xsysace.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310
  1. /*
  2. * Xilinx SystemACE device driver
  3. *
  4. * Copyright 2007 Secret Lab Technologies Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. */
  10. /*
  11. * The SystemACE chip is designed to configure FPGAs by loading an FPGA
  12. * bitstream from a file on a CF card and squirting it into FPGAs connected
  13. * to the SystemACE JTAG chain. It also has the advantage of providing an
  14. * MPU interface which can be used to control the FPGA configuration process
  15. * and to use the attached CF card for general purpose storage.
  16. *
  17. * This driver is a block device driver for the SystemACE.
  18. *
  19. * Initialization:
  20. * The driver registers itself as a platform_device driver at module
  21. * load time. The platform bus will take care of calling the
  22. * ace_probe() method for all SystemACE instances in the system. Any
  23. * number of SystemACE instances are supported. ace_probe() calls
  24. * ace_setup() which initialized all data structures, reads the CF
  25. * id structure and registers the device.
  26. *
  27. * Processing:
  28. * Just about all of the heavy lifting in this driver is performed by
  29. * a Finite State Machine (FSM). The driver needs to wait on a number
  30. * of events; some raised by interrupts, some which need to be polled
  31. * for. Describing all of the behaviour in a FSM seems to be the
  32. * easiest way to keep the complexity low and make it easy to
  33. * understand what the driver is doing. If the block ops or the
  34. * request function need to interact with the hardware, then they
  35. * simply need to flag the request and kick of FSM processing.
  36. *
  37. * The FSM itself is atomic-safe code which can be run from any
  38. * context. The general process flow is:
  39. * 1. obtain the ace->lock spinlock.
  40. * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
  41. * cleared.
  42. * 3. release the lock.
  43. *
  44. * Individual states do not sleep in any way. If a condition needs to
  45. * be waited for then the state much clear the fsm_continue flag and
  46. * either schedule the FSM to be run again at a later time, or expect
  47. * an interrupt to call the FSM when the desired condition is met.
  48. *
  49. * In normal operation, the FSM is processed at interrupt context
  50. * either when the driver's tasklet is scheduled, or when an irq is
  51. * raised by the hardware. The tasklet can be scheduled at any time.
  52. * The request method in particular schedules the tasklet when a new
  53. * request has been indicated by the block layer. Once started, the
  54. * FSM proceeds as far as it can processing the request until it
  55. * needs on a hardware event. At this point, it must yield execution.
  56. *
  57. * A state has two options when yielding execution:
  58. * 1. ace_fsm_yield()
  59. * - Call if need to poll for event.
  60. * - clears the fsm_continue flag to exit the processing loop
  61. * - reschedules the tasklet to run again as soon as possible
  62. * 2. ace_fsm_yieldirq()
  63. * - Call if an irq is expected from the HW
  64. * - clears the fsm_continue flag to exit the processing loop
  65. * - does not reschedule the tasklet so the FSM will not be processed
  66. * again until an irq is received.
  67. * After calling a yield function, the state must return control back
  68. * to the FSM main loop.
  69. *
  70. * Additionally, the driver maintains a kernel timer which can process
  71. * the FSM. If the FSM gets stalled, typically due to a missed
  72. * interrupt, then the kernel timer will expire and the driver can
  73. * continue where it left off.
  74. *
  75. * To Do:
  76. * - Add FPGA configuration control interface.
  77. * - Request major number from lanana
  78. */
  79. #undef DEBUG
  80. #include <linux/module.h>
  81. #include <linux/ctype.h>
  82. #include <linux/init.h>
  83. #include <linux/interrupt.h>
  84. #include <linux/errno.h>
  85. #include <linux/kernel.h>
  86. #include <linux/delay.h>
  87. #include <linux/slab.h>
  88. #include <linux/blkdev.h>
  89. #include <linux/ata.h>
  90. #include <linux/hdreg.h>
  91. #include <linux/platform_device.h>
  92. #if defined(CONFIG_OF)
  93. #include <linux/of_device.h>
  94. #include <linux/of_platform.h>
  95. #endif
  96. MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
  97. MODULE_DESCRIPTION("Xilinx SystemACE device driver");
  98. MODULE_LICENSE("GPL");
  99. /* SystemACE register definitions */
  100. #define ACE_BUSMODE (0x00)
  101. #define ACE_STATUS (0x04)
  102. #define ACE_STATUS_CFGLOCK (0x00000001)
  103. #define ACE_STATUS_MPULOCK (0x00000002)
  104. #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
  105. #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
  106. #define ACE_STATUS_CFDETECT (0x00000010)
  107. #define ACE_STATUS_DATABUFRDY (0x00000020)
  108. #define ACE_STATUS_DATABUFMODE (0x00000040)
  109. #define ACE_STATUS_CFGDONE (0x00000080)
  110. #define ACE_STATUS_RDYFORCFCMD (0x00000100)
