i915_gem.c 129 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/swap.h>
  34. #include <linux/pci.h>
  35. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  36. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  39. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  40. int write);
  41. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  45. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  46. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  47. unsigned alignment);
  48. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  49. static int i915_gem_evict_something(struct drm_device *dev, int min_size);
  50. static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file_priv);
  54. static LIST_HEAD(shrink_list);
  55. static DEFINE_SPINLOCK(shrink_list_lock);
  56. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  57. unsigned long end)
  58. {
  59. drm_i915_private_t *dev_priv = dev->dev_private;
  60. if (start >= end ||
  61. (start & (PAGE_SIZE - 1)) != 0 ||
  62. (end & (PAGE_SIZE - 1)) != 0) {
  63. return -EINVAL;
  64. }
  65. drm_mm_init(&dev_priv->mm.gtt_space, start,
  66. end - start);
  67. dev->gtt_total = (uint32_t) (end - start);
  68. return 0;
  69. }
  70. int
  71. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  72. struct drm_file *file_priv)
  73. {
  74. struct drm_i915_gem_init *args = data;
  75. int ret;
  76. mutex_lock(&dev->struct_mutex);
  77. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  78. mutex_unlock(&dev->struct_mutex);
  79. return ret;
  80. }
  81. int
  82. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  83. struct drm_file *file_priv)
  84. {
  85. struct drm_i915_gem_get_aperture *args = data;
  86. if (!(dev->driver->driver_features & DRIVER_GEM))
  87. return -ENODEV;
  88. args->aper_size = dev->gtt_total;
  89. args->aper_available_size = (args->aper_size -
  90. atomic_read(&dev->pin_memory));
  91. return 0;
  92. }
  93. /**
  94. * Creates a new mm object and returns a handle to it.
  95. */
  96. int
  97. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  98. struct drm_file *file_priv)
  99. {
  100. struct drm_i915_gem_create *args = data;
  101. struct drm_gem_object *obj;
  102. int ret;
  103. u32 handle;
  104. args->size = roundup(args->size, PAGE_SIZE);
  105. /* Allocate the new object */
  106. obj = drm_gem_object_alloc(dev, args->size);
  107. if (obj == NULL)
  108. return -ENOMEM;
  109. ret = drm_gem_handle_create(file_priv, obj, &handle);
  110. mutex_lock(&dev->struct_mutex);
  111. drm_gem_object_handle_unreference(obj);
  112. mutex_unlock(&dev->struct_mutex);
  113. if (ret)
  114. return ret;
  115. args->handle = handle;
  116. return 0;
  117. }
  118. static inline int
  119. fast_shmem_read(struct page **pages,
  120. loff_t page_base, int page_offset,
  121. char __user *data,
  122. int length)
  123. {
  124. char __iomem *vaddr;
  125. int unwritten;
  126. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  127. if (vaddr == NULL)
  128. return -ENOMEM;
  129. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  130. kunmap_atomic(vaddr, KM_USER0);
  131. if (unwritten)
  132. return -EFAULT;
  133. return 0;
  134. }
  135. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  136. {
  137. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  138. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  139. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  140. obj_priv->tiling_mode != I915_TILING_NONE;
  141. }
  142. static inline int
  143. slow_shmem_copy(struct page *dst_page,
  144. int dst_offset,
  145. struct page *src_page,
  146. int src_offset,
  147. int length)
  148. {
  149. char *dst_vaddr, *src_vaddr;
  150. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  151. if (dst_vaddr == NULL)
  152. return -ENOMEM;
  153. src_vaddr = kmap_atomic(src_page, KM_USER1);
  154. if (src_vaddr == NULL) {
  155. kunmap_atomic(dst_vaddr, KM_USER0);
  156. return -ENOMEM;
  157. }
  158. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  159. kunmap_atomic(src_vaddr, KM_USER1);
  160. kunmap_atomic(dst_vaddr, KM_USER0);
  161. return 0;
  162. }
  163. static inline int
  164. slow_shmem_bit17_copy(struct page *gpu_page,
  165. int gpu_offset,
  166. struct page *cpu_page,
  167. int cpu_offset,
  168. int length,
  169. int is_read)
  170. {
  171. char *gpu_vaddr, *cpu_vaddr;
  172. /* Use the unswizzled path if this page isn't affected. */
  173. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  174. if (is_read)
  175. return slow_shmem_copy(cpu_page, cpu_offset,
  176. gpu_page, gpu_offset, length);
  177. else
  178. return slow_shmem_copy(gpu_page, gpu_offset,
  179. cpu_page, cpu_offset, length);
  180. }
  181. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  182. if (gpu_vaddr == NULL)
  183. return -ENOMEM;
  184. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  185. if (cpu_vaddr == NULL) {
  186. kunmap_atomic(gpu_vaddr, KM_USER0);
  187. return -ENOMEM;
  188. }
  189. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  190. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  191. */
  192. while (length > 0) {
  193. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  194. int this_length = min(cacheline_end - gpu_offset, length);
  195. int swizzled_gpu_offset = gpu_offset ^ 64;
  196. if (is_read) {
  197. memcpy(cpu_vaddr + cpu_offset,
  198. gpu_vaddr + swizzled_gpu_offset,
  199. this_length);
  200. } else {
  201. memcpy(gpu_vaddr + swizzled_gpu_offset,
  202. cpu_vaddr + cpu_offset,
  203. this_length);
  204. }
  205. cpu_offset += this_length;
  206. gpu_offset += this_length;
  207. length -= this_length;
  208. }
  209. kunmap_atomic(cpu_vaddr, KM_USER1);
  210. kunmap_atomic(gpu_vaddr, KM_USER0);
  211. return 0;
  212. }
  213. /**
  214. * This is the fast shmem pread path, which attempts to copy_from_user directly
  215. * from the backing pages of the object to the user's address space. On a
  216. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  217. */
  218. static int
  219. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  220. struct drm_i915_gem_pread *args,
  221. struct drm_file *file_priv)
  222. {
  223. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  224. ssize_t remain;
  225. loff_t offset, page_base;
  226. char __user *user_data;
  227. int page_offset, page_length;
  228. int ret;
  229. user_data = (char __user *) (uintptr_t) args->data_ptr;
  230. remain = args->size;
  231. mutex_lock(&dev->struct_mutex);
  232. ret = i915_gem_object_get_pages(obj);
  233. if (ret != 0)
  234. goto fail_unlock;
  235. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  236. args->size);
  237. if (ret != 0)
  238. goto fail_put_pages;
  239. obj_priv = obj->driver_private;
  240. offset = args->offset;
  241. while (remain > 0) {
  242. /* Operation in this page
  243. *
  244. * page_base = page offset within aperture
  245. * page_offset = offset within page
  246. * page_length = bytes to copy for this page
  247. */
  248. page_base = (offset & ~(PAGE_SIZE-1));
  249. page_offset = offset & (PAGE_SIZE-1);
  250. page_length = remain;
  251. if ((page_offset + remain) > PAGE_SIZE)
  252. page_length = PAGE_SIZE - page_offset;
  253. ret = fast_shmem_read(obj_priv->pages,
  254. page_base, page_offset,
  255. user_data, page_length);
  256. if (ret)
  257. goto fail_put_pages;
  258. remain -= page_length;
  259. user_data += page_length;
  260. offset += page_length;
  261. }
  262. fail_put_pages:
  263. i915_gem_object_put_pages(obj);
  264. fail_unlock:
  265. mutex_unlock(&dev->struct_mutex);
  266. return ret;
  267. }
  268. static inline gfp_t
  269. i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
  270. {
  271. return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
  272. }
  273. static inline void
  274. i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
  275. {
  276. mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
  277. }
  278. static int
  279. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  280. {
  281. int ret;
  282. ret = i915_gem_object_get_pages(obj);
  283. /* If we've insufficient memory to map in the pages, attempt
  284. * to make some space by throwing out some old buffers.
  285. */
  286. if (ret == -ENOMEM) {
  287. struct drm_device *dev = obj->dev;
  288. gfp_t gfp;
  289. ret = i915_gem_evict_something(dev, obj->size);
  290. if (ret)
  291. return ret;
  292. gfp = i915_gem_object_get_page_gfp_mask(obj);
  293. i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
  294. ret = i915_gem_object_get_pages(obj);
  295. i915_gem_object_set_page_gfp_mask (obj, gfp);
  296. }
  297. return ret;
  298. }
  299. /**
  300. * This is the fallback shmem pread path, which allocates temporary storage
  301. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  302. * can copy out of the object's backing pages while holding the struct mutex
  303. * and not take page faults.
  304. */
  305. static int
  306. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  307. struct drm_i915_gem_pread *args,
  308. struct drm_file *file_priv)
  309. {
  310. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  311. struct mm_struct *mm = current->mm;
  312. struct page **user_pages;
  313. ssize_t remain;
  314. loff_t offset, pinned_pages, i;
  315. loff_t first_data_page, last_data_page, num_pages;
  316. int shmem_page_index, shmem_page_offset;
  317. int data_page_index, data_page_offset;
  318. int page_length;
  319. int ret;
  320. uint64_t data_ptr = args->data_ptr;
  321. int do_bit17_swizzling;
  322. remain = args->size;
  323. /* Pin the user pages containing the data. We can't fault while
  324. * holding the struct mutex, yet we want to hold it while
  325. * dereferencing the user data.
  326. */
  327. first_data_page = data_ptr / PAGE_SIZE;
  328. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  329. num_pages = last_data_page - first_data_page + 1;
  330. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  331. if (user_pages == NULL)
  332. return -ENOMEM;
  333. down_read(&mm->mmap_sem);
  334. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  335. num_pages, 1, 0, user_pages, NULL);
  336. up_read(&mm->mmap_sem);
  337. if (pinned_pages < num_pages) {
  338. ret = -EFAULT;
  339. goto fail_put_user_pages;
  340. }
  341. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  342. mutex_lock(&dev->struct_mutex);
  343. ret = i915_gem_object_get_pages_or_evict(obj);
  344. if (ret)
  345. goto fail_unlock;
  346. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  347. args->size);
  348. if (ret != 0)
  349. goto fail_put_pages;
  350. obj_priv = obj->driver_private;
  351. offset = args->offset;
  352. while (remain > 0) {
  353. /* Operation in this page
  354. *
  355. * shmem_page_index = page number within shmem file
  356. * shmem_page_offset = offset within page in shmem file
  357. * data_page_index = page number in get_user_pages return
  358. * data_page_offset = offset with data_page_index page.
  359. * page_length = bytes to copy for this page
  360. */
  361. shmem_page_index = offset / PAGE_SIZE;
  362. shmem_page_offset = offset & ~PAGE_MASK;
  363. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  364. data_page_offset = data_ptr & ~PAGE_MASK;
  365. page_length = remain;
  366. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  367. page_length = PAGE_SIZE - shmem_page_offset;
  368. if ((data_page_offset + page_length) > PAGE_SIZE)
  369. page_length = PAGE_SIZE - data_page_offset;
  370. if (do_bit17_swizzling) {
  371. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  372. shmem_page_offset,
  373. user_pages[data_page_index],
  374. data_page_offset,
  375. page_length,
  376. 1);
  377. } else {
  378. ret = slow_shmem_copy(user_pages[data_page_index],
  379. data_page_offset,
  380. obj_priv->pages[shmem_page_index],
  381. shmem_page_offset,
  382. page_length);
  383. }
  384. if (ret)
  385. goto fail_put_pages;
  386. remain -= page_length;
  387. data_ptr += page_length;
  388. offset += page_length;
  389. }
  390. fail_put_pages:
  391. i915_gem_object_put_pages(obj);
  392. fail_unlock:
  393. mutex_unlock(&dev->struct_mutex);
  394. fail_put_user_pages:
  395. for (i = 0; i < pinned_pages; i++) {
  396. SetPageDirty(user_pages[i]);
  397. page_cache_release(user_pages[i]);
  398. }
  399. drm_free_large(user_pages);
  400. return ret;
  401. }
  402. /**
  403. * Reads data from the object referenced by handle.
  404. *
  405. * On error, the contents of *data are undefined.
  406. */
  407. int
  408. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  409. struct drm_file *file_priv)
  410. {
  411. struct drm_i915_gem_pread *args = data;
  412. struct drm_gem_object *obj;
  413. struct drm_i915_gem_object *obj_priv;
  414. int ret;
  415. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  416. if (obj == NULL)
  417. return -EBADF;
  418. obj_priv = obj->driver_private;
  419. /* Bounds check source.
  420. *
  421. * XXX: This could use review for overflow issues...
  422. */
  423. if (args->offset > obj->size || args->size > obj->size ||
  424. args->offset + args->size > obj->size) {
  425. drm_gem_object_unreference(obj);
  426. return -EINVAL;
  427. }
  428. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  429. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  430. } else {
  431. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  432. if (ret != 0)
  433. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  434. file_priv);
  435. }
  436. drm_gem_object_unreference(obj);
  437. return ret;
  438. }
  439. /* This is the fast write path which cannot handle
  440. * page faults in the source data
  441. */
  442. static inline int
  443. fast_user_write(struct io_mapping *mapping,
  444. loff_t page_base, int page_offset,
  445. char __user *user_data,
  446. int length)
  447. {
  448. char *vaddr_atomic;
  449. unsigned long unwritten;
  450. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  451. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  452. user_data, length);
  453. io_mapping_unmap_atomic(vaddr_atomic);
  454. if (unwritten)
  455. return -EFAULT;
  456. return 0;
  457. }
  458. /* Here's the write path which can sleep for
  459. * page faults
  460. */
  461. static inline int
  462. slow_kernel_write(struct io_mapping *mapping,
  463. loff_t gtt_base, int gtt_offset,
  464. struct page *user_page, int user_offset,
  465. int length)
  466. {
  467. char *src_vaddr, *dst_vaddr;
  468. unsigned long unwritten;
  469. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  470. src_vaddr = kmap_atomic(user_page, KM_USER1);
  471. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  472. src_vaddr + user_offset,
  473. length);
  474. kunmap_atomic(src_vaddr, KM_USER1);
  475. io_mapping_unmap_atomic(dst_vaddr);
  476. if (unwritten)
  477. return -EFAULT;
  478. return 0;
  479. }
  480. static inline int
  481. fast_shmem_write(struct page **pages,
  482. loff_t page_base, int page_offset,
  483. char __user *data,
  484. int length)
  485. {
  486. char __iomem *vaddr;
  487. unsigned long unwritten;
  488. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  489. if (vaddr == NULL)
  490. return -ENOMEM;
  491. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  492. kunmap_atomic(vaddr, KM_USER0);
  493. if (unwritten)
  494. return -EFAULT;
  495. return 0;
  496. }
  497. /**
  498. * This is the fast pwrite path, where we copy the data directly from the
  499. * user into the GTT, uncached.
  500. */
  501. static int
  502. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  503. struct drm_i915_gem_pwrite *args,
  504. struct drm_file *file_priv)
  505. {
  506. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  507. drm_i915_private_t *dev_priv = dev->dev_private;
  508. ssize_t remain;
  509. loff_t offset, page_base;
  510. char __user *user_data;
  511. int page_offset, page_length;
  512. int ret;
  513. user_data = (char __user *) (uintptr_t) args->data_ptr;
  514. remain = args->size;
  515. if (!access_ok(VERIFY_READ, user_data, remain))
  516. return -EFAULT;
  517. mutex_lock(&dev->struct_mutex);
  518. ret = i915_gem_object_pin(obj, 0);
  519. if (ret) {
  520. mutex_unlock(&dev->struct_mutex);
  521. return ret;
  522. }
  523. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  524. if (ret)
  525. goto fail;
  526. obj_priv = obj->driver_private;
  527. offset = obj_priv->gtt_offset + args->offset;
  528. while (remain > 0) {
  529. /* Operation in this page
  530. *
  531. * page_base = page offset within aperture
  532. * page_offset = offset within page
  533. * page_length = bytes to copy for this page
  534. */
  535. page_base = (offset & ~(PAGE_SIZE-1));
  536. page_offset = offset & (PAGE_SIZE-1);
  537. page_length = remain;
  538. if ((page_offset + remain) > PAGE_SIZE)
  539. page_length = PAGE_SIZE - page_offset;
  540. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  541. page_offset, user_data, page_length);
  542. /* If we get a fault while copying data, then (presumably) our
  543. * source page isn't available. Return the error and we'll
  544. * retry in the slow path.
  545. */
  546. if (ret)
  547. goto fail;
  548. remain -= page_length;
  549. user_data += page_length;
  550. offset += page_length;
  551. }
  552. fail:
  553. i915_gem_object_unpin(obj);
  554. mutex_unlock(&dev->struct_mutex);
  555. return ret;
  556. }
  557. /**
  558. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  559. * the memory and maps it using kmap_atomic for copying.
  560. *
  561. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  562. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  563. */
  564. static int
  565. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  566. struct drm_i915_gem_pwrite *args,
  567. struct drm_file *file_priv)
  568. {
  569. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  570. drm_i915_private_t *dev_priv = dev->dev_private;
  571. ssize_t remain;
  572. loff_t gtt_page_base, offset;
  573. loff_t first_data_page, last_data_page, num_pages;
  574. loff_t pinned_pages, i;
  575. struct page **user_pages;
  576. struct mm_struct *mm = current->mm;
  577. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  578. int ret;
  579. uint64_t data_ptr = args->data_ptr;
  580. remain = args->size;
  581. /* Pin the user pages containing the data. We can't fault while
  582. * holding the struct mutex, and all of the pwrite implementations
  583. * want to hold it while dereferencing the user data.
  584. */
  585. first_data_page = data_ptr / PAGE_SIZE;
  586. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  587. num_pages = last_data_page - first_data_page + 1;
  588. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  589. if (user_pages == NULL)
  590. return -ENOMEM;
  591. down_read(&mm->mmap_sem);
  592. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  593. num_pages, 0, 0, user_pages, NULL);
  594. up_read(&mm->mmap_sem);
  595. if (pinned_pages < num_pages) {
  596. ret = -EFAULT;
  597. goto out_unpin_pages;
  598. }
  599. mutex_lock(&dev->struct_mutex);
  600. ret = i915_gem_object_pin(obj, 0);
  601. if (ret)
  602. goto out_unlock;
  603. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  604. if (ret)
  605. goto out_unpin_object;
  606. obj_priv = obj->driver_private;
  607. offset = obj_priv->gtt_offset + args->offset;
  608. while (remain > 0) {
  609. /* Operation in this page
  610. *
  611. * gtt_page_base = page offset within aperture
  612. * gtt_page_offset = offset within page in aperture
  613. * data_page_index = page number in get_user_pages return
  614. * data_page_offset = offset with data_page_index page.
