ap_bus.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733
  1. /*
  2. * linux/drivers/s390/crypto/ap_bus.c
  3. *
  4. * Copyright (C) 2006 IBM Corporation
  5. * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
  6. * Martin Schwidefsky <schwidefsky@de.ibm.com>
  7. * Ralph Wuerthner <rwuerthn@de.ibm.com>
  8. * Felix Beck <felix.beck@de.ibm.com>
  9. *
  10. * Adjunct processor bus.
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2, or (at your option)
  15. * any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #define KMSG_COMPONENT "ap"
  27. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/delay.h>
  31. #include <linux/err.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/workqueue.h>
  34. #include <linux/notifier.h>
  35. #include <linux/kthread.h>
  36. #include <linux/mutex.h>
  37. #include <asm/reset.h>
  38. #include <asm/airq.h>
  39. #include <asm/atomic.h>
  40. #include <asm/system.h>
  41. #include <asm/isc.h>
  42. #include <linux/hrtimer.h>
  43. #include <linux/ktime.h>
  44. #include "ap_bus.h"
  45. /* Some prototypes. */
  46. static void ap_scan_bus(struct work_struct *);
  47. static void ap_poll_all(unsigned long);
  48. static enum hrtimer_restart ap_poll_timeout(struct hrtimer *);
  49. static int ap_poll_thread_start(void);
  50. static void ap_poll_thread_stop(void);
  51. static void ap_request_timeout(unsigned long);
  52. static inline void ap_schedule_poll_timer(void);
  53. static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags);
  54. static int ap_device_remove(struct device *dev);
  55. static int ap_device_probe(struct device *dev);
  56. static void ap_interrupt_handler(void *unused1, void *unused2);
  57. static void ap_reset(struct ap_device *ap_dev);
  58. static void ap_config_timeout(unsigned long ptr);
  59. static int ap_select_domain(void);
  60. /*
  61. * Module description.
  62. */
  63. MODULE_AUTHOR("IBM Corporation");
  64. MODULE_DESCRIPTION("Adjunct Processor Bus driver, "
  65. "Copyright 2006 IBM Corporation");
  66. MODULE_LICENSE("GPL");
  67. /*
  68. * Module parameter
  69. */
  70. int ap_domain_index = -1; /* Adjunct Processor Domain Index */
  71. module_param_named(domain, ap_domain_index, int, 0000);
  72. MODULE_PARM_DESC(domain, "domain index for ap devices");
  73. EXPORT_SYMBOL(ap_domain_index);
  74. static int ap_thread_flag = 0;
  75. module_param_named(poll_thread, ap_thread_flag, int, 0000);
  76. MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
  77. static struct device *ap_root_device = NULL;
  78. static DEFINE_SPINLOCK(ap_device_list_lock);
  79. static LIST_HEAD(ap_device_list);
  80. /*
  81. * Workqueue & timer for bus rescan.
  82. */
  83. static struct workqueue_struct *ap_work_queue;
  84. static struct timer_list ap_config_timer;
  85. static int ap_config_time = AP_CONFIG_TIME;
  86. static DECLARE_WORK(ap_config_work, ap_scan_bus);
  87. /*
  88. * Tasklet & timer for AP request polling and interrupts
  89. */
  90. static DECLARE_TASKLET(ap_tasklet, ap_poll_all, 0);
  91. static atomic_t ap_poll_requests = ATOMIC_INIT(0);
  92. static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
  93. static struct task_struct *ap_poll_kthread = NULL;
  94. static DEFINE_MUTEX(ap_poll_thread_mutex);
  95. static void *ap_interrupt_indicator;
  96. static struct hrtimer ap_poll_timer;
  97. /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
  98. * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
  99. static unsigned long long poll_timeout = 250000;
  100. /* Suspend flag */
  101. static int ap_suspend_flag;
  102. /* Flag to check if domain was set through module parameter domain=. This is
  103. * important when supsend and resume is done in a z/VM environment where the
  104. * domain might change. */
  105. static int user_set_domain = 0;
  106. static struct bus_type ap_bus_type;
  107. /**
  108. * ap_using_interrupts() - Returns non-zero if interrupt support is
  109. * available.
  110. */
  111. static inline int ap_using_interrupts(void)
  112. {
  113. return ap_interrupt_indicator != NULL;
  114. }
  115. /**
  116. * ap_intructions_available() - Test if AP instructions are available.
  117. *
  118. * Returns 0 if the AP instructions are installed.
  119. */
  120. static inline int ap_instructions_available(void)
  121. {
  122. register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
  123. register unsigned long reg1 asm ("1") = -ENODEV;
  124. register unsigned long reg2 asm ("2") = 0UL;
  125. asm volatile(
  126. " .long 0xb2af0000\n" /* PQAP(TAPQ) */
  127. "0: la %1,0\n"
  128. "1:\n"
  129. EX_TABLE(0b, 1b)
  130. : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
  131. return reg1;
  132. }
  133. /**
  134. * ap_interrupts_available(): Test if AP interrupts are available.
  135. *
  136. * Returns 1 if AP interrupts are available.
  137. */
  138. static int ap_interrupts_available(void)
  139. {
  140. unsigned long long facility_bits[2];
  141. if (stfle(facility_bits, 2) <= 1)
  142. return 0;
  143. if (!(facility_bits[0] & (1ULL << 61)) ||
  144. !(facility_bits[1] & (1ULL << 62)))
  145. return 0;
  146. return 1;
  147. }
  148. /**
  149. * ap_test_queue(): Test adjunct processor queue.
  150. * @qid: The AP queue number
  151. * @queue_depth: Pointer to queue depth value
  152. * @device_type: Pointer to device type value
  153. *
  154. * Returns AP queue status structure.
  155. */
  156. static inline struct ap_queue_status
  157. ap_test_queue(ap_qid_t qid, int *queue_depth, int *device_type)
  158. {
  159. register unsigned long reg0 asm ("0") = qid;
  160. register struct ap_queue_status reg1 asm ("1");
  161. register unsigned long reg2 asm ("2") = 0UL;
  162. asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
  163. : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
  164. *device_type = (int) (reg2 >> 24);
  165. *queue_depth = (int) (reg2 & 0xff);
  166. return reg1;
  167. }
  168. /**
  169. * ap_reset_queue(): Reset adjunct processor queue.
  170. * @qid: The AP queue number
  171. *
  172. * Returns AP queue status structure.
  173. */
  174. static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
  175. {
  176. register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
  177. register struct ap_queue_status reg1 asm ("1");
  178. register unsigned long reg2 asm ("2") = 0UL;
  179. asm volatile(
  180. ".long 0xb2af0000" /* PQAP(RAPQ) */
  181. : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
  182. return reg1;
  183. }
  184. #ifdef CONFIG_64BIT
  185. /**
  186. * ap_queue_interruption_control(): Enable interruption for a specific AP.
  187. * @qid: The AP queue number
  188. * @ind: The notification indicator byte
  189. *
  190. * Returns AP queue status.
  191. */
  192. static inline struct ap_queue_status
  193. ap_queue_interruption_control(ap_qid_t qid, void *ind)
  194. {
  195. register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
  196. register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
  197. register struct ap_queue_status reg1_out asm ("1");
  198. register void *reg2 asm ("2") = ind;
  199. asm volatile(
  200. ".long 0xb2af0000" /* PQAP(RAPQ) */
  201. : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
  202. :
  203. : "cc" );
  204. return reg1_out;
  205. }
  206. #endif
  207. /**
  208. * ap_queue_enable_interruption(): Enable interruption on an AP.
