cciss.c 128 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610
  1. /*
  2. * Disk Array driver for HP Smart Array controllers.
  3. * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  17. * 02111-1307, USA.
  18. *
  19. * Questions/Comments/Bugfixes to iss_storagedev@hp.com
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/types.h>
  25. #include <linux/pci.h>
  26. #include <linux/kernel.h>
  27. #include <linux/slab.h>
  28. #include <linux/smp_lock.h>
  29. #include <linux/delay.h>
  30. #include <linux/major.h>
  31. #include <linux/fs.h>
  32. #include <linux/bio.h>
  33. #include <linux/blkpg.h>
  34. #include <linux/timer.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/seq_file.h>
  37. #include <linux/init.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/hdreg.h>
  40. #include <linux/spinlock.h>
  41. #include <linux/compat.h>
  42. #include <linux/mutex.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/io.h>
  45. #include <linux/dma-mapping.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/genhd.h>
  48. #include <linux/completion.h>
  49. #include <scsi/scsi.h>
  50. #include <scsi/sg.h>
  51. #include <scsi/scsi_ioctl.h>
  52. #include <linux/cdrom.h>
  53. #include <linux/scatterlist.h>
  54. #include <linux/kthread.h>
  55. #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
  56. #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
  57. #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
  58. /* Embedded module documentation macros - see modules.h */
  59. MODULE_AUTHOR("Hewlett-Packard Company");
  60. MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
  61. MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
  62. " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
  63. " Smart Array G2 Series SAS/SATA Controllers");
  64. MODULE_VERSION("3.6.20");
  65. MODULE_LICENSE("GPL");
  66. static int cciss_allow_hpsa;
  67. module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
  68. MODULE_PARM_DESC(cciss_allow_hpsa,
  69. "Prevent cciss driver from accessing hardware known to be "
  70. " supported by the hpsa driver");
  71. #include "cciss_cmd.h"
  72. #include "cciss.h"
  73. #include <linux/cciss_ioctl.h>
  74. /* define the PCI info for the cards we can control */
  75. static const struct pci_device_id cciss_pci_device_id[] = {
  76. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
  77. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
  78. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
  79. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
  80. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
  81. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
  82. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
  83. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
  84. {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
  85. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
  86. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
  87. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
  88. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
  89. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
  90. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
  91. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
  92. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
  93. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
  94. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
  95. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
  96. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
  97. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
  98. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
  99. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
  100. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
  101. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
  102. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
  103. {0,}
  104. };
  105. MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
  106. /* board_id = Subsystem Device ID & Vendor ID
  107. * product = Marketing Name for the board
  108. * access = Address of the struct of function pointers
  109. */
  110. static struct board_type products[] = {
  111. {0x40700E11, "Smart Array 5300", &SA5_access},
  112. {0x40800E11, "Smart Array 5i", &SA5B_access},
  113. {0x40820E11, "Smart Array 532", &SA5B_access},
  114. {0x40830E11, "Smart Array 5312", &SA5B_access},
  115. {0x409A0E11, "Smart Array 641", &SA5_access},
  116. {0x409B0E11, "Smart Array 642", &SA5_access},
  117. {0x409C0E11, "Smart Array 6400", &SA5_access},
  118. {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
  119. {0x40910E11, "Smart Array 6i", &SA5_access},
  120. {0x3225103C, "Smart Array P600", &SA5_access},
  121. {0x3235103C, "Smart Array P400i", &SA5_access},
  122. {0x3211103C, "Smart Array E200i", &SA5_access},
  123. {0x3212103C, "Smart Array E200", &SA5_access},
  124. {0x3213103C, "Smart Array E200i", &SA5_access},
  125. {0x3214103C, "Smart Array E200i", &SA5_access},
  126. {0x3215103C, "Smart Array E200i", &SA5_access},
  127. {0x3237103C, "Smart Array E500", &SA5_access},
  128. /* controllers below this line are also supported by the hpsa driver. */
  129. #define HPSA_BOUNDARY 0x3223103C
  130. {0x3223103C, "Smart Array P800", &SA5_access},
  131. {0x3234103C, "Smart Array P400", &SA5_access},
  132. {0x323D103C, "Smart Array P700m", &SA5_access},
  133. {0x3241103C, "Smart Array P212", &SA5_access},
  134. {0x3243103C, "Smart Array P410", &SA5_access},
  135. {0x3245103C, "Smart Array P410i", &SA5_access},
  136. {0x3247103C, "Smart Array P411", &SA5_access},
  137. {0x3249103C, "Smart Array P812", &SA5_access},
  138. {0x324A103C, "Smart Array P712m", &SA5_access},
  139. {0x324B103C, "Smart Array P711m", &SA5_access},
  140. };
  141. /* How long to wait (in milliseconds) for board to go into simple mode */
  142. #define MAX_CONFIG_WAIT 30000
  143. #define MAX_IOCTL_CONFIG_WAIT 1000
  144. /*define how many times we will try a command because of bus resets */
  145. #define MAX_CMD_RETRIES 3
  146. #define MAX_CTLR 32
  147. /* Originally cciss driver only supports 8 major numbers */
  148. #define MAX_CTLR_ORIG 8
  149. static ctlr_info_t *hba[MAX_CTLR];
  150. static struct task_struct *cciss_scan_thread;
  151. static DEFINE_MUTEX(scan_mutex);
  152. static LIST_HEAD(scan_q);
  153. static void do_cciss_request(struct request_queue *q);
  154. static irqreturn_t do_cciss_intr(int irq, void *dev_id);
  155. static int cciss_open(struct block_device *bdev, fmode_t mode);
  156. static int cciss_release(struct gendisk *disk, fmode_t mode);
  157. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  158. unsigned int cmd, unsigned long arg);
  159. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
  160. static int cciss_revalidate(struct gendisk *disk);
  161. static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
  162. static int deregister_disk(ctlr_info_t *h, int drv_index,
  163. int clear_all, int via_ioctl);
  164. static void cciss_read_capacity(int ctlr, int logvol, int withirq,
  165. sector_t *total_size, unsigned int *block_size);
  166. static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
  167. sector_t *total_size, unsigned int *block_size);
  168. static void cciss_geometry_inquiry(int ctlr, int logvol,
  169. int withirq, sector_t total_size,
  170. unsigned int block_size, InquiryData_struct *inq_buff,
  171. drive_info_struct *drv);
  172. static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
  173. __u32);
  174. static void start_io(ctlr_info_t *h);
  175. static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
  176. __u8 page_code, unsigned char *scsi3addr, int cmd_type);
  177. static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
  178. __u8 page_code, unsigned char scsi3addr[],
  179. int cmd_type);
  180. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  181. int attempt_retry);
  182. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
  183. static void fail_all_cmds(unsigned long ctlr);
  184. static int add_to_scan_list(struct ctlr_info *h);
  185. static int scan_thread(void *data);
  186. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
  187. static void cciss_hba_release(struct device *dev);
  188. static void cciss_device_release(struct device *dev);
  189. static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
  190. static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
  191. #ifdef CONFIG_PROC_FS
  192. static void cciss_procinit(int i);
  193. #else
  194. static void cciss_procinit(int i)
  195. {
  196. }
  197. #endif /* CONFIG_PROC_FS */
  198. #ifdef CONFIG_COMPAT
  199. static int cciss_compat_ioctl(struct block_device *, fmode_t,
  200. unsigned, unsigned long);
  201. #endif
  202. static const struct block_device_operations cciss_fops = {
  203. .owner = THIS_MODULE,
  204. .open = cciss_open,
  205. .release = cciss_release,
  206. .locked_ioctl = cciss_ioctl,
  207. .getgeo = cciss_getgeo,
  208. #ifdef CONFIG_COMPAT
  209. .compat_ioctl = cciss_compat_ioctl,
  210. #endif
  211. .revalidate_disk = cciss_revalidate,
  212. };
  213. /*
  214. * Enqueuing and dequeuing functions for cmdlists.
  215. */
  216. static inline void addQ(struct hlist_head *list, CommandList_struct *c)
  217. {
  218. hlist_add_head(&c->list, list);
  219. }
  220. static inline void removeQ(CommandList_struct *c)
  221. {
  222. /*
  223. * After kexec/dump some commands might still
  224. * be in flight, which the firmware will try
  225. * to complete. Resetting the firmware doesn't work
  226. * with old fw revisions, so we have to mark
  227. * them off as 'stale' to prevent the driver from
  228. * falling over.
  229. */
  230. if (WARN_ON(hlist_unhashed(&c->list))) {
  231. c->cmd_type = CMD_MSG_STALE;
  232. return;
  233. }
  234. hlist_del_init(&c->list);
  235. }
  236. #include "cciss_scsi.c" /* For SCSI tape support */
  237. static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
  238. "UNKNOWN"
  239. };
  240. #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
  241. #ifdef CONFIG_PROC_FS
  242. /*
  243. * Report information about this controller.