  111. #define ACE_STATUS_CFGMODEPIN (0x00000200)
  112. #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
  113. #define ACE_STATUS_CFBSY (0x00020000)
  114. #define ACE_STATUS_CFRDY (0x00040000)
  115. #define ACE_STATUS_CFDWF (0x00080000)
  116. #define ACE_STATUS_CFDSC (0x00100000)
  117. #define ACE_STATUS_CFDRQ (0x00200000)
  118. #define ACE_STATUS_CFCORR (0x00400000)
  119. #define ACE_STATUS_CFERR (0x00800000)
  120. #define ACE_ERROR (0x08)
  121. #define ACE_CFGLBA (0x0c)
  122. #define ACE_MPULBA (0x10)
  123. #define ACE_SECCNTCMD (0x14)
  124. #define ACE_SECCNTCMD_RESET (0x0100)
  125. #define ACE_SECCNTCMD_IDENTIFY (0x0200)
  126. #define ACE_SECCNTCMD_READ_DATA (0x0300)
  127. #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
  128. #define ACE_SECCNTCMD_ABORT (0x0600)
  129. #define ACE_VERSION (0x16)
  130. #define ACE_VERSION_REVISION_MASK (0x00FF)
  131. #define ACE_VERSION_MINOR_MASK (0x0F00)
  132. #define ACE_VERSION_MAJOR_MASK (0xF000)
  133. #define ACE_CTRL (0x18)
  134. #define ACE_CTRL_FORCELOCKREQ (0x0001)
  135. #define ACE_CTRL_LOCKREQ (0x0002)
  136. #define ACE_CTRL_FORCECFGADDR (0x0004)
  137. #define ACE_CTRL_FORCECFGMODE (0x0008)
  138. #define ACE_CTRL_CFGMODE (0x0010)
  139. #define ACE_CTRL_CFGSTART (0x0020)
  140. #define ACE_CTRL_CFGSEL (0x0040)
  141. #define ACE_CTRL_CFGRESET (0x0080)
  142. #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
  143. #define ACE_CTRL_ERRORIRQ (0x0200)
  144. #define ACE_CTRL_CFGDONEIRQ (0x0400)
  145. #define ACE_CTRL_RESETIRQ (0x0800)
  146. #define ACE_CTRL_CFGPROG (0x1000)
  147. #define ACE_CTRL_CFGADDR_MASK (0xe000)
  148. #define ACE_FATSTAT (0x1c)
  149. #define ACE_NUM_MINORS 16
  150. #define ACE_SECTOR_SIZE (512)
  151. #define ACE_FIFO_SIZE (32)
  152. #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
  153. #define ACE_BUS_WIDTH_8 0
  154. #define ACE_BUS_WIDTH_16 1
  155. struct ace_reg_ops;
  156. struct ace_device {
  157. /* driver state data */
  158. int id;
  159. int media_change;
  160. int users;
  161. struct list_head list;
  162. /* finite state machine data */
  163. struct tasklet_struct fsm_tasklet;
  164. uint fsm_task; /* Current activity (ACE_TASK_*) */
  165. uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
  166. uint fsm_continue_flag; /* cleared to exit FSM mainloop */
  167. uint fsm_iter_num;
  168. struct timer_list stall_timer;
  169. /* Transfer state/result, use for both id and block request */
  170. struct request *req; /* request being processed */
  171. void *data_ptr; /* pointer to I/O buffer */
  172. int data_count; /* number of buffers remaining */
  173. int data_result; /* Result of transfer; 0 := success */
  174. int id_req_count; /* count of id requests */
  175. int id_result;
  176. struct completion id_completion; /* used when id req finishes */
  177. int in_irq;
  178. /* Details of hardware device */
  179. resource_size_t physaddr;
  180. void __iomem *baseaddr;
  181. int irq;
  182. int bus_width; /* 0 := 8 bit; 1 := 16 bit */
  183. struct ace_reg_ops *reg_ops;
  184. int lock_count;
  185. /* Block device data structures */
  186. spinlock_t lock;
  187. struct device *dev;
  188. struct request_queue *queue;
  189. struct gendisk *gd;
  190. /* Inserted CF card parameters */
  191. u16 cf_id[ATA_ID_WORDS];
  192. };
  193. static int ace_major;
  194. /* ---------------------------------------------------------------------
  195. * Low level register access
  196. */
  197. struct ace_reg_ops {
  198. u16(*in) (struct ace_device * ace, int reg);
  199. void (*out) (struct ace_device * ace, int reg, u16 val);
  200. void (*datain) (struct ace_device * ace);
  201. void (*dataout) (struct ace_device * ace);
  202. };
  203. /* 8 Bit bus width */
  204. static u16 ace_in_8(struct ace_device *ace, int reg)
  205. {
  206. void __iomem *r = ace->baseaddr + reg;
  207. return in_8(r) | (in_8(r + 1) << 8);
  208. }
  209. static void ace_out_8(struct ace_device *ace, int reg, u16 val)
  210. {
  211. void __iomem *r = ace->baseaddr + reg;
  212. out_8(r, val);
  213. out_8(r + 1, val >> 8);
  214. }
  215. static void ace_datain_8(struct ace_device *ace)
  216. {
  217. void __iomem *r = ace->baseaddr + 0x40;
  218. u8 *dst = ace->data_ptr;
  219. int i = ACE_FIFO_SIZE;
  220. while (i--)
  221. *dst++ = in_8(r++);
  222. ace->data_ptr = dst;
  223. }
  224. static void ace_dataout_8(struct ace_device *ace)
  225. {
  226. void __iomem *r = ace->baseaddr + 0x40;
  227. u8 *src = ace->data_ptr;
  228. int i = ACE_FIFO_SIZE;
  229. while (i--)
  230. out_8(r++, *src++);
  231. ace->data_ptr = src;
  232. }
  233. static struct ace_reg_ops ace_reg_8_ops = {
  234. .in = ace_in_8,
  235. .out = ace_out_8,
  236. .datain = ace_datain_8,
  237. .dataout = ace_dataout_8,
  238. };
  239. /* 16 bit big endian bus attachment */
  240. static u16 ace_in_be16(struct ace_device *ace, int reg)
  241. {
  242. return in_be16(ace->baseaddr + reg);
  243. }
  244. static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
  245. {
