ems_usb.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158
  1. /*
  2. * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
  3. *
  4. * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published
  8. * by the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/signal.h>
  21. #include <linux/slab.h>
  22. #include <linux/module.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/usb.h>
  25. #include <linux/can.h>
  26. #include <linux/can/dev.h>
  27. #include <linux/can/error.h>
  28. MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
  29. MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
  30. MODULE_LICENSE("GPL v2");
  31. /* Control-Values for CPC_Control() Command Subject Selection */
  32. #define CONTR_CAN_MESSAGE 0x04
  33. #define CONTR_CAN_STATE 0x0C
  34. #define CONTR_BUS_ERROR 0x1C
  35. /* Control Command Actions */
  36. #define CONTR_CONT_OFF 0
  37. #define CONTR_CONT_ON 1
  38. #define CONTR_ONCE 2
  39. /* Messages from CPC to PC */
  40. #define CPC_MSG_TYPE_CAN_FRAME 1 /* CAN data frame */
  41. #define CPC_MSG_TYPE_RTR_FRAME 8 /* CAN remote frame */
  42. #define CPC_MSG_TYPE_CAN_PARAMS 12 /* Actual CAN parameters */
  43. #define CPC_MSG_TYPE_CAN_STATE 14 /* CAN state message */
  44. #define CPC_MSG_TYPE_EXT_CAN_FRAME 16 /* Extended CAN data frame */
  45. #define CPC_MSG_TYPE_EXT_RTR_FRAME 17 /* Extended remote frame */
  46. #define CPC_MSG_TYPE_CONTROL 19 /* change interface behavior */
  47. #define CPC_MSG_TYPE_CONFIRM 20 /* command processed confirmation */
  48. #define CPC_MSG_TYPE_OVERRUN 21 /* overrun events */
  49. #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
  50. #define CPC_MSG_TYPE_ERR_COUNTER 25 /* RX/TX error counter */
  51. /* Messages from the PC to the CPC interface */
  52. #define CPC_CMD_TYPE_CAN_FRAME 1 /* CAN data frame */
  53. #define CPC_CMD_TYPE_CONTROL 3 /* control of interface behavior */
  54. #define CPC_CMD_TYPE_CAN_PARAMS 6 /* set CAN parameters */
  55. #define CPC_CMD_TYPE_RTR_FRAME 13 /* CAN remote frame */
  56. #define CPC_CMD_TYPE_CAN_STATE 14 /* CAN state message */
  57. #define CPC_CMD_TYPE_EXT_CAN_FRAME 15 /* Extended CAN data frame */
  58. #define CPC_CMD_TYPE_EXT_RTR_FRAME 16 /* Extended CAN remote frame */
  59. #define CPC_CMD_TYPE_CAN_EXIT 200 /* exit the CAN */
  60. #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
  61. #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8 /* clear CPC_MSG queue */
  62. #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
  63. #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
  64. #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
  65. /* Overrun types */
  66. #define CPC_OVR_EVENT_CAN 0x01
  67. #define CPC_OVR_EVENT_CANSTATE 0x02
  68. #define CPC_OVR_EVENT_BUSERROR 0x04
  69. /*
  70. * If the CAN controller lost a message we indicate it with the highest bit
  71. * set in the count field.
  72. */
  73. #define CPC_OVR_HW 0x80
  74. /* Size of the "struct ems_cpc_msg" without the union */
  75. #define CPC_MSG_HEADER_LEN 11
  76. #define CPC_CAN_MSG_MIN_SIZE 5
  77. /* Define these values to match your devices */
  78. #define USB_CPCUSB_VENDOR_ID 0x12D6
  79. #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
  80. /* Mode register NXP LPC2119/SJA1000 CAN Controller */
  81. #define SJA1000_MOD_NORMAL 0x00
  82. #define SJA1000_MOD_RM 0x01
  83. /* ECC register NXP LPC2119/SJA1000 CAN Controller */
  84. #define SJA1000_ECC_SEG 0x1F
  85. #define SJA1000_ECC_DIR 0x20
  86. #define SJA1000_ECC_ERR 0x06
  87. #define SJA1000_ECC_BIT 0x00
  88. #define SJA1000_ECC_FORM 0x40
  89. #define SJA1000_ECC_STUFF 0x80
  90. #define SJA1000_ECC_MASK 0xc0
  91. /* Status register content */
  92. #define SJA1000_SR_BS 0x80
  93. #define SJA1000_SR_ES 0x40
  94. #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
  95. /*
  96. * The device actually uses a 16MHz clock to generate the CAN clock
  97. * but it expects SJA1000 bit settings based on 8MHz (is internally
  98. * converted).
