panel = fbdev->panel;
  1170. int tmo = 10000;
  1171. int skip_init = 0;
  1172. int i;
  1173. memset(&dispc, 0, sizeof(dispc));
  1174. dispc.base = ioremap(DISPC_BASE, SZ_1K);
  1175. if (!dispc.base) {
  1176. dev_err(fbdev->dev, "can't ioremap DISPC\n");
  1177. return -ENOMEM;
  1178. }
  1179. dispc.fbdev = fbdev;
  1180. dispc.ext_mode = ext_mode;
  1181. init_completion(&dispc.frame_done);
  1182. if ((r = get_dss_clocks()) < 0)
  1183. goto fail0;
  1184. enable_lcd_clocks(1);
  1185. #ifdef CONFIG_FB_OMAP_BOOTLOADER_INIT
  1186. l = dispc_read_reg(DISPC_CONTROL);
  1187. /* LCD enabled ? */
  1188. if (l & 1) {
  1189. pr_info("omapfb: skipping hardware initialization\n");
  1190. skip_init = 1;
  1191. }
  1192. #endif
  1193. if (!skip_init) {
  1194. /* Reset monitoring works only w/ the 54M clk */
  1195. enable_digit_clocks(1);
  1196. /* Soft reset */
  1197. MOD_REG_FLD(DISPC_SYSCONFIG, 1 << 1, 1 << 1);
  1198. while (!(dispc_read_reg(DISPC_SYSSTATUS) & 1)) {
  1199. if (!--tmo) {
  1200. dev_err(dispc.fbdev->dev, "soft reset failed\n");
  1201. r = -ENODEV;
  1202. enable_digit_clocks(0);
  1203. goto fail1;
  1204. }
  1205. }
  1206. enable_digit_clocks(0);
  1207. }
  1208. /* Enable smart standby/idle, autoidle and wakeup */
  1209. l = dispc_read_reg(DISPC_SYSCONFIG);
  1210. l &= ~((3 << 12) | (3 << 3));
  1211. l |= (2 << 12) | (2 << 3) | (1 << 2) | (1 << 0);
  1212. dispc_write_reg(DISPC_SYSCONFIG, l);
  1213. omap_writel(1 << 0, DSS_BASE + DSS_SYSCONFIG);
  1214. /* Set functional clock autogating */
  1215. l = dispc_read_reg(DISPC_CONFIG);
  1216. l |= 1 << 9;
  1217. dispc_write_reg(DISPC_CONFIG, l);
  1218. l = dispc_read_reg(DISPC_IRQSTATUS);
  1219. dispc_write_reg(DISPC_IRQSTATUS, l);
  1220. recalc_irq_mask();
  1221. if ((r = request_irq(INT_24XX_DSS_IRQ, omap_dispc_irq_handler,
  1222. 0, MODULE_NAME, fbdev)) < 0) {
  1223. dev_err(dispc.fbdev->dev, "can't get DSS IRQ\n");
  1224. goto fail1;
  1225. }
  1226. /* L3 firewall setting: enable access to OCM RAM */
  1227. __raw_writel(0x402000b0, OMAP2_IO_ADDRESS(0x680050a0));
  1228. if ((r = alloc_palette_ram()) < 0)
  1229. goto fail2;
  1230. if ((r = setup_fbmem(req_vram)) < 0)
  1231. goto fail3;
  1232. if (!skip_init) {
  1233. for (i = 0; i < dispc.mem_desc.region_cnt; i++) {
  1234. memset(dispc.mem_desc.region[i].vaddr, 0,
  1235. dispc.mem_desc.region[i].size);
  1236. }
  1237. /* Set logic clock to fck, pixel clock to fck/2 for now */
  1238. MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(16, 8), 1 << 16);
  1239. MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(0, 8), 2 << 0);
  1240. setup_plane_fifo(0, ext_mode);
  1241. setup_plane_fifo(1, ext_mode);
  1242. setup_plane_fifo(2, ext_mode);
  1243. setup_color_conv_coef();
  1244. set_lcd_tft_mode(panel->config & OMAP_LCDC_PANEL_TFT);
  1245. set_load_mode(DISPC_LOAD_FRAME_ONLY);
  1246. if (!ext_mode) {
  1247. set_lcd_data_lines(panel->data_lines);
  1248. omap_dispc_set_lcd_size(panel->x_res, panel->y_res);
  1249. set_lcd_timings();
  1250. } else
  1251. set_lcd_data_lines(panel->bpp);
  1252. enable_rfbi_mode(ext_mode);
  1253. }
  1254. l = dispc_read_reg(DISPC_REVISION);
  1255. pr_info("omapfb: DISPC version %d.%d initialized\n",
  1256. l >> 4 & 0x0f, l & 0x0f);
  1257. enable_lcd_clocks(0);
  1258. return 0;
  1259. fail3:
  1260. free_palette_ram();
  1261. fail2:
  1262. free_irq(INT_24XX_DSS_IRQ, fbdev);
  1263. fail1:
  1264. enable_lcd_clocks(0);
  1265. put_dss_clocks();
  1266. fail0:
  1267. iounmap(dispc.base);
  1268. return r;
  1269. }
  1270. static void omap_dispc_cleanup(void)
  1271. {
  1272. int i;
  1273. omap_dispc_set_update_mode(OMAPFB_UPDATE_DISABLED);
  1274. /* This will also disable clocks that are on */
  1275. for (i = 0; i < dispc.mem_desc.region_cnt; i++)
  1276. omap_dispc_enable_plane(i, 0);
  1277. cleanup_fbmem();
  1278. free_palette_ram();
  1279. free_irq(INT_24XX_DSS_IRQ, dispc.fbdev);
  1280. put_dss_clocks();
  1281. iounmap(dispc.base);
  1282. }
  1283. const struct lcd_ctrl omap2_int_ctrl = {
  1284. .name = "internal",
  1285. .init = omap_dispc_init,
  1286. .cleanup = omap_dispc_cleanup,
  1287. .get_caps = omap_dispc_get_caps,
  1288. .set_update_mode = omap_dispc_set_update_mode,
  1289. .get_update_mode = omap_dispc_get_update_mode,
  1290. .update_window = omap_dispc_update_window,
  1291. .suspend = omap_dispc_suspend,
  1292. .resume = omap_dispc_resume,
  1293. .setup_plane = omap_dispc_setup_plane,
  1294. .setup_mem = omap_dispc_setup_mem,
  1295. .set_scale = omap_dispc_set_scale,
  1296. .enable_plane = omap_dispc_enable_plane,
  1297. .set_color_key = omap_dispc_set_color_key,
  1298. .get_color_key = omap_dispc_get_color_key,
  1299. .mmap = omap_dispc_mmap_user,
  1300. };