  244. */
  245. #define ENG_GIG 1000000000
  246. #define ENG_GIG_FACTOR (ENG_GIG/512)
  247. #define ENGAGE_SCSI "engage scsi"
  248. static struct proc_dir_entry *proc_cciss;
  249. static void cciss_seq_show_header(struct seq_file *seq)
  250. {
  251. ctlr_info_t *h = seq->private;
  252. seq_printf(seq, "%s: HP %s Controller\n"
  253. "Board ID: 0x%08lx\n"
  254. "Firmware Version: %c%c%c%c\n"
  255. "IRQ: %d\n"
  256. "Logical drives: %d\n"
  257. "Current Q depth: %d\n"
  258. "Current # commands on controller: %d\n"
  259. "Max Q depth since init: %d\n"
  260. "Max # commands on controller since init: %d\n"
  261. "Max SG entries since init: %d\n",
  262. h->devname,
  263. h->product_name,
  264. (unsigned long)h->board_id,
  265. h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
  266. h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
  267. h->num_luns,
  268. h->Qdepth, h->commands_outstanding,
  269. h->maxQsinceinit, h->max_outstanding, h->maxSG);
  270. #ifdef CONFIG_CISS_SCSI_TAPE
  271. cciss_seq_tape_report(seq, h->ctlr);
  272. #endif /* CONFIG_CISS_SCSI_TAPE */
  273. }
  274. static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
  275. {
  276. ctlr_info_t *h = seq->private;
  277. unsigned ctlr = h->ctlr;
  278. unsigned long flags;
  279. /* prevent displaying bogus info during configuration
  280. * or deconfiguration of a logical volume
  281. */
  282. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  283. if (h->busy_configuring) {
  284. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  285. return ERR_PTR(-EBUSY);
  286. }
  287. h->busy_configuring = 1;
  288. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  289. if (*pos == 0)
  290. cciss_seq_show_header(seq);
  291. return pos;
  292. }
  293. static int cciss_seq_show(struct seq_file *seq, void *v)
  294. {
  295. sector_t vol_sz, vol_sz_frac;
  296. ctlr_info_t *h = seq->private;
  297. unsigned ctlr = h->ctlr;
  298. loff_t *pos = v;
  299. drive_info_struct *drv = h->drv[*pos];
  300. if (*pos > h->highest_lun)
  301. return 0;
  302. if (drv->heads == 0)
  303. return 0;
  304. vol_sz = drv->nr_blocks;
  305. vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
  306. vol_sz_frac *= 100;
  307. sector_div(vol_sz_frac, ENG_GIG_FACTOR);
  308. if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
  309. drv->raid_level = RAID_UNKNOWN;
  310. seq_printf(seq, "cciss/c%dd%d:"
  311. "\t%4u.%02uGB\tRAID %s\n",
  312. ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
  313. raid_label[drv->raid_level]);
  314. return 0;
  315. }
  316. static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  317. {
  318. ctlr_info_t *h = seq->private;
  319. if (*pos > h->highest_lun)
  320. return NULL;
  321. *pos += 1;
  322. return pos;
  323. }
  324. static void cciss_seq_stop(struct seq_file *seq, void *v)
  325. {
  326. ctlr_info_t *h = seq->private;
  327. /* Only reset h->busy_configuring if we succeeded in setting
  328. * it during cciss_seq_start. */
  329. if (v == ERR_PTR(-EBUSY))
  330. return;
  331. h->busy_configuring = 0;
  332. }
  333. static const struct seq_operations cciss_seq_ops = {
  334. .start = cciss_seq_start,
  335. .show = cciss_seq_show,
  336. .next = cciss_seq_next,
  337. .stop = cciss_seq_stop,
  338. };
  339. static int cciss_seq_open(struct inode *inode, struct file *file)
  340. {
  341. int ret = seq_open(file, &cciss_seq_ops);
  342. struct seq_file *seq = file->private_data;
  343. if (!ret)
  344. seq->private = PDE(inode)->data;
  345. return ret;
  346. }
  347. static ssize_t
  348. cciss_proc_write(struct file *file, const char __user *buf,
  349. size_t length, loff_t *ppos)
  350. {
  351. int err;
  352. char *buffer;
  353. #ifndef CONFIG_CISS_SCSI_TAPE
  354. return -EINVAL;
  355. #endif
  356. if (!buf || length > PAGE_SIZE - 1)
  357. return -EINVAL;
  358. buffer = (char *)__get_free_page(GFP_KERNEL);
  359. if (!buffer)
  360. return -ENOMEM;
  361. err = -EFAULT;
  362. if (copy_from_user(buffer, buf, length))
  363. goto out;
  364. buffer[length] = '\0';
  365. #ifdef CONFIG_CISS_SCSI_TAPE
  366. if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
  367. struct seq_file *seq = file->private_data;
  368. ctlr_info_t *h = seq->private;
  369. int rc;
  370. rc = cciss_engage_scsi(h->ctlr);
  371. if (rc != 0)
  372. err = -rc;
  373. else
  374. err = length;
  375. } else
  376. #endif /* CONFIG_CISS_SCSI_TAPE */
  377. err = -EINVAL;
  378. /* might be nice to have "disengage" too, but it's not
  379. safely possible. (only 1 module use count, lock issues.) */
  380. out:
  381. free_page((unsigned long)buffer);
  382. return err;
  383. }
  384. static const struct file_operations cciss_proc_fops = {
  385. .owner = THIS_MODULE,
  386. .open = cciss_seq_open,
  387. .read = seq_read,
  388. .llseek = seq_lseek,
  389. .release = seq_release,
  390. .write = cciss_proc_write,
  391. };
  392. static void __devinit cciss_procinit(int i)
  393. {
  394. struct proc_dir_entry *pde;
  395. if (proc_cciss == NULL)
  396. proc_cciss = proc_mkdir("driver/cciss", NULL);
  397. if (!proc_cciss)
  398. return;
  399. pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
  400. S_IROTH, proc_cciss,
  401. &cciss_proc_fops, hba[i]);
  402. }
  403. #endif /* CONFIG_PROC_FS */
  404. #define MAX_PRODUCT_NAME_LEN 19
  405. #define to_hba(n) container_of(n, struct ctlr_info, dev)
  406. #define to_drv(n) container_of(n, drive_info_struct, dev)
  407. static ssize_t host_store_rescan(struct device *dev,
  408. struct device_attribute *attr,
  409. const char *buf, size_t count)
  410. {
  411. struct ctlr_info *h = to_hba(dev);
  412. add_to_scan_list(h);
  413. wake_up_process(cciss_scan_thread);
  414. wait_for_completion_interruptible(&h->scan_wait);
  415. return count;
  416. }
  417. DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
  418. static ssize_t dev_show_unique_id(struct device *dev,
  419. struct device_attribute *attr,
  420. char *buf)
  421. {
  422. drive_info_struct *drv = to_drv(dev);
  423. struct ctlr_info *h = to_hba(drv->dev.parent);
  424. __u8 sn[16];
  425. unsigned long flags;
  426. int ret = 0;
  427. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  428. if (h->busy_configuring)
  429. ret = -EBUSY;
  430. else
  431. memcpy(sn, drv->serial_no, sizeof(sn));
  432. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  433. if (ret)
  434. return ret;
  435. else
  436. return snprintf(buf, 16 * 2 + 2,
  437. "%02X%02X%02X%02X%02X%02X%02X%02X"
  438. "%02X%02X%02X%02X%02X%02X%02X%02X\n",
  439. sn[0], sn[1], sn[2], sn[3],
  440. sn[4], sn[5], sn[6], sn[7],
  441. sn[8], sn[9], sn[10], sn[11],
  442. sn[12], sn[13], sn[14], sn[15]);
  443. }
  444. DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
  445. static ssize_t dev_show_vendor(struct device *dev,
  446. struct device_attribute *attr,
  447. char *buf)
  448. {
  449. drive_info_struct *drv = to_drv(dev);
  450. struct ctlr_info *h = to_hba(drv->dev.parent);
  451. char vendor[VENDOR_LEN + 1];
  452. unsigned long flags;
  453. int ret = 0;
  454. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  455. if (h->busy_configuring)
  456. ret = -EBUSY;
  457. else
  458. memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
  459. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  460. if (ret)
  461. return ret;
  462. else
  463. return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
  464. }
  465. DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
  466. static ssize_t dev_show_model(struct device *dev,
  467. struct device_attribute *attr,
  468. char *buf)
  469. {
  470. drive_info_struct *drv = to_drv(dev);
  471. struct ctlr_info *h = to_hba(drv->dev.parent);
  472. char model[MODEL_LEN + 1];
  473. unsigned long flags;
  474. int ret = 0;
  475. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  476. if (h->busy_configuring)
  477. ret = -EBUSY;
  478. else
  479. memcpy(model, drv->model, MODEL_LEN + 1);
  480. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  481. if (ret)
  482. return ret;
  483. else
  484. return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
  485. }
  486. DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
  487. static ssize_t dev_show_rev(struct device *dev,
  488. struct device_attribute *attr,
  489. char *buf)
  490. {
  491. drive_info_struct *drv = to_drv(dev);
  492. struct ctlr_info *h = to_hba(drv->dev.parent);
  493. char rev[REV_LEN + 1];
  494. unsigned long flags;
  495. int ret = 0;
  496. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  497. if (h->busy_configuring)
  498. ret = -EBUSY;
  499. else
  500. memcpy(rev, drv->rev, REV_LEN + 1);
  501. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  502. if (ret)
  503. return ret;
  504. else
  505. return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
  506. }
  507. DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
  508. static ssize_t cciss_show_lunid(struct device *dev,
  509. struct device_attribute *attr, char *buf)
  510. {
  511. drive_info_struct *drv = to_drv(dev);
  512. struct ctlr_info *h = to_hba(drv->dev.parent);
  513. unsigned long flags;
  514. unsigned char lunid[8];
  515. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  516. if (h->busy_configuring) {
  517. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  518. return -EBUSY;
  519. }
  520. if (!drv->heads) {
  521. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  522. return -ENOTTY;
  523. }
  524. memcpy(lunid, drv->LunID, sizeof(lunid));
  525. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  526. return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
  527. lunid[0], lunid[1], lunid[2], lunid[3],
  528. lunid[4], lunid[5], lunid[6], lunid[7]);
  529. }
  530. DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
  531. static ssize_t cciss_show_raid_level(struct device *dev,
  532. struct device_attribute *attr, char *buf)
  533. {
  534. drive_info_struct *drv = to_drv(dev);
  535. struct ctlr_info *h = to_hba(drv->dev.parent);
  536. int raid;
  537. unsigned long flags;
  538. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  539. if (h->busy_configuring) {
  540. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  541. return -EBUSY;
  542. }
  543. raid = drv->raid_level;
  544. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  545. if (raid < 0 || raid > RAID_UNKNOWN)
  546. raid = RAID_UNKNOWN;
  547. return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
  548. raid_label[raid]);
  549. }
  550. DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
  551. static ssize_t cciss_show_usage_count(struct device *dev,
  552. struct device_attribute *attr, char *buf)
  553. {
  554. drive_info_struct *drv = to_drv(dev);
  555. struct ctlr_info *h = to_hba(drv->dev.parent);
  556. unsigned long flags;
  557. int count;
  558. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  559. if (h->busy_configuring) {
  560. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  561. return -EBUSY;
  562. }
  563. count = drv->usage_count;
  564. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  565. return snprintf(buf, 20, "%d\n", count);
  566. }
  567. DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
  568. static struct attribute *cciss_host_attrs[] = {
  569. &dev_attr_rescan.attr,
  570. NULL
  571. };
  572. static struct attribute_group cciss_host_attr_group = {
  573. .attrs = cciss_host_attrs,
  574. };
  575. static const struct attribute_group *cciss_host_attr_groups[] = {
  576. &cciss_host_attr_group,
  577. NULL
  578. };
  579. static struct device_type cciss_host_type = {
  580. .name = "cciss_host",
  581. .groups = cciss_host_attr_groups,
  582. .release = cciss_hba_release,
  583. };
  584. static struct attribute *cciss_dev_attrs[] = {
  585. &dev_attr_unique_id.attr,
  586. &dev_attr_model.attr,
  587. &dev_attr_vendor.attr,
  588. &dev_attr_rev.attr,
  589. &dev_attr_lunid.attr,
  590. &dev_attr_raid_level.attr,
  591. &dev_attr_usage_count.attr,
  592. NULL
  593. };
  594. static struct attribute_group cciss_dev_attr_group = {
  595. .attrs = cciss_dev_attrs,
  596. };
  597. static const struct attribute_group *cciss_dev_attr_groups[] = {
  598. &cciss_dev_attr_group,
  599. NULL
  600. };
  601. static struct device_type cciss_dev_type = {
  602. .name = "cciss_device",
  603. .groups = cciss_dev_attr_groups,
  604. .release = cciss_device_release,
  605. };
  606. static struct bus_type cciss_bus_type = {
  607. .name = "cciss",
  608. };
  609. /*
  610. * cciss_hba_release is called when the reference count
  611. * of h->dev goes to zero.