  209. * @qid: The AP queue number
  210. * @ind: the notification indicator byte
  211. *
  212. * Enables interruption on AP queue via ap_queue_interruption_control(). Based
  213. * on the return value it waits a while and tests the AP queue if interrupts
  214. * have been switched on using ap_test_queue().
  215. */
  216. static int ap_queue_enable_interruption(ap_qid_t qid, void *ind)
  217. {
  218. #ifdef CONFIG_64BIT
  219. struct ap_queue_status status;
  220. int t_depth, t_device_type, rc, i;
  221. rc = -EBUSY;
  222. status = ap_queue_interruption_control(qid, ind);
  223. for (i = 0; i < AP_MAX_RESET; i++) {
  224. switch (status.response_code) {
  225. case AP_RESPONSE_NORMAL:
  226. if (status.int_enabled)
  227. return 0;
  228. break;
  229. case AP_RESPONSE_RESET_IN_PROGRESS:
  230. case AP_RESPONSE_BUSY:
  231. break;
  232. case AP_RESPONSE_Q_NOT_AVAIL:
  233. case AP_RESPONSE_DECONFIGURED:
  234. case AP_RESPONSE_CHECKSTOPPED:
  235. case AP_RESPONSE_INVALID_ADDRESS:
  236. return -ENODEV;
  237. case AP_RESPONSE_OTHERWISE_CHANGED:
  238. if (status.int_enabled)
  239. return 0;
  240. break;
  241. default:
  242. break;
  243. }
  244. if (i < AP_MAX_RESET - 1) {
  245. udelay(5);
  246. status = ap_test_queue(qid, &t_depth, &t_device_type);
  247. }
  248. }
  249. return rc;
  250. #else
  251. return -EINVAL;
  252. #endif
  253. }
  254. /**
  255. * __ap_send(): Send message to adjunct processor queue.
  256. * @qid: The AP queue number
  257. * @psmid: The program supplied message identifier
  258. * @msg: The message text
  259. * @length: The message length
  260. *
  261. * Returns AP queue status structure.
  262. * Condition code 1 on NQAP can't happen because the L bit is 1.
  263. * Condition code 2 on NQAP also means the send is incomplete,
  264. * because a segment boundary was reached. The NQAP is repeated.
  265. */
  266. static inline struct ap_queue_status
  267. __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
  268. {
  269. typedef struct { char _[length]; } msgblock;
  270. register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
  271. register struct ap_queue_status reg1 asm ("1");
  272. register unsigned long reg2 asm ("2") = (unsigned long) msg;
  273. register unsigned long reg3 asm ("3") = (unsigned long) length;
  274. register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
  275. register unsigned long reg5 asm ("5") = (unsigned int) psmid;
  276. asm volatile (
  277. "0: .long 0xb2ad0042\n" /* DQAP */
  278. " brc 2,0b"
  279. : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
  280. : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
  281. : "cc" );
  282. return reg1;
  283. }
  284. int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
  285. {
  286. struct ap_queue_status status;
  287. status = __ap_send(qid, psmid, msg, length);
  288. switch (status.response_code) {
  289. case AP_RESPONSE_NORMAL:
  290. return 0;
  291. case AP_RESPONSE_Q_FULL:
  292. case AP_RESPONSE_RESET_IN_PROGRESS:
  293. return -EBUSY;
  294. default: /* Device is gone. */
  295. return -ENODEV;
  296. }
  297. }
  298. EXPORT_SYMBOL(ap_send);
  299. /**
  300. * __ap_recv(): Receive message from adjunct processor queue.
  301. * @qid: The AP queue number
  302. * @psmid: Pointer to program supplied message identifier
  303. * @msg: The message text
  304. * @length: The message length
  305. *
  306. * Returns AP queue status structure.
  307. * Condition code 1 on DQAP means the receive has taken place
  308. * but only partially. The response is incomplete, hence the
  309. * DQAP is repeated.
  310. * Condition code 2 on DQAP also means the receive is incomplete,
  311. * this time because a segment boundary was reached. Again, the
  312. * DQAP is repeated.
  313. * Note that gpr2 is used by the DQAP instruction to keep track of
  314. * any 'residual' length, in case the instruction gets interrupted.
  315. * Hence it gets zeroed before the instruction.
  316. */
  317. static inline struct ap_queue_status
  318. __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
  319. {
  320. typedef struct { char _[length]; } msgblock;
  321. register unsigned long reg0 asm("0") = qid | 0x80000000UL;
  322. register struct ap_queue_status reg1 asm ("1");
  323. register unsigned long reg2 asm("2") = 0UL;
  324. register unsigned long reg4 asm("4") = (unsigned long) msg;
  325. register unsigned long reg5 asm("5") = (unsigned long) length;
  326. register unsigned long reg6 asm("6") = 0UL;
  327. register unsigned long reg7 asm("7") = 0UL;
  328. asm volatile(
  329. "0: .long 0xb2ae0064\n"
  330. " brc 6,0b\n"
  331. : "+d" (reg0), "=d" (reg1), "+d" (reg2),
  332. "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
  333. "=m" (*(msgblock *) msg) : : "cc" );
  334. *psmid = (((unsigned long long) reg6) << 32) + reg7;
  335. return reg1;
  336. }
  337. int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
  338. {
  339. struct ap_queue_status status;
  340. status = __ap_recv(qid, psmid, msg, length);
  341. switch (status.response_code) {
  342. case AP_RESPONSE_NORMAL:
  343. return 0;
  344. case AP_RESPONSE_NO_PENDING_REPLY:
  345. if (status.queue_empty)
  346. return -ENOENT;
  347. return -EBUSY;
  348. case AP_RESPONSE_RESET_IN_PROGRESS:
  349. return -EBUSY;
  350. default:
  351. return -ENODEV;
  352. }
  353. }
  354. EXPORT_SYMBOL(ap_recv);
  355. /**
  356. * ap_query_queue(): Check if an AP queue is available.
  357. * @qid: The AP queue number
  358. * @queue_depth: Pointer to queue depth value
  359. * @device_type: Pointer to device type value
  360. *
  361. * The test is repeated for AP_MAX_RESET times.
  362. */
  363. static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type)
  364. {
  365. struct ap_queue_status status;
  366. int t_depth, t_device_type, rc, i;
  367. rc = -EBUSY;
  368. for (i = 0; i < AP_MAX_RESET; i++) {
  369. status = ap_test_queue(qid, &t_depth, &t_device_type);
  370. switch (status.response_code) {
  371. case AP_RESPONSE_NORMAL:
  372. *queue_depth = t_depth + 1;
  373. *device_type = t_device_type;
  374. rc = 0;
  375. break;
  376. case AP_RESPONSE_Q_NOT_AVAIL:
  377. rc = -ENODEV;
  378. break;
  379. case AP_RESPONSE_RESET_IN_PROGRESS:
  380. break;
  381. case AP_RESPONSE_DECONFIGURED:
  382. rc = -ENODEV;
  383. break;
  384. case AP_RESPONSE_CHECKSTOPPED:
  385. rc = -ENODEV;
  386. break;
  387. case AP_RESPONSE_INVALID_ADDRESS:
  388. rc = -ENODEV;
  389. break;
  390. case AP_RESPONSE_OTHERWISE_CHANGED:
  391. break;
  392. case AP_RESPONSE_BUSY:
  393. break;
  394. default:
  395. BUG();
  396. }
  397. if (rc != -EBUSY)
  398. break;
  399. if (i < AP_MAX_RESET - 1)
  400. udelay(5);
  401. }
  402. return rc;
  403. }
  404. /**
  405. * ap_init_queue(): Reset an AP queue.