  615. * page_length = bytes to copy for this page
  616. */
  617. gtt_page_base = offset & PAGE_MASK;
  618. gtt_page_offset = offset & ~PAGE_MASK;
  619. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  620. data_page_offset = data_ptr & ~PAGE_MASK;
  621. page_length = remain;
  622. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  623. page_length = PAGE_SIZE - gtt_page_offset;
  624. if ((data_page_offset + page_length) > PAGE_SIZE)
  625. page_length = PAGE_SIZE - data_page_offset;
  626. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  627. gtt_page_base, gtt_page_offset,
  628. user_pages[data_page_index],
  629. data_page_offset,
  630. page_length);
  631. /* If we get a fault while copying data, then (presumably) our
  632. * source page isn't available. Return the error and we'll
  633. * retry in the slow path.
  634. */
  635. if (ret)
  636. goto out_unpin_object;
  637. remain -= page_length;
  638. offset += page_length;
  639. data_ptr += page_length;
  640. }
  641. out_unpin_object:
  642. i915_gem_object_unpin(obj);
  643. out_unlock:
  644. mutex_unlock(&dev->struct_mutex);
  645. out_unpin_pages:
  646. for (i = 0; i < pinned_pages; i++)
  647. page_cache_release(user_pages[i]);
  648. drm_free_large(user_pages);
  649. return ret;
  650. }
  651. /**
  652. * This is the fast shmem pwrite path, which attempts to directly
  653. * copy_from_user into the kmapped pages backing the object.
  654. */
  655. static int
  656. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  657. struct drm_i915_gem_pwrite *args,
  658. struct drm_file *file_priv)
  659. {
  660. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  661. ssize_t remain;
  662. loff_t offset, page_base;
  663. char __user *user_data;
  664. int page_offset, page_length;
  665. int ret;
  666. user_data = (char __user *) (uintptr_t) args->data_ptr;
  667. remain = args->size;
  668. mutex_lock(&dev->struct_mutex);
  669. ret = i915_gem_object_get_pages(obj);
  670. if (ret != 0)
  671. goto fail_unlock;
  672. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  673. if (ret != 0)
  674. goto fail_put_pages;
  675. obj_priv = obj->driver_private;
  676. offset = args->offset;
  677. obj_priv->dirty = 1;
  678. while (remain > 0) {
  679. /* Operation in this page
  680. *
  681. * page_base = page offset within aperture
  682. * page_offset = offset within page
  683. * page_length = bytes to copy for this page
  684. */
  685. page_base = (offset & ~(PAGE_SIZE-1));
  686. page_offset = offset & (PAGE_SIZE-1);
  687. page_length = remain;
  688. if ((page_offset + remain) > PAGE_SIZE)
  689. page_length = PAGE_SIZE - page_offset;
  690. ret = fast_shmem_write(obj_priv->pages,
  691. page_base, page_offset,
  692. user_data, page_length);
  693. if (ret)
  694. goto fail_put_pages;
  695. remain -= page_length;
  696. user_data += page_length;
  697. offset += page_length;
  698. }
  699. fail_put_pages:
  700. i915_gem_object_put_pages(obj);
  701. fail_unlock:
  702. mutex_unlock(&dev->struct_mutex);
  703. return ret;
  704. }
  705. /**
  706. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  707. * the memory and maps it using kmap_atomic for copying.
  708. *
  709. * This avoids taking mmap_sem for faulting on the user's address while the
  710. * struct_mutex is held.
  711. */
  712. static int
  713. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  714. struct drm_i915_gem_pwrite *args,
  715. struct drm_file *file_priv)
  716. {
  717. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  718. struct mm_struct *mm = current->mm;
  719. struct page **user_pages;
  720. ssize_t remain;
  721. loff_t offset, pinned_pages, i;
  722. loff_t first_data_page, last_data_page, num_pages;
  723. int shmem_page_index, shmem_page_offset;
  724. int data_page_index, data_page_offset;
  725. int page_length;
  726. int ret;
  727. uint64_t data_ptr = args->data_ptr;
  728. int do_bit17_swizzling;
  729. remain = args->size;
  730. /* Pin the user pages containing the data. We can't fault while
  731. * holding the struct mutex, and all of the pwrite implementations
  732. * want to hold it while dereferencing the user data.
  733. */
  734. first_data_page = data_ptr / PAGE_SIZE;
  735. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  736. num_pages = last_data_page - first_data_page + 1;
  737. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  738. if (user_pages == NULL)
  739. return -ENOMEM;
  740. down_read(&mm->mmap_sem);
  741. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  742. num_pages, 0, 0, user_pages, NULL);
  743. up_read(&mm->mmap_sem);
  744. if (pinned_pages < num_pages) {
  745. ret = -EFAULT;
  746. goto fail_put_user_pages;
  747. }
  748. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  749. mutex_lock(&dev->struct_mutex);
  750. ret = i915_gem_object_get_pages_or_evict(obj);
  751. if (ret)
  752. goto fail_unlock;
  753. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  754. if (ret != 0)
  755. goto fail_put_pages;
  756. obj_priv = obj->driver_private;
  757. offset = args->offset;
  758. obj_priv->dirty = 1;
  759. while (remain > 0) {
  760. /* Operation in this page
  761. *
  762. * shmem_page_index = page number within shmem file
  763. * shmem_page_offset = offset within page in shmem file
  764. * data_page_index = page number in get_user_pages return
  765. * data_page_offset = offset with data_page_index page.
  766. * page_length = bytes to copy for this page
  767. */
  768. shmem_page_index = offset / PAGE_SIZE;
  769. shmem_page_offset = offset & ~PAGE_MASK;
  770. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  771. data_page_offset = data_ptr & ~PAGE_MASK;
  772. page_length = remain;
  773. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  774. page_length = PAGE_SIZE - shmem_page_offset;
  775. if ((data_page_offset + page_length) > PAGE_SIZE)
  776. page_length = PAGE_SIZE - data_page_offset;
  777. if (do_bit17_swizzling) {
  778. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  779. shmem_page_offset,
  780. user_pages[data_page_index],
  781. data_page_offset,
  782. page_length,
  783. 0);
  784. } else {
  785. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  786. shmem_page_offset,
  787. user_pages[data_page_index],
  788. data_page_offset,
  789. page_length);
  790. }
  791. if (ret)
  792. goto fail_put_pages;
  793. remain -= page_length;
  794. data_ptr += page_length;
  795. offset += page_length;
  796. }
  797. fail_put_pages:
  798. i915_gem_object_put_pages(obj);
  799. fail_unlock:
  800. mutex_unlock(&dev->struct_mutex);
  801. fail_put_user_pages:
  802. for (i = 0; i < pinned_pages; i++)
  803. page_cache_release(user_pages[i]);
  804. drm_free_large(user_pages);
  805. return ret;
  806. }
  807. /**
  808. * Writes data to the object referenced by handle.
  809. *
  810. * On error, the contents of the buffer that were to be modified are undefined.
  811. */
  812. int
  813. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  814. struct drm_file *file_priv)
  815. {
  816. struct drm_i915_gem_pwrite *args = data;
  817. struct drm_gem_object *obj;
  818. struct drm_i915_gem_object *obj_priv;
  819. int ret = 0;
  820. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  821. if (obj == NULL)
  822. return -EBADF;
  823. obj_priv = obj->driver_private;
  824. /* Bounds check destination.
  825. *
  826. * XXX: This could use review for overflow issues...
  827. */
  828. if (args->offset > obj->size || args->size > obj->size ||
  829. args->offset + args->size > obj->size) {
  830. drm_gem_object_unreference(obj);
  831. return -EINVAL;
  832. }
  833. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  834. * it would end up going through the fenced access, and we'll get
  835. * different detiling behavior between reading and writing.
  836. * pread/pwrite currently are reading and writing from the CPU
  837. * perspective, requiring manual detiling by the client.
  838. */
  839. if (obj_priv->phys_obj)
  840. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  841. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  842. dev->gtt_total != 0) {
  843. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  844. if (ret == -EFAULT) {
  845. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  846. file_priv);
  847. }
  848. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  849. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  850. } else {
  851. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  852. if (ret == -EFAULT) {
  853. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  854. file_priv);
  855. }
  856. }
  857. #if WATCH_PWRITE
  858. if (ret)
  859. DRM_INFO("pwrite failed %d\n", ret);
  860. #endif
  861. drm_gem_object_unreference(obj);
  862. return ret;
  863. }
  864. /**
  865. * Called when user space prepares to use an object with the CPU, either
  866. * through the mmap ioctl's mapping or a GTT mapping.
  867. */
  868. int
  869. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  870. struct drm_file *file_priv)
  871. {
  872. struct drm_i915_private *dev_priv = dev->dev_private;
  873. struct drm_i915_gem_set_domain *args = data;
  874. struct drm_gem_object *obj;
  875. struct drm_i915_gem_object *obj_priv;
  876. uint32_t read_domains = args->read_domains;
  877. uint32_t write_domain = args->write_domain;
  878. int ret;
  879. if (!(dev->driver->driver_features & DRIVER_GEM))
  880. return -ENODEV;
  881. /* Only handle setting domains to types used by the CPU. */
  882. if (write_domain & I915_GEM_GPU_DOMAINS)
  883. return -EINVAL;
  884. if (read_domains & I915_GEM_GPU_DOMAINS)
  885. return -EINVAL;
  886. /* Having something in the write domain implies it's in the read
  887. * domain, and only that read domain. Enforce that in the request.
  888. */
  889. if (write_domain != 0 && read_domains != write_domain)
  890. return -EINVAL;
  891. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  892. if (obj == NULL)
  893. return -EBADF;
  894. obj_priv = obj->driver_private;
  895. mutex_lock(&dev->struct_mutex);
  896. intel_mark_busy(dev, obj);
  897. #if WATCH_BUF
  898. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  899. obj, obj->size, read_domains, write_domain);
  900. #endif
  901. if (read_domains & I915_GEM_DOMAIN_GTT) {
  902. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  903. /* Update the LRU on the fence for the CPU access that's
  904. * about to occur.
  905. */
  906. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  907. list_move_tail(&obj_priv->fence_list,
  908. &dev_priv->mm.fence_list);
  909. }
  910. /* Silently promote "you're not bound, there was nothing to do"
  911. * to success, since the client was just asking us to
  912. * make sure everything was done.
  913. */
  914. if (ret == -EINVAL)
  915. ret = 0;
  916. } else {
  917. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  918. }
  919. drm_gem_object_unreference(obj);
  920. mutex_unlock(&dev->struct_mutex);
  921. return ret;
  922. }
  923. /**
  924. * Called when user space has done writes to this buffer
  925. */
  926. int
  927. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  928. struct drm_file *file_priv)
  929. {
  930. struct drm_i915_gem_sw_finish *args = data;
  931. struct drm_gem_object *obj;
  932. struct drm_i915_gem_object *obj_priv;
  933. int ret = 0;
  934. if (!(dev->driver->driver_features & DRIVER_GEM))
  935. return -ENODEV;
  936. mutex_lock(&dev->struct_mutex);
  937. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  938. if (obj == NULL) {
  939. mutex_unlock(&dev->struct_mutex);
  940. return -EBADF;
  941. }
  942. #if WATCH_BUF
  943. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  944. __func__, args->handle, obj, obj->size);
  945. #endif
  946. obj_priv = obj->driver_private;
  947. /* Pinned buffers may be scanout, so flush the cache */
  948. if (obj_priv->pin_count)
  949. i915_gem_object_flush_cpu_write_domain(obj);
  950. drm_gem_object_unreference(obj);
  951. mutex_unlock(&dev->struct_mutex);
  952. return ret;
  953. }
  954. /**
  955. * Maps the contents of an object, returning the address it is mapped
  956. * into.
  957. *
  958. * While the mapping holds a reference on the contents of the object, it doesn't
  959. * imply a ref on the object itself.
  960. */
  961. int
  962. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  963. struct drm_file *file_priv)
  964. {
  965. struct drm_i915_gem_mmap *args = data;
  966. struct drm_gem_object *obj;
  967. loff_t offset;
  968. unsigned long addr;
  969. if (!(dev->driver->driver_features & DRIVER_GEM))
  970. return -ENODEV;
  971. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  972. if (obj == NULL)
  973. return -EBADF;
  974. offset = args->offset;
  975. down_write(&current->mm->mmap_sem);
  976. addr = do_mmap(obj->filp, 0, args->size,
  977. PROT_READ | PROT_WRITE, MAP_SHARED,
  978. args->offset);
  979. up_write(&current->mm->mmap_sem);
  980. mutex_lock(&dev->struct_mutex);
  981. drm_gem_object_unreference(obj);
  982. mutex_unlock(&dev->struct_mutex);
  983. if (IS_ERR((void *)addr))
  984. return addr;
  985. args->addr_ptr = (uint64_t) addr;
  986. return 0;
  987. }
  988. /**
  989. * i915_gem_fault - fault a page into the GTT
  990. * vma: VMA in question
  991. * vmf: fault info
  992. *
  993. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  994. * from userspace. The fault handler takes care of binding the object to
  995. * the GTT (if needed), allocating and programming a fence register (again,
  996. * only if needed based on whether the old reg is still valid or the object
  997. * is tiled) and inserting a new PTE into the faulting process.
  998. *
  999. * Note that the faulting process may involve evicting existing objects
  1000. * from the GTT and/or fence registers to make room. So performance may
  1001. * suffer if the GTT working set is large or there are few fence registers
  1002. * left.
  1003. */
  1004. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1005. {
  1006. struct drm_gem_object *obj = vma->vm_private_data;
  1007. struct drm_device *dev = obj->dev;
  1008. struct drm_i915_private *dev_priv = dev->dev_private;
  1009. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1010. pgoff_t page_offset;
  1011. unsigned long pfn;
  1012. int ret = 0;
  1013. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1014. /* We don't use vmf->pgoff since that has the fake offset */
  1015. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1016. PAGE_SHIFT;
  1017. /* Now bind it into the GTT if needed */
  1018. mutex_lock(&dev->struct_mutex);
  1019. if (!obj_priv->gtt_space) {
  1020. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1021. if (ret)
  1022. goto unlock;
  1023. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1024. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1025. if (ret)
  1026. goto unlock;
  1027. }
  1028. /* Need a new fence register? */
  1029. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1030. ret = i915_gem_object_get_fence_reg(obj);
  1031. if (ret)
  1032. goto unlock;
  1033. }
  1034. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1035. page_offset;
  1036. /* Finally, remap it using the new GTT offset */
  1037. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1038. unlock:
  1039. mutex_unlock(&dev->struct_mutex);
  1040. switch (ret) {
  1041. case 0:
  1042. case -ERESTARTSYS:
  1043. return VM_FAULT_NOPAGE;
  1044. case -ENOMEM:
  1045. case -EAGAIN:
  1046. return VM_FAULT_OOM;
  1047. default:
  1048. return VM_FAULT_SIGBUS;
  1049. }
  1050. }
  1051. /**
  1052. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1053. * @obj: obj in question
  1054. *
  1055. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1056. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1057. * up the object based on the offset and sets up the various memory mapping
  1058. * structures.
  1059. *
  1060. * This routine allocates and attaches a fake offset for @obj.
  1061. */
  1062. static int
  1063. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1064. {
  1065. struct drm_device *dev = obj->dev;
  1066. struct drm_gem_mm *mm = dev->mm_private;
  1067. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1068. struct drm_map_list *list;
  1069. struct drm_local_map *map;
  1070. int ret = 0;
  1071. /* Set the object up for mmap'ing */
  1072. list = &obj->map_list;
  1073. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1074. if (!list->map)
  1075. return -ENOMEM;
  1076. map = list->map;
  1077. map->type = _DRM_GEM;
  1078. map->size = obj->size;
  1079. map->handle = obj;
  1080. /* Get a DRM GEM mmap offset allocated... */
  1081. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1082. obj->size / PAGE_SIZE, 0, 0);
  1083. if (!list->file_offset_node) {
  1084. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1085. ret = -ENOMEM;
  1086. goto out_free_list;
  1087. }
  1088. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1089. obj->size / PAGE_SIZE, 0);
  1090. if (!list->file_offset_node) {
  1091. ret = -ENOMEM;
  1092. goto out_free_list;
  1093. }
  1094. list->hash.key = list->file_offset_node->start;
  1095. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1096. DRM_ERROR("failed to add to map hash\n");
  1097. goto out_free_mm;
  1098. }
  1099. /* By now we should be all set, any drm_mmap request on the offset
  1100. * below will get to our mmap & fault handler */
  1101. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1102. return 0;
  1103. out_free_mm:
  1104. drm_mm_put_block(list->file_offset_node);
  1105. out_free_list:
  1106. kfree(list->map);
  1107. return ret;
  1108. }
  1109. /**
  1110. * i915_gem_release_mmap - remove physical page mappings
  1111. * @obj: obj in question
  1112. *
  1113. * Preserve the reservation of the mmaping with the DRM core code, but
  1114. * relinquish ownership of the pages back to the system.
  1115. *
  1116. * It is vital that we remove the page mapping if we have mapped a tiled
  1117. * object through the GTT and then lose the fence register due to
  1118. * resource pressure. Similarly if the object has been moved out of the
  1119. * aperture, than pages mapped into userspace must be revoked. Removing the
  1120. * mapping will then trigger a page fault on the next user access, allowing
  1121. * fixup by i915_gem_fault().
  1122. */
  1123. void
  1124. i915_gem_release_mmap(struct drm_gem_object *obj)
  1125. {
  1126. struct drm_device *dev = obj->dev;
  1127. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1128. if (dev->dev_mapping)
  1129. unmap_mapping_range(dev->dev_mapping,
  1130. obj_priv->mmap_offset, obj->size, 1);
  1131. }
  1132. static void
  1133. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1134. {
  1135. struct drm_device *dev = obj->dev;
  1136. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1137. struct drm_gem_mm *mm = dev->mm_private;
  1138. struct drm_map_list *list;
  1139. list = &obj->map_list;
  1140. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1141. if (list->file_offset_node) {
  1142. drm_mm_put_block(list->file_offset_node);
  1143. list->file_offset_node = NULL;
  1144. }
  1145. if (list->map) {
  1146. kfree(list->map);
  1147. list->map = NULL;
  1148. }
  1149. obj_priv->mmap_offset = 0;
  1150. }
  1151. /**
  1152. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1153. * @obj: object to check
  1154. *
  1155. * Return the required GTT alignment for an object, taking into account
  1156. * potential fence register mapping if needed.