  612. */
  613. static void cciss_hba_release(struct device *dev)
  614. {
  615. /*
  616. * nothing to do, but need this to avoid a warning
  617. * about not having a release handler from lib/kref.c.
  618. */
  619. }
  620. /*
  621. * Initialize sysfs entry for each controller. This sets up and registers
  622. * the 'cciss#' directory for each individual controller under
  623. * /sys/bus/pci/devices/<dev>/.
  624. */
  625. static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
  626. {
  627. device_initialize(&h->dev);
  628. h->dev.type = &cciss_host_type;
  629. h->dev.bus = &cciss_bus_type;
  630. dev_set_name(&h->dev, "%s", h->devname);
  631. h->dev.parent = &h->pdev->dev;
  632. return device_add(&h->dev);
  633. }
  634. /*
  635. * Remove sysfs entries for an hba.
  636. */
  637. static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
  638. {
  639. device_del(&h->dev);
  640. put_device(&h->dev); /* final put. */
  641. }
  642. /* cciss_device_release is called when the reference count
  643. * of h->drv[x]dev goes to zero.
  644. */
  645. static void cciss_device_release(struct device *dev)
  646. {
  647. drive_info_struct *drv = to_drv(dev);
  648. kfree(drv);
  649. }
  650. /*
  651. * Initialize sysfs for each logical drive. This sets up and registers
  652. * the 'c#d#' directory for each individual logical drive under
  653. * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
  654. * /sys/block/cciss!c#d# to this entry.
  655. */
  656. static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
  657. int drv_index)
  658. {
  659. struct device *dev;
  660. if (h->drv[drv_index]->device_initialized)
  661. return 0;
  662. dev = &h->drv[drv_index]->dev;
  663. device_initialize(dev);
  664. dev->type = &cciss_dev_type;
  665. dev->bus = &cciss_bus_type;
  666. dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
  667. dev->parent = &h->dev;
  668. h->drv[drv_index]->device_initialized = 1;
  669. return device_add(dev);
  670. }
  671. /*
  672. * Remove sysfs entries for a logical drive.
  673. */
  674. static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
  675. int ctlr_exiting)
  676. {
  677. struct device *dev = &h->drv[drv_index]->dev;
  678. /* special case for c*d0, we only destroy it on controller exit */
  679. if (drv_index == 0 && !ctlr_exiting)
  680. return;
  681. device_del(dev);
  682. put_device(dev); /* the "final" put. */
  683. h->drv[drv_index] = NULL;
  684. }
  685. /*
  686. * For operations that cannot sleep, a command block is allocated at init,
  687. * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
  688. * which ones are free or in use. For operations that can wait for kmalloc
  689. * to possible sleep, this routine can be called with get_from_pool set to 0.
  690. * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
  691. */
  692. static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
  693. {
  694. CommandList_struct *c;
  695. int i;
  696. u64bit temp64;
  697. dma_addr_t cmd_dma_handle, err_dma_handle;
  698. if (!get_from_pool) {
  699. c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
  700. sizeof(CommandList_struct), &cmd_dma_handle);
  701. if (c == NULL)
  702. return NULL;
  703. memset(c, 0, sizeof(CommandList_struct));
  704. c->cmdindex = -1;
  705. c->err_info = (ErrorInfo_struct *)
  706. pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
  707. &err_dma_handle);
  708. if (c->err_info == NULL) {
  709. pci_free_consistent(h->pdev,
  710. sizeof(CommandList_struct), c, cmd_dma_handle);
  711. return NULL;
  712. }
  713. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  714. } else { /* get it out of the controllers pool */
  715. do {
  716. i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
  717. if (i == h->nr_cmds)
  718. return NULL;
  719. } while (test_and_set_bit
  720. (i & (BITS_PER_LONG - 1),
  721. h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
  722. #ifdef CCISS_DEBUG
  723. printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
  724. #endif
  725. c = h->cmd_pool + i;
  726. memset(c, 0, sizeof(CommandList_struct));
  727. cmd_dma_handle = h->cmd_pool_dhandle
  728. + i * sizeof(CommandList_struct);
  729. c->err_info = h->errinfo_pool + i;
  730. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  731. err_dma_handle = h->errinfo_pool_dhandle
  732. + i * sizeof(ErrorInfo_struct);
  733. h->nr_allocs++;
  734. c->cmdindex = i;
  735. }
  736. INIT_HLIST_NODE(&c->list);
  737. c->busaddr = (__u32) cmd_dma_handle;
  738. temp64.val = (__u64) err_dma_handle;
  739. c->ErrDesc.Addr.lower = temp64.val32.lower;
  740. c->ErrDesc.Addr.upper = temp64.val32.upper;
  741. c->ErrDesc.Len = sizeof(ErrorInfo_struct);
  742. c->ctlr = h->ctlr;
  743. return c;
  744. }
  745. /*
  746. * Frees a command block that was previously allocated with cmd_alloc().
  747. */
  748. static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
  749. {
  750. int i;
  751. u64bit temp64;
  752. if (!got_from_pool) {
  753. temp64.val32.lower = c->ErrDesc.Addr.lower;
  754. temp64.val32.upper = c->ErrDesc.Addr.upper;
  755. pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
  756. c->err_info, (dma_addr_t) temp64.val);
  757. pci_free_consistent(h->pdev, sizeof(CommandList_struct),
  758. c, (dma_addr_t) c->busaddr);
  759. } else {
  760. i = c - h->cmd_pool;
  761. clear_bit(i & (BITS_PER_LONG - 1),
  762. h->cmd_pool_bits + (i / BITS_PER_LONG));
  763. h->nr_frees++;
  764. }
  765. }
  766. static inline ctlr_info_t *get_host(struct gendisk *disk)
  767. {
  768. return disk->queue->queuedata;
  769. }
  770. static inline drive_info_struct *get_drv(struct gendisk *disk)
  771. {
  772. return disk->private_data;
  773. }
  774. /*
  775. * Open. Make sure the device is really there.
  776. */
  777. static int cciss_open(struct block_device *bdev, fmode_t mode)
  778. {
  779. ctlr_info_t *host = get_host(bdev->bd_disk);
  780. drive_info_struct *drv = get_drv(bdev->bd_disk);
  781. #ifdef CCISS_DEBUG
  782. printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
  783. #endif /* CCISS_DEBUG */
  784. if (drv->busy_configuring)
  785. return -EBUSY;
  786. /*
  787. * Root is allowed to open raw volume zero even if it's not configured
  788. * so array config can still work. Root is also allowed to open any
  789. * volume that has a LUN ID, so it can issue IOCTL to reread the
  790. * disk information. I don't think I really like this
  791. * but I'm already using way to many device nodes to claim another one
  792. * for "raw controller".
  793. */
  794. if (drv->heads == 0) {
  795. if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
  796. /* if not node 0 make sure it is a partition = 0 */
  797. if (MINOR(bdev->bd_dev) & 0x0f) {
  798. return -ENXIO;
  799. /* if it is, make sure we have a LUN ID */
  800. } else if (memcmp(drv->LunID, CTLR_LUNID,
  801. sizeof(drv->LunID))) {
  802. return -ENXIO;
  803. }
  804. }
  805. if (!capable(CAP_SYS_ADMIN))
  806. return -EPERM;
  807. }
  808. drv->usage_count++;
  809. host->usage_count++;
  810. return 0;
  811. }
  812. /*
  813. * Close. Sync first.