  406. * @qid: The AP queue number
  407. *
  408. * Reset an AP queue and wait for it to become available again.
  409. */
  410. static int ap_init_queue(ap_qid_t qid)
  411. {
  412. struct ap_queue_status status;
  413. int rc, dummy, i;
  414. rc = -ENODEV;
  415. status = ap_reset_queue(qid);
  416. for (i = 0; i < AP_MAX_RESET; i++) {
  417. switch (status.response_code) {
  418. case AP_RESPONSE_NORMAL:
  419. if (status.queue_empty)
  420. rc = 0;
  421. break;
  422. case AP_RESPONSE_Q_NOT_AVAIL:
  423. case AP_RESPONSE_DECONFIGURED:
  424. case AP_RESPONSE_CHECKSTOPPED:
  425. i = AP_MAX_RESET; /* return with -ENODEV */
  426. break;
  427. case AP_RESPONSE_RESET_IN_PROGRESS:
  428. rc = -EBUSY;
  429. case AP_RESPONSE_BUSY:
  430. default:
  431. break;
  432. }
  433. if (rc != -ENODEV && rc != -EBUSY)
  434. break;
  435. if (i < AP_MAX_RESET - 1) {
  436. udelay(5);
  437. status = ap_test_queue(qid, &dummy, &dummy);
  438. }
  439. }
  440. if (rc == 0 && ap_using_interrupts()) {
  441. rc = ap_queue_enable_interruption(qid, ap_interrupt_indicator);
  442. /* If interruption mode is supported by the machine,
  443. * but an AP can not be enabled for interruption then
  444. * the AP will be discarded. */
  445. if (rc)
  446. pr_err("Registering adapter interrupts for "
  447. "AP %d failed\n", AP_QID_DEVICE(qid));
  448. }
  449. return rc;
  450. }
  451. /**
  452. * ap_increase_queue_count(): Arm request timeout.
  453. * @ap_dev: Pointer to an AP device.
  454. *
  455. * Arm request timeout if an AP device was idle and a new request is submitted.
  456. */
  457. static void ap_increase_queue_count(struct ap_device *ap_dev)
  458. {
  459. int timeout = ap_dev->drv->request_timeout;
  460. ap_dev->queue_count++;
  461. if (ap_dev->queue_count == 1) {
  462. mod_timer(&ap_dev->timeout, jiffies + timeout);
  463. ap_dev->reset = AP_RESET_ARMED;
  464. }
  465. }
  466. /**
  467. * ap_decrease_queue_count(): Decrease queue count.
  468. * @ap_dev: Pointer to an AP device.
  469. *
  470. * If AP device is still alive, re-schedule request timeout if there are still
  471. * pending requests.
  472. */
  473. static void ap_decrease_queue_count(struct ap_device *ap_dev)
  474. {
  475. int timeout = ap_dev->drv->request_timeout;
  476. ap_dev->queue_count--;
  477. if (ap_dev->queue_count > 0)
  478. mod_timer(&ap_dev->timeout, jiffies + timeout);
  479. else
  480. /*
  481. * The timeout timer should to be disabled now - since
  482. * del_timer_sync() is very expensive, we just tell via the
  483. * reset flag to ignore the pending timeout timer.
  484. */
  485. ap_dev->reset = AP_RESET_IGNORE;
  486. }
  487. /*
  488. * AP device related attributes.
  489. */
  490. static ssize_t ap_hwtype_show(struct device *dev,
  491. struct device_attribute *attr, char *buf)
  492. {
  493. struct ap_device *ap_dev = to_ap_dev(dev);
  494. return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
  495. }
  496. static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
  497. static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
  498. char *buf)
  499. {
  500. struct ap_device *ap_dev = to_ap_dev(dev);
  501. return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
  502. }
  503. static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
  504. static ssize_t ap_request_count_show(struct device *dev,
  505. struct device_attribute *attr,
  506. char *buf)
  507. {
  508. struct ap_device *ap_dev = to_ap_dev(dev);
  509. int rc;
  510. spin_lock_bh(&ap_dev->lock);
  511. rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
  512. spin_unlock_bh(&ap_dev->lock);
  513. return rc;
  514. }
  515. static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
  516. static ssize_t ap_modalias_show(struct device *dev,
  517. struct device_attribute *attr, char *buf)
  518. {
  519. return sprintf(buf, "ap:t%02X", to_ap_dev(dev)->device_type);
  520. }
  521. static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
  522. static struct attribute *ap_dev_attrs[] = {
  523. &dev_attr_hwtype.attr,
  524. &dev_attr_depth.attr,
  525. &dev_attr_request_count.attr,
  526. &dev_attr_modalias.attr,
  527. NULL
  528. };
  529. static struct attribute_group ap_dev_attr_group = {
  530. .attrs = ap_dev_attrs
  531. };
  532. /**
  533. * ap_bus_match()
  534. * @dev: Pointer to device
  535. * @drv: Pointer to device_driver
  536. *
  537. * AP bus driver registration/unregistration.
  538. */
  539. static int ap_bus_match(struct device *dev, struct device_driver *drv)
  540. {
  541. struct ap_device *ap_dev = to_ap_dev(dev);
  542. struct ap_driver *ap_drv = to_ap_drv(drv);
  543. struct ap_device_id *id;
  544. /*
  545. * Compare device type of the device with the list of
  546. * supported types of the device_driver.
  547. */
  548. for (id = ap_drv->ids; id->match_flags; id++) {
  549. if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
  550. (id->dev_type != ap_dev->device_type))
  551. continue;
  552. return 1;
  553. }
  554. return 0;
  555. }
  556. /**
  557. * ap_uevent(): Uevent function for AP devices.
  558. * @dev: Pointer to device
  559. * @env: Pointer to kobj_uevent_env
  560. *
  561. * It sets up a single environment variable DEV_TYPE which contains the
  562. * hardware device type.
  563. */
  564. static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
  565. {
  566. struct ap_device *ap_dev = to_ap_dev(dev);
  567. int retval = 0;
  568. if (!ap_dev)
  569. return -ENODEV;
  570. /* Set up DEV_TYPE environment variable. */
  571. retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
  572. if (retval)
  573. return retval;
  574. /* Add MODALIAS= */
  575. retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
  576. return retval;
  577. }
  578. static int ap_bus_suspend(struct device *dev, pm_message_t state)
  579. {
  580. struct ap_device *ap_dev = to_ap_dev(dev);
  581. unsigned long flags;
  582. if (!ap_suspend_flag) {
  583. ap_suspend_flag = 1;
  584. /* Disable scanning for devices, thus we do not want to scan
  585. * for them after removing.