  246. out_be16(ace->baseaddr + reg, val);
  247. }
  248. static void ace_datain_be16(struct ace_device *ace)
  249. {
  250. int i = ACE_FIFO_SIZE / 2;
  251. u16 *dst = ace->data_ptr;
  252. while (i--)
  253. *dst++ = in_le16(ace->baseaddr + 0x40);
  254. ace->data_ptr = dst;
  255. }
  256. static void ace_dataout_be16(struct ace_device *ace)
  257. {
  258. int i = ACE_FIFO_SIZE / 2;
  259. u16 *src = ace->data_ptr;
  260. while (i--)
  261. out_le16(ace->baseaddr + 0x40, *src++);
  262. ace->data_ptr = src;
  263. }
  264. /* 16 bit little endian bus attachment */
  265. static u16 ace_in_le16(struct ace_device *ace, int reg)
  266. {
  267. return in_le16(ace->baseaddr + reg);
  268. }
  269. static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
  270. {
  271. out_le16(ace->baseaddr + reg, val);
  272. }
  273. static void ace_datain_le16(struct ace_device *ace)
  274. {
  275. int i = ACE_FIFO_SIZE / 2;
  276. u16 *dst = ace->data_ptr;
  277. while (i--)
  278. *dst++ = in_be16(ace->baseaddr + 0x40);
  279. ace->data_ptr = dst;
  280. }
  281. static void ace_dataout_le16(struct ace_device *ace)
  282. {
  283. int i = ACE_FIFO_SIZE / 2;
  284. u16 *src = ace->data_ptr;
  285. while (i--)
  286. out_be16(ace->baseaddr + 0x40, *src++);
  287. ace->data_ptr = src;
  288. }
  289. static struct ace_reg_ops ace_reg_be16_ops = {
  290. .in = ace_in_be16,
  291. .out = ace_out_be16,
  292. .datain = ace_datain_be16,
  293. .dataout = ace_dataout_be16,
  294. };
  295. static struct ace_reg_ops ace_reg_le16_ops = {
  296. .in = ace_in_le16,
  297. .out = ace_out_le16,
  298. .datain = ace_datain_le16,
  299. .dataout = ace_dataout_le16,
  300. };
  301. static inline u16 ace_in(struct ace_device *ace, int reg)
  302. {
  303. return ace->reg_ops->in(ace, reg);
  304. }
  305. static inline u32 ace_in32(struct ace_device *ace, int reg)
  306. {
  307. return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
  308. }
  309. static inline void ace_out(struct ace_device *ace, int reg, u16 val)
  310. {
  311. ace->reg_ops->out(ace, reg, val);
  312. }
  313. static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
  314. {
  315. ace_out(ace, reg, val);
  316. ace_out(ace, reg + 2, val >> 16);
  317. }
  318. /* ---------------------------------------------------------------------
  319. * Debug support functions
  320. */
  321. #if defined(DEBUG)
  322. static void ace_dump_mem(void *base, int len)
  323. {
  324. const char *ptr = base;
  325. int i, j;
  326. for (i = 0; i < len; i += 16) {
  327. printk(KERN_INFO "%.8x:", i);
  328. for (j = 0; j < 16; j++) {
  329. if (!(j % 4))
  330. printk(" ");
  331. printk("%.2x", ptr[i + j]);
  332. }
  333. printk(" ");
  334. for (j = 0; j < 16; j++)
  335. printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
  336. printk("\n");
  337. }
  338. }
  339. #else
  340. static inline void ace_dump_mem(void *base, int len)
  341. {
  342. }
  343. #endif
  344. static void ace_dump_regs(struct ace_device *ace)
  345. {
  346. dev_info(ace->dev,
  347. " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
  348. " status:%.8x mpu_lba:%.8x busmode:%4x\n"
  349. " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
  350. ace_in32(ace, ACE_CTRL),
  351. ace_in(ace, ACE_SECCNTCMD),
  352. ace_in(ace, ACE_VERSION),
  353. ace_in32(ace, ACE_STATUS),
  354. ace_in32(ace, ACE_MPULBA),
  355. ace_in(ace, ACE_BUSMODE),
  356. ace_in32(ace, ACE_ERROR),
  357. ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
  358. }
  359. void ace_fix_driveid(u16 *id)
  360. {
  361. #if defined(__BIG_ENDIAN)
  362. int i;
  363. /* All half words have wrong byte order; swap the bytes */
  364. for (i = 0; i < ATA_ID_WORDS; i++, id++)
  365. *id = le16_to_cpu(*id);
  366. #endif
  367. }
  368. /* ---------------------------------------------------------------------
  369. * Finite State Machine (FSM) implementation
  370. */
  371. /* FSM tasks; used to direct state transitions */
  372. #define ACE_TASK_IDLE 0
  373. #define ACE_TASK_IDENTIFY 1
  374. #define ACE_TASK_READ 2
  375. #define ACE_TASK_WRITE 3
  376. #define ACE_FSM_NUM_TASKS 4
  377. /* FSM state definitions */
  378. #define ACE_FSM_STATE_IDLE 0
  379. #define ACE_FSM_STATE_REQ_LOCK 1
  380. #define ACE_FSM_STATE_WAIT_LOCK 2
  381. #define ACE_FSM_STATE_WAIT_CFREADY 3
  382. #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
  383. #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
  384. #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
  385. #define ACE_FSM_STATE_REQ_PREPARE 7
  386. #define ACE_FSM_STATE_REQ_TRANSFER 8
  387. #define ACE_FSM_STATE_REQ_COMPLETE 9
  388. #define ACE_FSM_STATE_ERROR 10
  389. #define ACE_FSM_NUM_STATES 11
  390. /* Set flag to exit FSM loop and reschedule tasklet */
  391. static inline void ace_fsm_yield(struct ace_device *ace)
  392. {
  393. dev_dbg(ace->dev, "ace_fsm_yield()\n");
  394. tasklet_schedule(&ace->fsm_tasklet);
  395. ace->fsm_continue_flag = 0;
  396. }
  397. /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