  1157. */
  1158. static uint32_t
  1159. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1160. {
  1161. struct drm_device *dev = obj->dev;
  1162. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1163. int start, i;
  1164. /*
  1165. * Minimum alignment is 4k (GTT page size), but might be greater
  1166. * if a fence register is needed for the object.
  1167. */
  1168. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1169. return 4096;
  1170. /*
  1171. * Previous chips need to be aligned to the size of the smallest
  1172. * fence register that can contain the object.
  1173. */
  1174. if (IS_I9XX(dev))
  1175. start = 1024*1024;
  1176. else
  1177. start = 512*1024;
  1178. for (i = start; i < obj->size; i <<= 1)
  1179. ;
  1180. return i;
  1181. }
  1182. /**
  1183. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1184. * @dev: DRM device
  1185. * @data: GTT mapping ioctl data
  1186. * @file_priv: GEM object info
  1187. *
  1188. * Simply returns the fake offset to userspace so it can mmap it.
  1189. * The mmap call will end up in drm_gem_mmap(), which will set things
  1190. * up so we can get faults in the handler above.
  1191. *
  1192. * The fault handler will take care of binding the object into the GTT
  1193. * (since it may have been evicted to make room for something), allocating
  1194. * a fence register, and mapping the appropriate aperture address into
  1195. * userspace.
  1196. */
  1197. int
  1198. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1199. struct drm_file *file_priv)
  1200. {
  1201. struct drm_i915_gem_mmap_gtt *args = data;
  1202. struct drm_i915_private *dev_priv = dev->dev_private;
  1203. struct drm_gem_object *obj;
  1204. struct drm_i915_gem_object *obj_priv;
  1205. int ret;
  1206. if (!(dev->driver->driver_features & DRIVER_GEM))
  1207. return -ENODEV;
  1208. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1209. if (obj == NULL)
  1210. return -EBADF;
  1211. mutex_lock(&dev->struct_mutex);
  1212. obj_priv = obj->driver_private;
  1213. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1214. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1215. drm_gem_object_unreference(obj);
  1216. mutex_unlock(&dev->struct_mutex);
  1217. return -EINVAL;
  1218. }
  1219. if (!obj_priv->mmap_offset) {
  1220. ret = i915_gem_create_mmap_offset(obj);
  1221. if (ret) {
  1222. drm_gem_object_unreference(obj);
  1223. mutex_unlock(&dev->struct_mutex);
  1224. return ret;
  1225. }
  1226. }
  1227. args->offset = obj_priv->mmap_offset;
  1228. /*
  1229. * Pull it into the GTT so that we have a page list (makes the
  1230. * initial fault faster and any subsequent flushing possible).
  1231. */
  1232. if (!obj_priv->agp_mem) {
  1233. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1234. if (ret) {
  1235. drm_gem_object_unreference(obj);
  1236. mutex_unlock(&dev->struct_mutex);
  1237. return ret;
  1238. }
  1239. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1240. }
  1241. drm_gem_object_unreference(obj);
  1242. mutex_unlock(&dev->struct_mutex);
  1243. return 0;
  1244. }
  1245. void
  1246. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1247. {
  1248. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1249. int page_count = obj->size / PAGE_SIZE;
  1250. int i;
  1251. BUG_ON(obj_priv->pages_refcount == 0);
  1252. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1253. if (--obj_priv->pages_refcount != 0)
  1254. return;
  1255. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1256. i915_gem_object_save_bit_17_swizzle(obj);
  1257. if (obj_priv->madv == I915_MADV_DONTNEED)
  1258. obj_priv->dirty = 0;
  1259. for (i = 0; i < page_count; i++) {
  1260. if (obj_priv->pages[i] == NULL)
  1261. break;
  1262. if (obj_priv->dirty)
  1263. set_page_dirty(obj_priv->pages[i]);
  1264. if (obj_priv->madv == I915_MADV_WILLNEED)
  1265. mark_page_accessed(obj_priv->pages[i]);
  1266. page_cache_release(obj_priv->pages[i]);
  1267. }
  1268. obj_priv->dirty = 0;
  1269. drm_free_large(obj_priv->pages);
  1270. obj_priv->pages = NULL;
  1271. }
  1272. static void
  1273. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1274. {
  1275. struct drm_device *dev = obj->dev;
  1276. drm_i915_private_t *dev_priv = dev->dev_private;
  1277. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1278. /* Add a reference if we're newly entering the active list. */
  1279. if (!obj_priv->active) {
  1280. drm_gem_object_reference(obj);
  1281. obj_priv->active = 1;
  1282. }
  1283. /* Move from whatever list we were on to the tail of execution. */
  1284. spin_lock(&dev_priv->mm.active_list_lock);
  1285. list_move_tail(&obj_priv->list,
  1286. &dev_priv->mm.active_list);
  1287. spin_unlock(&dev_priv->mm.active_list_lock);
  1288. obj_priv->last_rendering_seqno = seqno;
  1289. }
  1290. static void
  1291. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1292. {
  1293. struct drm_device *dev = obj->dev;
  1294. drm_i915_private_t *dev_priv = dev->dev_private;
  1295. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1296. BUG_ON(!obj_priv->active);
  1297. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1298. obj_priv->last_rendering_seqno = 0;
  1299. }
  1300. /* Immediately discard the backing storage */
  1301. static void
  1302. i915_gem_object_truncate(struct drm_gem_object *obj)
  1303. {
  1304. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1305. struct inode *inode;
  1306. inode = obj->filp->f_path.dentry->d_inode;
  1307. if (inode->i_op->truncate)
  1308. inode->i_op->truncate (inode);
  1309. obj_priv->madv = __I915_MADV_PURGED;
  1310. }
  1311. static inline int
  1312. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1313. {
  1314. return obj_priv->madv == I915_MADV_DONTNEED;
  1315. }
  1316. static void
  1317. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1318. {
  1319. struct drm_device *dev = obj->dev;
  1320. drm_i915_private_t *dev_priv = dev->dev_private;
  1321. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1322. i915_verify_inactive(dev, __FILE__, __LINE__);
  1323. if (obj_priv->pin_count != 0)
  1324. list_del_init(&obj_priv->list);
  1325. else
  1326. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1327. obj_priv->last_rendering_seqno = 0;
  1328. if (obj_priv->active) {
  1329. obj_priv->active = 0;
  1330. drm_gem_object_unreference(obj);
  1331. }
  1332. i915_verify_inactive(dev, __FILE__, __LINE__);
  1333. }
  1334. /**
  1335. * Creates a new sequence number, emitting a write of it to the status page
  1336. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1337. *
  1338. * Must be called with struct_lock held.
  1339. *
  1340. * Returned sequence numbers are nonzero on success.
  1341. */
  1342. static uint32_t
  1343. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1344. uint32_t flush_domains)
  1345. {
  1346. drm_i915_private_t *dev_priv = dev->dev_private;
  1347. struct drm_i915_file_private *i915_file_priv = NULL;
  1348. struct drm_i915_gem_request *request;
  1349. uint32_t seqno;
  1350. int was_empty;
  1351. RING_LOCALS;
  1352. if (file_priv != NULL)
  1353. i915_file_priv = file_priv->driver_priv;
  1354. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1355. if (request == NULL)
  1356. return 0;
  1357. /* Grab the seqno we're going to make this request be, and bump the
  1358. * next (skipping 0 so it can be the reserved no-seqno value).
  1359. */
  1360. seqno = dev_priv->mm.next_gem_seqno;
  1361. dev_priv->mm.next_gem_seqno++;
  1362. if (dev_priv->mm.next_gem_seqno == 0)
  1363. dev_priv->mm.next_gem_seqno++;
  1364. BEGIN_LP_RING(4);
  1365. OUT_RING(MI_STORE_DWORD_INDEX);
  1366. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1367. OUT_RING(seqno);
  1368. OUT_RING(MI_USER_INTERRUPT);
  1369. ADVANCE_LP_RING();
  1370. DRM_DEBUG("%d\n", seqno);
  1371. request->seqno = seqno;
  1372. request->emitted_jiffies = jiffies;
  1373. was_empty = list_empty(&dev_priv->mm.request_list);
  1374. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1375. if (i915_file_priv) {
  1376. list_add_tail(&request->client_list,
  1377. &i915_file_priv->mm.request_list);
  1378. } else {
  1379. INIT_LIST_HEAD(&request->client_list);
  1380. }
  1381. /* Associate any objects on the flushing list matching the write
  1382. * domain we're flushing with our flush.
  1383. */
  1384. if (flush_domains != 0) {
  1385. struct drm_i915_gem_object *obj_priv, *next;
  1386. list_for_each_entry_safe(obj_priv, next,
  1387. &dev_priv->mm.flushing_list, list) {
  1388. struct drm_gem_object *obj = obj_priv->obj;
  1389. if ((obj->write_domain & flush_domains) ==
  1390. obj->write_domain) {
  1391. uint32_t old_write_domain = obj->write_domain;
  1392. obj->write_domain = 0;
  1393. i915_gem_object_move_to_active(obj, seqno);
  1394. trace_i915_gem_object_change_domain(obj,
  1395. obj->read_domains,
  1396. old_write_domain);
  1397. }
  1398. }
  1399. }
  1400. if (!dev_priv->mm.suspended) {
  1401. mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
  1402. if (was_empty)
  1403. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1404. }
  1405. return seqno;
  1406. }
  1407. /**
  1408. * Command execution barrier
  1409. *
  1410. * Ensures that all commands in the ring are finished
  1411. * before signalling the CPU
  1412. */
  1413. static uint32_t
  1414. i915_retire_commands(struct drm_device *dev)
  1415. {
  1416. drm_i915_private_t *dev_priv = dev->dev_private;
  1417. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1418. uint32_t flush_domains = 0;
  1419. RING_LOCALS;
  1420. /* The sampler always gets flushed on i965 (sigh) */
  1421. if (IS_I965G(dev))
  1422. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1423. BEGIN_LP_RING(2);
  1424. OUT_RING(cmd);
  1425. OUT_RING(0); /* noop */
  1426. ADVANCE_LP_RING();
  1427. return flush_domains;
  1428. }
  1429. /**
  1430. * Moves buffers associated only with the given active seqno from the active
  1431. * to inactive list, potentially freeing them.
  1432. */
  1433. static void
  1434. i915_gem_retire_request(struct drm_device *dev,
  1435. struct drm_i915_gem_request *request)
  1436. {
  1437. drm_i915_private_t *dev_priv = dev->dev_private;
  1438. trace_i915_gem_request_retire(dev, request->seqno);
  1439. /* Move any buffers on the active list that are no longer referenced
  1440. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1441. */
  1442. spin_lock(&dev_priv->mm.active_list_lock);
  1443. while (!list_empty(&dev_priv->mm.active_list)) {
  1444. struct drm_gem_object *obj;
  1445. struct drm_i915_gem_object *obj_priv;
  1446. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1447. struct drm_i915_gem_object,
  1448. list);
  1449. obj = obj_priv->obj;
  1450. /* If the seqno being retired doesn't match the oldest in the
  1451. * list, then the oldest in the list must still be newer than
  1452. * this seqno.
  1453. */
  1454. if (obj_priv->last_rendering_seqno != request->seqno)
  1455. goto out;
  1456. #if WATCH_LRU
  1457. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1458. __func__, request->seqno, obj);
  1459. #endif
  1460. if (obj->write_domain != 0)
  1461. i915_gem_object_move_to_flushing(obj);
  1462. else {
  1463. /* Take a reference on the object so it won't be
  1464. * freed while the spinlock is held. The list
  1465. * protection for this spinlock is safe when breaking
  1466. * the lock like this since the next thing we do
  1467. * is just get the head of the list again.
  1468. */
  1469. drm_gem_object_reference(obj);
  1470. i915_gem_object_move_to_inactive(obj);
  1471. spin_unlock(&dev_priv->mm.active_list_lock);
  1472. drm_gem_object_unreference(obj);
  1473. spin_lock(&dev_priv->mm.active_list_lock);
  1474. }
  1475. }
  1476. out:
  1477. spin_unlock(&dev_priv->mm.active_list_lock);
  1478. }
  1479. /**
  1480. * Returns true if seq1 is later than seq2.
  1481. */
  1482. bool
  1483. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1484. {
  1485. return (int32_t)(seq1 - seq2) >= 0;
  1486. }
  1487. uint32_t
  1488. i915_get_gem_seqno(struct drm_device *dev)
  1489. {
  1490. drm_i915_private_t *dev_priv = dev->dev_private;
  1491. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1492. }
  1493. /**
  1494. * This function clears the request list as sequence numbers are passed.
  1495. */
  1496. void
  1497. i915_gem_retire_requests(struct drm_device *dev)
  1498. {
  1499. drm_i915_private_t *dev_priv = dev->dev_private;
  1500. uint32_t seqno;
  1501. if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
  1502. return;
  1503. seqno = i915_get_gem_seqno(dev);
  1504. while (!list_empty(&dev_priv->mm.request_list)) {
  1505. struct drm_i915_gem_request *request;
  1506. uint32_t retiring_seqno;
  1507. request = list_first_entry(&dev_priv->mm.request_list,
  1508. struct drm_i915_gem_request,
  1509. list);
  1510. retiring_seqno = request->seqno;
  1511. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1512. atomic_read(&dev_priv->mm.wedged)) {
  1513. i915_gem_retire_request(dev, request);
  1514. list_del(&request->list);
  1515. list_del(&request->client_list);
  1516. kfree(request);
  1517. } else
  1518. break;
  1519. }
  1520. if (unlikely (dev_priv->trace_irq_seqno &&
  1521. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1522. i915_user_irq_put(dev);
  1523. dev_priv->trace_irq_seqno = 0;
  1524. }
  1525. }
  1526. void
  1527. i915_gem_retire_work_handler(struct work_struct *work)
  1528. {
  1529. drm_i915_private_t *dev_priv;
  1530. struct drm_device *dev;
  1531. dev_priv = container_of(work, drm_i915_private_t,
  1532. mm.retire_work.work);
  1533. dev = dev_priv->dev;
  1534. mutex_lock(&dev->struct_mutex);
  1535. i915_gem_retire_requests(dev);
  1536. if (!dev_priv->mm.suspended &&
  1537. !list_empty(&dev_priv->mm.request_list))
  1538. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1539. mutex_unlock(&dev->struct_mutex);
  1540. }
  1541. /**
  1542. * Waits for a sequence number to be signaled, and cleans up the
  1543. * request and object lists appropriately for that event.
  1544. */
  1545. static int
  1546. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1547. {
  1548. drm_i915_private_t *dev_priv = dev->dev_private;
  1549. u32 ier;
  1550. int ret = 0;
  1551. BUG_ON(seqno == 0);
  1552. if (atomic_read(&dev_priv->mm.wedged))
  1553. return -EIO;
  1554. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1555. if (IS_IGDNG(dev))
  1556. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1557. else
  1558. ier = I915_READ(IER);
  1559. if (!ier) {
  1560. DRM_ERROR("something (likely vbetool) disabled "
  1561. "interrupts, re-enabling\n");
  1562. i915_driver_irq_preinstall(dev);
  1563. i915_driver_irq_postinstall(dev);
  1564. }
  1565. trace_i915_gem_request_wait_begin(dev, seqno);
  1566. dev_priv->mm.waiting_gem_seqno = seqno;
  1567. i915_user_irq_get(dev);
  1568. ret = wait_event_interruptible(dev_priv->irq_queue,
  1569. i915_seqno_passed(i915_get_gem_seqno(dev),
  1570. seqno) ||
  1571. atomic_read(&dev_priv->mm.wedged));
  1572. i915_user_irq_put(dev);
  1573. dev_priv->mm.waiting_gem_seqno = 0;
  1574. trace_i915_gem_request_wait_end(dev, seqno);
  1575. }
  1576. if (atomic_read(&dev_priv->mm.wedged))
  1577. ret = -EIO;
  1578. if (ret && ret != -ERESTARTSYS)
  1579. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1580. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1581. /* Directly dispatch request retiring. While we have the work queue
  1582. * to handle this, the waiter on a request often wants an associated
  1583. * buffer to have made it to the inactive list, and we would need
  1584. * a separate wait queue to handle that.
  1585. */
  1586. if (ret == 0)
  1587. i915_gem_retire_requests(dev);
  1588. return ret;
  1589. }
  1590. static void
  1591. i915_gem_flush(struct drm_device *dev,
  1592. uint32_t invalidate_domains,
  1593. uint32_t flush_domains)
  1594. {
  1595. drm_i915_private_t *dev_priv = dev->dev_private;
  1596. uint32_t cmd;
  1597. RING_LOCALS;
  1598. #if WATCH_EXEC
  1599. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1600. invalidate_domains, flush_domains);
  1601. #endif
  1602. trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
  1603. invalidate_domains, flush_domains);
  1604. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1605. drm_agp_chipset_flush(dev);
  1606. if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
  1607. /*
  1608. * read/write caches:
  1609. *
  1610. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1611. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1612. * also flushed at 2d versus 3d pipeline switches.
  1613. *
  1614. * read-only caches:
  1615. *
  1616. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1617. * MI_READ_FLUSH is set, and is always flushed on 965.
  1618. *
  1619. * I915_GEM_DOMAIN_COMMAND may not exist?
  1620. *
  1621. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1622. * invalidated when MI_EXE_FLUSH is set.
  1623. *
  1624. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1625. * invalidated with every MI_FLUSH.
  1626. *
  1627. * TLBs:
  1628. *
  1629. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1630. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1631. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1632. * are flushed at any MI_FLUSH.
  1633. */
  1634. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1635. if ((invalidate_domains|flush_domains) &
  1636. I915_GEM_DOMAIN_RENDER)
  1637. cmd &= ~MI_NO_WRITE_FLUSH;
  1638. if (!IS_I965G(dev)) {
  1639. /*
  1640. * On the 965, the sampler cache always gets flushed
  1641. * and this bit is reserved.