  586. */
  587. del_timer_sync(&ap_config_timer);
  588. if (ap_work_queue != NULL) {
  589. destroy_workqueue(ap_work_queue);
  590. ap_work_queue = NULL;
  591. }
  592. tasklet_disable(&ap_tasklet);
  593. }
  594. /* Poll on the device until all requests are finished. */
  595. do {
  596. flags = 0;
  597. spin_lock_bh(&ap_dev->lock);
  598. __ap_poll_device(ap_dev, &flags);
  599. spin_unlock_bh(&ap_dev->lock);
  600. } while ((flags & 1) || (flags & 2));
  601. spin_lock_bh(&ap_dev->lock);
  602. ap_dev->unregistered = 1;
  603. spin_unlock_bh(&ap_dev->lock);
  604. return 0;
  605. }
  606. static int ap_bus_resume(struct device *dev)
  607. {
  608. int rc = 0;
  609. struct ap_device *ap_dev = to_ap_dev(dev);
  610. if (ap_suspend_flag) {
  611. ap_suspend_flag = 0;
  612. if (!ap_interrupts_available())
  613. ap_interrupt_indicator = NULL;
  614. if (!user_set_domain) {
  615. ap_domain_index = -1;
  616. ap_select_domain();
  617. }
  618. init_timer(&ap_config_timer);
  619. ap_config_timer.function = ap_config_timeout;
  620. ap_config_timer.data = 0;
  621. ap_config_timer.expires = jiffies + ap_config_time * HZ;
  622. add_timer(&ap_config_timer);
  623. ap_work_queue = create_singlethread_workqueue("kapwork");
  624. if (!ap_work_queue)
  625. return -ENOMEM;
  626. tasklet_enable(&ap_tasklet);
  627. if (!ap_using_interrupts())
  628. ap_schedule_poll_timer();
  629. else
  630. tasklet_schedule(&ap_tasklet);
  631. if (ap_thread_flag)
  632. rc = ap_poll_thread_start();
  633. }
  634. if (AP_QID_QUEUE(ap_dev->qid) != ap_domain_index) {
  635. spin_lock_bh(&ap_dev->lock);
  636. ap_dev->qid = AP_MKQID(AP_QID_DEVICE(ap_dev->qid),
  637. ap_domain_index);
  638. spin_unlock_bh(&ap_dev->lock);
  639. }
  640. queue_work(ap_work_queue, &ap_config_work);
  641. return rc;
  642. }
  643. static struct bus_type ap_bus_type = {
  644. .name = "ap",
  645. .match = &ap_bus_match,
  646. .uevent = &ap_uevent,
  647. .suspend = ap_bus_suspend,
  648. .resume = ap_bus_resume
  649. };
  650. static int ap_device_probe(struct device *dev)
  651. {
  652. struct ap_device *ap_dev = to_ap_dev(dev);
  653. struct ap_driver *ap_drv = to_ap_drv(dev->driver);
  654. int rc;
  655. ap_dev->drv = ap_drv;
  656. rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
  657. if (!rc) {
  658. spin_lock_bh(&ap_device_list_lock);
  659. list_add(&ap_dev->list, &ap_device_list);
  660. spin_unlock_bh(&ap_device_list_lock);
  661. }
  662. return rc;
  663. }
  664. /**
  665. * __ap_flush_queue(): Flush requests.
  666. * @ap_dev: Pointer to the AP device
  667. *
  668. * Flush all requests from the request/pending queue of an AP device.
  669. */
  670. static void __ap_flush_queue(struct ap_device *ap_dev)
  671. {
  672. struct ap_message *ap_msg, *next;
  673. list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
  674. list_del_init(&ap_msg->list);
  675. ap_dev->pendingq_count--;
  676. ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
  677. }
  678. list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
  679. list_del_init(&ap_msg->list);
  680. ap_dev->requestq_count--;
  681. ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
  682. }
  683. }
  684. void ap_flush_queue(struct ap_device *ap_dev)
  685. {
  686. spin_lock_bh(&ap_dev->lock);
  687. __ap_flush_queue(ap_dev);
  688. spin_unlock_bh(&ap_dev->lock);
  689. }
  690. EXPORT_SYMBOL(ap_flush_queue);
  691. static int ap_device_remove(struct device *dev)
  692. {
  693. struct ap_device *ap_dev = to_ap_dev(dev);
  694. struct ap_driver *ap_drv = ap_dev->drv;
  695. ap_flush_queue(ap_dev);
  696. del_timer_sync(&ap_dev->timeout);
  697. spin_lock_bh(&ap_device_list_lock);
  698. list_del_init(&ap_dev->list);
  699. spin_unlock_bh(&ap_device_list_lock);
  700. if (ap_drv->remove)
  701. ap_drv->remove(ap_dev);
  702. spin_lock_bh(&ap_dev->lock);
  703. atomic_sub(ap_dev->queue_count, &ap_poll_requests);
  704. spin_unlock_bh(&ap_dev->lock);
  705. return 0;
  706. }
  707. int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
  708. char *name)
  709. {
  710. struct device_driver *drv = &ap_drv->driver;
  711. drv->bus = &ap_bus_type;
  712. drv->probe = ap_device_probe;
  713. drv->remove = ap_device_remove;
  714. drv->owner = owner;
  715. drv->name = name;
  716. return driver_register(drv);
  717. }
  718. EXPORT_SYMBOL(ap_driver_register);
  719. void ap_driver_unregister(struct ap_driver *ap_drv)
  720. {
  721. driver_unregister(&ap_drv->driver);
  722. }
  723. EXPORT_SYMBOL(ap_driver_unregister);
  724. /*
  725. * AP bus attributes.
  726. */
  727. static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
  728. {
  729. return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
  730. }
  731. static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
  732. static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
  733. {
  734. return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
  735. }
  736. static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
  737. {
  738. return snprintf(buf, PAGE_SIZE, "%d\n",
  739. ap_using_interrupts() ? 1 : 0);
  740. }
  741. static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
  742. static ssize_t ap_config_time_store(struct bus_type *bus,
  743. const char *buf, size_t count)
  744. {
  745. int time;
  746. if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
  747. return -EINVAL;
  748. ap_config_time = time;
  749. if (!timer_pending(&ap_config_timer) ||
  750. !mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ)) {
  751. ap_config_timer.expires = jiffies + ap_config_time * HZ;
  752. add_timer(&ap_config_timer);
  753. }
  754. return count;
  755. }
  756. static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
  757. static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
  758. {
  759. return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
  760. }
  761. static ssize_t ap_poll_thread_store(struct bus_type *bus,
  762. const char *buf, size_t count)
  763. {
  764. int flag, rc;
  765. if (sscanf(buf, "%d\n", &flag) != 1)
  766. return -EINVAL;
  767. if (flag) {
  768. rc = ap_poll_thread_start();
  769. if (rc)
  770. return rc;
  771. }
  772. else
  773. ap_poll_thread_stop();
  774. return count;
  775. }
  776. static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
  777. static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
  778. {
  779. return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
  780. }
  781. static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
  782. size_t count)
  783. {
  784. unsigned long long time;
  785. ktime_t hr_time;
  786. /* 120 seconds = maximum poll interval */
  787. if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
  788. time > 120000000000ULL)
  789. return -EINVAL;
  790. poll_timeout = time;
  791. hr_time = ktime_set(0, poll_timeout);
  792. if (!hrtimer_is_queued(&ap_poll_timer) ||
  793. !hrtimer_forward(&ap_poll_timer, hrtimer_get_expires(&ap_poll_timer), hr_time)) {
  794. hrtimer_set_expires(&ap_poll_timer, hr_time);
  795. hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
  796. }
  797. return count;
  798. }
  799. static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
  800. static struct bus_attribute *const ap_bus_attrs[] = {
  801. &bus_attr_ap_domain,
  802. &bus_attr_config_time,
  803. &bus_attr_poll_thread,
  804. &bus_attr_ap_interrupts,
  805. &bus_attr_poll_timeout,
  806. NULL,
  807. };
  808. /**
  809. * ap_select_domain(): Select an AP domain.
  810. *
  811. * Pick one of the 16 AP domains.
  812. */
  813. static int ap_select_domain(void)
  814. {
  815. int queue_depth, device_type, count, max_count, best_domain;
  816. int rc, i, j;
  817. /*
  818. * We want to use a single domain. Either the one specified with
  819. * the "domain=" parameter or the domain with the maximum number
  820. * of devices.