  398. static inline void ace_fsm_yieldirq(struct ace_device *ace)
  399. {
  400. dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
  401. if (ace->irq == NO_IRQ)
  402. /* No IRQ assigned, so need to poll */
  403. tasklet_schedule(&ace->fsm_tasklet);
  404. ace->fsm_continue_flag = 0;
  405. }
  406. /* Get the next read/write request; ending requests that we don't handle */
  407. struct request *ace_get_next_request(struct request_queue * q)
  408. {
  409. struct request *req;
  410. while ((req = blk_peek_request(q)) != NULL) {
  411. if (blk_fs_request(req))
  412. break;
  413. blk_start_request(req);
  414. __blk_end_request_all(req, -EIO);
  415. }
  416. return req;
  417. }
  418. static void ace_fsm_dostate(struct ace_device *ace)
  419. {
  420. struct request *req;
  421. u32 status;
  422. u16 val;
  423. int count;
  424. #if defined(DEBUG)
  425. dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
  426. ace->fsm_state, ace->id_req_count);
  427. #endif
  428. /* Verify that there is actually a CF in the slot. If not, then
  429. * bail out back to the idle state and wake up all the waiters */
  430. status = ace_in32(ace, ACE_STATUS);
  431. if ((status & ACE_STATUS_CFDETECT) == 0) {
  432. ace->fsm_state = ACE_FSM_STATE_IDLE;
  433. ace->media_change = 1;
  434. set_capacity(ace->gd, 0);
  435. dev_info(ace->dev, "No CF in slot\n");
  436. /* Drop all in-flight and pending requests */
  437. if (ace->req) {
  438. __blk_end_request_all(ace->req, -EIO);
  439. ace->req = NULL;
  440. }
  441. while ((req = blk_fetch_request(ace->queue)) != NULL)
  442. __blk_end_request_all(req, -EIO);
  443. /* Drop back to IDLE state and notify waiters */
  444. ace->fsm_state = ACE_FSM_STATE_IDLE;
  445. ace->id_result = -EIO;
  446. while (ace->id_req_count) {
  447. complete(&ace->id_completion);
  448. ace->id_req_count--;
  449. }
  450. }
  451. switch (ace->fsm_state) {
  452. case ACE_FSM_STATE_IDLE:
  453. /* See if there is anything to do */
  454. if (ace->id_req_count || ace_get_next_request(ace->queue)) {
  455. ace->fsm_iter_num++;
  456. ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
  457. mod_timer(&ace->stall_timer, jiffies + HZ);
  458. if (!timer_pending(&ace->stall_timer))
  459. add_timer(&ace->stall_timer);
  460. break;
  461. }
  462. del_timer(&ace->stall_timer);
  463. ace->fsm_continue_flag = 0;
  464. break;
  465. case ACE_FSM_STATE_REQ_LOCK:
  466. if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
  467. /* Already have the lock, jump to next state */
  468. ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
  469. break;
  470. }
  471. /* Request the lock */
  472. val = ace_in(ace, ACE_CTRL);
  473. ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
  474. ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
  475. break;
  476. case ACE_FSM_STATE_WAIT_LOCK:
  477. if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
  478. /* got the lock; move to next state */
  479. ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
  480. break;
  481. }
  482. /* wait a bit for the lock */
  483. ace_fsm_yield(ace);
  484. break;
  485. case ACE_FSM_STATE_WAIT_CFREADY:
  486. status = ace_in32(ace, ACE_STATUS);
  487. if (!(status & ACE_STATUS_RDYFORCFCMD) ||
  488. (status & ACE_STATUS_CFBSY)) {
  489. /* CF card isn't ready; it needs to be polled */
  490. ace_fsm_yield(ace);
  491. break;
  492. }
  493. /* Device is ready for command; determine what to do next */
  494. if (ace->id_req_count)
  495. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
  496. else
  497. ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
  498. break;
  499. case ACE_FSM_STATE_IDENTIFY_PREPARE:
  500. /* Send identify command */
  501. ace->fsm_task = ACE_TASK_IDENTIFY;
  502. ace->data_ptr = ace->cf_id;
  503. ace->data_count = ACE_BUF_PER_SECTOR;
  504. ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
  505. /* As per datasheet, put config controller in reset */
  506. val = ace_in(ace, ACE_CTRL);
  507. ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
  508. /* irq handler takes over from this point; wait for the
  509. * transfer to complete */
  510. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
  511. ace_fsm_yieldirq(ace);
  512. break;
  513. case ACE_FSM_STATE_IDENTIFY_TRANSFER:
  514. /* Check that the sysace is ready to receive data */
  515. status = ace_in32(ace, ACE_STATUS);
  516. if (status & ACE_STATUS_CFBSY) {
  517. dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
  518. ace->fsm_task, ace->fsm_iter_num,
  519. ace->data_count);
  520. ace_fsm_yield(ace);
  521. break;
  522. }
  523. if (!(status & ACE_STATUS_DATABUFRDY)) {
  524. ace_fsm_yield(ace);
  525. break;
  526. }
  527. /* Transfer the next buffer */
  528. ace->reg_ops->datain(ace);
  529. ace->data_count--;
  530. /* If there are still buffers to be transfers; jump out here */
  531. if (ace->data_count != 0) {
  532. ace_fsm_yieldirq(ace);
  533. break;
  534. }
  535. /* transfer finished; kick state machine */