  814. */
  815. static int cciss_release(struct gendisk *disk, fmode_t mode)
  816. {
  817. ctlr_info_t *host = get_host(disk);
  818. drive_info_struct *drv = get_drv(disk);
  819. #ifdef CCISS_DEBUG
  820. printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
  821. #endif /* CCISS_DEBUG */
  822. drv->usage_count--;
  823. host->usage_count--;
  824. return 0;
  825. }
  826. #ifdef CONFIG_COMPAT
  827. static int do_ioctl(struct block_device *bdev, fmode_t mode,
  828. unsigned cmd, unsigned long arg)
  829. {
  830. int ret;
  831. lock_kernel();
  832. ret = cciss_ioctl(bdev, mode, cmd, arg);
  833. unlock_kernel();
  834. return ret;
  835. }
  836. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  837. unsigned cmd, unsigned long arg);
  838. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  839. unsigned cmd, unsigned long arg);
  840. static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
  841. unsigned cmd, unsigned long arg)
  842. {
  843. switch (cmd) {
  844. case CCISS_GETPCIINFO:
  845. case CCISS_GETINTINFO:
  846. case CCISS_SETINTINFO:
  847. case CCISS_GETNODENAME:
  848. case CCISS_SETNODENAME:
  849. case CCISS_GETHEARTBEAT:
  850. case CCISS_GETBUSTYPES:
  851. case CCISS_GETFIRMVER:
  852. case CCISS_GETDRIVVER:
  853. case CCISS_REVALIDVOLS:
  854. case CCISS_DEREGDISK:
  855. case CCISS_REGNEWDISK:
  856. case CCISS_REGNEWD:
  857. case CCISS_RESCANDISK:
  858. case CCISS_GETLUNINFO:
  859. return do_ioctl(bdev, mode, cmd, arg);
  860. case CCISS_PASSTHRU32:
  861. return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
  862. case CCISS_BIG_PASSTHRU32:
  863. return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
  864. default:
  865. return -ENOIOCTLCMD;
  866. }
  867. }
  868. static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
  869. unsigned cmd, unsigned long arg)
  870. {
  871. IOCTL32_Command_struct __user *arg32 =
  872. (IOCTL32_Command_struct __user *) arg;
  873. IOCTL_Command_struct arg64;
  874. IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
  875. int err;
  876. u32 cp;
  877. err = 0;
  878. err |=
  879. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  880. sizeof(arg64.LUN_info));
  881. err |=
  882. copy_from_user(&arg64.Request, &arg32->Request,
  883. sizeof(arg64.Request));
  884. err |=
  885. copy_from_user(&arg64.error_info, &arg32->error_info,
  886. sizeof(arg64.error_info));
  887. err |= get_user(arg64.buf_size, &arg32->buf_size);
  888. err |= get_user(cp, &arg32->buf);
  889. arg64.buf = compat_ptr(cp);
  890. err |= copy_to_user(p, &arg64, sizeof(arg64));
  891. if (err)
  892. return -EFAULT;
  893. err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
  894. if (err)
  895. return err;
  896. err |=
  897. copy_in_user(&arg32->error_info, &p->error_info,
  898. sizeof(arg32->error_info));
  899. if (err)
  900. return -EFAULT;
  901. return err;
  902. }
  903. static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
  904. unsigned cmd, unsigned long arg)
  905. {
  906. BIG_IOCTL32_Command_struct __user *arg32 =
  907. (BIG_IOCTL32_Command_struct __user *) arg;
  908. BIG_IOCTL_Command_struct arg64;
  909. BIG_IOCTL_Command_struct __user *p =
  910. compat_alloc_user_space(sizeof(arg64));
  911. int err;
  912. u32 cp;
  913. err = 0;
  914. err |=
  915. copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  916. sizeof(arg64.LUN_info));
  917. err |=
  918. copy_from_user(&arg64.Request, &arg32->Request,
  919. sizeof(arg64.Request));
  920. err |=
  921. copy_from_user(&arg64.error_info, &arg32->error_info,
  922. sizeof(arg64.error_info));
  923. err |= get_user(arg64.buf_size, &arg32->buf_size);
  924. err |= get_user(arg64.malloc_size, &arg32->malloc_size);
  925. err |= get_user(cp, &arg32->buf);
  926. arg64.buf = compat_ptr(cp);
  927. err |= copy_to_user(p, &arg64, sizeof(arg64));
  928. if (err)
  929. return -EFAULT;
  930. err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
  931. if (err)
  932. return err;
  933. err |=
  934. copy_in_user(&arg32->error_info, &p->error_info,
  935. sizeof(arg32->error_info));
  936. if (err)
  937. return -EFAULT;
  938. return err;
  939. }
  940. #endif
  941. static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  942. {
  943. drive_info_struct *drv = get_drv(bdev->bd_disk);
  944. if (!drv->cylinders)
  945. return -ENXIO;
  946. geo->heads = drv->heads;
  947. geo->sectors = drv->sectors;
  948. geo->cylinders = drv->cylinders;
  949. return 0;
  950. }
  951. static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
  952. {
  953. if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
  954. c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
  955. (void)check_for_unit_attention(host, c);
  956. }
  957. /*
  958. * ioctl
  959. */
  960. static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
  961. unsigned int cmd, unsigned long arg)
  962. {
  963. struct gendisk *disk = bdev->bd_disk;
  964. ctlr_info_t *host = get_host(disk);
  965. drive_info_struct *drv = get_drv(disk);
  966. int ctlr = host->ctlr;
  967. void __user *argp = (void __user *)arg;
  968. #ifdef CCISS_DEBUG
  969. printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
  970. #endif /* CCISS_DEBUG */
  971. switch (cmd) {
  972. case CCISS_GETPCIINFO:
  973. {
  974. cciss_pci_info_struct pciinfo;
  975. if (!arg)
  976. return -EINVAL;
  977. pciinfo.domain = pci_domain_nr(host->pdev->bus);
  978. pciinfo.bus = host->pdev->bus->number;
  979. pciinfo.dev_fn = host->pdev->devfn;
  980. pciinfo.board_id = host->board_id;
  981. if (copy_to_user
  982. (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
  983. return -EFAULT;
  984. return 0;
  985. }
  986. case CCISS_GETINTINFO:
  987. {
  988. cciss_coalint_struct intinfo;
  989. if (!arg)
  990. return -EINVAL;
  991. intinfo.delay =
  992. readl(&host->cfgtable->HostWrite.CoalIntDelay);
  993. intinfo.count =
  994. readl(&host->cfgtable->HostWrite.CoalIntCount);
  995. if (copy_to_user
  996. (argp, &intinfo, sizeof(cciss_coalint_struct)))
  997. return -EFAULT;
  998. return 0;
  999. }
  1000. case CCISS_SETINTINFO:
  1001. {
  1002. cciss_coalint_struct intinfo;
  1003. unsigned long flags;
  1004. int i;
  1005. if (!arg)
  1006. return -EINVAL;
  1007. if (!capable(CAP_SYS_ADMIN))
  1008. return -EPERM;
  1009. if (copy_from_user
  1010. (&intinfo, argp, sizeof(cciss_coalint_struct)))
  1011. return -EFAULT;
  1012. if ((intinfo.delay == 0) && (intinfo.count == 0))
  1013. {
  1014. // printk("cciss_ioctl: delay and count cannot be 0\n");
  1015. return -EINVAL;
  1016. }
  1017. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1018. /* Update the field, and then ring the doorbell */
  1019. writel(intinfo.delay,
  1020. &(host->cfgtable->HostWrite.CoalIntDelay));
  1021. writel(intinfo.count,
  1022. &(host->cfgtable->HostWrite.CoalIntCount));
  1023. writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
  1024. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  1025. if (!(readl(host->vaddr + SA5_DOORBELL)
  1026. & CFGTBL_ChangeReq))
  1027. break;
  1028. /* delay and try again */
  1029. udelay(1000);
  1030. }
  1031. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1032. if (i >= MAX_IOCTL_CONFIG_WAIT)
  1033. return -EAGAIN;
  1034. return 0;
  1035. }
  1036. case CCISS_GETNODENAME:
  1037. {
  1038. NodeName_type NodeName;
  1039. int i;
  1040. if (!arg)
  1041. return -EINVAL;
  1042. for (i = 0; i < 16; i++)
  1043. NodeName[i] =
  1044. readb(&host->cfgtable->ServerName[i]);
  1045. if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
  1046. return -EFAULT;
  1047. return 0;
  1048. }
  1049. case CCISS_SETNODENAME:
  1050. {
  1051. NodeName_type NodeName;
  1052. unsigned long flags;
  1053. int i;
  1054. if (!arg)
  1055. return -EINVAL;
  1056. if (!capable(CAP_SYS_ADMIN))
  1057. return -EPERM;
  1058. if (copy_from_user
  1059. (NodeName, argp, sizeof(NodeName_type)))
  1060. return -EFAULT;