  821. */
  822. if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS)
  823. /* Domain has already been selected. */
  824. return 0;
  825. best_domain = -1;
  826. max_count = 0;
  827. for (i = 0; i < AP_DOMAINS; i++) {
  828. count = 0;
  829. for (j = 0; j < AP_DEVICES; j++) {
  830. ap_qid_t qid = AP_MKQID(j, i);
  831. rc = ap_query_queue(qid, &queue_depth, &device_type);
  832. if (rc)
  833. continue;
  834. count++;
  835. }
  836. if (count > max_count) {
  837. max_count = count;
  838. best_domain = i;
  839. }
  840. }
  841. if (best_domain >= 0){
  842. ap_domain_index = best_domain;
  843. return 0;
  844. }
  845. return -ENODEV;
  846. }
  847. /**
  848. * ap_probe_device_type(): Find the device type of an AP.
  849. * @ap_dev: pointer to the AP device.
  850. *
  851. * Find the device type if query queue returned a device type of 0.
  852. */
  853. static int ap_probe_device_type(struct ap_device *ap_dev)
  854. {
  855. static unsigned char msg[] = {
  856. 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,
  857. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  858. 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,
  859. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  860. 0x01,0x00,0x43,0x43,0x41,0x2d,0x41,0x50,
  861. 0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,
  862. 0x00,0x00,0x00,0x00,0x50,0x4b,0x00,0x00,
  863. 0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,
  864. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  865. 0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,
  866. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  867. 0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,
  868. 0x00,0x00,0x54,0x32,0x01,0x00,0xa0,0x00,
  869. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  870. 0x00,0x00,0x00,0x00,0xb8,0x05,0x00,0x00,
  871. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  872. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  873. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  874. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  875. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  876. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  877. 0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,
  878. 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
  879. 0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,
  880. 0x49,0x43,0x53,0x46,0x20,0x20,0x20,0x20,
  881. 0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,
  882. 0x2d,0x31,0x2e,0x32,0x37,0x00,0x11,0x22,
  883. 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
  884. 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,
  885. 0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
  886. 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
  887. 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,
  888. 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
  889. 0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,
  890. 0x88,0x1e,0x00,0x00,0x57,0x00,0x00,0x00,
  891. 0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,
  892. 0x03,0x02,0x00,0x00,0x40,0x01,0x00,0x01,
  893. 0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,
  894. 0xf6,0xd2,0x7b,0x58,0x4b,0xf9,0x28,0x68,
  895. 0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,
  896. 0x63,0x42,0xef,0xf8,0xfd,0xa4,0xf8,0xb0,
  897. 0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,
  898. 0x53,0x8c,0x6f,0x4e,0x72,0x8f,0x6c,0x04,
  899. 0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,
  900. 0xf7,0xdd,0xfd,0x4f,0x11,0x36,0x95,0x5d,
  901. };
  902. struct ap_queue_status status;
  903. unsigned long long psmid;
  904. char *reply;
  905. int rc, i;
  906. reply = (void *) get_zeroed_page(GFP_KERNEL);
  907. if (!reply) {
  908. rc = -ENOMEM;
  909. goto out;
  910. }
  911. status = __ap_send(ap_dev->qid, 0x0102030405060708ULL,
  912. msg, sizeof(msg));
  913. if (status.response_code != AP_RESPONSE_NORMAL) {
  914. rc = -ENODEV;
  915. goto out_free;
  916. }
  917. /* Wait for the test message to complete. */
  918. for (i = 0; i < 6; i++) {
  919. mdelay(300);
  920. status = __ap_recv(ap_dev->qid, &psmid, reply, 4096);
  921. if (status.response_code == AP_RESPONSE_NORMAL &&
  922. psmid == 0x0102030405060708ULL)
  923. break;
  924. }
  925. if (i < 6) {
  926. /* Got an answer. */
  927. if (reply[0] == 0x00 && reply[1] == 0x86)
  928. ap_dev->device_type = AP_DEVICE_TYPE_PCICC;
  929. else
  930. ap_dev->device_type = AP_DEVICE_TYPE_PCICA;
  931. rc = 0;
  932. } else
  933. rc = -ENODEV;
  934. out_free:
  935. free_page((unsigned long) reply);
  936. out:
  937. return rc;
  938. }
  939. static void ap_interrupt_handler(void *unused1, void *unused2)
  940. {
  941. tasklet_schedule(&ap_tasklet);
  942. }
  943. /**
  944. * __ap_scan_bus(): Scan the AP bus.
  945. * @dev: Pointer to device
  946. * @data: Pointer to data
  947. *
  948. * Scan the AP bus for new devices.
  949. */
  950. static int __ap_scan_bus(struct device *dev, void *data)
  951. {
  952. return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
  953. }
  954. static void ap_device_release(struct device *dev)
  955. {
  956. struct ap_device *ap_dev = to_ap_dev(dev);
  957. kfree(ap_dev);
  958. }
  959. static void ap_scan_bus(struct work_struct *unused)
  960. {
  961. struct ap_device *ap_dev;
  962. struct device *dev;
  963. ap_qid_t qid;
  964. int queue_depth, device_type;
  965. int rc, i;
  966. if (ap_select_domain() != 0)
  967. return;
  968. for (i = 0; i < AP_DEVICES; i++) {
  969. qid = AP_MKQID(i, ap_domain_index);
  970. dev = bus_find_device(&ap_bus_type, NULL,
  971. (void *)(unsigned long)qid,
  972. __ap_scan_bus);
  973. rc = ap_query_queue(qid, &queue_depth, &device_type);
  974. if (dev) {
  975. if (rc == -EBUSY) {
  976. set_current_state(TASK_UNINTERRUPTIBLE);
  977. schedule_timeout(AP_RESET_TIMEOUT);
  978. rc = ap_query_queue(qid, &queue_depth,
  979. &device_type);
  980. }
  981. ap_dev = to_ap_dev(dev);
  982. spin_lock_bh(&ap_dev->lock);
  983. if (rc || ap_dev->unregistered) {
  984. spin_unlock_bh(&ap_dev->lock);
  985. if (ap_dev->unregistered)
  986. i--;
  987. device_unregister(dev);
  988. put_device(dev);
  989. continue;
  990. }
  991. spin_unlock_bh(&ap_dev->lock);
  992. put_device(dev);
  993. continue;
  994. }
  995. if (rc)
  996. continue;
  997. rc = ap_init_queue(qid);
  998. if (rc)
  999. continue;
  1000. ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
  1001. if (!ap_dev)
  1002. break;
  1003. ap_dev->qid = qid;
  1004. ap_dev->queue_depth = queue_depth;
  1005. ap_dev->unregistered = 1;
  1006. spin_lock_init(&ap_dev->lock);
  1007. INIT_LIST_HEAD(&ap_dev->pendingq);
  1008. INIT_LIST_HEAD(&ap_dev->requestq);
  1009. INIT_LIST_HEAD(&ap_dev->list);
  1010. setup_timer(&ap_dev->timeout, ap_request_timeout,
  1011. (unsigned long) ap_dev);
  1012. if (device_type == 0)
  1013. ap_probe_device_type(ap_dev);
  1014. else
  1015. ap_dev->device_type = device_type;
  1016. ap_dev->device.bus = &ap_bus_type;
  1017. ap_dev->device.parent = ap_root_device;
  1018. if (dev_set_name(&ap_dev->device, "card%02x",
  1019. AP_QID_DEVICE(ap_dev->qid))) {
  1020. kfree(ap_dev);
  1021. continue;
  1022. }
  1023. ap_dev->device.release = ap_device_release;
  1024. rc = device_register(&ap_dev->device);
  1025. if (rc) {
  1026. put_device(&ap_dev->device);
  1027. continue;
  1028. }
  1029. /* Add device attributes. */
  1030. rc = sysfs_create_group(&ap_dev->device.kobj,
  1031. &ap_dev_attr_group);
  1032. if (!rc) {
  1033. spin_lock_bh(&ap_dev->lock);
  1034. ap_dev->unregistered = 0;
  1035. spin_unlock_bh(&ap_dev->lock);
  1036. }
  1037. else
  1038. device_unregister(&ap_dev->device);
  1039. }
  1040. }
  1041. static void
  1042. ap_config_timeout(unsigned long ptr)
  1043. {
  1044. queue_work(ap_work_queue, &ap_config_work);
  1045. ap_config_timer.expires = jiffies + ap_config_time * HZ;
  1046. add_timer(&ap_config_timer);
  1047. }
  1048. /**
  1049. * ap_schedule_poll_timer(): Schedule poll timer.