  99. */
  100. #define EMS_USB_ARM7_CLOCK 8000000
  101. /*
  102. * CAN-Message representation in a CPC_MSG. Message object type is
  103. * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
  104. * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
  105. */
  106. struct cpc_can_msg {
  107. u32 id;
  108. u8 length;
  109. u8 msg[8];
  110. };
  111. /* Representation of the CAN parameters for the SJA1000 controller */
  112. struct cpc_sja1000_params {
  113. u8 mode;
  114. u8 acc_code0;
  115. u8 acc_code1;
  116. u8 acc_code2;
  117. u8 acc_code3;
  118. u8 acc_mask0;
  119. u8 acc_mask1;
  120. u8 acc_mask2;
  121. u8 acc_mask3;
  122. u8 btr0;
  123. u8 btr1;
  124. u8 outp_contr;
  125. };
  126. /* CAN params message representation */
  127. struct cpc_can_params {
  128. u8 cc_type;
  129. /* Will support M16C CAN controller in the future */
  130. union {
  131. struct cpc_sja1000_params sja1000;
  132. } cc_params;
  133. };
  134. /* Structure for confirmed message handling */
  135. struct cpc_confirm {
  136. u8 error; /* error code */
  137. };
  138. /* Structure for overrun conditions */
  139. struct cpc_overrun {
  140. u8 event;
  141. u8 count;
  142. };
  143. /* SJA1000 CAN errors (compatible to NXP LPC2119) */
  144. struct cpc_sja1000_can_error {
  145. u8 ecc;
  146. u8 rxerr;
  147. u8 txerr;
  148. };
  149. /* structure for CAN error conditions */
  150. struct cpc_can_error {
  151. u8 ecode;
  152. struct {
  153. u8 cc_type;
  154. /* Other controllers may also provide error code capture regs */
  155. union {
  156. struct cpc_sja1000_can_error sja1000;
  157. } regs;
  158. } cc;
  159. };
  160. /*
  161. * Structure containing RX/TX error counter. This structure is used to request
  162. * the values of the CAN controllers TX and RX error counter.
  163. */
  164. struct cpc_can_err_counter {
  165. u8 rx;
  166. u8 tx;
  167. };
  168. /* Main message type used between library and application */
  169. struct __attribute__ ((packed)) ems_cpc_msg {
  170. u8 type; /* type of message */
  171. u8 length; /* length of data within union 'msg' */
  172. u8 msgid; /* confirmation handle */
  173. u32 ts_sec; /* timestamp in seconds */
  174. u32 ts_nsec; /* timestamp in nano seconds */
  175. union {
  176. u8 generic[64];
  177. struct cpc_can_msg can_msg;
  178. struct cpc_can_params can_params;
  179. struct cpc_confirm confirmation;
  180. struct cpc_overrun overrun;
  181. struct cpc_can_error error;
  182. struct cpc_can_err_counter err_counter;
  183. u8 can_state;
  184. } msg;
  185. };
  186. /*
  187. * Table of devices that work with this driver
  188. * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
  189. */
  190. static struct usb_device_id ems_usb_table[] = {
  191. {USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
  192. {} /* Terminating entry */
  193. };
  194. MODULE_DEVICE_TABLE(usb, ems_usb_table);
  195. #define RX_BUFFER_SIZE 64
  196. #define CPC_HEADER_SIZE 4
  197. #define INTR_IN_BUFFER_SIZE 4
  198. #define MAX_RX_URBS 10
  199. #define MAX_TX_URBS CAN_ECHO_SKB_MAX
  200. struct ems_usb;
  201. struct ems_tx_urb_context {
  202. struct ems_usb *dev;
  203. u32 echo_index;
  204. u8 dlc;
  205. };
  206. struct ems_usb {
  207. struct can_priv can; /* must be the first member */
  208. int open_time;
  209. struct sk_buff *echo_skb[MAX_TX_URBS];
  210. struct usb_device *udev;
  211. struct net_device *netdev;
  212. atomic_t active_tx_urbs;
  213. struct usb_anchor tx_submitted;
  214. struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
  215. struct usb_anchor rx_submitted;
  216. struct urb *intr_urb;
  217. u8 *tx_msg_buffer;
  218. u8 *intr_in_buffer;
  219. unsigned int free_slots; /* remember number of available slots */
  220. struct ems_cpc_msg active_params; /* active controller parameters */
  221. };
  222. static void ems_usb_read_interrupt_callback(struct urb *urb)