  1642. */
  1643. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1644. cmd |= MI_READ_FLUSH;
  1645. }
  1646. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1647. cmd |= MI_EXE_FLUSH;
  1648. #if WATCH_EXEC
  1649. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1650. #endif
  1651. BEGIN_LP_RING(2);
  1652. OUT_RING(cmd);
  1653. OUT_RING(0); /* noop */
  1654. ADVANCE_LP_RING();
  1655. }
  1656. }
  1657. /**
  1658. * Ensures that all rendering to the object has completed and the object is
  1659. * safe to unbind from the GTT or access from the CPU.
  1660. */
  1661. static int
  1662. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1663. {
  1664. struct drm_device *dev = obj->dev;
  1665. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1666. int ret;
  1667. /* This function only exists to support waiting for existing rendering,
  1668. * not for emitting required flushes.
  1669. */
  1670. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1671. /* If there is rendering queued on the buffer being evicted, wait for
  1672. * it.
  1673. */
  1674. if (obj_priv->active) {
  1675. #if WATCH_BUF
  1676. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1677. __func__, obj, obj_priv->last_rendering_seqno);
  1678. #endif
  1679. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1680. if (ret != 0)
  1681. return ret;
  1682. }
  1683. return 0;
  1684. }
  1685. /**
  1686. * Unbinds an object from the GTT aperture.
  1687. */
  1688. int
  1689. i915_gem_object_unbind(struct drm_gem_object *obj)
  1690. {
  1691. struct drm_device *dev = obj->dev;
  1692. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1693. int ret = 0;
  1694. #if WATCH_BUF
  1695. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1696. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1697. #endif
  1698. if (obj_priv->gtt_space == NULL)
  1699. return 0;
  1700. if (obj_priv->pin_count != 0) {
  1701. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1702. return -EINVAL;
  1703. }
  1704. /* blow away mappings if mapped through GTT */
  1705. i915_gem_release_mmap(obj);
  1706. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1707. i915_gem_clear_fence_reg(obj);
  1708. /* Move the object to the CPU domain to ensure that
  1709. * any possible CPU writes while it's not in the GTT
  1710. * are flushed when we go to remap it. This will
  1711. * also ensure that all pending GPU writes are finished
  1712. * before we unbind.
  1713. */
  1714. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1715. if (ret) {
  1716. if (ret != -ERESTARTSYS)
  1717. DRM_ERROR("set_domain failed: %d\n", ret);
  1718. return ret;
  1719. }
  1720. BUG_ON(obj_priv->active);
  1721. if (obj_priv->agp_mem != NULL) {
  1722. drm_unbind_agp(obj_priv->agp_mem);
  1723. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1724. obj_priv->agp_mem = NULL;
  1725. }
  1726. i915_gem_object_put_pages(obj);
  1727. BUG_ON(obj_priv->pages_refcount);
  1728. if (obj_priv->gtt_space) {
  1729. atomic_dec(&dev->gtt_count);
  1730. atomic_sub(obj->size, &dev->gtt_memory);
  1731. drm_mm_put_block(obj_priv->gtt_space);
  1732. obj_priv->gtt_space = NULL;
  1733. }
  1734. /* Remove ourselves from the LRU list if present. */
  1735. if (!list_empty(&obj_priv->list))
  1736. list_del_init(&obj_priv->list);
  1737. if (i915_gem_object_is_purgeable(obj_priv))
  1738. i915_gem_object_truncate(obj);
  1739. trace_i915_gem_object_unbind(obj);
  1740. return 0;
  1741. }
  1742. static struct drm_gem_object *
  1743. i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
  1744. {
  1745. drm_i915_private_t *dev_priv = dev->dev_private;
  1746. struct drm_i915_gem_object *obj_priv;
  1747. struct drm_gem_object *best = NULL;
  1748. struct drm_gem_object *first = NULL;
  1749. /* Try to find the smallest clean object */
  1750. list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
  1751. struct drm_gem_object *obj = obj_priv->obj;
  1752. if (obj->size >= min_size) {
  1753. if ((!obj_priv->dirty ||
  1754. i915_gem_object_is_purgeable(obj_priv)) &&
  1755. (!best || obj->size < best->size)) {
  1756. best = obj;
  1757. if (best->size == min_size)
  1758. return best;
  1759. }
  1760. if (!first)
  1761. first = obj;
  1762. }
  1763. }
  1764. return best ? best : first;
  1765. }
  1766. static int
  1767. i915_gem_evict_everything(struct drm_device *dev)
  1768. {
  1769. drm_i915_private_t *dev_priv = dev->dev_private;
  1770. uint32_t seqno;
  1771. int ret;
  1772. bool lists_empty;
  1773. spin_lock(&dev_priv->mm.active_list_lock);
  1774. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1775. list_empty(&dev_priv->mm.flushing_list) &&
  1776. list_empty(&dev_priv->mm.active_list));
  1777. spin_unlock(&dev_priv->mm.active_list_lock);
  1778. if (lists_empty)
  1779. return -ENOSPC;
  1780. /* Flush everything (on to the inactive lists) and evict */
  1781. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1782. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  1783. if (seqno == 0)
  1784. return -ENOMEM;
  1785. ret = i915_wait_request(dev, seqno);
  1786. if (ret)
  1787. return ret;
  1788. ret = i915_gem_evict_from_inactive_list(dev);
  1789. if (ret)
  1790. return ret;
  1791. spin_lock(&dev_priv->mm.active_list_lock);
  1792. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1793. list_empty(&dev_priv->mm.flushing_list) &&
  1794. list_empty(&dev_priv->mm.active_list));
  1795. spin_unlock(&dev_priv->mm.active_list_lock);
  1796. BUG_ON(!lists_empty);
  1797. return 0;
  1798. }
  1799. static int
  1800. i915_gem_evict_something(struct drm_device *dev, int min_size)
  1801. {
  1802. drm_i915_private_t *dev_priv = dev->dev_private;
  1803. struct drm_gem_object *obj;
  1804. int ret;
  1805. for (;;) {
  1806. i915_gem_retire_requests(dev);
  1807. /* If there's an inactive buffer available now, grab it
  1808. * and be done.
  1809. */
  1810. obj = i915_gem_find_inactive_object(dev, min_size);
  1811. if (obj) {
  1812. struct drm_i915_gem_object *obj_priv;
  1813. #if WATCH_LRU
  1814. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1815. #endif
  1816. obj_priv = obj->driver_private;
  1817. BUG_ON(obj_priv->pin_count != 0);
  1818. BUG_ON(obj_priv->active);
  1819. /* Wait on the rendering and unbind the buffer. */
  1820. return i915_gem_object_unbind(obj);
  1821. }
  1822. /* If we didn't get anything, but the ring is still processing
  1823. * things, wait for the next to finish and hopefully leave us
  1824. * a buffer to evict.
  1825. */
  1826. if (!list_empty(&dev_priv->mm.request_list)) {
  1827. struct drm_i915_gem_request *request;
  1828. request = list_first_entry(&dev_priv->mm.request_list,
  1829. struct drm_i915_gem_request,
  1830. list);
  1831. ret = i915_wait_request(dev, request->seqno);
  1832. if (ret)
  1833. return ret;
  1834. continue;
  1835. }
  1836. /* If we didn't have anything on the request list but there
  1837. * are buffers awaiting a flush, emit one and try again.
  1838. * When we wait on it, those buffers waiting for that flush
  1839. * will get moved to inactive.
  1840. */
  1841. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1842. struct drm_i915_gem_object *obj_priv;
  1843. /* Find an object that we can immediately reuse */
  1844. list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
  1845. obj = obj_priv->obj;
  1846. if (obj->size >= min_size)
  1847. break;
  1848. obj = NULL;
  1849. }
  1850. if (obj != NULL) {
  1851. uint32_t seqno;
  1852. i915_gem_flush(dev,
  1853. obj->write_domain,
  1854. obj->write_domain);
  1855. seqno = i915_add_request(dev, NULL, obj->write_domain);
  1856. if (seqno == 0)
  1857. return -ENOMEM;
  1858. ret = i915_wait_request(dev, seqno);
  1859. if (ret)
  1860. return ret;
  1861. continue;
  1862. }
  1863. }
  1864. /* If we didn't do any of the above, there's no single buffer
  1865. * large enough to swap out for the new one, so just evict
  1866. * everything and start again. (This should be rare.)
  1867. */
  1868. if (!list_empty (&dev_priv->mm.inactive_list))
  1869. return i915_gem_evict_from_inactive_list(dev);
  1870. else
  1871. return i915_gem_evict_everything(dev);
  1872. }
  1873. }
  1874. int
  1875. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1876. {
  1877. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1878. int page_count, i;
  1879. struct address_space *mapping;
  1880. struct inode *inode;
  1881. struct page *page;
  1882. int ret;
  1883. if (obj_priv->pages_refcount++ != 0)
  1884. return 0;
  1885. /* Get the list of pages out of our struct file. They'll be pinned
  1886. * at this point until we release them.
  1887. */
  1888. page_count = obj->size / PAGE_SIZE;
  1889. BUG_ON(obj_priv->pages != NULL);
  1890. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1891. if (obj_priv->pages == NULL) {
  1892. obj_priv->pages_refcount--;
  1893. return -ENOMEM;
  1894. }
  1895. inode = obj->filp->f_path.dentry->d_inode;
  1896. mapping = inode->i_mapping;
  1897. for (i = 0; i < page_count; i++) {
  1898. page = read_mapping_page(mapping, i, NULL);
  1899. if (IS_ERR(page)) {
  1900. ret = PTR_ERR(page);
  1901. i915_gem_object_put_pages(obj);
  1902. return ret;
  1903. }
  1904. obj_priv->pages[i] = page;
  1905. }
  1906. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1907. i915_gem_object_do_bit_17_swizzle(obj);
  1908. return 0;
  1909. }
  1910. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1911. {
  1912. struct drm_gem_object *obj = reg->obj;
  1913. struct drm_device *dev = obj->dev;
  1914. drm_i915_private_t *dev_priv = dev->dev_private;
  1915. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1916. int regnum = obj_priv->fence_reg;
  1917. uint64_t val;
  1918. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1919. 0xfffff000) << 32;
  1920. val |= obj_priv->gtt_offset & 0xfffff000;
  1921. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1922. if (obj_priv->tiling_mode == I915_TILING_Y)
  1923. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1924. val |= I965_FENCE_REG_VALID;
  1925. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1926. }
  1927. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1928. {
  1929. struct drm_gem_object *obj = reg->obj;
  1930. struct drm_device *dev = obj->dev;
  1931. drm_i915_private_t *dev_priv = dev->dev_private;
  1932. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1933. int regnum = obj_priv->fence_reg;
  1934. int tile_width;
  1935. uint32_t fence_reg, val;
  1936. uint32_t pitch_val;
  1937. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1938. (obj_priv->gtt_offset & (obj->size - 1))) {
  1939. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1940. __func__, obj_priv->gtt_offset, obj->size);
  1941. return;
  1942. }
  1943. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1944. HAS_128_BYTE_Y_TILING(dev))
  1945. tile_width = 128;
  1946. else
  1947. tile_width = 512;
  1948. /* Note: pitch better be a power of two tile widths */
  1949. pitch_val = obj_priv->stride / tile_width;
  1950. pitch_val = ffs(pitch_val) - 1;
  1951. val = obj_priv->gtt_offset;
  1952. if (obj_priv->tiling_mode == I915_TILING_Y)
  1953. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1954. val |= I915_FENCE_SIZE_BITS(obj->size);
  1955. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1956. val |= I830_FENCE_REG_VALID;
  1957. if (regnum < 8)
  1958. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1959. else
  1960. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1961. I915_WRITE(fence_reg, val);
  1962. }
  1963. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1964. {
  1965. struct drm_gem_object *obj = reg->obj;
  1966. struct drm_device *dev = obj->dev;
  1967. drm_i915_private_t *dev_priv = dev->dev_private;
  1968. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1969. int regnum = obj_priv->fence_reg;
  1970. uint32_t val;
  1971. uint32_t pitch_val;
  1972. uint32_t fence_size_bits;
  1973. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1974. (obj_priv->gtt_offset & (obj->size - 1))) {
  1975. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1976. __func__, obj_priv->gtt_offset);
  1977. return;
  1978. }
  1979. pitch_val = obj_priv->stride / 128;
  1980. pitch_val = ffs(pitch_val) - 1;
  1981. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1982. val = obj_priv->gtt_offset;
  1983. if (obj_priv->tiling_mode == I915_TILING_Y)
  1984. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1985. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1986. WARN_ON(fence_size_bits & ~0x00000f00);
  1987. val |= fence_size_bits;
  1988. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1989. val |= I830_FENCE_REG_VALID;
  1990. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1991. }
  1992. /**
  1993. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1994. * @obj: object to map through a fence reg
  1995. *
  1996. * When mapping objects through the GTT, userspace wants to be able to write
  1997. * to them without having to worry about swizzling if the object is tiled.
  1998. *
  1999. * This function walks the fence regs looking for a free one for @obj,
  2000. * stealing one if it can't find any.
  2001. *
  2002. * It then sets up the reg based on the object's properties: address, pitch
  2003. * and tiling format.
  2004. */
  2005. int
  2006. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  2007. {
  2008. struct drm_device *dev = obj->dev;
  2009. struct drm_i915_private *dev_priv = dev->dev_private;
  2010. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2011. struct drm_i915_fence_reg *reg = NULL;
  2012. struct drm_i915_gem_object *old_obj_priv = NULL;
  2013. int i, ret, avail;
  2014. /* Just update our place in the LRU if our fence is getting used. */
  2015. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2016. list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  2017. return 0;
  2018. }
  2019. switch (obj_priv->tiling_mode) {
  2020. case I915_TILING_NONE:
  2021. WARN(1, "allocating a fence for non-tiled object?\n");
  2022. break;
  2023. case I915_TILING_X:
  2024. if (!obj_priv->stride)
  2025. return -EINVAL;
  2026. WARN((obj_priv->stride & (512 - 1)),
  2027. "object 0x%08x is X tiled but has non-512B pitch\n",
  2028. obj_priv->gtt_offset);
  2029. break;
  2030. case I915_TILING_Y:
  2031. if (!obj_priv->stride)
  2032. return -EINVAL;
  2033. WARN((obj_priv->stride & (128 - 1)),
  2034. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2035. obj_priv->gtt_offset);
  2036. break;
  2037. }
  2038. /* First try to find a free reg */
  2039. avail = 0;
  2040. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2041. reg = &dev_priv->fence_regs[i];
  2042. if (!reg->obj)
  2043. break;
  2044. old_obj_priv = reg->obj->driver_private;
  2045. if (!old_obj_priv->pin_count)
  2046. avail++;
  2047. }
  2048. /* None available, try to steal one or wait for a user to finish */
  2049. if (i == dev_priv->num_fence_regs) {
  2050. struct drm_gem_object *old_obj = NULL;
  2051. if (avail == 0)
  2052. return -ENOSPC;
  2053. list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
  2054. fence_list) {
  2055. old_obj = old_obj_priv->obj;
  2056. if (old_obj_priv->pin_count)
  2057. continue;
  2058. /* Take a reference, as otherwise the wait_rendering
  2059. * below may cause the object to get freed out from
  2060. * under us.
  2061. */
  2062. drm_gem_object_reference(old_obj);
  2063. /* i915 uses fences for GPU access to tiled buffers */
  2064. if (IS_I965G(dev) || !old_obj_priv->active)
  2065. break;
  2066. /* This brings the object to the head of the LRU if it
  2067. * had been written to. The only way this should
  2068. * result in us waiting longer than the expected
  2069. * optimal amount of time is if there was a
  2070. * fence-using buffer later that was read-only.
  2071. */
  2072. i915_gem_object_flush_gpu_write_domain(old_obj);
  2073. ret = i915_gem_object_wait_rendering(old_obj);
  2074. if (ret != 0) {
  2075. drm_gem_object_unreference(old_obj);
  2076. return ret;
  2077. }
  2078. break;
  2079. }
  2080. /*
  2081. * Zap this virtual mapping so we can set up a fence again
  2082. * for this object next time we need it.
  2083. */
  2084. i915_gem_release_mmap(old_obj);
  2085. i = old_obj_priv->fence_reg;
  2086. reg = &dev_priv->fence_regs[i];
  2087. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2088. list_del_init(&old_obj_priv->fence_list);
  2089. drm_gem_object_unreference(old_obj);
  2090. }
  2091. obj_priv->fence_reg = i;
  2092. list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  2093. reg->obj = obj;
  2094. if (IS_I965G(dev))
  2095. i965_write_fence_reg(reg);
  2096. else if (IS_I9XX(dev))
  2097. i915_write_fence_reg(reg);
  2098. else
  2099. i830_write_fence_reg(reg);
  2100. trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
  2101. return 0;
  2102. }
  2103. /**
  2104. * i915_gem_clear_fence_reg - clear out fence register info
  2105. * @obj: object to clear
  2106. *
  2107. * Zeroes out the fence register itself and clears out the associated
  2108. * data structures in dev_priv and obj_priv.
  2109. */
  2110. static void
  2111. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2112. {
  2113. struct drm_device *dev = obj->dev;
  2114. drm_i915_private_t *dev_priv = dev->dev_private;
  2115. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2116. if (IS_I965G(dev))
  2117. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2118. else {
  2119. uint32_t fence_reg;
  2120. if (obj_priv->fence_reg < 8)
  2121. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2122. else
  2123. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2124. 8) * 4;
  2125. I915_WRITE(fence_reg, 0);
  2126. }
  2127. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  2128. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2129. list_del_init(&obj_priv->fence_list);
  2130. }
  2131. /**
  2132. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2133. * to the buffer to finish, and then resets the fence register.
  2134. * @obj: tiled object holding a fence register.
  2135. *
  2136. * Zeroes out the fence register itself and clears out the associated
  2137. * data structures in dev_priv and obj_priv.
  2138. */
  2139. int
  2140. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2141. {
  2142. struct drm_device *dev = obj->dev;
  2143. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2144. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2145. return 0;
  2146. /* On the i915, GPU access to tiled buffers is via a fence,
  2147. * therefore we must wait for any outstanding access to complete
  2148. * before clearing the fence.
  2149. */
  2150. if (!IS_I965G(dev)) {
  2151. int ret;
  2152. i915_gem_object_flush_gpu_write_domain(obj);
  2153. i915_gem_object_flush_gtt_write_domain(obj);
  2154. ret = i915_gem_object_wait_rendering(obj);
  2155. if (ret != 0)
  2156. return ret;
  2157. }
  2158. i915_gem_clear_fence_reg (obj);
  2159. return 0;
  2160. }
  2161. /**
  2162. * Finds free space in the GTT aperture and binds the object there.