  1050. *
  1051. * Set up the timer to run the poll tasklet
  1052. */
  1053. static inline void ap_schedule_poll_timer(void)
  1054. {
  1055. ktime_t hr_time;
  1056. if (ap_using_interrupts() || ap_suspend_flag)
  1057. return;
  1058. if (hrtimer_is_queued(&ap_poll_timer))
  1059. return;
  1060. if (ktime_to_ns(hrtimer_expires_remaining(&ap_poll_timer)) <= 0) {
  1061. hr_time = ktime_set(0, poll_timeout);
  1062. hrtimer_forward_now(&ap_poll_timer, hr_time);
  1063. hrtimer_restart(&ap_poll_timer);
  1064. }
  1065. return;
  1066. }
  1067. /**
  1068. * ap_poll_read(): Receive pending reply messages from an AP device.
  1069. * @ap_dev: pointer to the AP device
  1070. * @flags: pointer to control flags, bit 2^0 is set if another poll is
  1071. * required, bit 2^1 is set if the poll timer needs to get armed
  1072. *
  1073. * Returns 0 if the device is still present, -ENODEV if not.
  1074. */
  1075. static int ap_poll_read(struct ap_device *ap_dev, unsigned long *flags)
  1076. {
  1077. struct ap_queue_status status;
  1078. struct ap_message *ap_msg;
  1079. if (ap_dev->queue_count <= 0)
  1080. return 0;
  1081. status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
  1082. ap_dev->reply->message, ap_dev->reply->length);
  1083. switch (status.response_code) {
  1084. case AP_RESPONSE_NORMAL:
  1085. atomic_dec(&ap_poll_requests);
  1086. ap_decrease_queue_count(ap_dev);
  1087. list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
  1088. if (ap_msg->psmid != ap_dev->reply->psmid)
  1089. continue;
  1090. list_del_init(&ap_msg->list);
  1091. ap_dev->pendingq_count--;
  1092. ap_dev->drv->receive(ap_dev, ap_msg, ap_dev->reply);
  1093. break;
  1094. }
  1095. if (ap_dev->queue_count > 0)
  1096. *flags |= 1;
  1097. break;
  1098. case AP_RESPONSE_NO_PENDING_REPLY:
  1099. if (status.queue_empty) {
  1100. /* The card shouldn't forget requests but who knows. */
  1101. atomic_sub(ap_dev->queue_count, &ap_poll_requests);
  1102. ap_dev->queue_count = 0;
  1103. list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
  1104. ap_dev->requestq_count += ap_dev->pendingq_count;
  1105. ap_dev->pendingq_count = 0;
  1106. } else
  1107. *flags |= 2;
  1108. break;
  1109. default:
  1110. return -ENODEV;
  1111. }
  1112. return 0;
  1113. }
  1114. /**
  1115. * ap_poll_write(): Send messages from the request queue to an AP device.
  1116. * @ap_dev: pointer to the AP device
  1117. * @flags: pointer to control flags, bit 2^0 is set if another poll is
  1118. * required, bit 2^1 is set if the poll timer needs to get armed
  1119. *
  1120. * Returns 0 if the device is still present, -ENODEV if not.
  1121. */
  1122. static int ap_poll_write(struct ap_device *ap_dev, unsigned long *flags)
  1123. {
  1124. struct ap_queue_status status;
  1125. struct ap_message *ap_msg;
  1126. if (ap_dev->requestq_count <= 0 ||
  1127. ap_dev->queue_count >= ap_dev->queue_depth)
  1128. return 0;
  1129. /* Start the next request on the queue. */
  1130. ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
  1131. status = __ap_send(ap_dev->qid, ap_msg->psmid,
  1132. ap_msg->message, ap_msg->length);
  1133. switch (status.response_code) {
  1134. case AP_RESPONSE_NORMAL:
  1135. atomic_inc(&ap_poll_requests);
  1136. ap_increase_queue_count(ap_dev);
  1137. list_move_tail(&ap_msg->list, &ap_dev->pendingq);
  1138. ap_dev->requestq_count--;
  1139. ap_dev->pendingq_count++;
  1140. if (ap_dev->queue_count < ap_dev->queue_depth &&
  1141. ap_dev->requestq_count > 0)
  1142. *flags |= 1;
  1143. *flags |= 2;
  1144. break;
  1145. case AP_RESPONSE_Q_FULL:
  1146. case AP_RESPONSE_RESET_IN_PROGRESS:
  1147. *flags |= 2;
  1148. break;
  1149. case AP_RESPONSE_MESSAGE_TOO_BIG:
  1150. return -EINVAL;
  1151. default:
  1152. return -ENODEV;
  1153. }
  1154. return 0;
  1155. }
  1156. /**
  1157. * ap_poll_queue(): Poll AP device for pending replies and send new messages.
  1158. * @ap_dev: pointer to the bus device
  1159. * @flags: pointer to control flags, bit 2^0 is set if another poll is
  1160. * required, bit 2^1 is set if the poll timer needs to get armed
  1161. *
  1162. * Poll AP device for pending replies and send new messages. If either
  1163. * ap_poll_read or ap_poll_write returns -ENODEV unregister the device.
  1164. * Returns 0.
  1165. */
  1166. static inline int ap_poll_queue(struct ap_device *ap_dev, unsigned long *flags)
  1167. {
  1168. int rc;
  1169. rc = ap_poll_read(ap_dev, flags);
  1170. if (rc)
  1171. return rc;
  1172. return ap_poll_write(ap_dev, flags);
  1173. }
  1174. /**
  1175. * __ap_queue_message(): Queue a message to a device.
  1176. * @ap_dev: pointer to the AP device
  1177. * @ap_msg: the message to be queued
  1178. *
  1179. * Queue a message to a device. Returns 0 if successful.