  223. {
  224. struct ems_usb *dev = urb->context;
  225. struct net_device *netdev = dev->netdev;
  226. int err;
  227. if (!netif_device_present(netdev))
  228. return;
  229. switch (urb->status) {
  230. case 0:
  231. dev->free_slots = dev->intr_in_buffer[1];
  232. break;
  233. case -ECONNRESET: /* unlink */
  234. case -ENOENT:
  235. case -ESHUTDOWN:
  236. return;
  237. default:
  238. dev_info(netdev->dev.parent, "Rx interrupt aborted %d\n",
  239. urb->status);
  240. break;
  241. }
  242. err = usb_submit_urb(urb, GFP_ATOMIC);
  243. if (err == -ENODEV)
  244. netif_device_detach(netdev);
  245. else if (err)
  246. dev_err(netdev->dev.parent,
  247. "failed resubmitting intr urb: %d\n", err);
  248. return;
  249. }
  250. static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
  251. {
  252. struct can_frame *cf;
  253. struct sk_buff *skb;
  254. int i;
  255. struct net_device_stats *stats = &dev->netdev->stats;
  256. skb = netdev_alloc_skb(dev->netdev, sizeof(struct can_frame));
  257. if (skb == NULL)
  258. return;
  259. skb->protocol = htons(ETH_P_CAN);
  260. cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
  261. cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
  262. cf->can_dlc = min_t(u8, msg->msg.can_msg.length, 8);
  263. if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME
  264. || msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
  265. cf->can_id |= CAN_EFF_FLAG;
  266. if (msg->type == CPC_MSG_TYPE_RTR_FRAME
  267. || msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
  268. cf->can_id |= CAN_RTR_FLAG;
  269. } else {
  270. for (i = 0; i < cf->can_dlc; i++)
  271. cf->data[i] = msg->msg.can_msg.msg[i];
  272. }
  273. netif_rx(skb);
  274. stats->rx_packets++;
  275. stats->rx_bytes += cf->can_dlc;
  276. }
  277. static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
  278. {
  279. struct can_frame *cf;
  280. struct sk_buff *skb;
  281. struct net_device_stats *stats = &dev->netdev->stats;
  282. skb = netdev_alloc_skb(dev->netdev, sizeof(struct can_frame));
  283. if (skb == NULL)
  284. return;
  285. skb->protocol = htons(ETH_P_CAN);
  286. cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
  287. memset(cf, 0, sizeof(struct can_frame));
  288. cf->can_id = CAN_ERR_FLAG;
  289. cf->can_dlc = CAN_ERR_DLC;
  290. if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
  291. u8 state = msg->msg.can_state;
  292. if (state & SJA1000_SR_BS) {
  293. dev->can.state = CAN_STATE_BUS_OFF;
  294. cf->can_id |= CAN_ERR_BUSOFF;
  295. can_bus_off(dev->netdev);
  296. } else if (state & SJA1000_SR_ES) {
  297. dev->can.state = CAN_STATE_ERROR_WARNING;
  298. dev->can.can_stats.error_warning++;
  299. } else {
  300. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  301. dev->can.can_stats.error_passive++;
  302. }
  303. } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
  304. u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
  305. u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
  306. u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
  307. /* bus error interrupt */
  308. dev->can.can_stats.bus_error++;
  309. stats->rx_errors++;
  310. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  311. switch (ecc & SJA1000_ECC_MASK) {
  312. case SJA1000_ECC_BIT:
  313. cf->data[2] |= CAN_ERR_PROT_BIT;
  314. break;
  315. case SJA1000_ECC_FORM:
  316. cf->data[2] |= CAN_ERR_PROT_FORM;
  317. break;
  318. case SJA1000_ECC_STUFF:
  319. cf->data[2] |= CAN_ERR_PROT_STUFF;
  320. break;
  321. default:
  322. cf->data[2] |= CAN_ERR_PROT_UNSPEC;
  323. cf->data[3] = ecc & SJA1000_ECC_SEG;
  324. break;
  325. }
  326. /* Error occured during transmission? */
  327. if ((ecc & SJA1000_ECC_DIR) == 0)
  328. cf->data[2] |= CAN_ERR_PROT_TX;
  329. if (dev->can.state == CAN_STATE_ERROR_WARNING ||
  330. dev->can.state == CAN_STATE_ERROR_PASSIVE) {
  331. cf->data[1] = (txerr > rxerr) ?