  536. dev_dbg(ace->dev, "identify finished\n");
  537. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
  538. break;
  539. case ACE_FSM_STATE_IDENTIFY_COMPLETE:
  540. ace_fix_driveid(ace->cf_id);
  541. ace_dump_mem(ace->cf_id, 512); /* Debug: Dump out disk ID */
  542. if (ace->data_result) {
  543. /* Error occured, disable the disk */
  544. ace->media_change = 1;
  545. set_capacity(ace->gd, 0);
  546. dev_err(ace->dev, "error fetching CF id (%i)\n",
  547. ace->data_result);
  548. } else {
  549. ace->media_change = 0;
  550. /* Record disk parameters */
  551. set_capacity(ace->gd,
  552. ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
  553. dev_info(ace->dev, "capacity: %i sectors\n",
  554. ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
  555. }
  556. /* We're done, drop to IDLE state and notify waiters */
  557. ace->fsm_state = ACE_FSM_STATE_IDLE;
  558. ace->id_result = ace->data_result;
  559. while (ace->id_req_count) {
  560. complete(&ace->id_completion);
  561. ace->id_req_count--;
  562. }
  563. break;
  564. case ACE_FSM_STATE_REQ_PREPARE:
  565. req = ace_get_next_request(ace->queue);
  566. if (!req) {
  567. ace->fsm_state = ACE_FSM_STATE_IDLE;
  568. break;
  569. }
  570. blk_start_request(req);
  571. /* Okay, it's a data request, set it up for transfer */
  572. dev_dbg(ace->dev,
  573. "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
  574. (unsigned long long)blk_rq_pos(req),
  575. blk_rq_sectors(req), blk_rq_cur_sectors(req),
  576. rq_data_dir(req));
  577. ace->req = req;
  578. ace->data_ptr = req->buffer;
  579. ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
  580. ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
  581. count = blk_rq_sectors(req);
  582. if (rq_data_dir(req)) {
  583. /* Kick off write request */
  584. dev_dbg(ace->dev, "write data\n");
  585. ace->fsm_task = ACE_TASK_WRITE;
  586. ace_out(ace, ACE_SECCNTCMD,
  587. count | ACE_SECCNTCMD_WRITE_DATA);
  588. } else {
  589. /* Kick off read request */
  590. dev_dbg(ace->dev, "read data\n");
  591. ace->fsm_task = ACE_TASK_READ;
  592. ace_out(ace, ACE_SECCNTCMD,
  593. count | ACE_SECCNTCMD_READ_DATA);
  594. }
  595. /* As per datasheet, put config controller in reset */
  596. val = ace_in(ace, ACE_CTRL);
  597. ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
  598. /* Move to the transfer state. The systemace will raise
  599. * an interrupt once there is something to do
  600. */
  601. ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
  602. if (ace->fsm_task == ACE_TASK_READ)
  603. ace_fsm_yieldirq(ace); /* wait for data ready */
  604. break;
  605. case ACE_FSM_STATE_REQ_TRANSFER:
  606. /* Check that the sysace is ready to receive data */
  607. status = ace_in32(ace, ACE_STATUS);
  608. if (status & ACE_STATUS_CFBSY) {
  609. dev_dbg(ace->dev,
  610. "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
  611. ace->fsm_task, ace->fsm_iter_num,
  612. blk_rq_cur_sectors(ace->req) * 16,
  613. ace->data_count, ace->in_irq);
  614. ace_fsm_yield(ace); /* need to poll CFBSY bit */
  615. break;
  616. }
  617. if (!(status & ACE_STATUS_DATABUFRDY)) {
  618. dev_dbg(ace->dev,
  619. "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
  620. ace->fsm_task, ace->fsm_iter_num,
  621. blk_rq_cur_sectors(ace->req) * 16,
  622. ace->data_count, ace->in_irq);
  623. ace_fsm_yieldirq(ace);
  624. break;
  625. }
  626. /* Transfer the next buffer */
  627. if (ace->fsm_task == ACE_TASK_WRITE)
  628. ace->reg_ops->dataout(ace);
  629. else
  630. ace->reg_ops->datain(ace);
  631. ace->data_count--;
  632. /* If there are still buffers to be transfers; jump out here */
  633. if (ace->data_count != 0) {
  634. ace_fsm_yieldirq(ace);
  635. break;
  636. }
  637. /* bio finished; is there another one? */
  638. if (__blk_end_request_cur(ace->req, 0)) {
  639. /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
  640. * blk_rq_sectors(ace->req),
  641. * blk_rq_cur_sectors(ace->req));
  642. */
  643. ace->data_ptr = ace->req->buffer;
  644. ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
  645. ace_fsm_yieldirq(ace);
  646. break;
  647. }
  648. ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
  649. break;
  650. case ACE_FSM_STATE_REQ_COMPLETE:
  651. ace->req = NULL;
  652. /* Finished request; go to idle state */
  653. ace->fsm_state = ACE_FSM_STATE_IDLE;
  654. break;
  655. default:
  656. ace->fsm_state = ACE_FSM_STATE_IDLE;
  657. break;
  658. }
  659. }
  660. static void ace_fsm_tasklet(unsigned long data)
  661. {
  662. struct ace_device *ace = (void *)data;
  663. unsigned long flags;
  664. spin_lock_irqsave(&ace->lock, flags);
  665. /* Loop over state machine until told to stop */
  666. ace->fsm_continue_flag = 1;
  667. while (ace->fsm_continue_flag)
  668. ace_fsm_dostate(ace);
  669. spin_unlock_irqrestore(&ace->lock, flags);
  670. }
  671. static void ace_stall_timer(unsigned long data)
  672. {
  673. struct ace_device *ace = (void *)data;
  674. unsigned long flags;
  675. dev_warn(ace->dev,