  1180. */
  1181. static int __ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
  1182. {
  1183. struct ap_queue_status status;
  1184. if (list_empty(&ap_dev->requestq) &&
  1185. ap_dev->queue_count < ap_dev->queue_depth) {
  1186. status = __ap_send(ap_dev->qid, ap_msg->psmid,
  1187. ap_msg->message, ap_msg->length);
  1188. switch (status.response_code) {
  1189. case AP_RESPONSE_NORMAL:
  1190. list_add_tail(&ap_msg->list, &ap_dev->pendingq);
  1191. atomic_inc(&ap_poll_requests);
  1192. ap_dev->pendingq_count++;
  1193. ap_increase_queue_count(ap_dev);
  1194. ap_dev->total_request_count++;
  1195. break;
  1196. case AP_RESPONSE_Q_FULL:
  1197. case AP_RESPONSE_RESET_IN_PROGRESS:
  1198. list_add_tail(&ap_msg->list, &ap_dev->requestq);
  1199. ap_dev->requestq_count++;
  1200. ap_dev->total_request_count++;
  1201. return -EBUSY;
  1202. case AP_RESPONSE_MESSAGE_TOO_BIG:
  1203. ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-EINVAL));
  1204. return -EINVAL;
  1205. default: /* Device is gone. */
  1206. ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
  1207. return -ENODEV;
  1208. }
  1209. } else {
  1210. list_add_tail(&ap_msg->list, &ap_dev->requestq);
  1211. ap_dev->requestq_count++;
  1212. ap_dev->total_request_count++;
  1213. return -EBUSY;
  1214. }
  1215. ap_schedule_poll_timer();
  1216. return 0;
  1217. }
  1218. void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
  1219. {
  1220. unsigned long flags;
  1221. int rc;
  1222. spin_lock_bh(&ap_dev->lock);
  1223. if (!ap_dev->unregistered) {
  1224. /* Make room on the queue by polling for finished requests. */
  1225. rc = ap_poll_queue(ap_dev, &flags);
  1226. if (!rc)
  1227. rc = __ap_queue_message(ap_dev, ap_msg);
  1228. if (!rc)
  1229. wake_up(&ap_poll_wait);
  1230. if (rc == -ENODEV)
  1231. ap_dev->unregistered = 1;
  1232. } else {
  1233. ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
  1234. rc = -ENODEV;
  1235. }
  1236. spin_unlock_bh(&ap_dev->lock);
  1237. if (rc == -ENODEV)
  1238. device_unregister(&ap_dev->device);
  1239. }
  1240. EXPORT_SYMBOL(ap_queue_message);
  1241. /**
  1242. * ap_cancel_message(): Cancel a crypto request.
  1243. * @ap_dev: The AP device that has the message queued
  1244. * @ap_msg: The message that is to be removed
  1245. *
  1246. * Cancel a crypto request. This is done by removing the request
  1247. * from the device pending or request queue. Note that the
  1248. * request stays on the AP queue. When it finishes the message
  1249. * reply will be discarded because the psmid can't be found.
  1250. */
  1251. void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
  1252. {
  1253. struct ap_message *tmp;
  1254. spin_lock_bh(&ap_dev->lock);
  1255. if (!list_empty(&ap_msg->list)) {
  1256. list_for_each_entry(tmp, &ap_dev->pendingq, list)
  1257. if (tmp->psmid == ap_msg->psmid) {
  1258. ap_dev->pendingq_count--;
  1259. goto found;
  1260. }
  1261. ap_dev->requestq_count--;
  1262. found:
  1263. list_del_init(&ap_msg->list);
  1264. }
  1265. spin_unlock_bh(&ap_dev->lock);
  1266. }
  1267. EXPORT_SYMBOL(ap_cancel_message);
  1268. /**
  1269. * ap_poll_timeout(): AP receive polling for finished AP requests.
  1270. * @unused: Unused pointer.
  1271. *
  1272. * Schedules the AP tasklet using a high resolution timer.
  1273. */
  1274. static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
  1275. {
  1276. tasklet_schedule(&ap_tasklet);
  1277. return HRTIMER_NORESTART;
  1278. }
  1279. /**
  1280. * ap_reset(): Reset a not responding AP device.
  1281. * @ap_dev: Pointer to the AP device
  1282. *
  1283. * Reset a not responding AP device and move all requests from the
  1284. * pending queue to the request queue.
  1285. */
  1286. static void ap_reset(struct ap_device *ap_dev)
  1287. {
  1288. int rc;
  1289. ap_dev->reset = AP_RESET_IGNORE;
  1290. atomic_sub(ap_dev->queue_count, &ap_poll_requests);
  1291. ap_dev->queue_count = 0;
  1292. list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
  1293. ap_dev->requestq_count += ap_dev->pendingq_count;
  1294. ap_dev->pendingq_count = 0;
  1295. rc = ap_init_queue(ap_dev->qid);
  1296. if (rc == -ENODEV)
  1297. ap_dev->unregistered = 1;
  1298. }
  1299. static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags)
  1300. {
  1301. if (!ap_dev->unregistered) {
  1302. if (ap_poll_queue(ap_dev, flags))
  1303. ap_dev->unregistered = 1;
  1304. if (ap_dev->reset == AP_RESET_DO)
  1305. ap_reset(ap_dev);
  1306. }
  1307. return 0;
  1308. }
  1309. /**
  1310. * ap_poll_all(): Poll all AP devices.
  1311. * @dummy: Unused variable
  1312. *
  1313. * Poll all AP devices on the bus in a round robin fashion. Continue
  1314. * polling until bit 2^0 of the control flags is not set. If bit 2^1
  1315. * of the control flags has been set arm the poll timer.
  1316. */
  1317. static void ap_poll_all(unsigned long dummy)
  1318. {
  1319. unsigned long flags;
  1320. struct ap_device *ap_dev;
  1321. /* Reset the indicator if interrupts are used. Thus new interrupts can
  1322. * be received. Doing it in the beginning of the tasklet is therefor
  1323. * important that no requests on any AP get lost.
  1324. */
  1325. if (ap_using_interrupts())
  1326. xchg((u8 *)ap_interrupt_indicator, 0);
  1327. do {
  1328. flags = 0;
  1329. spin_lock(&ap_device_list_lock);
  1330. list_for_each_entry(ap_dev, &ap_device_list, list) {
  1331. spin_lock(&ap_dev->lock);
  1332. __ap_poll_device(ap_dev, &flags);
  1333. spin_unlock(&ap_dev->lock);
  1334. }
  1335. spin_unlock(&ap_device_list_lock);
  1336. } while (flags & 1);
  1337. if (flags & 2)
  1338. ap_schedule_poll_timer();
  1339. }
  1340. /**
  1341. * ap_poll_thread(): Thread that polls for finished requests.
  1342. * @data: Unused pointer
  1343. *
  1344. * AP bus poll thread. The purpose of this thread is to poll for
  1345. * finished requests in a loop if there is a "free" cpu - that is
  1346. * a cpu that doesn't have anything better to do. The polling stops
  1347. * as soon as there is another task or if all messages have been
  1348. * delivered.
  1349. */
  1350. static int ap_poll_thread(void *data)
  1351. {
  1352. DECLARE_WAITQUEUE(wait, current);
  1353. unsigned long flags;
  1354. int requests;
  1355. struct ap_device *ap_dev;
  1356. set_user_nice(current, 19);
  1357. while (1) {
  1358. if (ap_suspend_flag)
  1359. return 0;
  1360. if (need_resched()) {
  1361. schedule();
  1362. continue;
  1363. }
  1364. add_wait_queue(&ap_poll_wait, &wait);
  1365. set_current_state(TASK_INTERRUPTIBLE);
  1366. if (kthread_should_stop())
  1367. break;
  1368. requests = atomic_read(&ap_poll_requests);
  1369. if (requests <= 0)
  1370. schedule();
  1371. set_current_state(TASK_RUNNING);
  1372. remove_wait_queue(&ap_poll_wait, &wait);
  1373. flags = 0;
  1374. spin_lock_bh(&ap_device_list_lock);
  1375. list_for_each_entry(ap_dev, &ap_device_list, list) {
  1376. spin_lock(&ap_dev->lock);
  1377. __ap_poll_device(ap_dev, &flags);
  1378. spin_unlock(&ap_dev->lock);
  1379. }
  1380. spin_unlock_bh(&ap_device_list_lock);
  1381. }
  1382. set_current_state(TASK_RUNNING);
  1383. remove_wait_queue(&ap_poll_wait, &wait);
  1384. return 0;
  1385. }
  1386. static int ap_poll_thread_start(void)
  1387. {
  1388. int rc;
  1389. if (ap_using_interrupts() || ap_suspend_flag)
  1390. return 0;
  1391. mutex_lock(&ap_poll_thread_mutex);
  1392. if (!ap_poll_kthread) {
  1393. ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
  1394. rc = IS_ERR(ap_poll_kthread) ? PTR_ERR(ap_poll_kthread) : 0;
  1395. if (rc)
  1396. ap_poll_kthread = NULL;
  1397. }
  1398. else
  1399. rc = 0;
  1400. mutex_unlock(&ap_poll_thread_mutex);
  1401. return rc;
  1402. }
  1403. static void ap_poll_thread_stop(void)
  1404. {
  1405. mutex_lock(&ap_poll_thread_mutex);
  1406. if (ap_poll_kthread) {
  1407. kthread_stop(ap_poll_kthread);
  1408. ap_poll_kthread = NULL;
  1409. }
  1410. mutex_unlock(&ap_poll_thread_mutex);
  1411. }
  1412. /**
  1413. * ap_request_timeout(): Handling of request timeouts
  1414. * @data: Holds the AP device.