  332. CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
  333. }
  334. } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
  335. cf->can_id |= CAN_ERR_CRTL;
  336. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  337. stats->rx_over_errors++;
  338. stats->rx_errors++;
  339. }
  340. netif_rx(skb);
  341. stats->rx_packets++;
  342. stats->rx_bytes += cf->can_dlc;
  343. }
  344. /*
  345. * callback for bulk IN urb
  346. */
  347. static void ems_usb_read_bulk_callback(struct urb *urb)
  348. {
  349. struct ems_usb *dev = urb->context;
  350. struct net_device *netdev;
  351. int retval;
  352. netdev = dev->netdev;
  353. if (!netif_device_present(netdev))
  354. return;
  355. switch (urb->status) {
  356. case 0: /* success */
  357. break;
  358. case -ENOENT:
  359. return;
  360. default:
  361. dev_info(netdev->dev.parent, "Rx URB aborted (%d)\n",
  362. urb->status);
  363. goto resubmit_urb;
  364. }
  365. if (urb->actual_length > CPC_HEADER_SIZE) {
  366. struct ems_cpc_msg *msg;
  367. u8 *ibuf = urb->transfer_buffer;
  368. u8 msg_count, again, start;
  369. msg_count = ibuf[0] & ~0x80;
  370. again = ibuf[0] & 0x80;
  371. start = CPC_HEADER_SIZE;
  372. while (msg_count) {
  373. msg = (struct ems_cpc_msg *)&ibuf[start];
  374. switch (msg->type) {
  375. case CPC_MSG_TYPE_CAN_STATE:
  376. /* Process CAN state changes */
  377. ems_usb_rx_err(dev, msg);
  378. break;
  379. case CPC_MSG_TYPE_CAN_FRAME:
  380. case CPC_MSG_TYPE_EXT_CAN_FRAME:
  381. case CPC_MSG_TYPE_RTR_FRAME:
  382. case CPC_MSG_TYPE_EXT_RTR_FRAME:
  383. ems_usb_rx_can_msg(dev, msg);
  384. break;
  385. case CPC_MSG_TYPE_CAN_FRAME_ERROR:
  386. /* Process errorframe */
  387. ems_usb_rx_err(dev, msg);
  388. break;
  389. case CPC_MSG_TYPE_OVERRUN:
  390. /* Message lost while receiving */
  391. ems_usb_rx_err(dev, msg);
  392. break;
  393. }
  394. start += CPC_MSG_HEADER_LEN + msg->length;
  395. msg_count--;
  396. if (start > urb->transfer_buffer_length) {
  397. dev_err(netdev->dev.parent, "format error\n");
  398. break;
  399. }
  400. }
  401. }
  402. resubmit_urb:
  403. usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
  404. urb->transfer_buffer, RX_BUFFER_SIZE,
  405. ems_usb_read_bulk_callback, dev);
  406. retval = usb_submit_urb(urb, GFP_ATOMIC);
  407. if (retval == -ENODEV)
  408. netif_device_detach(netdev);
  409. else if (retval)
  410. dev_err(netdev->dev.parent,
  411. "failed resubmitting read bulk urb: %d\n", retval);
  412. return;
  413. }
  414. /*
  415. * callback for bulk IN urb
  416. */
  417. static void ems_usb_write_bulk_callback(struct urb *urb)
  418. {
  419. struct ems_tx_urb_context *context = urb->context;
  420. struct ems_usb *dev;
  421. struct net_device *netdev;
  422. BUG_ON(!context);
  423. dev = context->dev;
  424. netdev = dev->netdev;
  425. /* free up our allocated buffer */
  426. usb_buffer_free(urb->dev, urb->transfer_buffer_length,
  427. urb->transfer_buffer, urb->transfer_dma);
  428. atomic_dec(&dev->active_tx_urbs);
  429. if (!netif_device_present(netdev))
  430. return;
  431. if (urb->status)
  432. dev_info(netdev->dev.parent, "Tx URB aborted (%d)\n",
  433. urb->status);
  434. netdev->trans_start = jiffies;
  435. /* transmission complete interrupt */
  436. netdev->stats.tx_packets++;
  437. netdev->stats.tx_bytes += context->dlc;
  438. can_get_echo_skb(netdev, context->echo_index);
  439. /* Release context */
  440. context->echo_index = MAX_TX_URBS;
  441. if (netif_queue_stopped(netdev))
  442. netif_wake_queue(netdev);
  443. }
  444. /*
  445. * Send the given CPC command synchronously
  446. */
  447. static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
  448. {
  449. int actual_length;
  450. /* Copy payload */
  451. memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
  452. msg->length + CPC_MSG_HEADER_LEN);
  453. /* Clear header */
  454. memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
  455. return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
  456. &dev->tx_msg_buffer[0],
  457. msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
  458. &actual_length, 1000);
  459. }
  460. /*
  461. * Change CAN controllers' mode register
  462. */
  463. static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
  464. {
  465. dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
  466. return ems_usb_command_msg(dev, &dev->active_params);
  467. }
  468. /*
  469. * Send a CPC_Control command to change behaviour when interface receives a CAN
  470. * message, bus error or CAN state changed notifications.