  676. "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
  677. ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
  678. ace->data_count);
  679. spin_lock_irqsave(&ace->lock, flags);
  680. /* Rearm the stall timer *before* entering FSM (which may then
  681. * delete the timer) */
  682. mod_timer(&ace->stall_timer, jiffies + HZ);
  683. /* Loop over state machine until told to stop */
  684. ace->fsm_continue_flag = 1;
  685. while (ace->fsm_continue_flag)
  686. ace_fsm_dostate(ace);
  687. spin_unlock_irqrestore(&ace->lock, flags);
  688. }
  689. /* ---------------------------------------------------------------------
  690. * Interrupt handling routines
  691. */
  692. static int ace_interrupt_checkstate(struct ace_device *ace)
  693. {
  694. u32 sreg = ace_in32(ace, ACE_STATUS);
  695. u16 creg = ace_in(ace, ACE_CTRL);
  696. /* Check for error occurance */
  697. if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
  698. (creg & ACE_CTRL_ERRORIRQ)) {
  699. dev_err(ace->dev, "transfer failure\n");
  700. ace_dump_regs(ace);
  701. return -EIO;
  702. }
  703. return 0;
  704. }
  705. static irqreturn_t ace_interrupt(int irq, void *dev_id)
  706. {
  707. u16 creg;
  708. struct ace_device *ace = dev_id;
  709. /* be safe and get the lock */
  710. spin_lock(&ace->lock);
  711. ace->in_irq = 1;
  712. /* clear the interrupt */
  713. creg = ace_in(ace, ACE_CTRL);
  714. ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
  715. ace_out(ace, ACE_CTRL, creg);
  716. /* check for IO failures */
  717. if (ace_interrupt_checkstate(ace))
  718. ace->data_result = -EIO;
  719. if (ace->fsm_task == 0) {
  720. dev_err(ace->dev,
  721. "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
  722. ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
  723. ace_in(ace, ACE_SECCNTCMD));
  724. dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
  725. ace->fsm_task, ace->fsm_state, ace->data_count);
  726. }
  727. /* Loop over state machine until told to stop */
  728. ace->fsm_continue_flag = 1;
  729. while (ace->fsm_continue_flag)
  730. ace_fsm_dostate(ace);
  731. /* done with interrupt; drop the lock */
  732. ace->in_irq = 0;
  733. spin_unlock(&ace->lock);
  734. return IRQ_HANDLED;
  735. }
  736. /* ---------------------------------------------------------------------
  737. * Block ops
  738. */
  739. static void ace_request(struct request_queue * q)
  740. {
  741. struct request *req;
  742. struct ace_device *ace;
  743. req = ace_get_next_request(q);
  744. if (req) {
  745. ace = req->rq_disk->private_data;
  746. tasklet_schedule(&ace->fsm_tasklet);
  747. }
  748. }
  749. static int ace_media_changed(struct gendisk *gd)
  750. {
  751. struct ace_device *ace = gd->private_data;
  752. dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
  753. return ace->media_change;
  754. }
  755. static int ace_revalidate_disk(struct gendisk *gd)
  756. {
  757. struct ace_device *ace = gd->private_data;
  758. unsigned long flags;
  759. dev_dbg(ace->dev, "ace_revalidate_disk()\n");
  760. if (ace->media_change) {
  761. dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
  762. spin_lock_irqsave(&ace->lock, flags);
  763. ace->id_req_count++;
  764. spin_unlock_irqrestore(&ace->lock, flags);
  765. tasklet_schedule(&ace->fsm_tasklet);
  766. wait_for_completion(&ace->id_completion);
  767. }
  768. dev_dbg(ace->dev, "revalidate complete\n");
  769. return ace->id_result;
  770. }
  771. static int ace_open(struct block_device *bdev, fmode_t mode)
  772. {
  773. struct ace_device *ace = bdev->bd_disk->private_data;
  774. unsigned long flags;
  775. dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
  776. spin_lock_irqsave(&ace->lock, flags);
  777. ace->users++;
  778. spin_unlock_irqrestore(&ace->lock, flags);
  779. check_disk_change(bdev);
  780. return 0;
  781. }
  782. static int ace_release(struct gendisk *disk, fmode_t mode)
  783. {
  784. struct ace_device *ace = disk->private_data;
  785. unsigned long flags;
  786. u16 val;
  787. dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
  788. spin_lock_irqsave(&ace->lock, flags);
  789. ace->users--;
  790. if (ace->users == 0) {
  791. val = ace_in(ace, ACE_CTRL);
  792. ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
  793. }
  794. spin_unlock_irqrestore(&ace->lock, flags);
  795. return 0;
  796. }
  797. static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  798. {
  799. struct ace_device *ace = bdev->bd_disk->private_data;
  800. u16 *cf_id = ace->cf_id;
  801. dev_dbg(ace->dev, "ace_getgeo()\n");
  802. geo->heads = cf_id[ATA_ID_HEADS];
  803. geo->sectors = cf_id[ATA_ID_SECTORS];
  804. geo->cylinders = cf_id[ATA_ID_CYLS];
  805. return 0;
  806. }
  807. static const struct block_device_operations ace_fops = {
  808. .owner = THIS_MODULE,
  809. .open = ace_open,
  810. .release = ace_release,
  811. .media_changed = ace_media_changed,
  812. .revalidate_disk = ace_revalidate_disk,
  813. .getgeo = ace_getgeo,
  814. };
  815. /* --------------------------------------------------------------------