  1061. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1062. /* Update the field, and then ring the doorbell */
  1063. for (i = 0; i < 16; i++)
  1064. writeb(NodeName[i],
  1065. &host->cfgtable->ServerName[i]);
  1066. writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
  1067. for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
  1068. if (!(readl(host->vaddr + SA5_DOORBELL)
  1069. & CFGTBL_ChangeReq))
  1070. break;
  1071. /* delay and try again */
  1072. udelay(1000);
  1073. }
  1074. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1075. if (i >= MAX_IOCTL_CONFIG_WAIT)
  1076. return -EAGAIN;
  1077. return 0;
  1078. }
  1079. case CCISS_GETHEARTBEAT:
  1080. {
  1081. Heartbeat_type heartbeat;
  1082. if (!arg)
  1083. return -EINVAL;
  1084. heartbeat = readl(&host->cfgtable->HeartBeat);
  1085. if (copy_to_user
  1086. (argp, &heartbeat, sizeof(Heartbeat_type)))
  1087. return -EFAULT;
  1088. return 0;
  1089. }
  1090. case CCISS_GETBUSTYPES:
  1091. {
  1092. BusTypes_type BusTypes;
  1093. if (!arg)
  1094. return -EINVAL;
  1095. BusTypes = readl(&host->cfgtable->BusTypes);
  1096. if (copy_to_user
  1097. (argp, &BusTypes, sizeof(BusTypes_type)))
  1098. return -EFAULT;
  1099. return 0;
  1100. }
  1101. case CCISS_GETFIRMVER:
  1102. {
  1103. FirmwareVer_type firmware;
  1104. if (!arg)
  1105. return -EINVAL;
  1106. memcpy(firmware, host->firm_ver, 4);
  1107. if (copy_to_user
  1108. (argp, firmware, sizeof(FirmwareVer_type)))
  1109. return -EFAULT;
  1110. return 0;
  1111. }
  1112. case CCISS_GETDRIVVER:
  1113. {
  1114. DriverVer_type DriverVer = DRIVER_VERSION;
  1115. if (!arg)
  1116. return -EINVAL;
  1117. if (copy_to_user
  1118. (argp, &DriverVer, sizeof(DriverVer_type)))
  1119. return -EFAULT;
  1120. return 0;
  1121. }
  1122. case CCISS_DEREGDISK:
  1123. case CCISS_REGNEWD:
  1124. case CCISS_REVALIDVOLS:
  1125. return rebuild_lun_table(host, 0, 1);
  1126. case CCISS_GETLUNINFO:{
  1127. LogvolInfo_struct luninfo;
  1128. memcpy(&luninfo.LunID, drv->LunID,
  1129. sizeof(luninfo.LunID));
  1130. luninfo.num_opens = drv->usage_count;
  1131. luninfo.num_parts = 0;
  1132. if (copy_to_user(argp, &luninfo,
  1133. sizeof(LogvolInfo_struct)))
  1134. return -EFAULT;
  1135. return 0;
  1136. }
  1137. case CCISS_PASSTHRU:
  1138. {
  1139. IOCTL_Command_struct iocommand;
  1140. CommandList_struct *c;
  1141. char *buff = NULL;
  1142. u64bit temp64;
  1143. unsigned long flags;
  1144. DECLARE_COMPLETION_ONSTACK(wait);
  1145. if (!arg)
  1146. return -EINVAL;
  1147. if (!capable(CAP_SYS_RAWIO))
  1148. return -EPERM;
  1149. if (copy_from_user
  1150. (&iocommand, argp, sizeof(IOCTL_Command_struct)))
  1151. return -EFAULT;
  1152. if ((iocommand.buf_size < 1) &&
  1153. (iocommand.Request.Type.Direction != XFER_NONE)) {
  1154. return -EINVAL;
  1155. }
  1156. #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
  1157. /* Check kmalloc limits */
  1158. if (iocommand.buf_size > 128000)
  1159. return -EINVAL;
  1160. #endif
  1161. if (iocommand.buf_size > 0) {
  1162. buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
  1163. if (buff == NULL)
  1164. return -EFAULT;
  1165. }
  1166. if (iocommand.Request.Type.Direction == XFER_WRITE) {
  1167. /* Copy the data into the buffer we created */
  1168. if (copy_from_user
  1169. (buff, iocommand.buf, iocommand.buf_size)) {
  1170. kfree(buff);
  1171. return -EFAULT;
  1172. }
  1173. } else {
  1174. memset(buff, 0, iocommand.buf_size);
  1175. }
  1176. if ((c = cmd_alloc(host, 0)) == NULL) {
  1177. kfree(buff);
  1178. return -ENOMEM;
  1179. }
  1180. // Fill in the command type
  1181. c->cmd_type = CMD_IOCTL_PEND;
  1182. // Fill in Command Header
  1183. c->Header.ReplyQueue = 0; // unused in simple mode
  1184. if (iocommand.buf_size > 0) // buffer to fill
  1185. {
  1186. c->Header.SGList = 1;
  1187. c->Header.SGTotal = 1;
  1188. } else // no buffers to fill
  1189. {
  1190. c->Header.SGList = 0;
  1191. c->Header.SGTotal = 0;
  1192. }
  1193. c->Header.LUN = iocommand.LUN_info;
  1194. c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
  1195. // Fill in Request block
  1196. c->Request = iocommand.Request;
  1197. // Fill in the scatter gather information
  1198. if (iocommand.buf_size > 0) {
  1199. temp64.val = pci_map_single(host->pdev, buff,
  1200. iocommand.buf_size,
  1201. PCI_DMA_BIDIRECTIONAL);
  1202. c->SG[0].Addr.lower = temp64.val32.lower;
  1203. c->SG[0].Addr.upper = temp64.val32.upper;
  1204. c->SG[0].Len = iocommand.buf_size;
  1205. c->SG[0].Ext = 0; // we are not chaining
  1206. }
  1207. c->waiting = &wait;
  1208. /* Put the request on the tail of the request queue */
  1209. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1210. addQ(&host->reqQ, c);
  1211. host->Qdepth++;
  1212. start_io(host);
  1213. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1214. wait_for_completion(&wait);
  1215. /* unlock the buffers from DMA */
  1216. temp64.val32.lower = c->SG[0].Addr.lower;
  1217. temp64.val32.upper = c->SG[0].Addr.upper;
  1218. pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
  1219. iocommand.buf_size,
  1220. PCI_DMA_BIDIRECTIONAL);
  1221. check_ioctl_unit_attention(host, c);
  1222. /* Copy the error information out */
  1223. iocommand.error_info = *(c->err_info);
  1224. if (copy_to_user
  1225. (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
  1226. kfree(buff);
  1227. cmd_free(host, c, 0);
  1228. return -EFAULT;
  1229. }
  1230. if (iocommand.Request.Type.Direction == XFER_READ) {
  1231. /* Copy the data out of the buffer we created */
  1232. if (copy_to_user
  1233. (iocommand.buf, buff, iocommand.buf_size)) {
  1234. kfree(buff);
  1235. cmd_free(host, c, 0);
  1236. return -EFAULT;
  1237. }
  1238. }
  1239. kfree(buff);
  1240. cmd_free(host, c, 0);
  1241. return 0;
  1242. }
  1243. case CCISS_BIG_PASSTHRU:{
  1244. BIG_IOCTL_Command_struct *ioc;
  1245. CommandList_struct *c;
  1246. unsigned char **buff = NULL;
  1247. int *buff_size = NULL;
  1248. u64bit temp64;
  1249. unsigned long flags;
  1250. BYTE sg_used = 0;
  1251. int status = 0;
  1252. int i;
  1253. DECLARE_COMPLETION_ONSTACK(wait);
  1254. __u32 left;
  1255. __u32 sz;
  1256. BYTE __user *data_ptr;
  1257. if (!arg)
  1258. return -EINVAL;
  1259. if (!capable(CAP_SYS_RAWIO))
  1260. return -EPERM;
  1261. ioc = (BIG_IOCTL_Command_struct *)
  1262. kmalloc(sizeof(*ioc), GFP_KERNEL);
  1263. if (!ioc) {
  1264. status = -ENOMEM;
  1265. goto cleanup1;
  1266. }
  1267. if (copy_from_user(ioc, argp, sizeof(*ioc))) {
  1268. status = -EFAULT;
  1269. goto cleanup1;
  1270. }
  1271. if ((ioc->buf_size < 1) &&
  1272. (ioc->Request.Type.Direction != XFER_NONE)) {
  1273. status = -EINVAL;
  1274. goto cleanup1;
  1275. }
  1276. /* Check kmalloc limits using all SGs */
  1277. if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
  1278. status = -EINVAL;
  1279. goto cleanup1;
  1280. }
  1281. if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
  1282. status = -EINVAL;
  1283. goto cleanup1;
  1284. }
  1285. buff =
  1286. kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
  1287. if (!buff) {
  1288. status = -ENOMEM;
  1289. goto cleanup1;
  1290. }
  1291. buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
  1292. GFP_KERNEL);
  1293. if (!buff_size) {
  1294. status = -ENOMEM;
  1295. goto cleanup1;
  1296. }
  1297. left = ioc->buf_size;
  1298. data_ptr = ioc->buf;
  1299. while (left) {
  1300. sz = (left >
  1301. ioc->malloc_size) ? ioc->
  1302. malloc_size : left;
  1303. buff_size[sg_used] = sz;
  1304. buff[sg_used] = kmalloc(sz, GFP_KERNEL);
  1305. if (buff[sg_used] == NULL) {
  1306. status = -ENOMEM;
  1307. goto cleanup1;
  1308. }
  1309. if (ioc->Request.Type.Direction == XFER_WRITE) {
  1310. if (copy_from_user
  1311. (buff[sg_used], data_ptr, sz)) {
  1312. status = -EFAULT;
  1313. goto cleanup1;
  1314. }
  1315. } else {
  1316. memset(buff[sg_used], 0, sz);
  1317. }