  471. */
  472. static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
  473. {
  474. struct ems_cpc_msg cmd;
  475. cmd.type = CPC_CMD_TYPE_CONTROL;
  476. cmd.length = CPC_MSG_HEADER_LEN + 1;
  477. cmd.msgid = 0;
  478. cmd.msg.generic[0] = val;
  479. return ems_usb_command_msg(dev, &cmd);
  480. }
  481. /*
  482. * Start interface
  483. */
  484. static int ems_usb_start(struct ems_usb *dev)
  485. {
  486. struct net_device *netdev = dev->netdev;
  487. int err, i;
  488. dev->intr_in_buffer[0] = 0;
  489. dev->free_slots = 15; /* initial size */
  490. for (i = 0; i < MAX_RX_URBS; i++) {
  491. struct urb *urb = NULL;
  492. u8 *buf = NULL;
  493. /* create a URB, and a buffer for it */
  494. urb = usb_alloc_urb(0, GFP_KERNEL);
  495. if (!urb) {
  496. dev_err(netdev->dev.parent,
  497. "No memory left for URBs\n");
  498. return -ENOMEM;
  499. }
  500. buf = usb_buffer_alloc(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
  501. &urb->transfer_dma);
  502. if (!buf) {
  503. dev_err(netdev->dev.parent,
  504. "No memory left for USB buffer\n");
  505. usb_free_urb(urb);
  506. return -ENOMEM;
  507. }
  508. usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
  509. buf, RX_BUFFER_SIZE,
  510. ems_usb_read_bulk_callback, dev);
  511. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  512. usb_anchor_urb(urb, &dev->rx_submitted);
  513. err = usb_submit_urb(urb, GFP_KERNEL);
  514. if (err) {
  515. if (err == -ENODEV)
  516. netif_device_detach(dev->netdev);
  517. usb_unanchor_urb(urb);
  518. usb_buffer_free(dev->udev, RX_BUFFER_SIZE, buf,
  519. urb->transfer_dma);
  520. break;
  521. }
  522. /* Drop reference, USB core will take care of freeing it */
  523. usb_free_urb(urb);
  524. }
  525. /* Did we submit any URBs */
  526. if (i == 0) {
  527. dev_warn(netdev->dev.parent, "couldn't setup read URBs\n");
  528. return err;
  529. }
  530. /* Warn if we've couldn't transmit all the URBs */
  531. if (i < MAX_RX_URBS)
  532. dev_warn(netdev->dev.parent, "rx performance may be slow\n");
  533. /* Setup and start interrupt URB */
  534. usb_fill_int_urb(dev->intr_urb, dev->udev,
  535. usb_rcvintpipe(dev->udev, 1),
  536. dev->intr_in_buffer,
  537. INTR_IN_BUFFER_SIZE,
  538. ems_usb_read_interrupt_callback, dev, 1);
  539. err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
  540. if (err) {
  541. if (err == -ENODEV)
  542. netif_device_detach(dev->netdev);
  543. dev_warn(netdev->dev.parent, "intr URB submit failed: %d\n",
  544. err);
  545. return err;
  546. }
  547. /* CPC-USB will transfer received message to host */
  548. err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
  549. if (err)
  550. goto failed;
  551. /* CPC-USB will transfer CAN state changes to host */
  552. err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
  553. if (err)
  554. goto failed;
  555. /* CPC-USB will transfer bus errors to host */
  556. err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
  557. if (err)
  558. goto failed;
  559. err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
  560. if (err)
  561. goto failed;
  562. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  563. return 0;
  564. failed:
  565. if (err == -ENODEV)
  566. netif_device_detach(dev->netdev);
  567. dev_warn(netdev->dev.parent, "couldn't submit control: %d\n", err);
  568. return err;
  569. }
  570. static void unlink_all_urbs(struct ems_usb *dev)
  571. {
  572. int i;
  573. usb_unlink_urb(dev->intr_urb);
  574. usb_kill_anchored_urbs(&dev->rx_submitted);
  575. usb_kill_anchored_urbs(&dev->tx_submitted);
  576. atomic_set(&dev->active_tx_urbs, 0);
  577. for (i = 0; i < MAX_TX_URBS; i++)
  578. dev->tx_contexts[i].echo_index = MAX_TX_URBS;
  579. }
  580. static int ems_usb_open(struct net_device *netdev)
  581. {
  582. struct ems_usb *dev = netdev_priv(netdev);
  583. int err;
  584. err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