  2163. */
  2164. static int
  2165. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2166. {
  2167. struct drm_device *dev = obj->dev;
  2168. drm_i915_private_t *dev_priv = dev->dev_private;
  2169. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2170. struct drm_mm_node *free_space;
  2171. bool retry_alloc = false;
  2172. int ret;
  2173. if (dev_priv->mm.suspended)
  2174. return -EBUSY;
  2175. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2176. DRM_ERROR("Attempting to bind a purgeable object\n");
  2177. return -EINVAL;
  2178. }
  2179. if (alignment == 0)
  2180. alignment = i915_gem_get_gtt_alignment(obj);
  2181. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2182. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2183. return -EINVAL;
  2184. }
  2185. search_free:
  2186. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2187. obj->size, alignment, 0);
  2188. if (free_space != NULL) {
  2189. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2190. alignment);
  2191. if (obj_priv->gtt_space != NULL) {
  2192. obj_priv->gtt_space->private = obj;
  2193. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2194. }
  2195. }
  2196. if (obj_priv->gtt_space == NULL) {
  2197. /* If the gtt is empty and we're still having trouble
  2198. * fitting our object in, we're out of memory.
  2199. */
  2200. #if WATCH_LRU
  2201. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2202. #endif
  2203. ret = i915_gem_evict_something(dev, obj->size);
  2204. if (ret)
  2205. return ret;
  2206. goto search_free;
  2207. }
  2208. #if WATCH_BUF
  2209. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2210. obj->size, obj_priv->gtt_offset);
  2211. #endif
  2212. if (retry_alloc) {
  2213. i915_gem_object_set_page_gfp_mask (obj,
  2214. i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
  2215. }
  2216. ret = i915_gem_object_get_pages(obj);
  2217. if (retry_alloc) {
  2218. i915_gem_object_set_page_gfp_mask (obj,
  2219. i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
  2220. }
  2221. if (ret) {
  2222. drm_mm_put_block(obj_priv->gtt_space);
  2223. obj_priv->gtt_space = NULL;
  2224. if (ret == -ENOMEM) {
  2225. /* first try to clear up some space from the GTT */
  2226. ret = i915_gem_evict_something(dev, obj->size);
  2227. if (ret) {
  2228. /* now try to shrink everyone else */
  2229. if (! retry_alloc) {
  2230. retry_alloc = true;
  2231. goto search_free;
  2232. }
  2233. return ret;
  2234. }
  2235. goto search_free;
  2236. }
  2237. return ret;
  2238. }
  2239. /* Create an AGP memory structure pointing at our pages, and bind it
  2240. * into the GTT.
  2241. */
  2242. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2243. obj_priv->pages,
  2244. obj->size >> PAGE_SHIFT,
  2245. obj_priv->gtt_offset,
  2246. obj_priv->agp_type);
  2247. if (obj_priv->agp_mem == NULL) {
  2248. i915_gem_object_put_pages(obj);
  2249. drm_mm_put_block(obj_priv->gtt_space);
  2250. obj_priv->gtt_space = NULL;
  2251. ret = i915_gem_evict_something(dev, obj->size);
  2252. if (ret)
  2253. return ret;
  2254. goto search_free;
  2255. }
  2256. atomic_inc(&dev->gtt_count);
  2257. atomic_add(obj->size, &dev->gtt_memory);
  2258. /* Assert that the object is not currently in any GPU domain. As it
  2259. * wasn't in the GTT, there shouldn't be any way it could have been in
  2260. * a GPU cache
  2261. */
  2262. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2263. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2264. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2265. return 0;
  2266. }
  2267. void
  2268. i915_gem_clflush_object(struct drm_gem_object *obj)
  2269. {
  2270. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2271. /* If we don't have a page list set up, then we're not pinned
  2272. * to GPU, and we can ignore the cache flush because it'll happen
  2273. * again at bind time.
  2274. */
  2275. if (obj_priv->pages == NULL)
  2276. return;
  2277. trace_i915_gem_object_clflush(obj);
  2278. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2279. }
  2280. /** Flushes any GPU write domain for the object if it's dirty. */
  2281. static void
  2282. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2283. {
  2284. struct drm_device *dev = obj->dev;
  2285. uint32_t seqno;
  2286. uint32_t old_write_domain;
  2287. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2288. return;
  2289. /* Queue the GPU write cache flushing we need. */
  2290. old_write_domain = obj->write_domain;
  2291. i915_gem_flush(dev, 0, obj->write_domain);
  2292. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2293. obj->write_domain = 0;
  2294. i915_gem_object_move_to_active(obj, seqno);
  2295. trace_i915_gem_object_change_domain(obj,
  2296. obj->read_domains,
  2297. old_write_domain);
  2298. }
  2299. /** Flushes the GTT write domain for the object if it's dirty. */
  2300. static void
  2301. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2302. {
  2303. uint32_t old_write_domain;
  2304. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2305. return;
  2306. /* No actual flushing is required for the GTT write domain. Writes
  2307. * to it immediately go to main memory as far as we know, so there's
  2308. * no chipset flush. It also doesn't land in render cache.
  2309. */
  2310. old_write_domain = obj->write_domain;
  2311. obj->write_domain = 0;
  2312. trace_i915_gem_object_change_domain(obj,
  2313. obj->read_domains,
  2314. old_write_domain);
  2315. }
  2316. /** Flushes the CPU write domain for the object if it's dirty. */
  2317. static void
  2318. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2319. {
  2320. struct drm_device *dev = obj->dev;
  2321. uint32_t old_write_domain;
  2322. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2323. return;
  2324. i915_gem_clflush_object(obj);
  2325. drm_agp_chipset_flush(dev);
  2326. old_write_domain = obj->write_domain;
  2327. obj->write_domain = 0;
  2328. trace_i915_gem_object_change_domain(obj,
  2329. obj->read_domains,
  2330. old_write_domain);
  2331. }
  2332. /**
  2333. * Moves a single object to the GTT read, and possibly write domain.
  2334. *
  2335. * This function returns when the move is complete, including waiting on
  2336. * flushes to occur.
  2337. */
  2338. int
  2339. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2340. {
  2341. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2342. uint32_t old_write_domain, old_read_domains;
  2343. int ret;
  2344. /* Not valid to be called on unbound objects. */
  2345. if (obj_priv->gtt_space == NULL)
  2346. return -EINVAL;
  2347. i915_gem_object_flush_gpu_write_domain(obj);
  2348. /* Wait on any GPU rendering and flushing to occur. */
  2349. ret = i915_gem_object_wait_rendering(obj);
  2350. if (ret != 0)
  2351. return ret;
  2352. old_write_domain = obj->write_domain;
  2353. old_read_domains = obj->read_domains;
  2354. /* If we're writing through the GTT domain, then CPU and GPU caches
  2355. * will need to be invalidated at next use.
  2356. */
  2357. if (write)
  2358. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2359. i915_gem_object_flush_cpu_write_domain(obj);
  2360. /* It should now be out of any other write domains, and we can update
  2361. * the domain values for our changes.
  2362. */
  2363. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2364. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2365. if (write) {
  2366. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2367. obj_priv->dirty = 1;
  2368. }
  2369. trace_i915_gem_object_change_domain(obj,
  2370. old_read_domains,
  2371. old_write_domain);
  2372. return 0;
  2373. }
  2374. /**
  2375. * Moves a single object to the CPU read, and possibly write domain.
  2376. *
  2377. * This function returns when the move is complete, including waiting on
  2378. * flushes to occur.
  2379. */
  2380. static int
  2381. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2382. {
  2383. uint32_t old_write_domain, old_read_domains;
  2384. int ret;
  2385. i915_gem_object_flush_gpu_write_domain(obj);
  2386. /* Wait on any GPU rendering and flushing to occur. */
  2387. ret = i915_gem_object_wait_rendering(obj);
  2388. if (ret != 0)
  2389. return ret;
  2390. i915_gem_object_flush_gtt_write_domain(obj);
  2391. /* If we have a partially-valid cache of the object in the CPU,
  2392. * finish invalidating it and free the per-page flags.
  2393. */
  2394. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2395. old_write_domain = obj->write_domain;
  2396. old_read_domains = obj->read_domains;
  2397. /* Flush the CPU cache if it's still invalid. */
  2398. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2399. i915_gem_clflush_object(obj);
  2400. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2401. }
  2402. /* It should now be out of any other write domains, and we can update
  2403. * the domain values for our changes.
  2404. */
  2405. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2406. /* If we're writing through the CPU, then the GPU read domains will
  2407. * need to be invalidated at next use.
  2408. */
  2409. if (write) {
  2410. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2411. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2412. }
  2413. trace_i915_gem_object_change_domain(obj,
  2414. old_read_domains,
  2415. old_write_domain);
  2416. return 0;
  2417. }
  2418. /*
  2419. * Set the next domain for the specified object. This
  2420. * may not actually perform the necessary flushing/invaliding though,
  2421. * as that may want to be batched with other set_domain operations
  2422. *
  2423. * This is (we hope) the only really tricky part of gem. The goal
  2424. * is fairly simple -- track which caches hold bits of the object
  2425. * and make sure they remain coherent. A few concrete examples may
  2426. * help to explain how it works. For shorthand, we use the notation
  2427. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2428. * a pair of read and write domain masks.
  2429. *
  2430. * Case 1: the batch buffer
  2431. *
  2432. * 1. Allocated
  2433. * 2. Written by CPU
  2434. * 3. Mapped to GTT
  2435. * 4. Read by GPU
  2436. * 5. Unmapped from GTT
  2437. * 6. Freed
  2438. *
  2439. * Let's take these a step at a time
  2440. *
  2441. * 1. Allocated
  2442. * Pages allocated from the kernel may still have
  2443. * cache contents, so we set them to (CPU, CPU) always.
  2444. * 2. Written by CPU (using pwrite)
  2445. * The pwrite function calls set_domain (CPU, CPU) and
  2446. * this function does nothing (as nothing changes)
  2447. * 3. Mapped by GTT
  2448. * This function asserts that the object is not
  2449. * currently in any GPU-based read or write domains
  2450. * 4. Read by GPU
  2451. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2452. * As write_domain is zero, this function adds in the
  2453. * current read domains (CPU+COMMAND, 0).
  2454. * flush_domains is set to CPU.
  2455. * invalidate_domains is set to COMMAND
  2456. * clflush is run to get data out of the CPU caches
  2457. * then i915_dev_set_domain calls i915_gem_flush to
  2458. * emit an MI_FLUSH and drm_agp_chipset_flush
  2459. * 5. Unmapped from GTT
  2460. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2461. * flush_domains and invalidate_domains end up both zero
  2462. * so no flushing/invalidating happens
  2463. * 6. Freed
  2464. * yay, done
  2465. *
  2466. * Case 2: The shared render buffer
  2467. *
  2468. * 1. Allocated
  2469. * 2. Mapped to GTT
  2470. * 3. Read/written by GPU
  2471. * 4. set_domain to (CPU,CPU)
  2472. * 5. Read/written by CPU
  2473. * 6. Read/written by GPU
  2474. *
  2475. * 1. Allocated
  2476. * Same as last example, (CPU, CPU)
  2477. * 2. Mapped to GTT
  2478. * Nothing changes (assertions find that it is not in the GPU)
  2479. * 3. Read/written by GPU
  2480. * execbuffer calls set_domain (RENDER, RENDER)
  2481. * flush_domains gets CPU
  2482. * invalidate_domains gets GPU
  2483. * clflush (obj)
  2484. * MI_FLUSH and drm_agp_chipset_flush
  2485. * 4. set_domain (CPU, CPU)
  2486. * flush_domains gets GPU
  2487. * invalidate_domains gets CPU
  2488. * wait_rendering (obj) to make sure all drawing is complete.
  2489. * This will include an MI_FLUSH to get the data from GPU
  2490. * to memory
  2491. * clflush (obj) to invalidate the CPU cache
  2492. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2493. * 5. Read/written by CPU
  2494. * cache lines are loaded and dirtied
  2495. * 6. Read written by GPU
  2496. * Same as last GPU access
  2497. *
  2498. * Case 3: The constant buffer
  2499. *
  2500. * 1. Allocated
  2501. * 2. Written by CPU
  2502. * 3. Read by GPU
  2503. * 4. Updated (written) by CPU again
  2504. * 5. Read by GPU
  2505. *
  2506. * 1. Allocated
  2507. * (CPU, CPU)
  2508. * 2. Written by CPU
  2509. * (CPU, CPU)
  2510. * 3. Read by GPU
  2511. * (CPU+RENDER, 0)
  2512. * flush_domains = CPU
  2513. * invalidate_domains = RENDER
  2514. * clflush (obj)
  2515. * MI_FLUSH
  2516. * drm_agp_chipset_flush
  2517. * 4. Updated (written) by CPU again
  2518. * (CPU, CPU)
  2519. * flush_domains = 0 (no previous write domain)
  2520. * invalidate_domains = 0 (no new read domains)
  2521. * 5. Read by GPU
  2522. * (CPU+RENDER, 0)
  2523. * flush_domains = CPU
  2524. * invalidate_domains = RENDER
  2525. * clflush (obj)
  2526. * MI_FLUSH
  2527. * drm_agp_chipset_flush
  2528. */
  2529. static void
  2530. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2531. {
  2532. struct drm_device *dev = obj->dev;
  2533. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2534. uint32_t invalidate_domains = 0;
  2535. uint32_t flush_domains = 0;
  2536. uint32_t old_read_domains;
  2537. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2538. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2539. intel_mark_busy(dev, obj);
  2540. #if WATCH_BUF
  2541. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2542. __func__, obj,
  2543. obj->read_domains, obj->pending_read_domains,
  2544. obj->write_domain, obj->pending_write_domain);
  2545. #endif
  2546. /*
  2547. * If the object isn't moving to a new write domain,
  2548. * let the object stay in multiple read domains
  2549. */
  2550. if (obj->pending_write_domain == 0)
  2551. obj->pending_read_domains |= obj->read_domains;
  2552. else
  2553. obj_priv->dirty = 1;
  2554. /*
  2555. * Flush the current write domain if
  2556. * the new read domains don't match. Invalidate
  2557. * any read domains which differ from the old
  2558. * write domain
  2559. */
  2560. if (obj->write_domain &&
  2561. obj->write_domain != obj->pending_read_domains) {
  2562. flush_domains |= obj->write_domain;
  2563. invalidate_domains |=
  2564. obj->pending_read_domains & ~obj->write_domain;
  2565. }
  2566. /*
  2567. * Invalidate any read caches which may have
  2568. * stale data. That is, any new read domains.
  2569. */
  2570. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2571. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2572. #if WATCH_BUF
  2573. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2574. __func__, flush_domains, invalidate_domains);
  2575. #endif
  2576. i915_gem_clflush_object(obj);
  2577. }
  2578. old_read_domains = obj->read_domains;
  2579. /* The actual obj->write_domain will be updated with
  2580. * pending_write_domain after we emit the accumulated flush for all
  2581. * of our domain changes in execbuffers (which clears objects'
  2582. * write_domains). So if we have a current write domain that we
  2583. * aren't changing, set pending_write_domain to that.
  2584. */
  2585. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2586. obj->pending_write_domain = obj->write_domain;
  2587. obj->read_domains = obj->pending_read_domains;
  2588. dev->invalidate_domains |= invalidate_domains;
  2589. dev->flush_domains |= flush_domains;
  2590. #if WATCH_BUF
  2591. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2592. __func__,
  2593. obj->read_domains, obj->write_domain,
  2594. dev->invalidate_domains, dev->flush_domains);
  2595. #endif
  2596. trace_i915_gem_object_change_domain(obj,
  2597. old_read_domains,
  2598. obj->write_domain);
  2599. }
  2600. /**
  2601. * Moves the object from a partially CPU read to a full one.
  2602. *
  2603. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2604. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2605. */
  2606. static void
  2607. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2608. {
  2609. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2610. if (!obj_priv->page_cpu_valid)
  2611. return;
  2612. /* If we're partially in the CPU read domain, finish moving it in.
  2613. */
  2614. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2615. int i;
  2616. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2617. if (obj_priv->page_cpu_valid[i])
  2618. continue;
  2619. drm_clflush_pages(obj_priv->pages + i, 1);
  2620. }
  2621. }
  2622. /* Free the page_cpu_valid mappings which are now stale, whether
  2623. * or not we've got I915_GEM_DOMAIN_CPU.
  2624. */
  2625. kfree(obj_priv->page_cpu_valid);
  2626. obj_priv->page_cpu_valid = NULL;
  2627. }
  2628. /**
  2629. * Set the CPU read domain on a range of the object.
  2630. *
  2631. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2632. * not entirely valid. The page_cpu_valid member of the object flags which
  2633. * pages have been flushed, and will be respected by
  2634. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2635. * of the whole object.
  2636. *
  2637. * This function returns when the move is complete, including waiting on
  2638. * flushes to occur.
  2639. */
  2640. static int
  2641. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2642. uint64_t offset, uint64_t size)
  2643. {
  2644. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2645. uint32_t old_read_domains;
  2646. int i, ret;
  2647. if (offset == 0 && size == obj->size)
  2648. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2649. i915_gem_object_flush_gpu_write_domain(obj);
  2650. /* Wait on any GPU rendering and flushing to occur. */
  2651. ret = i915_gem_object_wait_rendering(obj);
  2652. if (ret != 0)
  2653. return ret;
  2654. i915_gem_object_flush_gtt_write_domain(obj);
  2655. /* If we're already fully in the CPU read domain, we're done. */
  2656. if (obj_priv->page_cpu_valid == NULL &&
  2657. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2658. return 0;
  2659. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2660. * newly adding I915_GEM_DOMAIN_CPU
  2661. */
  2662. if (obj_priv->page_cpu_valid == NULL) {
  2663. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2664. GFP_KERNEL);
  2665. if (obj_priv->page_cpu_valid == NULL)
  2666. return -ENOMEM;
  2667. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2668. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2669. /* Flush the cache on any pages that are still invalid from the CPU's
  2670. * perspective.
  2671. */
  2672. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2673. i++) {
  2674. if (obj_priv->page_cpu_valid[i])
  2675. continue;
  2676. drm_clflush_pages(obj_priv->pages + i, 1);
  2677. obj_priv->page_cpu_valid[i] = 1;
  2678. }
  2679. /* It should now be out of any other write domains, and we can update
  2680. * the domain values for our changes.