  1318. left -= sz;
  1319. data_ptr += sz;
  1320. sg_used++;
  1321. }
  1322. if ((c = cmd_alloc(host, 0)) == NULL) {
  1323. status = -ENOMEM;
  1324. goto cleanup1;
  1325. }
  1326. c->cmd_type = CMD_IOCTL_PEND;
  1327. c->Header.ReplyQueue = 0;
  1328. if (ioc->buf_size > 0) {
  1329. c->Header.SGList = sg_used;
  1330. c->Header.SGTotal = sg_used;
  1331. } else {
  1332. c->Header.SGList = 0;
  1333. c->Header.SGTotal = 0;
  1334. }
  1335. c->Header.LUN = ioc->LUN_info;
  1336. c->Header.Tag.lower = c->busaddr;
  1337. c->Request = ioc->Request;
  1338. if (ioc->buf_size > 0) {
  1339. int i;
  1340. for (i = 0; i < sg_used; i++) {
  1341. temp64.val =
  1342. pci_map_single(host->pdev, buff[i],
  1343. buff_size[i],
  1344. PCI_DMA_BIDIRECTIONAL);
  1345. c->SG[i].Addr.lower =
  1346. temp64.val32.lower;
  1347. c->SG[i].Addr.upper =
  1348. temp64.val32.upper;
  1349. c->SG[i].Len = buff_size[i];
  1350. c->SG[i].Ext = 0; /* we are not chaining */
  1351. }
  1352. }
  1353. c->waiting = &wait;
  1354. /* Put the request on the tail of the request queue */
  1355. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  1356. addQ(&host->reqQ, c);
  1357. host->Qdepth++;
  1358. start_io(host);
  1359. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  1360. wait_for_completion(&wait);
  1361. /* unlock the buffers from DMA */
  1362. for (i = 0; i < sg_used; i++) {
  1363. temp64.val32.lower = c->SG[i].Addr.lower;
  1364. temp64.val32.upper = c->SG[i].Addr.upper;
  1365. pci_unmap_single(host->pdev,
  1366. (dma_addr_t) temp64.val, buff_size[i],
  1367. PCI_DMA_BIDIRECTIONAL);
  1368. }
  1369. check_ioctl_unit_attention(host, c);
  1370. /* Copy the error information out */
  1371. ioc->error_info = *(c->err_info);
  1372. if (copy_to_user(argp, ioc, sizeof(*ioc))) {
  1373. cmd_free(host, c, 0);
  1374. status = -EFAULT;
  1375. goto cleanup1;
  1376. }
  1377. if (ioc->Request.Type.Direction == XFER_READ) {
  1378. /* Copy the data out of the buffer we created */
  1379. BYTE __user *ptr = ioc->buf;
  1380. for (i = 0; i < sg_used; i++) {
  1381. if (copy_to_user
  1382. (ptr, buff[i], buff_size[i])) {
  1383. cmd_free(host, c, 0);
  1384. status = -EFAULT;
  1385. goto cleanup1;
  1386. }
  1387. ptr += buff_size[i];
  1388. }
  1389. }
  1390. cmd_free(host, c, 0);
  1391. status = 0;
  1392. cleanup1:
  1393. if (buff) {
  1394. for (i = 0; i < sg_used; i++)
  1395. kfree(buff[i]);
  1396. kfree(buff);
  1397. }
  1398. kfree(buff_size);
  1399. kfree(ioc);
  1400. return status;
  1401. }
  1402. /* scsi_cmd_ioctl handles these, below, though some are not */
  1403. /* very meaningful for cciss. SG_IO is the main one people want. */
  1404. case SG_GET_VERSION_NUM:
  1405. case SG_SET_TIMEOUT:
  1406. case SG_GET_TIMEOUT:
  1407. case SG_GET_RESERVED_SIZE:
  1408. case SG_SET_RESERVED_SIZE:
  1409. case SG_EMULATED_HOST:
  1410. case SG_IO:
  1411. case SCSI_IOCTL_SEND_COMMAND:
  1412. return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
  1413. /* scsi_cmd_ioctl would normally handle these, below, but */
  1414. /* they aren't a good fit for cciss, as CD-ROMs are */
  1415. /* not supported, and we don't have any bus/target/lun */
  1416. /* which we present to the kernel. */
  1417. case CDROM_SEND_PACKET:
  1418. case CDROMCLOSETRAY:
  1419. case CDROMEJECT:
  1420. case SCSI_IOCTL_GET_IDLUN:
  1421. case SCSI_IOCTL_GET_BUS_NUMBER:
  1422. default:
  1423. return -ENOTTY;
  1424. }
  1425. }
  1426. static void cciss_check_queues(ctlr_info_t *h)
  1427. {
  1428. int start_queue = h->next_to_run;
  1429. int i;
  1430. /* check to see if we have maxed out the number of commands that can
  1431. * be placed on the queue. If so then exit. We do this check here
  1432. * in case the interrupt we serviced was from an ioctl and did not
  1433. * free any new commands.
  1434. */
  1435. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
  1436. return;
  1437. /* We have room on the queue for more commands. Now we need to queue
  1438. * them up. We will also keep track of the next queue to run so
  1439. * that every queue gets a chance to be started first.
  1440. */
  1441. for (i = 0; i < h->highest_lun + 1; i++) {
  1442. int curr_queue = (start_queue + i) % (h->highest_lun + 1);
  1443. /* make sure the disk has been added and the drive is real
  1444. * because this can be called from the middle of init_one.
  1445. */
  1446. if (!h->drv[curr_queue])
  1447. continue;
  1448. if (!(h->drv[curr_queue]->queue) ||
  1449. !(h->drv[curr_queue]->heads))
  1450. continue;
  1451. blk_start_queue(h->gendisk[curr_queue]->queue);
  1452. /* check to see if we have maxed out the number of commands
  1453. * that can be placed on the queue.
  1454. */
  1455. if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
  1456. if (curr_queue == start_queue) {
  1457. h->next_to_run =
  1458. (start_queue + 1) % (h->highest_lun + 1);
  1459. break;
  1460. } else {
  1461. h->next_to_run = curr_queue;
  1462. break;
  1463. }
  1464. }
  1465. }
  1466. }
  1467. static void cciss_softirq_done(struct request *rq)
  1468. {
  1469. CommandList_struct *cmd = rq->completion_data;
  1470. ctlr_info_t *h = hba[cmd->ctlr];
  1471. unsigned long flags;
  1472. u64bit temp64;
  1473. int i, ddir;
  1474. if (cmd->Request.Type.Direction == XFER_READ)
  1475. ddir = PCI_DMA_FROMDEVICE;
  1476. else
  1477. ddir = PCI_DMA_TODEVICE;
  1478. /* command did not need to be retried */
  1479. /* unmap the DMA mapping for all the scatter gather elements */
  1480. for (i = 0; i < cmd->Header.SGList; i++) {
  1481. temp64.val32.lower = cmd->SG[i].Addr.lower;
  1482. temp64.val32.upper = cmd->SG[i].Addr.upper;
  1483. pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
  1484. }
  1485. #ifdef CCISS_DEBUG
  1486. printk("Done with %p\n", rq);
  1487. #endif /* CCISS_DEBUG */
  1488. /* set the residual count for pc requests */
  1489. if (blk_pc_request(rq))
  1490. rq->resid_len = cmd->err_info->ResidualCnt;
  1491. blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
  1492. spin_lock_irqsave(&h->lock, flags);
  1493. cmd_free(h, cmd, 1);
  1494. cciss_check_queues(h);
  1495. spin_unlock_irqrestore(&h->lock, flags);
  1496. }
  1497. static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
  1498. unsigned char scsi3addr[], uint32_t log_unit)
  1499. {
  1500. memcpy(scsi3addr, h->drv[log_unit]->LunID,
  1501. sizeof(h->drv[log_unit]->LunID));
  1502. }
  1503. /* This function gets the SCSI vendor, model, and revision of a logical drive
  1504. * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
  1505. * they cannot be read.
  1506. */
  1507. static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
  1508. char *vendor, char *model, char *rev)
  1509. {
  1510. int rc;
  1511. InquiryData_struct *inq_buf;
  1512. unsigned char scsi3addr[8];
  1513. *vendor = '\0';
  1514. *model = '\0';
  1515. *rev = '\0';
  1516. inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1517. if (!inq_buf)
  1518. return;
  1519. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  1520. if (withirq)
  1521. rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
  1522. sizeof(InquiryData_struct), 0,
  1523. scsi3addr, TYPE_CMD);
  1524. else
  1525. rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
  1526. sizeof(InquiryData_struct), 0,
  1527. scsi3addr, TYPE_CMD);
  1528. if (rc == IO_OK) {
  1529. memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
  1530. vendor[VENDOR_LEN] = '\0';
  1531. memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
  1532. model[MODEL_LEN] = '\0';
  1533. memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
  1534. rev[REV_LEN] = '\0';
  1535. }
  1536. kfree(inq_buf);
  1537. return;
  1538. }
  1539. /* This function gets the serial number of a logical drive via
  1540. * inquiry page 0x83. Serial no. is 16 bytes. If the serial
  1541. * number cannot be had, for whatever reason, 16 bytes of 0xff
  1542. * are returned instead.