  585. if (err)
  586. return err;
  587. /* common open */
  588. err = open_candev(netdev);
  589. if (err)
  590. return err;
  591. /* finally start device */
  592. err = ems_usb_start(dev);
  593. if (err) {
  594. if (err == -ENODEV)
  595. netif_device_detach(dev->netdev);
  596. dev_warn(netdev->dev.parent, "couldn't start device: %d\n",
  597. err);
  598. close_candev(netdev);
  599. return err;
  600. }
  601. dev->open_time = jiffies;
  602. netif_start_queue(netdev);
  603. return 0;
  604. }
  605. static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
  606. {
  607. struct ems_usb *dev = netdev_priv(netdev);
  608. struct ems_tx_urb_context *context = NULL;
  609. struct net_device_stats *stats = &netdev->stats;
  610. struct can_frame *cf = (struct can_frame *)skb->data;
  611. struct ems_cpc_msg *msg;
  612. struct urb *urb;
  613. u8 *buf;
  614. int i, err;
  615. size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
  616. + sizeof(struct cpc_can_msg);
  617. /* create a URB, and a buffer for it, and copy the data to the URB */
  618. urb = usb_alloc_urb(0, GFP_ATOMIC);
  619. if (!urb) {
  620. dev_err(netdev->dev.parent, "No memory left for URBs\n");
  621. goto nomem;
  622. }
  623. buf = usb_buffer_alloc(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
  624. if (!buf) {
  625. dev_err(netdev->dev.parent, "No memory left for USB buffer\n");
  626. usb_free_urb(urb);
  627. goto nomem;
  628. }
  629. msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
  630. msg->msg.can_msg.id = cf->can_id & CAN_ERR_MASK;
  631. msg->msg.can_msg.length = cf->can_dlc;
  632. if (cf->can_id & CAN_RTR_FLAG) {
  633. msg->type = cf->can_id & CAN_EFF_FLAG ?
  634. CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
  635. msg->length = CPC_CAN_MSG_MIN_SIZE;
  636. } else {
  637. msg->type = cf->can_id & CAN_EFF_FLAG ?
  638. CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
  639. for (i = 0; i < cf->can_dlc; i++)
  640. msg->msg.can_msg.msg[i] = cf->data[i];
  641. msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
  642. }
  643. /* Respect byte order */
  644. msg->msg.can_msg.id = cpu_to_le32(msg->msg.can_msg.id);
  645. for (i = 0; i < MAX_TX_URBS; i++) {
  646. if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
  647. context = &dev->tx_contexts[i];
  648. break;
  649. }
  650. }
  651. /*
  652. * May never happen! When this happens we'd more URBs in flight as
  653. * allowed (MAX_TX_URBS).
  654. */
  655. if (!context) {
  656. usb_unanchor_urb(urb);
  657. usb_buffer_free(dev->udev, size, buf, urb->transfer_dma);
  658. dev_warn(netdev->dev.parent, "couldn't find free context\n");
  659. return NETDEV_TX_BUSY;
  660. }
  661. context->dev = dev;
  662. context->echo_index = i;
  663. context->dlc = cf->can_dlc;
  664. usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
  665. size, ems_usb_write_bulk_callback, context);
  666. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  667. usb_anchor_urb(urb, &dev->tx_submitted);
  668. can_put_echo_skb(skb, netdev, context->echo_index);
  669. atomic_inc(&dev->active_tx_urbs);
  670. err = usb_submit_urb(urb, GFP_ATOMIC);
  671. if (unlikely(err)) {
  672. can_free_echo_skb(netdev, context->echo_index);
  673. usb_unanchor_urb(urb);
  674. usb_buffer_free(dev->udev, size, buf, urb->transfer_dma);
  675. dev_kfree_skb(skb);
  676. atomic_dec(&dev->active_tx_urbs);
  677. if (err == -ENODEV) {
  678. netif_device_detach(netdev);
  679. } else {
  680. dev_warn(netdev->dev.parent, "failed tx_urb %d\n", err);
  681. stats->tx_dropped++;
  682. }
  683. } else {
  684. netdev->trans_start = jiffies;
  685. /* Slow down tx path */
  686. if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
  687. dev->free_slots < 5) {
  688. netif_stop_queue(netdev);
  689. }
  690. }
  691. /*
  692. * Release our reference to this URB, the USB core will eventually free
  693. * it entirely.