  2681. */
  2682. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2683. old_read_domains = obj->read_domains;
  2684. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2685. trace_i915_gem_object_change_domain(obj,
  2686. old_read_domains,
  2687. obj->write_domain);
  2688. return 0;
  2689. }
  2690. /**
  2691. * Pin an object to the GTT and evaluate the relocations landing in it.
  2692. */
  2693. static int
  2694. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2695. struct drm_file *file_priv,
  2696. struct drm_i915_gem_exec_object *entry,
  2697. struct drm_i915_gem_relocation_entry *relocs)
  2698. {
  2699. struct drm_device *dev = obj->dev;
  2700. drm_i915_private_t *dev_priv = dev->dev_private;
  2701. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2702. int i, ret;
  2703. void __iomem *reloc_page;
  2704. /* Choose the GTT offset for our buffer and put it there. */
  2705. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2706. if (ret)
  2707. return ret;
  2708. entry->offset = obj_priv->gtt_offset;
  2709. /* Apply the relocations, using the GTT aperture to avoid cache
  2710. * flushing requirements.
  2711. */
  2712. for (i = 0; i < entry->relocation_count; i++) {
  2713. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2714. struct drm_gem_object *target_obj;
  2715. struct drm_i915_gem_object *target_obj_priv;
  2716. uint32_t reloc_val, reloc_offset;
  2717. uint32_t __iomem *reloc_entry;
  2718. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2719. reloc->target_handle);
  2720. if (target_obj == NULL) {
  2721. i915_gem_object_unpin(obj);
  2722. return -EBADF;
  2723. }
  2724. target_obj_priv = target_obj->driver_private;
  2725. #if WATCH_RELOC
  2726. DRM_INFO("%s: obj %p offset %08x target %d "
  2727. "read %08x write %08x gtt %08x "
  2728. "presumed %08x delta %08x\n",
  2729. __func__,
  2730. obj,
  2731. (int) reloc->offset,
  2732. (int) reloc->target_handle,
  2733. (int) reloc->read_domains,
  2734. (int) reloc->write_domain,
  2735. (int) target_obj_priv->gtt_offset,
  2736. (int) reloc->presumed_offset,
  2737. reloc->delta);
  2738. #endif
  2739. /* The target buffer should have appeared before us in the
  2740. * exec_object list, so it should have a GTT space bound by now.
  2741. */
  2742. if (target_obj_priv->gtt_space == NULL) {
  2743. DRM_ERROR("No GTT space found for object %d\n",
  2744. reloc->target_handle);
  2745. drm_gem_object_unreference(target_obj);
  2746. i915_gem_object_unpin(obj);
  2747. return -EINVAL;
  2748. }
  2749. /* Validate that the target is in a valid r/w GPU domain */
  2750. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2751. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2752. DRM_ERROR("reloc with read/write CPU domains: "
  2753. "obj %p target %d offset %d "
  2754. "read %08x write %08x",
  2755. obj, reloc->target_handle,
  2756. (int) reloc->offset,
  2757. reloc->read_domains,
  2758. reloc->write_domain);
  2759. drm_gem_object_unreference(target_obj);
  2760. i915_gem_object_unpin(obj);
  2761. return -EINVAL;
  2762. }
  2763. if (reloc->write_domain && target_obj->pending_write_domain &&
  2764. reloc->write_domain != target_obj->pending_write_domain) {
  2765. DRM_ERROR("Write domain conflict: "
  2766. "obj %p target %d offset %d "
  2767. "new %08x old %08x\n",
  2768. obj, reloc->target_handle,
  2769. (int) reloc->offset,
  2770. reloc->write_domain,
  2771. target_obj->pending_write_domain);
  2772. drm_gem_object_unreference(target_obj);
  2773. i915_gem_object_unpin(obj);
  2774. return -EINVAL;
  2775. }
  2776. target_obj->pending_read_domains |= reloc->read_domains;
  2777. target_obj->pending_write_domain |= reloc->write_domain;
  2778. /* If the relocation already has the right value in it, no
  2779. * more work needs to be done.
  2780. */
  2781. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2782. drm_gem_object_unreference(target_obj);
  2783. continue;
  2784. }
  2785. /* Check that the relocation address is valid... */
  2786. if (reloc->offset > obj->size - 4) {
  2787. DRM_ERROR("Relocation beyond object bounds: "
  2788. "obj %p target %d offset %d size %d.\n",
  2789. obj, reloc->target_handle,
  2790. (int) reloc->offset, (int) obj->size);
  2791. drm_gem_object_unreference(target_obj);
  2792. i915_gem_object_unpin(obj);
  2793. return -EINVAL;
  2794. }
  2795. if (reloc->offset & 3) {
  2796. DRM_ERROR("Relocation not 4-byte aligned: "
  2797. "obj %p target %d offset %d.\n",
  2798. obj, reloc->target_handle,
  2799. (int) reloc->offset);
  2800. drm_gem_object_unreference(target_obj);
  2801. i915_gem_object_unpin(obj);
  2802. return -EINVAL;
  2803. }
  2804. /* and points to somewhere within the target object. */
  2805. if (reloc->delta >= target_obj->size) {
  2806. DRM_ERROR("Relocation beyond target object bounds: "
  2807. "obj %p target %d delta %d size %d.\n",
  2808. obj, reloc->target_handle,
  2809. (int) reloc->delta, (int) target_obj->size);
  2810. drm_gem_object_unreference(target_obj);
  2811. i915_gem_object_unpin(obj);
  2812. return -EINVAL;
  2813. }
  2814. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2815. if (ret != 0) {
  2816. drm_gem_object_unreference(target_obj);
  2817. i915_gem_object_unpin(obj);
  2818. return -EINVAL;
  2819. }
  2820. /* Map the page containing the relocation we're going to
  2821. * perform.
  2822. */
  2823. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2824. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2825. (reloc_offset &
  2826. ~(PAGE_SIZE - 1)));
  2827. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2828. (reloc_offset & (PAGE_SIZE - 1)));
  2829. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2830. #if WATCH_BUF
  2831. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2832. obj, (unsigned int) reloc->offset,
  2833. readl(reloc_entry), reloc_val);
  2834. #endif
  2835. writel(reloc_val, reloc_entry);
  2836. io_mapping_unmap_atomic(reloc_page);
  2837. /* The updated presumed offset for this entry will be
  2838. * copied back out to the user.
  2839. */
  2840. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2841. drm_gem_object_unreference(target_obj);
  2842. }
  2843. #if WATCH_BUF
  2844. if (0)
  2845. i915_gem_dump_object(obj, 128, __func__, ~0);
  2846. #endif
  2847. return 0;
  2848. }
  2849. /** Dispatch a batchbuffer to the ring
  2850. */
  2851. static int
  2852. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2853. struct drm_i915_gem_execbuffer *exec,
  2854. struct drm_clip_rect *cliprects,
  2855. uint64_t exec_offset)
  2856. {
  2857. drm_i915_private_t *dev_priv = dev->dev_private;
  2858. int nbox = exec->num_cliprects;
  2859. int i = 0, count;
  2860. uint32_t exec_start, exec_len;
  2861. RING_LOCALS;
  2862. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2863. exec_len = (uint32_t) exec->batch_len;
  2864. trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
  2865. count = nbox ? nbox : 1;
  2866. for (i = 0; i < count; i++) {
  2867. if (i < nbox) {
  2868. int ret = i915_emit_box(dev, cliprects, i,
  2869. exec->DR1, exec->DR4);
  2870. if (ret)
  2871. return ret;
  2872. }
  2873. if (IS_I830(dev) || IS_845G(dev)) {
  2874. BEGIN_LP_RING(4);
  2875. OUT_RING(MI_BATCH_BUFFER);
  2876. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2877. OUT_RING(exec_start + exec_len - 4);
  2878. OUT_RING(0);
  2879. ADVANCE_LP_RING();
  2880. } else {
  2881. BEGIN_LP_RING(2);
  2882. if (IS_I965G(dev)) {
  2883. OUT_RING(MI_BATCH_BUFFER_START |
  2884. (2 << 6) |
  2885. MI_BATCH_NON_SECURE_I965);
  2886. OUT_RING(exec_start);
  2887. } else {
  2888. OUT_RING(MI_BATCH_BUFFER_START |
  2889. (2 << 6));
  2890. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2891. }
  2892. ADVANCE_LP_RING();
  2893. }
  2894. }
  2895. /* XXX breadcrumb */
  2896. return 0;
  2897. }
  2898. /* Throttle our rendering by waiting until the ring has completed our requests
  2899. * emitted over 20 msec ago.
  2900. *
  2901. * Note that if we were to use the current jiffies each time around the loop,
  2902. * we wouldn't escape the function with any frames outstanding if the time to
  2903. * render a frame was over 20ms.
  2904. *
  2905. * This should get us reasonable parallelism between CPU and GPU but also
  2906. * relatively low latency when blocking on a particular request to finish.
  2907. */
  2908. static int
  2909. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2910. {
  2911. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2912. int ret = 0;
  2913. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2914. mutex_lock(&dev->struct_mutex);
  2915. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2916. struct drm_i915_gem_request *request;
  2917. request = list_first_entry(&i915_file_priv->mm.request_list,
  2918. struct drm_i915_gem_request,
  2919. client_list);
  2920. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2921. break;
  2922. ret = i915_wait_request(dev, request->seqno);
  2923. if (ret != 0)
  2924. break;
  2925. }
  2926. mutex_unlock(&dev->struct_mutex);
  2927. return ret;
  2928. }
  2929. static int
  2930. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2931. uint32_t buffer_count,
  2932. struct drm_i915_gem_relocation_entry **relocs)
  2933. {
  2934. uint32_t reloc_count = 0, reloc_index = 0, i;
  2935. int ret;
  2936. *relocs = NULL;
  2937. for (i = 0; i < buffer_count; i++) {
  2938. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2939. return -EINVAL;
  2940. reloc_count += exec_list[i].relocation_count;
  2941. }
  2942. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2943. if (*relocs == NULL)
  2944. return -ENOMEM;
  2945. for (i = 0; i < buffer_count; i++) {
  2946. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2947. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2948. ret = copy_from_user(&(*relocs)[reloc_index],
  2949. user_relocs,
  2950. exec_list[i].relocation_count *
  2951. sizeof(**relocs));
  2952. if (ret != 0) {
  2953. drm_free_large(*relocs);
  2954. *relocs = NULL;
  2955. return -EFAULT;
  2956. }
  2957. reloc_index += exec_list[i].relocation_count;
  2958. }
  2959. return 0;
  2960. }
  2961. static int
  2962. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2963. uint32_t buffer_count,
  2964. struct drm_i915_gem_relocation_entry *relocs)
  2965. {
  2966. uint32_t reloc_count = 0, i;
  2967. int ret = 0;
  2968. for (i = 0; i < buffer_count; i++) {
  2969. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2970. int unwritten;
  2971. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2972. unwritten = copy_to_user(user_relocs,
  2973. &relocs[reloc_count],
  2974. exec_list[i].relocation_count *
  2975. sizeof(*relocs));
  2976. if (unwritten) {
  2977. ret = -EFAULT;
  2978. goto err;
  2979. }
  2980. reloc_count += exec_list[i].relocation_count;
  2981. }
  2982. err:
  2983. drm_free_large(relocs);
  2984. return ret;
  2985. }
  2986. static int
  2987. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
  2988. uint64_t exec_offset)
  2989. {
  2990. uint32_t exec_start, exec_len;
  2991. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2992. exec_len = (uint32_t) exec->batch_len;
  2993. if ((exec_start | exec_len) & 0x7)
  2994. return -EINVAL;
  2995. if (!exec_start)
  2996. return -EINVAL;
  2997. return 0;
  2998. }
  2999. int
  3000. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3001. struct drm_file *file_priv)
  3002. {
  3003. drm_i915_private_t *dev_priv = dev->dev_private;
  3004. struct drm_i915_gem_execbuffer *args = data;
  3005. struct drm_i915_gem_exec_object *exec_list = NULL;
  3006. struct drm_gem_object **object_list = NULL;
  3007. struct drm_gem_object *batch_obj;
  3008. struct drm_i915_gem_object *obj_priv;
  3009. struct drm_clip_rect *cliprects = NULL;
  3010. struct drm_i915_gem_relocation_entry *relocs;
  3011. int ret, ret2, i, pinned = 0;
  3012. uint64_t exec_offset;
  3013. uint32_t seqno, flush_domains, reloc_index;
  3014. int pin_tries;
  3015. #if WATCH_EXEC
  3016. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3017. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3018. #endif
  3019. if (args->buffer_count < 1) {
  3020. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3021. return -EINVAL;
  3022. }
  3023. /* Copy in the exec list from userland */
  3024. exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
  3025. object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
  3026. if (exec_list == NULL || object_list == NULL) {
  3027. DRM_ERROR("Failed to allocate exec or object list "
  3028. "for %d buffers\n",
  3029. args->buffer_count);
  3030. ret = -ENOMEM;
  3031. goto pre_mutex_err;
  3032. }
  3033. ret = copy_from_user(exec_list,
  3034. (struct drm_i915_relocation_entry __user *)
  3035. (uintptr_t) args->buffers_ptr,
  3036. sizeof(*exec_list) * args->buffer_count);
  3037. if (ret != 0) {
  3038. DRM_ERROR("copy %d exec entries failed %d\n",
  3039. args->buffer_count, ret);
  3040. goto pre_mutex_err;
  3041. }
  3042. if (args->num_cliprects != 0) {
  3043. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3044. GFP_KERNEL);
  3045. if (cliprects == NULL)
  3046. goto pre_mutex_err;
  3047. ret = copy_from_user(cliprects,
  3048. (struct drm_clip_rect __user *)
  3049. (uintptr_t) args->cliprects_ptr,
  3050. sizeof(*cliprects) * args->num_cliprects);
  3051. if (ret != 0) {
  3052. DRM_ERROR("copy %d cliprects failed: %d\n",
  3053. args->num_cliprects, ret);
  3054. goto pre_mutex_err;
  3055. }
  3056. }
  3057. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3058. &relocs);
  3059. if (ret != 0)
  3060. goto pre_mutex_err;
  3061. mutex_lock(&dev->struct_mutex);
  3062. i915_verify_inactive(dev, __FILE__, __LINE__);
  3063. if (atomic_read(&dev_priv->mm.wedged)) {
  3064. DRM_ERROR("Execbuf while wedged\n");
  3065. mutex_unlock(&dev->struct_mutex);
  3066. ret = -EIO;
  3067. goto pre_mutex_err;
  3068. }
  3069. if (dev_priv->mm.suspended) {
  3070. DRM_ERROR("Execbuf while VT-switched.\n");
  3071. mutex_unlock(&dev->struct_mutex);
  3072. ret = -EBUSY;
  3073. goto pre_mutex_err;
  3074. }
  3075. /* Look up object handles */
  3076. for (i = 0; i < args->buffer_count; i++) {
  3077. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3078. exec_list[i].handle);
  3079. if (object_list[i] == NULL) {
  3080. DRM_ERROR("Invalid object handle %d at index %d\n",
  3081. exec_list[i].handle, i);
  3082. ret = -EBADF;
  3083. goto err;
  3084. }
  3085. obj_priv = object_list[i]->driver_private;
  3086. if (obj_priv->in_execbuffer) {
  3087. DRM_ERROR("Object %p appears more than once in object list\n",
  3088. object_list[i]);
  3089. ret = -EBADF;
  3090. goto err;
  3091. }
  3092. obj_priv->in_execbuffer = true;
  3093. }
  3094. /* Pin and relocate */
  3095. for (pin_tries = 0; ; pin_tries++) {
  3096. ret = 0;
  3097. reloc_index = 0;
  3098. for (i = 0; i < args->buffer_count; i++) {
  3099. object_list[i]->pending_read_domains = 0;
  3100. object_list[i]->pending_write_domain = 0;
  3101. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3102. file_priv,
  3103. &exec_list[i],
  3104. &relocs[reloc_index]);
  3105. if (ret)
  3106. break;
  3107. pinned = i + 1;
  3108. reloc_index += exec_list[i].relocation_count;
  3109. }
  3110. /* success */
  3111. if (ret == 0)
  3112. break;
  3113. /* error other than GTT full, or we've already tried again */
  3114. if (ret != -ENOSPC || pin_tries >= 1) {
  3115. if (ret != -ERESTARTSYS) {
  3116. unsigned long long total_size = 0;
  3117. for (i = 0; i < args->buffer_count; i++)
  3118. total_size += object_list[i]->size;
  3119. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
  3120. pinned+1, args->buffer_count,
  3121. total_size, ret);
  3122. DRM_ERROR("%d objects [%d pinned], "
  3123. "%d object bytes [%d pinned], "
  3124. "%d/%d gtt bytes\n",
  3125. atomic_read(&dev->object_count),
  3126. atomic_read(&dev->pin_count),
  3127. atomic_read(&dev->object_memory),
  3128. atomic_read(&dev->pin_memory),
  3129. atomic_read(&dev->gtt_memory),
  3130. dev->gtt_total);
  3131. }
  3132. goto err;
  3133. }
  3134. /* unpin all of our buffers */
  3135. for (i = 0; i < pinned; i++)
  3136. i915_gem_object_unpin(object_list[i]);
  3137. pinned = 0;
  3138. /* evict everyone we can from the aperture */
  3139. ret = i915_gem_evict_everything(dev);
  3140. if (ret && ret != -ENOSPC)
  3141. goto err;
  3142. }
  3143. /* Set the pending read domains for the batch buffer to COMMAND */
  3144. batch_obj = object_list[args->buffer_count-1];
  3145. if (batch_obj->pending_write_domain) {
  3146. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3147. ret = -EINVAL;
  3148. goto err;
  3149. }
  3150. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3151. /* Sanity check the batch buffer, prior to moving objects */
  3152. exec_offset = exec_list[args->buffer_count - 1].offset;
  3153. ret = i915_gem_check_execbuffer (args, exec_offset);
  3154. if (ret != 0) {
  3155. DRM_ERROR("execbuf with invalid offset/length\n");
  3156. goto err;
  3157. }
  3158. i915_verify_inactive(dev, __FILE__, __LINE__);
  3159. /* Zero the global flush/invalidate flags. These
  3160. * will be modified as new domains are computed
  3161. * for each object
  3162. */
  3163. dev->invalidate_domains = 0;
  3164. dev->flush_domains = 0;
  3165. for (i = 0; i < args->buffer_count; i++) {
  3166. struct drm_gem_object *obj = object_list[i];
  3167. /* Compute new gpu domains and update invalidate/flush */
  3168. i915_gem_object_set_to_gpu_domain(obj);
  3169. }
  3170. i915_verify_inactive(dev, __FILE__, __LINE__);
  3171. if (dev->invalidate_domains | dev->flush_domains) {
  3172. #if WATCH_EXEC
  3173. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3174. __func__,
  3175. dev->invalidate_domains,
  3176. dev->flush_domains);
  3177. #endif
  3178. i915_gem_flush(dev,
  3179. dev->invalidate_domains,
  3180. dev->flush_domains);
  3181. if (dev->flush_domains)
  3182. (void)i915_add_request(dev, file_priv,
  3183. dev->flush_domains);
  3184. }
  3185. for (i = 0; i < args->buffer_count; i++) {
  3186. struct drm_gem_object *obj = object_list[i];
  3187. uint32_t old_write_domain = obj->write_domain;
  3188. obj->write_domain = obj->pending_write_domain;
  3189. trace_i915_gem_object_change_domain(obj,
  3190. obj->read_domains,
  3191. old_write_domain);
  3192. }
  3193. i915_verify_inactive(dev, __FILE__, __LINE__);
  3194. #if WATCH_COHERENCY
  3195. for (i = 0; i < args->buffer_count; i++) {
  3196. i915_gem_object_check_coherency(object_list[i],
  3197. exec_list[i].handle);
  3198. }
  3199. #endif
  3200. #if WATCH_EXEC
  3201. i915_gem_dump_object(batch_obj,
  3202. args->batch_len,
  3203. __func__,
  3204. ~0);
  3205. #endif
  3206. /* Exec the batchbuffer */
  3207. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  3208. if (ret) {
  3209. DRM_ERROR("dispatch failed %d\n", ret);
  3210. goto err;
  3211. }
  3212. /*
  3213. * Ensure that the commands in the batch buffer are
  3214. * finished before the interrupt fires
  3215. */
  3216. flush_domains = i915_retire_commands(dev);
  3217. i915_verify_inactive(dev, __FILE__, __LINE__);
  3218. /*
  3219. * Get a seqno representing the execution of the current buffer,
  3220. * which we can wait on. We would like to mitigate these interrupts,
  3221. * likely by only creating seqnos occasionally (so that we have
  3222. * *some* interrupts representing completion of buffers that we can
  3223. * wait on when trying to clear up gtt space).