  1543. */
  1544. static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
  1545. unsigned char *serial_no, int buflen)
  1546. {
  1547. #define PAGE_83_INQ_BYTES 64
  1548. int rc;
  1549. unsigned char *buf;
  1550. unsigned char scsi3addr[8];
  1551. if (buflen > 16)
  1552. buflen = 16;
  1553. memset(serial_no, 0xff, buflen);
  1554. buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
  1555. if (!buf)
  1556. return;
  1557. memset(serial_no, 0, buflen);
  1558. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  1559. if (withirq)
  1560. rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
  1561. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1562. else
  1563. rc = sendcmd(CISS_INQUIRY, ctlr, buf,
  1564. PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
  1565. if (rc == IO_OK)
  1566. memcpy(serial_no, &buf[8], buflen);
  1567. kfree(buf);
  1568. return;
  1569. }
  1570. /*
  1571. * cciss_add_disk sets up the block device queue for a logical drive
  1572. */
  1573. static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
  1574. int drv_index)
  1575. {
  1576. disk->queue = blk_init_queue(do_cciss_request, &h->lock);
  1577. if (!disk->queue)
  1578. goto init_queue_failure;
  1579. sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
  1580. disk->major = h->major;
  1581. disk->first_minor = drv_index << NWD_SHIFT;
  1582. disk->fops = &cciss_fops;
  1583. if (cciss_create_ld_sysfs_entry(h, drv_index))
  1584. goto cleanup_queue;
  1585. disk->private_data = h->drv[drv_index];
  1586. disk->driverfs_dev = &h->drv[drv_index]->dev;
  1587. /* Set up queue information */
  1588. blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
  1589. /* This is a hardware imposed limit. */
  1590. blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
  1591. /* This is a limit in the driver and could be eliminated. */
  1592. blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
  1593. blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
  1594. blk_queue_softirq_done(disk->queue, cciss_softirq_done);
  1595. disk->queue->queuedata = h;
  1596. blk_queue_logical_block_size(disk->queue,
  1597. h->drv[drv_index]->block_size);
  1598. /* Make sure all queue data is written out before */
  1599. /* setting h->drv[drv_index]->queue, as setting this */
  1600. /* allows the interrupt handler to start the queue */
  1601. wmb();
  1602. h->drv[drv_index]->queue = disk->queue;
  1603. add_disk(disk);
  1604. return 0;
  1605. cleanup_queue:
  1606. blk_cleanup_queue(disk->queue);
  1607. disk->queue = NULL;
  1608. init_queue_failure:
  1609. return -1;
  1610. }
  1611. /* This function will check the usage_count of the drive to be updated/added.
  1612. * If the usage_count is zero and it is a heretofore unknown drive, or,
  1613. * the drive's capacity, geometry, or serial number has changed,
  1614. * then the drive information will be updated and the disk will be
  1615. * re-registered with the kernel. If these conditions don't hold,
  1616. * then it will be left alone for the next reboot. The exception to this
  1617. * is disk 0 which will always be left registered with the kernel since it
  1618. * is also the controller node. Any changes to disk 0 will show up on
  1619. * the next reboot.
  1620. */
  1621. static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
  1622. int via_ioctl)
  1623. {
  1624. ctlr_info_t *h = hba[ctlr];
  1625. struct gendisk *disk;
  1626. InquiryData_struct *inq_buff = NULL;
  1627. unsigned int block_size;
  1628. sector_t total_size;
  1629. unsigned long flags = 0;
  1630. int ret = 0;
  1631. drive_info_struct *drvinfo;
  1632. /* Get information about the disk and modify the driver structure */
  1633. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  1634. drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
  1635. if (inq_buff == NULL || drvinfo == NULL)
  1636. goto mem_msg;
  1637. /* testing to see if 16-byte CDBs are already being used */
  1638. if (h->cciss_read == CCISS_READ_16) {
  1639. cciss_read_capacity_16(h->ctlr, drv_index, 1,
  1640. &total_size, &block_size);
  1641. } else {
  1642. cciss_read_capacity(ctlr, drv_index, 1,
  1643. &total_size, &block_size);
  1644. /* if read_capacity returns all F's this volume is >2TB */
  1645. /* in size so we switch to 16-byte CDB's for all */
  1646. /* read/write ops */
  1647. if (total_size == 0xFFFFFFFFULL) {
  1648. cciss_read_capacity_16(ctlr, drv_index, 1,
  1649. &total_size, &block_size);
  1650. h->cciss_read = CCISS_READ_16;
  1651. h->cciss_write = CCISS_WRITE_16;
  1652. } else {
  1653. h->cciss_read = CCISS_READ_10;
  1654. h->cciss_write = CCISS_WRITE_10;
  1655. }
  1656. }
  1657. cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
  1658. inq_buff, drvinfo);
  1659. drvinfo->block_size = block_size;
  1660. drvinfo->nr_blocks = total_size + 1;
  1661. cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
  1662. drvinfo->model, drvinfo->rev);
  1663. cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
  1664. sizeof(drvinfo->serial_no));
  1665. /* Save the lunid in case we deregister the disk, below. */
  1666. memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
  1667. sizeof(drvinfo->LunID));
  1668. /* Is it the same disk we already know, and nothing's changed? */
  1669. if (h->drv[drv_index]->raid_level != -1 &&
  1670. ((memcmp(drvinfo->serial_no,
  1671. h->drv[drv_index]->serial_no, 16) == 0) &&
  1672. drvinfo->block_size == h->drv[drv_index]->block_size &&
  1673. drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
  1674. drvinfo->heads == h->drv[drv_index]->heads &&
  1675. drvinfo->sectors == h->drv[drv_index]->sectors &&
  1676. drvinfo->cylinders == h->drv[drv_index]->cylinders))
  1677. /* The disk is unchanged, nothing to update */
  1678. goto freeret;
  1679. /* If we get here it's not the same disk, or something's changed,
  1680. * so we need to * deregister it, and re-register it, if it's not
  1681. * in use.
  1682. * If the disk already exists then deregister it before proceeding
  1683. * (unless it's the first disk (for the controller node).
  1684. */
  1685. if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
  1686. printk(KERN_WARNING "disk %d has changed.\n", drv_index);
  1687. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1688. h->drv[drv_index]->busy_configuring = 1;
  1689. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1690. /* deregister_disk sets h->drv[drv_index]->queue = NULL
  1691. * which keeps the interrupt handler from starting
  1692. * the queue.
  1693. */
  1694. ret = deregister_disk(h, drv_index, 0, via_ioctl);
  1695. }
  1696. /* If the disk is in use return */
  1697. if (ret)
  1698. goto freeret;
  1699. /* Save the new information from cciss_geometry_inquiry
  1700. * and serial number inquiry. If the disk was deregistered
  1701. * above, then h->drv[drv_index] will be NULL.
  1702. */
  1703. if (h->drv[drv_index] == NULL) {
  1704. drvinfo->device_initialized = 0;
  1705. h->drv[drv_index] = drvinfo;
  1706. drvinfo = NULL; /* so it won't be freed below. */
  1707. } else {
  1708. /* special case for cxd0 */
  1709. h->drv[drv_index]->block_size = drvinfo->block_size;
  1710. h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
  1711. h->drv[drv_index]->heads = drvinfo->heads;
  1712. h->drv[drv_index]->sectors = drvinfo->sectors;
  1713. h->drv[drv_index]->cylinders = drvinfo->cylinders;
  1714. h->drv[drv_index]->raid_level = drvinfo->raid_level;
  1715. memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
  1716. memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
  1717. VENDOR_LEN + 1);
  1718. memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
  1719. memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
  1720. }
  1721. ++h->num_luns;
  1722. disk = h->gendisk[drv_index];
  1723. set_capacity(disk, h->drv[drv_index]->nr_blocks);
  1724. /* If it's not disk 0 (drv_index != 0)
  1725. * or if it was disk 0, but there was previously
  1726. * no actual corresponding configured logical drive
  1727. * (raid_leve == -1) then we want to update the
  1728. * logical drive's information.
  1729. */
  1730. if (drv_index || first_time) {
  1731. if (cciss_add_disk(h, disk, drv_index) != 0) {
  1732. cciss_free_gendisk(h, drv_index);
  1733. cciss_free_drive_info(h, drv_index);
  1734. printk(KERN_WARNING "cciss:%d could not update "
  1735. "disk %d\n", h->ctlr, drv_index);
  1736. --h->num_luns;
  1737. }
  1738. }
  1739. freeret:
  1740. kfree(inq_buff);
  1741. kfree(drvinfo);
  1742. return;
  1743. mem_msg:
  1744. printk(KERN_ERR "cciss: out of memory\n");
  1745. goto freeret;
  1746. }
  1747. /* This function will find the first index of the controllers drive array
  1748. * that has a null drv pointer and allocate the drive info struct and
  1749. * will return that index This is where new drives will be added.
  1750. * If the index to be returned is greater than the highest_lun index for
  1751. * the controller then highest_lun is set * to this new index.
  1752. * If there are no available indexes or if tha allocation fails, then -1
  1753. * is returned. * "controller_node" is used to know if this is a real
  1754. * logical drive, or just the controller node, which determines if this
  1755. * counts towards highest_lun.
  1756. */
  1757. static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
  1758. {
  1759. int i;
  1760. drive_info_struct *drv;
  1761. /* Search for an empty slot for our drive info */
  1762. for (i = 0; i < CISS_MAX_LUN; i++) {
  1763. /* if not cxd0 case, and it's occupied, skip it. */
  1764. if (h->drv[i] && i != 0)
  1765. continue;
  1766. /*
  1767. * If it's cxd0 case, and drv is alloc'ed already, and a
  1768. * disk is configured there, skip it.
  1769. */
  1770. if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
  1771. continue;
  1772. /*
  1773. * We've found an empty slot. Update highest_lun
  1774. * provided this isn't just the fake cxd0 controller node.
  1775. */
  1776. if (i > h->highest_lun && !controller_node)
  1777. h->highest_lun = i;
  1778. /* If adding a real disk at cxd0, and it's already alloc'ed */
  1779. if (i == 0 && h->drv[i] != NULL)
  1780. return i;
  1781. /*
  1782. * Found an empty slot, not already alloc'ed. Allocate it.
  1783. * Mark it with raid_level == -1, so we know it's new later on.