  694. */
  695. usb_free_urb(urb);
  696. return NETDEV_TX_OK;
  697. nomem:
  698. if (skb)
  699. dev_kfree_skb(skb);
  700. stats->tx_dropped++;
  701. return NETDEV_TX_OK;
  702. }
  703. static int ems_usb_close(struct net_device *netdev)
  704. {
  705. struct ems_usb *dev = netdev_priv(netdev);
  706. /* Stop polling */
  707. unlink_all_urbs(dev);
  708. netif_stop_queue(netdev);
  709. /* Set CAN controller to reset mode */
  710. if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
  711. dev_warn(netdev->dev.parent, "couldn't stop device");
  712. close_candev(netdev);
  713. dev->open_time = 0;
  714. return 0;
  715. }
  716. static const struct net_device_ops ems_usb_netdev_ops = {
  717. .ndo_open = ems_usb_open,
  718. .ndo_stop = ems_usb_close,
  719. .ndo_start_xmit = ems_usb_start_xmit,
  720. };
  721. static struct can_bittiming_const ems_usb_bittiming_const = {
  722. .name = "ems_usb",
  723. .tseg1_min = 1,
  724. .tseg1_max = 16,
  725. .tseg2_min = 1,
  726. .tseg2_max = 8,
  727. .sjw_max = 4,
  728. .brp_min = 1,
  729. .brp_max = 64,
  730. .brp_inc = 1,
  731. };
  732. static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
  733. {
  734. struct ems_usb *dev = netdev_priv(netdev);
  735. if (!dev->open_time)
  736. return -EINVAL;
  737. switch (mode) {
  738. case CAN_MODE_START:
  739. if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
  740. dev_warn(netdev->dev.parent, "couldn't start device");
  741. if (netif_queue_stopped(netdev))
  742. netif_wake_queue(netdev);
  743. break;
  744. default:
  745. return -EOPNOTSUPP;
  746. }
  747. return 0;
  748. }
  749. static int ems_usb_set_bittiming(struct net_device *netdev)
  750. {
  751. struct ems_usb *dev = netdev_priv(netdev);
  752. struct can_bittiming *bt = &dev->can.bittiming;
  753. u8 btr0, btr1;
  754. btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
  755. btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
  756. (((bt->phase_seg2 - 1) & 0x7) << 4);
  757. if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
  758. btr1 |= 0x80;
  759. dev_info(netdev->dev.parent, "setting BTR0=0x%02x BTR1=0x%02x\n",
  760. btr0, btr1);
  761. dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
  762. dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
  763. return ems_usb_command_msg(dev, &dev->active_params);
  764. }
  765. static void init_params_sja1000(struct ems_cpc_msg *msg)
  766. {
  767. struct cpc_sja1000_params *sja1000 =
  768. &msg->msg.can_params.cc_params.sja1000;
  769. msg->type = CPC_CMD_TYPE_CAN_PARAMS;
  770. msg->length = sizeof(struct cpc_can_params);
  771. msg->msgid = 0;
  772. msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
  773. /* Acceptance filter open */
  774. sja1000->acc_code0 = 0x00;
  775. sja1000->acc_code1 = 0x00;
  776. sja1000->acc_code2 = 0x00;
  777. sja1000->acc_code3 = 0x00;
  778. /* Acceptance filter open */
  779. sja1000->acc_mask0 = 0xFF;
  780. sja1000->acc_mask1 = 0xFF;
  781. sja1000->acc_mask2 = 0xFF;
  782. sja1000->acc_mask3 = 0xFF;
  783. sja1000->btr0 = 0;
  784. sja1000->btr1 = 0;
  785. sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
  786. sja1000->mode = SJA1000_MOD_RM;
  787. }
  788. /*
  789. * probe function for new CPC-USB devices
  790. */
  791. static int ems_usb_probe(struct usb_interface *intf,
  792. const struct usb_device_id *id)
  793. {
  794. struct net_device *netdev;
  795. struct ems_usb *dev;
  796. int i, err = -ENOMEM;
  797. netdev = alloc_candev(sizeof(struct ems_usb));
  798. if (!netdev) {
  799. dev_err(netdev->dev.parent, "Couldn't alloc candev\n");