  3224. */
  3225. seqno = i915_add_request(dev, file_priv, flush_domains);
  3226. BUG_ON(seqno == 0);
  3227. for (i = 0; i < args->buffer_count; i++) {
  3228. struct drm_gem_object *obj = object_list[i];
  3229. i915_gem_object_move_to_active(obj, seqno);
  3230. #if WATCH_LRU
  3231. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3232. #endif
  3233. }
  3234. #if WATCH_LRU
  3235. i915_dump_lru(dev, __func__);
  3236. #endif
  3237. i915_verify_inactive(dev, __FILE__, __LINE__);
  3238. err:
  3239. for (i = 0; i < pinned; i++)
  3240. i915_gem_object_unpin(object_list[i]);
  3241. for (i = 0; i < args->buffer_count; i++) {
  3242. if (object_list[i]) {
  3243. obj_priv = object_list[i]->driver_private;
  3244. obj_priv->in_execbuffer = false;
  3245. }
  3246. drm_gem_object_unreference(object_list[i]);
  3247. }
  3248. mutex_unlock(&dev->struct_mutex);
  3249. if (!ret) {
  3250. /* Copy the new buffer offsets back to the user's exec list. */
  3251. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3252. (uintptr_t) args->buffers_ptr,
  3253. exec_list,
  3254. sizeof(*exec_list) * args->buffer_count);
  3255. if (ret) {
  3256. ret = -EFAULT;
  3257. DRM_ERROR("failed to copy %d exec entries "
  3258. "back to user (%d)\n",
  3259. args->buffer_count, ret);
  3260. }
  3261. }
  3262. /* Copy the updated relocations out regardless of current error
  3263. * state. Failure to update the relocs would mean that the next
  3264. * time userland calls execbuf, it would do so with presumed offset
  3265. * state that didn't match the actual object state.
  3266. */
  3267. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3268. relocs);
  3269. if (ret2 != 0) {
  3270. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3271. if (ret == 0)
  3272. ret = ret2;
  3273. }
  3274. pre_mutex_err:
  3275. drm_free_large(object_list);
  3276. drm_free_large(exec_list);
  3277. kfree(cliprects);
  3278. return ret;
  3279. }
  3280. int
  3281. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3282. {
  3283. struct drm_device *dev = obj->dev;
  3284. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3285. int ret;
  3286. i915_verify_inactive(dev, __FILE__, __LINE__);
  3287. if (obj_priv->gtt_space == NULL) {
  3288. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3289. if (ret)
  3290. return ret;
  3291. }
  3292. /*
  3293. * Pre-965 chips need a fence register set up in order to
  3294. * properly handle tiled surfaces.
  3295. */
  3296. if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
  3297. ret = i915_gem_object_get_fence_reg(obj);
  3298. if (ret != 0) {
  3299. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3300. DRM_ERROR("Failure to install fence: %d\n",
  3301. ret);
  3302. return ret;
  3303. }
  3304. }
  3305. obj_priv->pin_count++;
  3306. /* If the object is not active and not pending a flush,
  3307. * remove it from the inactive list
  3308. */
  3309. if (obj_priv->pin_count == 1) {
  3310. atomic_inc(&dev->pin_count);
  3311. atomic_add(obj->size, &dev->pin_memory);
  3312. if (!obj_priv->active &&
  3313. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3314. !list_empty(&obj_priv->list))
  3315. list_del_init(&obj_priv->list);
  3316. }
  3317. i915_verify_inactive(dev, __FILE__, __LINE__);
  3318. return 0;
  3319. }
  3320. void
  3321. i915_gem_object_unpin(struct drm_gem_object *obj)
  3322. {
  3323. struct drm_device *dev = obj->dev;
  3324. drm_i915_private_t *dev_priv = dev->dev_private;
  3325. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3326. i915_verify_inactive(dev, __FILE__, __LINE__);
  3327. obj_priv->pin_count--;
  3328. BUG_ON(obj_priv->pin_count < 0);
  3329. BUG_ON(obj_priv->gtt_space == NULL);
  3330. /* If the object is no longer pinned, and is
  3331. * neither active nor being flushed, then stick it on
  3332. * the inactive list
  3333. */
  3334. if (obj_priv->pin_count == 0) {
  3335. if (!obj_priv->active &&
  3336. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3337. list_move_tail(&obj_priv->list,
  3338. &dev_priv->mm.inactive_list);
  3339. atomic_dec(&dev->pin_count);
  3340. atomic_sub(obj->size, &dev->pin_memory);
  3341. }
  3342. i915_verify_inactive(dev, __FILE__, __LINE__);
  3343. }
  3344. int
  3345. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3346. struct drm_file *file_priv)
  3347. {
  3348. struct drm_i915_gem_pin *args = data;
  3349. struct drm_gem_object *obj;
  3350. struct drm_i915_gem_object *obj_priv;
  3351. int ret;
  3352. mutex_lock(&dev->struct_mutex);
  3353. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3354. if (obj == NULL) {
  3355. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3356. args->handle);
  3357. mutex_unlock(&dev->struct_mutex);
  3358. return -EBADF;
  3359. }
  3360. obj_priv = obj->driver_private;
  3361. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3362. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3363. drm_gem_object_unreference(obj);
  3364. mutex_unlock(&dev->struct_mutex);
  3365. return -EINVAL;
  3366. }
  3367. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3368. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3369. args->handle);
  3370. drm_gem_object_unreference(obj);
  3371. mutex_unlock(&dev->struct_mutex);
  3372. return -EINVAL;
  3373. }
  3374. obj_priv->user_pin_count++;
  3375. obj_priv->pin_filp = file_priv;
  3376. if (obj_priv->user_pin_count == 1) {
  3377. ret = i915_gem_object_pin(obj, args->alignment);
  3378. if (ret != 0) {
  3379. drm_gem_object_unreference(obj);
  3380. mutex_unlock(&dev->struct_mutex);
  3381. return ret;
  3382. }
  3383. }
  3384. /* XXX - flush the CPU caches for pinned objects
  3385. * as the X server doesn't manage domains yet
  3386. */
  3387. i915_gem_object_flush_cpu_write_domain(obj);
  3388. args->offset = obj_priv->gtt_offset;
  3389. drm_gem_object_unreference(obj);
  3390. mutex_unlock(&dev->struct_mutex);
  3391. return 0;
  3392. }
  3393. int
  3394. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3395. struct drm_file *file_priv)
  3396. {
  3397. struct drm_i915_gem_pin *args = data;
  3398. struct drm_gem_object *obj;
  3399. struct drm_i915_gem_object *obj_priv;
  3400. mutex_lock(&dev->struct_mutex);
  3401. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3402. if (obj == NULL) {
  3403. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3404. args->handle);
  3405. mutex_unlock(&dev->struct_mutex);
  3406. return -EBADF;
  3407. }
  3408. obj_priv = obj->driver_private;
  3409. if (obj_priv->pin_filp != file_priv) {
  3410. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3411. args->handle);
  3412. drm_gem_object_unreference(obj);
  3413. mutex_unlock(&dev->struct_mutex);
  3414. return -EINVAL;
  3415. }
  3416. obj_priv->user_pin_count--;
  3417. if (obj_priv->user_pin_count == 0) {
  3418. obj_priv->pin_filp = NULL;
  3419. i915_gem_object_unpin(obj);
  3420. }
  3421. drm_gem_object_unreference(obj);
  3422. mutex_unlock(&dev->struct_mutex);
  3423. return 0;
  3424. }
  3425. int
  3426. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3427. struct drm_file *file_priv)
  3428. {
  3429. struct drm_i915_gem_busy *args = data;
  3430. struct drm_gem_object *obj;
  3431. struct drm_i915_gem_object *obj_priv;
  3432. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3433. if (obj == NULL) {
  3434. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3435. args->handle);
  3436. return -EBADF;
  3437. }
  3438. mutex_lock(&dev->struct_mutex);
  3439. /* Update the active list for the hardware's current position.
  3440. * Otherwise this only updates on a delayed timer or when irqs are
  3441. * actually unmasked, and our working set ends up being larger than
  3442. * required.
  3443. */
  3444. i915_gem_retire_requests(dev);
  3445. obj_priv = obj->driver_private;
  3446. /* Don't count being on the flushing list against the object being
  3447. * done. Otherwise, a buffer left on the flushing list but not getting
  3448. * flushed (because nobody's flushing that domain) won't ever return
  3449. * unbusy and get reused by libdrm's bo cache. The other expected
  3450. * consumer of this interface, OpenGL's occlusion queries, also specs
  3451. * that the objects get unbusy "eventually" without any interference.
  3452. */
  3453. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3454. drm_gem_object_unreference(obj);
  3455. mutex_unlock(&dev->struct_mutex);
  3456. return 0;
  3457. }
  3458. int
  3459. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3460. struct drm_file *file_priv)
  3461. {
  3462. return i915_gem_ring_throttle(dev, file_priv);
  3463. }
  3464. int
  3465. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3466. struct drm_file *file_priv)
  3467. {
  3468. struct drm_i915_gem_madvise *args = data;
  3469. struct drm_gem_object *obj;
  3470. struct drm_i915_gem_object *obj_priv;
  3471. switch (args->madv) {
  3472. case I915_MADV_DONTNEED:
  3473. case I915_MADV_WILLNEED:
  3474. break;
  3475. default:
  3476. return -EINVAL;
  3477. }
  3478. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3479. if (obj == NULL) {
  3480. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3481. args->handle);
  3482. return -EBADF;
  3483. }
  3484. mutex_lock(&dev->struct_mutex);
  3485. obj_priv = obj->driver_private;
  3486. if (obj_priv->pin_count) {
  3487. drm_gem_object_unreference(obj);
  3488. mutex_unlock(&dev->struct_mutex);
  3489. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3490. return -EINVAL;
  3491. }
  3492. if (obj_priv->madv != __I915_MADV_PURGED)
  3493. obj_priv->madv = args->madv;
  3494. /* if the object is no longer bound, discard its backing storage */
  3495. if (i915_gem_object_is_purgeable(obj_priv) &&
  3496. obj_priv->gtt_space == NULL)
  3497. i915_gem_object_truncate(obj);
  3498. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3499. drm_gem_object_unreference(obj);
  3500. mutex_unlock(&dev->struct_mutex);
  3501. return 0;
  3502. }
  3503. int i915_gem_init_object(struct drm_gem_object *obj)
  3504. {
  3505. struct drm_i915_gem_object *obj_priv;
  3506. obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
  3507. if (obj_priv == NULL)
  3508. return -ENOMEM;
  3509. /*
  3510. * We've just allocated pages from the kernel,
  3511. * so they've just been written by the CPU with
  3512. * zeros. They'll need to be clflushed before we
  3513. * use them with the GPU.
  3514. */
  3515. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3516. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3517. obj_priv->agp_type = AGP_USER_MEMORY;
  3518. obj->driver_private = obj_priv;
  3519. obj_priv->obj = obj;
  3520. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3521. INIT_LIST_HEAD(&obj_priv->list);
  3522. INIT_LIST_HEAD(&obj_priv->fence_list);
  3523. obj_priv->madv = I915_MADV_WILLNEED;
  3524. trace_i915_gem_object_create(obj);
  3525. return 0;
  3526. }
  3527. void i915_gem_free_object(struct drm_gem_object *obj)
  3528. {
  3529. struct drm_device *dev = obj->dev;
  3530. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3531. trace_i915_gem_object_destroy(obj);
  3532. while (obj_priv->pin_count > 0)
  3533. i915_gem_object_unpin(obj);
  3534. if (obj_priv->phys_obj)
  3535. i915_gem_detach_phys_object(dev, obj);
  3536. i915_gem_object_unbind(obj);
  3537. if (obj_priv->mmap_offset)
  3538. i915_gem_free_mmap_offset(obj);
  3539. kfree(obj_priv->page_cpu_valid);
  3540. kfree(obj_priv->bit_17);
  3541. kfree(obj->driver_private);
  3542. }
  3543. /** Unbinds all inactive objects. */
  3544. static int
  3545. i915_gem_evict_from_inactive_list(struct drm_device *dev)
  3546. {
  3547. drm_i915_private_t *dev_priv = dev->dev_private;
  3548. while (!list_empty(&dev_priv->mm.inactive_list)) {
  3549. struct drm_gem_object *obj;
  3550. int ret;
  3551. obj = list_first_entry(&dev_priv->mm.inactive_list,
  3552. struct drm_i915_gem_object,
  3553. list)->obj;
  3554. ret = i915_gem_object_unbind(obj);
  3555. if (ret != 0) {
  3556. DRM_ERROR("Error unbinding object: %d\n", ret);
  3557. return ret;
  3558. }
  3559. }
  3560. return 0;
  3561. }
  3562. int
  3563. i915_gem_idle(struct drm_device *dev)
  3564. {
  3565. drm_i915_private_t *dev_priv = dev->dev_private;
  3566. uint32_t seqno, cur_seqno, last_seqno;
  3567. int stuck, ret;
  3568. mutex_lock(&dev->struct_mutex);
  3569. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3570. mutex_unlock(&dev->struct_mutex);
  3571. return 0;
  3572. }
  3573. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3574. * We need to replace this with a semaphore, or something.
  3575. */
  3576. dev_priv->mm.suspended = 1;
  3577. del_timer(&dev_priv->hangcheck_timer);
  3578. /* Cancel the retire work handler, wait for it to finish if running
  3579. */
  3580. mutex_unlock(&dev->struct_mutex);
  3581. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3582. mutex_lock(&dev->struct_mutex);
  3583. i915_kernel_lost_context(dev);
  3584. /* Flush the GPU along with all non-CPU write domains
  3585. */
  3586. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  3587. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  3588. if (seqno == 0) {
  3589. mutex_unlock(&dev->struct_mutex);
  3590. return -ENOMEM;
  3591. }
  3592. dev_priv->mm.waiting_gem_seqno = seqno;
  3593. last_seqno = 0;
  3594. stuck = 0;
  3595. for (;;) {
  3596. cur_seqno = i915_get_gem_seqno(dev);
  3597. if (i915_seqno_passed(cur_seqno, seqno))
  3598. break;
  3599. if (last_seqno == cur_seqno) {
  3600. if (stuck++ > 100) {
  3601. DRM_ERROR("hardware wedged\n");
  3602. atomic_set(&dev_priv->mm.wedged, 1);
  3603. DRM_WAKEUP(&dev_priv->irq_queue);
  3604. break;
  3605. }
  3606. }
  3607. msleep(10);
  3608. last_seqno = cur_seqno;
  3609. }
  3610. dev_priv->mm.waiting_gem_seqno = 0;
  3611. i915_gem_retire_requests(dev);
  3612. spin_lock(&dev_priv->mm.active_list_lock);
  3613. if (!atomic_read(&dev_priv->mm.wedged)) {
  3614. /* Active and flushing should now be empty as we've
  3615. * waited for a sequence higher than any pending execbuffer
  3616. */
  3617. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3618. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3619. /* Request should now be empty as we've also waited
  3620. * for the last request in the list
  3621. */
  3622. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3623. }
  3624. /* Empty the active and flushing lists to inactive. If there's
  3625. * anything left at this point, it means that we're wedged and
  3626. * nothing good's going to happen by leaving them there. So strip
  3627. * the GPU domains and just stuff them onto inactive.