  816. * SystemACE device setup/teardown code
  817. */
  818. static int __devinit ace_setup(struct ace_device *ace)
  819. {
  820. u16 version;
  821. u16 val;
  822. int rc;
  823. dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
  824. dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
  825. (unsigned long long)ace->physaddr, ace->irq);
  826. spin_lock_init(&ace->lock);
  827. init_completion(&ace->id_completion);
  828. /*
  829. * Map the device
  830. */
  831. ace->baseaddr = ioremap(ace->physaddr, 0x80);
  832. if (!ace->baseaddr)
  833. goto err_ioremap;
  834. /*
  835. * Initialize the state machine tasklet and stall timer
  836. */
  837. tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
  838. setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
  839. /*
  840. * Initialize the request queue
  841. */
  842. ace->queue = blk_init_queue(ace_request, &ace->lock);
  843. if (ace->queue == NULL)
  844. goto err_blk_initq;
  845. blk_queue_logical_block_size(ace->queue, 512);
  846. /*
  847. * Allocate and initialize GD structure
  848. */
  849. ace->gd = alloc_disk(ACE_NUM_MINORS);
  850. if (!ace->gd)
  851. goto err_alloc_disk;
  852. ace->gd->major = ace_major;
  853. ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
  854. ace->gd->fops = &ace_fops;
  855. ace->gd->queue = ace->queue;
  856. ace->gd->private_data = ace;
  857. snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
  858. /* set bus width */
  859. if (ace->bus_width == ACE_BUS_WIDTH_16) {
  860. /* 0x0101 should work regardless of endianess */
  861. ace_out_le16(ace, ACE_BUSMODE, 0x0101);
  862. /* read it back to determine endianess */
  863. if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
  864. ace->reg_ops = &ace_reg_le16_ops;
  865. else
  866. ace->reg_ops = &ace_reg_be16_ops;
  867. } else {
  868. ace_out_8(ace, ACE_BUSMODE, 0x00);
  869. ace->reg_ops = &ace_reg_8_ops;
  870. }
  871. /* Make sure version register is sane */
  872. version = ace_in(ace, ACE_VERSION);
  873. if ((version == 0) || (version == 0xFFFF))
  874. goto err_read;
  875. /* Put sysace in a sane state by clearing most control reg bits */
  876. ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
  877. ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
  878. /* Now we can hook up the irq handler */
  879. if (ace->irq != NO_IRQ) {
  880. rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
  881. if (rc) {
  882. /* Failure - fall back to polled mode */
  883. dev_err(ace->dev, "request_irq failed\n");
  884. ace->irq = NO_IRQ;
  885. }
  886. }
  887. /* Enable interrupts */
  888. val = ace_in(ace, ACE_CTRL);
  889. val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
  890. ace_out(ace, ACE_CTRL, val);
  891. /* Print the identification */
  892. dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
  893. (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
  894. dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
  895. (unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
  896. ace->media_change = 1;
  897. ace_revalidate_disk(ace->gd);
  898. /* Make the sysace device 'live' */
  899. add_disk(ace->gd);
  900. return 0;
  901. err_read:
  902. put_disk(ace->gd);
  903. err_alloc_disk:
  904. blk_cleanup_queue(ace->queue);
  905. err_blk_initq:
  906. iounmap(ace->baseaddr);
  907. err_ioremap:
  908. dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
  909. (unsigned long long) ace->physaddr);
  910. return -ENOMEM;
  911. }
  912. static void __devexit ace_teardown(struct ace_device *ace)
  913. {
  914. if (ace->gd) {
  915. del_gendisk(ace->gd);
  916. put_disk(ace->gd);
  917. }
  918. if (ace->queue)
  919. blk_cleanup_queue(ace->queue);
  920. tasklet_kill(&ace->fsm_tasklet);
  921. if (ace->irq != NO_IRQ)
  922. free_irq(ace->irq, ace);
  923. iounmap(ace->baseaddr);
  924. }
  925. static int __devinit
  926. ace_alloc(struct device *dev, int id, resource_size_t physaddr,
  927. int irq, int bus_width)
  928. {
  929. struct ace_device *ace;
  930. int rc;
  931. dev_dbg(dev, "ace_alloc(%p)\n", dev);
  932. if (!physaddr) {
  933. rc = -ENODEV;
  934. goto err_noreg;
  935. }
  936. /* Allocate and initialize the ace device structure */
  937. ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
  938. if (!ace) {
  939. rc = -ENOMEM;
  940. goto err_alloc;
  941. }
  942. ace->dev = dev;
  943. ace->id = id;
  944. ace->physaddr = physaddr;
  945. ace->irq = irq;
  946. ace->bus_width = bus_width;
  947. /* Call the setup code */
  948. rc = ace_setup(ace);
  949. if (rc)
  950. goto err_setup;
  951. dev_set_drvdata(dev, ace);
  952. return 0;
  953. err_setup:
  954. dev_set_drvdata(dev, NULL);
  955. kfree(ace);
  956. err_alloc:
  957. err_noreg:
  958. dev_err(dev, "could not initialize device, err=%i\n", rc);
  959. return rc;
  960. }
  961. static void __devexit ace_free(struct device *dev)
  962. {
  963. struct ace_device *ace = dev_get_drvdata(dev);
  964. dev_dbg(dev, "ace_free(%p)\n", dev);
  965. if (ace) {