  800. return -ENOMEM;
  801. }
  802. dev = netdev_priv(netdev);
  803. dev->udev = interface_to_usbdev(intf);
  804. dev->netdev = netdev;
  805. dev->can.state = CAN_STATE_STOPPED;
  806. dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
  807. dev->can.bittiming_const = &ems_usb_bittiming_const;
  808. dev->can.do_set_bittiming = ems_usb_set_bittiming;
  809. dev->can.do_set_mode = ems_usb_set_mode;
  810. netdev->flags |= IFF_ECHO; /* we support local echo */
  811. netdev->netdev_ops = &ems_usb_netdev_ops;
  812. netdev->flags |= IFF_ECHO; /* we support local echo */
  813. init_usb_anchor(&dev->rx_submitted);
  814. init_usb_anchor(&dev->tx_submitted);
  815. atomic_set(&dev->active_tx_urbs, 0);
  816. for (i = 0; i < MAX_TX_URBS; i++)
  817. dev->tx_contexts[i].echo_index = MAX_TX_URBS;
  818. dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
  819. if (!dev->intr_urb) {
  820. dev_err(netdev->dev.parent, "Couldn't alloc intr URB\n");
  821. goto cleanup_candev;
  822. }
  823. dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
  824. if (!dev->intr_in_buffer) {
  825. dev_err(netdev->dev.parent, "Couldn't alloc Intr buffer\n");
  826. goto cleanup_intr_urb;
  827. }
  828. dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
  829. sizeof(struct ems_cpc_msg), GFP_KERNEL);
  830. if (!dev->tx_msg_buffer) {
  831. dev_err(netdev->dev.parent, "Couldn't alloc Tx buffer\n");
  832. goto cleanup_intr_in_buffer;
  833. }
  834. usb_set_intfdata(intf, dev);
  835. SET_NETDEV_DEV(netdev, &intf->dev);
  836. init_params_sja1000(&dev->active_params);
  837. err = ems_usb_command_msg(dev, &dev->active_params);
  838. if (err) {
  839. dev_err(netdev->dev.parent,
  840. "couldn't initialize controller: %d\n", err);
  841. goto cleanup_tx_msg_buffer;
  842. }
  843. err = register_candev(netdev);
  844. if (err) {
  845. dev_err(netdev->dev.parent,
  846. "couldn't register CAN device: %d\n", err);
  847. goto cleanup_tx_msg_buffer;
  848. }
  849. return 0;
  850. cleanup_tx_msg_buffer:
  851. kfree(dev->tx_msg_buffer);
  852. cleanup_intr_in_buffer:
  853. kfree(dev->intr_in_buffer);
  854. cleanup_intr_urb:
  855. usb_free_urb(dev->intr_urb);
  856. cleanup_candev:
  857. free_candev(netdev);
  858. return err;
  859. }
  860. /*
  861. * called by the usb core when the device is removed from the system
  862. */
  863. static void ems_usb_disconnect(struct usb_interface *intf)
  864. {
  865. struct ems_usb *dev = usb_get_intfdata(intf);
  866. usb_set_intfdata(intf, NULL);
  867. if (dev) {
  868. unregister_netdev(dev->netdev);
  869. free_candev(dev->netdev);
  870. unlink_all_urbs(dev);
  871. usb_free_urb(dev->intr_urb);
  872. kfree(dev->intr_in_buffer);
  873. }
  874. }
  875. /* usb specific object needed to register this driver with the usb subsystem */
  876. static struct usb_driver ems_usb_driver = {
  877. .name = "ems_usb",
  878. .probe = ems_usb_probe,
  879. .disconnect = ems_usb_disconnect,
  880. .id_table = ems_usb_table,
  881. };
  882. static int __init ems_usb_init(void)
  883. {
  884. int err;
  885. printk(KERN_INFO "CPC-USB kernel driver loaded\n");
  886. /* register this driver with the USB subsystem */
  887. err = usb_register(&ems_usb_driver);
  888. if (err) {
  889. err("usb_register failed. Error number %d\n", err);
  890. return err;
  891. }
  892. return 0;
  893. }
  894. static void __exit ems_usb_exit(void)
  895. {
  896. /* deregister this driver with the USB subsystem */
  897. usb_deregister(&ems_usb_driver);
  898. }
  899. module_init(ems_usb_init);
  900. module_exit(ems_usb_exit);