  1415. *
  1416. * Handles request timeouts.
  1417. */
  1418. static void ap_request_timeout(unsigned long data)
  1419. {
  1420. struct ap_device *ap_dev = (struct ap_device *) data;
  1421. if (ap_dev->reset == AP_RESET_ARMED) {
  1422. ap_dev->reset = AP_RESET_DO;
  1423. if (ap_using_interrupts())
  1424. tasklet_schedule(&ap_tasklet);
  1425. }
  1426. }
  1427. static void ap_reset_domain(void)
  1428. {
  1429. int i;
  1430. if (ap_domain_index != -1)
  1431. for (i = 0; i < AP_DEVICES; i++)
  1432. ap_reset_queue(AP_MKQID(i, ap_domain_index));
  1433. }
  1434. static void ap_reset_all(void)
  1435. {
  1436. int i, j;
  1437. for (i = 0; i < AP_DOMAINS; i++)
  1438. for (j = 0; j < AP_DEVICES; j++)
  1439. ap_reset_queue(AP_MKQID(j, i));
  1440. }
  1441. static struct reset_call ap_reset_call = {
  1442. .fn = ap_reset_all,
  1443. };
  1444. /**
  1445. * ap_module_init(): The module initialization code.
  1446. *
  1447. * Initializes the module.
  1448. */
  1449. int __init ap_module_init(void)
  1450. {
  1451. int rc, i;
  1452. if (ap_domain_index < -1 || ap_domain_index >= AP_DOMAINS) {
  1453. pr_warning("%d is not a valid cryptographic domain\n",
  1454. ap_domain_index);
  1455. return -EINVAL;
  1456. }
  1457. /* In resume callback we need to know if the user had set the domain.
  1458. * If so, we can not just reset it.
  1459. */
  1460. if (ap_domain_index >= 0)
  1461. user_set_domain = 1;
  1462. if (ap_instructions_available() != 0) {
  1463. pr_warning("The hardware system does not support "
  1464. "AP instructions\n");
  1465. return -ENODEV;
  1466. }
  1467. if (ap_interrupts_available()) {
  1468. isc_register(AP_ISC);
  1469. ap_interrupt_indicator = s390_register_adapter_interrupt(
  1470. &ap_interrupt_handler, NULL, AP_ISC);
  1471. if (IS_ERR(ap_interrupt_indicator)) {
  1472. ap_interrupt_indicator = NULL;
  1473. isc_unregister(AP_ISC);
  1474. }
  1475. }
  1476. register_reset_call(&ap_reset_call);
  1477. /* Create /sys/bus/ap. */
  1478. rc = bus_register(&ap_bus_type);
  1479. if (rc)
  1480. goto out;
  1481. for (i = 0; ap_bus_attrs[i]; i++) {
  1482. rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
  1483. if (rc)
  1484. goto out_bus;
  1485. }
  1486. /* Create /sys/devices/ap. */
  1487. ap_root_device = root_device_register("ap");
  1488. rc = IS_ERR(ap_root_device) ? PTR_ERR(ap_root_device) : 0;
  1489. if (rc)
  1490. goto out_bus;
  1491. ap_work_queue = create_singlethread_workqueue("kapwork");
  1492. if (!ap_work_queue) {
  1493. rc = -ENOMEM;
  1494. goto out_root;
  1495. }
  1496. if (ap_select_domain() == 0)
  1497. ap_scan_bus(NULL);
  1498. /* Setup the AP bus rescan timer. */
  1499. init_timer(&ap_config_timer);
  1500. ap_config_timer.function = ap_config_timeout;
  1501. ap_config_timer.data = 0;
  1502. ap_config_timer.expires = jiffies + ap_config_time * HZ;
  1503. add_timer(&ap_config_timer);
  1504. /* Setup the high resultion poll timer.
  1505. * If we are running under z/VM adjust polling to z/VM polling rate.
  1506. */
  1507. if (MACHINE_IS_VM)
  1508. poll_timeout = 1500000;
  1509. hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1510. ap_poll_timer.function = ap_poll_timeout;
  1511. /* Start the low priority AP bus poll thread. */
  1512. if (ap_thread_flag) {
  1513. rc = ap_poll_thread_start();
  1514. if (rc)
  1515. goto out_work;
  1516. }
  1517. return 0;
  1518. out_work:
  1519. del_timer_sync(&ap_config_timer);
  1520. hrtimer_cancel(&ap_poll_timer);
  1521. destroy_workqueue(ap_work_queue);
  1522. out_root:
  1523. root_device_unregister(ap_root_device);
  1524. out_bus:
  1525. while (i--)
  1526. bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
  1527. bus_unregister(&ap_bus_type);
  1528. out:
  1529. unregister_reset_call(&ap_reset_call);
  1530. if (ap_using_interrupts()) {
  1531. s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
  1532. isc_unregister(AP_ISC);
  1533. }
  1534. return rc;
  1535. }
  1536. static int __ap_match_all(struct device *dev, void *data)
  1537. {
  1538. return 1;
  1539. }
  1540. /**
  1541. * ap_modules_exit(): The module termination code
  1542. *
  1543. * Terminates the module.
  1544. */
  1545. void ap_module_exit(void)
  1546. {
  1547. int i;
  1548. struct device *dev;
  1549. ap_reset_domain();
  1550. ap_poll_thread_stop();
  1551. del_timer_sync(&ap_config_timer);
  1552. hrtimer_cancel(&ap_poll_timer);
  1553. destroy_workqueue(ap_work_queue);
  1554. tasklet_kill(&ap_tasklet);
  1555. root_device_unregister(ap_root_device);
  1556. while ((dev = bus_find_device(&ap_bus_type, NULL, NULL,
  1557. __ap_match_all)))
  1558. {
  1559. device_unregister(dev);
  1560. put_device(dev);
  1561. }
  1562. for (i = 0; ap_bus_attrs[i]; i++)
  1563. bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
  1564. bus_unregister(&ap_bus_type);
  1565. unregister_reset_call(&ap_reset_call);
  1566. if (ap_using_interrupts()) {
  1567. s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
  1568. isc_unregister(AP_ISC);
  1569. }
  1570. }
  1571. #ifndef CONFIG_ZCRYPT_MONOLITHIC
  1572. module_init(ap_module_init);
  1573. module_exit(ap_module_exit);
  1574. #endif