  3628. */
  3629. while (!list_empty(&dev_priv->mm.active_list)) {
  3630. struct drm_gem_object *obj;
  3631. uint32_t old_write_domain;
  3632. obj = list_first_entry(&dev_priv->mm.active_list,
  3633. struct drm_i915_gem_object,
  3634. list)->obj;
  3635. old_write_domain = obj->write_domain;
  3636. obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3637. i915_gem_object_move_to_inactive(obj);
  3638. trace_i915_gem_object_change_domain(obj,
  3639. obj->read_domains,
  3640. old_write_domain);
  3641. }
  3642. spin_unlock(&dev_priv->mm.active_list_lock);
  3643. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3644. struct drm_gem_object *obj;
  3645. uint32_t old_write_domain;
  3646. obj = list_first_entry(&dev_priv->mm.flushing_list,
  3647. struct drm_i915_gem_object,
  3648. list)->obj;
  3649. old_write_domain = obj->write_domain;
  3650. obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3651. i915_gem_object_move_to_inactive(obj);
  3652. trace_i915_gem_object_change_domain(obj,
  3653. obj->read_domains,
  3654. old_write_domain);
  3655. }
  3656. /* Move all inactive buffers out of the GTT. */
  3657. ret = i915_gem_evict_from_inactive_list(dev);
  3658. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3659. if (ret) {
  3660. mutex_unlock(&dev->struct_mutex);
  3661. return ret;
  3662. }
  3663. i915_gem_cleanup_ringbuffer(dev);
  3664. mutex_unlock(&dev->struct_mutex);
  3665. return 0;
  3666. }
  3667. static int
  3668. i915_gem_init_hws(struct drm_device *dev)
  3669. {
  3670. drm_i915_private_t *dev_priv = dev->dev_private;
  3671. struct drm_gem_object *obj;
  3672. struct drm_i915_gem_object *obj_priv;
  3673. int ret;
  3674. /* If we need a physical address for the status page, it's already
  3675. * initialized at driver load time.
  3676. */
  3677. if (!I915_NEED_GFX_HWS(dev))
  3678. return 0;
  3679. obj = drm_gem_object_alloc(dev, 4096);
  3680. if (obj == NULL) {
  3681. DRM_ERROR("Failed to allocate status page\n");
  3682. return -ENOMEM;
  3683. }
  3684. obj_priv = obj->driver_private;
  3685. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3686. ret = i915_gem_object_pin(obj, 4096);
  3687. if (ret != 0) {
  3688. drm_gem_object_unreference(obj);
  3689. return ret;
  3690. }
  3691. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3692. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3693. if (dev_priv->hw_status_page == NULL) {
  3694. DRM_ERROR("Failed to map status page.\n");
  3695. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3696. i915_gem_object_unpin(obj);
  3697. drm_gem_object_unreference(obj);
  3698. return -EINVAL;
  3699. }
  3700. dev_priv->hws_obj = obj;
  3701. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3702. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3703. I915_READ(HWS_PGA); /* posting read */
  3704. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3705. return 0;
  3706. }
  3707. static void
  3708. i915_gem_cleanup_hws(struct drm_device *dev)
  3709. {
  3710. drm_i915_private_t *dev_priv = dev->dev_private;
  3711. struct drm_gem_object *obj;
  3712. struct drm_i915_gem_object *obj_priv;
  3713. if (dev_priv->hws_obj == NULL)
  3714. return;
  3715. obj = dev_priv->hws_obj;
  3716. obj_priv = obj->driver_private;
  3717. kunmap(obj_priv->pages[0]);
  3718. i915_gem_object_unpin(obj);
  3719. drm_gem_object_unreference(obj);
  3720. dev_priv->hws_obj = NULL;
  3721. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3722. dev_priv->hw_status_page = NULL;
  3723. /* Write high address into HWS_PGA when disabling. */
  3724. I915_WRITE(HWS_PGA, 0x1ffff000);
  3725. }
  3726. int
  3727. i915_gem_init_ringbuffer(struct drm_device *dev)
  3728. {
  3729. drm_i915_private_t *dev_priv = dev->dev_private;
  3730. struct drm_gem_object *obj;
  3731. struct drm_i915_gem_object *obj_priv;
  3732. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3733. int ret;
  3734. u32 head;
  3735. ret = i915_gem_init_hws(dev);
  3736. if (ret != 0)
  3737. return ret;
  3738. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3739. if (obj == NULL) {
  3740. DRM_ERROR("Failed to allocate ringbuffer\n");
  3741. i915_gem_cleanup_hws(dev);
  3742. return -ENOMEM;
  3743. }
  3744. obj_priv = obj->driver_private;
  3745. ret = i915_gem_object_pin(obj, 4096);
  3746. if (ret != 0) {
  3747. drm_gem_object_unreference(obj);
  3748. i915_gem_cleanup_hws(dev);
  3749. return ret;
  3750. }
  3751. /* Set up the kernel mapping for the ring. */
  3752. ring->Size = obj->size;
  3753. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3754. ring->map.size = obj->size;
  3755. ring->map.type = 0;
  3756. ring->map.flags = 0;
  3757. ring->map.mtrr = 0;
  3758. drm_core_ioremap_wc(&ring->map, dev);
  3759. if (ring->map.handle == NULL) {
  3760. DRM_ERROR("Failed to map ringbuffer.\n");
  3761. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3762. i915_gem_object_unpin(obj);
  3763. drm_gem_object_unreference(obj);
  3764. i915_gem_cleanup_hws(dev);
  3765. return -EINVAL;
  3766. }
  3767. ring->ring_obj = obj;
  3768. ring->virtual_start = ring->map.handle;
  3769. /* Stop the ring if it's running. */
  3770. I915_WRITE(PRB0_CTL, 0);
  3771. I915_WRITE(PRB0_TAIL, 0);
  3772. I915_WRITE(PRB0_HEAD, 0);
  3773. /* Initialize the ring. */
  3774. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3775. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3776. /* G45 ring initialization fails to reset head to zero */
  3777. if (head != 0) {
  3778. DRM_ERROR("Ring head not reset to zero "
  3779. "ctl %08x head %08x tail %08x start %08x\n",
  3780. I915_READ(PRB0_CTL),
  3781. I915_READ(PRB0_HEAD),
  3782. I915_READ(PRB0_TAIL),
  3783. I915_READ(PRB0_START));
  3784. I915_WRITE(PRB0_HEAD, 0);
  3785. DRM_ERROR("Ring head forced to zero "
  3786. "ctl %08x head %08x tail %08x start %08x\n",
  3787. I915_READ(PRB0_CTL),
  3788. I915_READ(PRB0_HEAD),
  3789. I915_READ(PRB0_TAIL),
  3790. I915_READ(PRB0_START));
  3791. }
  3792. I915_WRITE(PRB0_CTL,
  3793. ((obj->size - 4096) & RING_NR_PAGES) |
  3794. RING_NO_REPORT |
  3795. RING_VALID);
  3796. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3797. /* If the head is still not zero, the ring is dead */
  3798. if (head != 0) {
  3799. DRM_ERROR("Ring initialization failed "
  3800. "ctl %08x head %08x tail %08x start %08x\n",
  3801. I915_READ(PRB0_CTL),
  3802. I915_READ(PRB0_HEAD),
  3803. I915_READ(PRB0_TAIL),
  3804. I915_READ(PRB0_START));
  3805. return -EIO;
  3806. }
  3807. /* Update our cache of the ring state */
  3808. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3809. i915_kernel_lost_context(dev);
  3810. else {
  3811. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3812. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3813. ring->space = ring->head - (ring->tail + 8);
  3814. if (ring->space < 0)
  3815. ring->space += ring->Size;
  3816. }
  3817. return 0;
  3818. }
  3819. void
  3820. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3821. {
  3822. drm_i915_private_t *dev_priv = dev->dev_private;
  3823. if (dev_priv->ring.ring_obj == NULL)
  3824. return;
  3825. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3826. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3827. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3828. dev_priv->ring.ring_obj = NULL;
  3829. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3830. i915_gem_cleanup_hws(dev);
  3831. }
  3832. int
  3833. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3834. struct drm_file *file_priv)
  3835. {
  3836. drm_i915_private_t *dev_priv = dev->dev_private;
  3837. int ret;
  3838. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3839. return 0;
  3840. if (atomic_read(&dev_priv->mm.wedged)) {
  3841. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3842. atomic_set(&dev_priv->mm.wedged, 0);
  3843. }
  3844. mutex_lock(&dev->struct_mutex);
  3845. dev_priv->mm.suspended = 0;
  3846. ret = i915_gem_init_ringbuffer(dev);
  3847. if (ret != 0) {
  3848. mutex_unlock(&dev->struct_mutex);
  3849. return ret;
  3850. }
  3851. spin_lock(&dev_priv->mm.active_list_lock);
  3852. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3853. spin_unlock(&dev_priv->mm.active_list_lock);
  3854. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3855. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3856. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3857. mutex_unlock(&dev->struct_mutex);
  3858. drm_irq_install(dev);
  3859. return 0;
  3860. }
  3861. int
  3862. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3863. struct drm_file *file_priv)
  3864. {
  3865. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3866. return 0;
  3867. drm_irq_uninstall(dev);
  3868. return i915_gem_idle(dev);
  3869. }
  3870. void
  3871. i915_gem_lastclose(struct drm_device *dev)
  3872. {
  3873. int ret;
  3874. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3875. return;
  3876. ret = i915_gem_idle(dev);
  3877. if (ret)
  3878. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3879. }
  3880. void
  3881. i915_gem_load(struct drm_device *dev)
  3882. {
  3883. int i;
  3884. drm_i915_private_t *dev_priv = dev->dev_private;
  3885. spin_lock_init(&dev_priv->mm.active_list_lock);
  3886. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3887. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3888. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3889. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3890. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3891. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3892. i915_gem_retire_work_handler);
  3893. dev_priv->mm.next_gem_seqno = 1;
  3894. spin_lock(&shrink_list_lock);
  3895. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3896. spin_unlock(&shrink_list_lock);
  3897. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3898. dev_priv->fence_reg_start = 3;
  3899. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3900. dev_priv->num_fence_regs = 16;
  3901. else
  3902. dev_priv->num_fence_regs = 8;
  3903. /* Initialize fence registers to zero */
  3904. if (IS_I965G(dev)) {
  3905. for (i = 0; i < 16; i++)
  3906. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3907. } else {
  3908. for (i = 0; i < 8; i++)
  3909. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3910. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3911. for (i = 0; i < 8; i++)
  3912. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3913. }
  3914. i915_gem_detect_bit_6_swizzle(dev);
  3915. }
  3916. /*
  3917. * Create a physically contiguous memory object for this object
  3918. * e.g. for cursor + overlay regs
  3919. */
  3920. int i915_gem_init_phys_object(struct drm_device *dev,
  3921. int id, int size)
  3922. {
  3923. drm_i915_private_t *dev_priv = dev->dev_private;
  3924. struct drm_i915_gem_phys_object *phys_obj;
  3925. int ret;
  3926. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3927. return 0;
  3928. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3929. if (!phys_obj)
  3930. return -ENOMEM;
  3931. phys_obj->id = id;
  3932. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3933. if (!phys_obj->handle) {
  3934. ret = -ENOMEM;
  3935. goto kfree_obj;
  3936. }
  3937. #ifdef CONFIG_X86
  3938. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3939. #endif
  3940. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3941. return 0;
  3942. kfree_obj:
  3943. kfree(phys_obj);
  3944. return ret;
  3945. }
  3946. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3947. {
  3948. drm_i915_private_t *dev_priv = dev->dev_private;
  3949. struct drm_i915_gem_phys_object *phys_obj;
  3950. if (!dev_priv->mm.phys_objs[id - 1])
  3951. return;
  3952. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3953. if (phys_obj->cur_obj) {
  3954. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3955. }
  3956. #ifdef CONFIG_X86
  3957. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3958. #endif
  3959. drm_pci_free(dev, phys_obj->handle);
  3960. kfree(phys_obj);
  3961. dev_priv->mm.phys_objs[id - 1] = NULL;
  3962. }
  3963. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3964. {
  3965. int i;
  3966. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3967. i915_gem_free_phys_object(dev, i);
  3968. }
  3969. void i915_gem_detach_phys_object(struct drm_device *dev,
  3970. struct drm_gem_object *obj)
  3971. {
  3972. struct drm_i915_gem_object *obj_priv;
  3973. int i;
  3974. int ret;
  3975. int page_count;
  3976. obj_priv = obj->driver_private;
  3977. if (!obj_priv->phys_obj)
  3978. return;
  3979. ret = i915_gem_object_get_pages(obj);
  3980. if (ret)
  3981. goto out;
  3982. page_count = obj->size / PAGE_SIZE;
  3983. for (i = 0; i < page_count; i++) {
  3984. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3985. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3986. memcpy(dst, src, PAGE_SIZE);
  3987. kunmap_atomic(dst, KM_USER0);
  3988. }
  3989. drm_clflush_pages(obj_priv->pages, page_count);
  3990. drm_agp_chipset_flush(dev);
  3991. i915_gem_object_put_pages(obj);
  3992. out:
  3993. obj_priv->phys_obj->cur_obj = NULL;
  3994. obj_priv->phys_obj = NULL;
  3995. }
  3996. int
  3997. i915_gem_attach_phys_object(struct drm_device *dev,
  3998. struct drm_gem_object *obj, int id)
  3999. {
  4000. drm_i915_private_t *dev_priv = dev->dev_private;
  4001. struct drm_i915_gem_object *obj_priv;
  4002. int ret = 0;
  4003. int page_count;
  4004. int i;
  4005. if (id > I915_MAX_PHYS_OBJECT)
  4006. return -EINVAL;
  4007. obj_priv = obj->driver_private;
  4008. if (obj_priv->phys_obj) {
  4009. if (obj_priv->phys_obj->id == id)
  4010. return 0;
  4011. i915_gem_detach_phys_object(dev, obj);
  4012. }
  4013. /* create a new object */
  4014. if (!dev_priv->mm.phys_objs[id - 1]) {
  4015. ret = i915_gem_init_phys_object(dev, id,
  4016. obj->size);
  4017. if (ret) {
  4018. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4019. goto out;
  4020. }
  4021. }
  4022. /* bind to the object */
  4023. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4024. obj_priv->phys_obj->cur_obj = obj;
  4025. ret = i915_gem_object_get_pages(obj);
  4026. if (ret) {
  4027. DRM_ERROR("failed to get page list\n");
  4028. goto out;
  4029. }
  4030. page_count = obj->size / PAGE_SIZE;
  4031. for (i = 0; i < page_count; i++) {
  4032. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4033. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4034. memcpy(dst, src, PAGE_SIZE);
  4035. kunmap_atomic(src, KM_USER0);
  4036. }
  4037. i915_gem_object_put_pages(obj);
  4038. return 0;
  4039. out:
  4040. return ret;
  4041. }
  4042. static int
  4043. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4044. struct drm_i915_gem_pwrite *args,
  4045. struct drm_file *file_priv)
  4046. {
  4047. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  4048. void *obj_addr;
  4049. int ret;
  4050. char __user *user_data;
  4051. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4052. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4053. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  4054. ret = copy_from_user(obj_addr, user_data, args->size);
  4055. if (ret)
  4056. return -EFAULT;
  4057. drm_agp_chipset_flush(dev);
  4058. return 0;
  4059. }
  4060. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4061. {
  4062. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4063. /* Clean up our request list when the client is going away, so that
  4064. * later retire_requests won't dereference our soon-to-be-gone
  4065. * file_priv.
  4066. */
  4067. mutex_lock(&dev->struct_mutex);
  4068. while (!list_empty(&i915_file_priv->mm.request_list))
  4069. list_del_init(i915_file_priv->mm.request_list.next);
  4070. mutex_unlock(&dev->struct_mutex);
  4071. }
  4072. static int
  4073. i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
  4074. {
  4075. drm_i915_private_t *dev_priv, *next_dev;
  4076. struct drm_i915_gem_object *obj_priv, *next_obj;
  4077. int cnt = 0;
  4078. int would_deadlock = 1;
  4079. /* "fast-path" to count number of available objects */
  4080. if (nr_to_scan == 0) {
  4081. spin_lock(&shrink_list_lock);
  4082. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4083. struct drm_device *dev = dev_priv->dev;
  4084. if (mutex_trylock(&dev->struct_mutex)) {
  4085. list_for_each_entry(obj_priv,
  4086. &dev_priv->mm.inactive_list,
  4087. list)
  4088. cnt++;
  4089. mutex_unlock(&dev->struct_mutex);
  4090. }
  4091. }
  4092. spin_unlock(&shrink_list_lock);
  4093. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4094. }
  4095. spin_lock(&shrink_list_lock);
  4096. /* first scan for clean buffers */
  4097. list_for_each_entry_safe(dev_priv, next_dev,
  4098. &shrink_list, mm.shrink_list) {
  4099. struct drm_device *dev = dev_priv->dev;
  4100. if (! mutex_trylock(&dev->struct_mutex))
  4101. continue;
  4102. spin_unlock(&shrink_list_lock);
  4103. i915_gem_retire_requests(dev);
  4104. list_for_each_entry_safe(obj_priv, next_obj,
  4105. &dev_priv->mm.inactive_list,
  4106. list) {
  4107. if (i915_gem_object_is_purgeable(obj_priv)) {
  4108. i915_gem_object_unbind(obj_priv->obj);
  4109. if (--nr_to_scan <= 0)
  4110. break;
  4111. }
  4112. }
  4113. spin_lock(&shrink_list_lock);
  4114. mutex_unlock(&dev->struct_mutex);
  4115. would_deadlock = 0;
  4116. if (nr_to_scan <= 0)
  4117. break;
  4118. }
  4119. /* second pass, evict/count anything still on the inactive list */
  4120. list_for_each_entry_safe(dev_priv, next_dev,
  4121. &shrink_list, mm.shrink_list) {
  4122. struct drm_device *dev = dev_priv->dev;
  4123. if (! mutex_trylock(&dev->struct_mutex))
  4124. continue;
  4125. spin_unlock(&shrink_list_lock);
  4126. list_for_each_entry_safe(obj_priv, next_obj,
  4127. &dev_priv->mm.inactive_list,
  4128. list) {
  4129. if (nr_to_scan > 0) {
  4130. i915_gem_object_unbind(obj_priv->obj);
  4131. nr_to_scan--;
  4132. } else
  4133. cnt++;
  4134. }
  4135. spin_lock(&shrink_list_lock);
  4136. mutex_unlock(&dev->struct_mutex);
  4137. would_deadlock = 0;
  4138. }
  4139. spin_unlock(&shrink_list_lock);
  4140. if (would_deadlock)
  4141. return -1;
  4142. else if (cnt > 0)
  4143. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4144. else
  4145. return 0;
  4146. }
  4147. static struct shrinker shrinker = {
  4148. .shrink = i915_gem_shrink,
  4149. .seeks = DEFAULT_SEEKS,
  4150. };
  4151. __init void
  4152. i915_gem_shrinker_init(void)
  4153. {
  4154. register_shrinker(&shrinker);
  4155. }
  4156. __exit void
  4157. i915_gem_shrinker_exit(void)
  4158. {
  4159. unregister_shrinker(&shrinker);
  4160. }