  966. ace_teardown(ace);
  967. dev_set_drvdata(dev, NULL);
  968. kfree(ace);
  969. }
  970. }
  971. /* ---------------------------------------------------------------------
  972. * Platform Bus Support
  973. */
  974. static int __devinit ace_probe(struct platform_device *dev)
  975. {
  976. resource_size_t physaddr = 0;
  977. int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
  978. int id = dev->id;
  979. int irq = NO_IRQ;
  980. int i;
  981. dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
  982. for (i = 0; i < dev->num_resources; i++) {
  983. if (dev->resource[i].flags & IORESOURCE_MEM)
  984. physaddr = dev->resource[i].start;
  985. if (dev->resource[i].flags & IORESOURCE_IRQ)
  986. irq = dev->resource[i].start;
  987. }
  988. /* Call the bus-independant setup code */
  989. return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
  990. }
  991. /*
  992. * Platform bus remove() method
  993. */
  994. static int __devexit ace_remove(struct platform_device *dev)
  995. {
  996. ace_free(&dev->dev);
  997. return 0;
  998. }
  999. static struct platform_driver ace_platform_driver = {
  1000. .probe = ace_probe,
  1001. .remove = __devexit_p(ace_remove),
  1002. .driver = {
  1003. .owner = THIS_MODULE,
  1004. .name = "xsysace",
  1005. },
  1006. };
  1007. /* ---------------------------------------------------------------------
  1008. * OF_Platform Bus Support
  1009. */
  1010. #if defined(CONFIG_OF)
  1011. static int __devinit
  1012. ace_of_probe(struct of_device *op, const struct of_device_id *match)
  1013. {
  1014. struct resource res;
  1015. resource_size_t physaddr;
  1016. const u32 *id;
  1017. int irq, bus_width, rc;
  1018. dev_dbg(&op->dev, "ace_of_probe(%p, %p)\n", op, match);
  1019. /* device id */
  1020. id = of_get_property(op->node, "port-number", NULL);
  1021. /* physaddr */
  1022. rc = of_address_to_resource(op->node, 0, &res);
  1023. if (rc) {
  1024. dev_err(&op->dev, "invalid address\n");
  1025. return rc;
  1026. }
  1027. physaddr = res.start;
  1028. /* irq */
  1029. irq = irq_of_parse_and_map(op->node, 0);
  1030. /* bus width */
  1031. bus_width = ACE_BUS_WIDTH_16;
  1032. if (of_find_property(op->node, "8-bit", NULL))
  1033. bus_width = ACE_BUS_WIDTH_8;
  1034. /* Call the bus-independant setup code */
  1035. return ace_alloc(&op->dev, id ? *id : 0, physaddr, irq, bus_width);
  1036. }
  1037. static int __devexit ace_of_remove(struct of_device *op)
  1038. {
  1039. ace_free(&op->dev);
  1040. return 0;
  1041. }
  1042. /* Match table for of_platform binding */
  1043. static struct of_device_id ace_of_match[] __devinitdata = {
  1044. { .compatible = "xlnx,opb-sysace-1.00.b", },
  1045. { .compatible = "xlnx,opb-sysace-1.00.c", },
  1046. { .compatible = "xlnx,xps-sysace-1.00.a", },
  1047. { .compatible = "xlnx,sysace", },
  1048. {},
  1049. };
  1050. MODULE_DEVICE_TABLE(of, ace_of_match);
  1051. static struct of_platform_driver ace_of_driver = {
  1052. .owner = THIS_MODULE,
  1053. .name = "xsysace",
  1054. .match_table = ace_of_match,
  1055. .probe = ace_of_probe,
  1056. .remove = __devexit_p(ace_of_remove),
  1057. .driver = {
  1058. .name = "xsysace",
  1059. },
  1060. };
  1061. /* Registration helpers to keep the number of #ifdefs to a minimum */
  1062. static inline int __init ace_of_register(void)
  1063. {
  1064. pr_debug("xsysace: registering OF binding\n");
  1065. return of_register_platform_driver(&ace_of_driver);
  1066. }
  1067. static inline void __exit ace_of_unregister(void)
  1068. {
  1069. of_unregister_platform_driver(&ace_of_driver);
  1070. }
  1071. #else /* CONFIG_OF */
  1072. /* CONFIG_OF not enabled; do nothing helpers */
  1073. static inline int __init ace_of_register(void) { return 0; }
  1074. static inline void __exit ace_of_unregister(void) { }
  1075. #endif /* CONFIG_OF */
  1076. /* ---------------------------------------------------------------------
  1077. * Module init/exit routines
  1078. */
  1079. static int __init ace_init(void)
  1080. {
  1081. int rc;
  1082. ace_major = register_blkdev(ace_major, "xsysace");
  1083. if (ace_major <= 0) {
  1084. rc = -ENOMEM;
  1085. goto err_blk;
  1086. }
  1087. rc = ace_of_register();
  1088. if (rc)
  1089. goto err_of;
  1090. pr_debug("xsysace: registering platform binding\n");
  1091. rc = platform_driver_register(&ace_platform_driver);
  1092. if (rc)
  1093. goto err_plat;
  1094. pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
  1095. return 0;
  1096. err_plat:
  1097. ace_of_unregister();
  1098. err_of:
  1099. unregister_blkdev(ace_major, "xsysace");
  1100. err_blk:
  1101. printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
  1102. return rc;
  1103. }
  1104. static void __exit ace_exit(void)
  1105. {
  1106. pr_debug("Unregistering Xilinx SystemACE driver\n");
  1107. platform_driver_unregister(&ace_platform_driver);
  1108. ace_of_unregister();
  1109. unregister_blkdev(ace_major, "xsysace");
  1110. }
  1111. module_init(ace_init);
  1112. module_exit(ace_exit);