  1784. */
  1785. drv = kzalloc(sizeof(*drv), GFP_KERNEL);
  1786. if (!drv)
  1787. return -1;
  1788. drv->raid_level = -1; /* so we know it's new */
  1789. h->drv[i] = drv;
  1790. return i;
  1791. }
  1792. return -1;
  1793. }
  1794. static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
  1795. {
  1796. kfree(h->drv[drv_index]);
  1797. h->drv[drv_index] = NULL;
  1798. }
  1799. static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
  1800. {
  1801. put_disk(h->gendisk[drv_index]);
  1802. h->gendisk[drv_index] = NULL;
  1803. }
  1804. /* cciss_add_gendisk finds a free hba[]->drv structure
  1805. * and allocates a gendisk if needed, and sets the lunid
  1806. * in the drvinfo structure. It returns the index into
  1807. * the ->drv[] array, or -1 if none are free.
  1808. * is_controller_node indicates whether highest_lun should
  1809. * count this disk, or if it's only being added to provide
  1810. * a means to talk to the controller in case no logical
  1811. * drives have yet been configured.
  1812. */
  1813. static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
  1814. int controller_node)
  1815. {
  1816. int drv_index;
  1817. drv_index = cciss_alloc_drive_info(h, controller_node);
  1818. if (drv_index == -1)
  1819. return -1;
  1820. /*Check if the gendisk needs to be allocated */
  1821. if (!h->gendisk[drv_index]) {
  1822. h->gendisk[drv_index] =
  1823. alloc_disk(1 << NWD_SHIFT);
  1824. if (!h->gendisk[drv_index]) {
  1825. printk(KERN_ERR "cciss%d: could not "
  1826. "allocate a new disk %d\n",
  1827. h->ctlr, drv_index);
  1828. goto err_free_drive_info;
  1829. }
  1830. }
  1831. memcpy(h->drv[drv_index]->LunID, lunid,
  1832. sizeof(h->drv[drv_index]->LunID));
  1833. if (cciss_create_ld_sysfs_entry(h, drv_index))
  1834. goto err_free_disk;
  1835. /* Don't need to mark this busy because nobody */
  1836. /* else knows about this disk yet to contend */
  1837. /* for access to it. */
  1838. h->drv[drv_index]->busy_configuring = 0;
  1839. wmb();
  1840. return drv_index;
  1841. err_free_disk:
  1842. cciss_free_gendisk(h, drv_index);
  1843. err_free_drive_info:
  1844. cciss_free_drive_info(h, drv_index);
  1845. return -1;
  1846. }
  1847. /* This is for the special case of a controller which
  1848. * has no logical drives. In this case, we still need
  1849. * to register a disk so the controller can be accessed
  1850. * by the Array Config Utility.
  1851. */
  1852. static void cciss_add_controller_node(ctlr_info_t *h)
  1853. {
  1854. struct gendisk *disk;
  1855. int drv_index;
  1856. if (h->gendisk[0] != NULL) /* already did this? Then bail. */
  1857. return;
  1858. drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
  1859. if (drv_index == -1)
  1860. goto error;
  1861. h->drv[drv_index]->block_size = 512;
  1862. h->drv[drv_index]->nr_blocks = 0;
  1863. h->drv[drv_index]->heads = 0;
  1864. h->drv[drv_index]->sectors = 0;
  1865. h->drv[drv_index]->cylinders = 0;
  1866. h->drv[drv_index]->raid_level = -1;
  1867. memset(h->drv[drv_index]->serial_no, 0, 16);
  1868. disk = h->gendisk[drv_index];
  1869. if (cciss_add_disk(h, disk, drv_index) == 0)
  1870. return;
  1871. cciss_free_gendisk(h, drv_index);
  1872. cciss_free_drive_info(h, drv_index);
  1873. error:
  1874. printk(KERN_WARNING "cciss%d: could not "
  1875. "add disk 0.\n", h->ctlr);
  1876. return;
  1877. }
  1878. /* This function will add and remove logical drives from the Logical
  1879. * drive array of the controller and maintain persistency of ordering
  1880. * so that mount points are preserved until the next reboot. This allows
  1881. * for the removal of logical drives in the middle of the drive array
  1882. * without a re-ordering of those drives.
  1883. * INPUT
  1884. * h = The controller to perform the operations on
  1885. */
  1886. static int rebuild_lun_table(ctlr_info_t *h, int first_time,
  1887. int via_ioctl)
  1888. {
  1889. int ctlr = h->ctlr;
  1890. int num_luns;
  1891. ReportLunData_struct *ld_buff = NULL;
  1892. int return_code;
  1893. int listlength = 0;
  1894. int i;
  1895. int drv_found;
  1896. int drv_index = 0;
  1897. unsigned char lunid[8] = CTLR_LUNID;
  1898. unsigned long flags;
  1899. if (!capable(CAP_SYS_RAWIO))
  1900. return -EPERM;
  1901. /* Set busy_configuring flag for this operation */
  1902. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1903. if (h->busy_configuring) {
  1904. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1905. return -EBUSY;
  1906. }
  1907. h->busy_configuring = 1;
  1908. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1909. ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
  1910. if (ld_buff == NULL)
  1911. goto mem_msg;
  1912. return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
  1913. sizeof(ReportLunData_struct),
  1914. 0, CTLR_LUNID, TYPE_CMD);
  1915. if (return_code == IO_OK)
  1916. listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
  1917. else { /* reading number of logical volumes failed */
  1918. printk(KERN_WARNING "cciss: report logical volume"
  1919. " command failed\n");
  1920. listlength = 0;
  1921. goto freeret;
  1922. }
  1923. num_luns = listlength / 8; /* 8 bytes per entry */
  1924. if (num_luns > CISS_MAX_LUN) {
  1925. num_luns = CISS_MAX_LUN;
  1926. printk(KERN_WARNING "cciss: more luns configured"
  1927. " on controller than can be handled by"
  1928. " this driver.\n");
  1929. }
  1930. if (num_luns == 0)
  1931. cciss_add_controller_node(h);
  1932. /* Compare controller drive array to driver's drive array
  1933. * to see if any drives are missing on the controller due
  1934. * to action of Array Config Utility (user deletes drive)
  1935. * and deregister logical drives which have disappeared.
  1936. */
  1937. for (i = 0; i <= h->highest_lun; i++) {
  1938. int j;
  1939. drv_found = 0;
  1940. /* skip holes in the array from already deleted drives */
  1941. if (h->drv[i] == NULL)
  1942. continue;
  1943. for (j = 0; j < num_luns; j++) {
  1944. memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
  1945. if (memcmp(h->drv[i]->LunID, lunid,
  1946. sizeof(lunid)) == 0) {
  1947. drv_found = 1;
  1948. break;
  1949. }
  1950. }
  1951. if (!drv_found) {
  1952. /* Deregister it from the OS, it's gone. */
  1953. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  1954. h->drv[i]->busy_configuring = 1;
  1955. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  1956. return_code = deregister_disk(h, i, 1, via_ioctl);
  1957. if (h->drv[i] != NULL)
  1958. h->drv[i]->busy_configuring = 0;
  1959. }
  1960. }
  1961. /* Compare controller drive array to driver's drive array.
  1962. * Check for updates in the drive information and any new drives
  1963. * on the controller due to ACU adding logical drives, or changing
  1964. * a logical drive's size, etc. Reregister any new/changed drives
  1965. */
  1966. for (i = 0; i < num_luns; i++) {
  1967. int j;
  1968. drv_found = 0;
  1969. memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
  1970. /* Find if the LUN is already in the drive array
  1971. * of the driver. If so then update its info
  1972. * if not in use. If it does not exist then find
  1973. * the first free index and add it.
  1974. */
  1975. for (j = 0; j <= h->highest_lun; j++) {
  1976. if (h->drv[j] != NULL &&
  1977. memcmp(h->drv[j]->LunID, lunid,
  1978. sizeof(h->drv[j]->LunID)) == 0) {
  1979. drv_index = j;
  1980. drv_found = 1;
  1981. break;
  1982. }
  1983. }
  1984. /* check if the drive was found already in the array */
  1985. if (!drv_found) {
  1986. drv_index = cciss_add_gendisk(h, lunid, 0);
  1987. if (drv_index == -1)
  1988. goto freeret;
  1989. }
  1990. cciss_update_drive_info(ctlr, drv_index, first_time,
  1991. via_ioctl);
  1992. } /* end for */
  1993. freeret:
  1994. kfree(ld_buff);
  1995. h->busy_configuring = 0;
  1996. /* We return -1 here to tell the ACU that we have registered/updated
  1997. * all of the drives that we can and to keep it from calling us
  1998. * additional times.
  1999. */
  2000. return -1;
  2001. mem_msg:
  2002. printk(KERN_ERR "cciss: out of memory\n");
  2003. h->busy_configuring = 0;
  2004. goto freeret;
  2005. }
  2006. static void cciss_clear_drive_info(drive_info_struct *drive_info)
  2007. {
  2008. /* zero out the disk size info */
  2009. drive_info->nr_blocks = 0;
  2010. drive_info->block_size = 0;
  2011. drive_info->heads = 0;
  2012. drive_info->sectors = 0;
  2013. drive_info->cylinders = 0;
  2014. drive_info->raid_level = -1;
  2015. memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
  2016. memset(drive_info->model, 0, sizeof(drive_info->model));
  2017. memset(drive_info->rev, 0, sizeof(drive_info->rev));
  2018. memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
  2019. /*
  2020. * don't clear the LUNID though, we need to remember which
  2021. * one this one is.
  2022. */
  2023. }
  2024. /* This function will deregister the disk and it's queue from the
  2025. * kernel. It must be called with the controller lock held and the
  2026. * drv structures busy_configuring flag set. It's parameters are:
  2027. *
  2028. * disk = This is the disk to be deregistered
  2029. * drv = This is the drive_info_struct associated with the disk to be
  2030. * deregistered. It contains information about the disk used
  2031. * by the driver.
  2032. * clear_all = This flag determines whether or not the disk information
  2033. * is going to be completely cleared out and the highest_lun
  2034. * reset. Sometimes we want to clear out information about
  2035. * the disk in preparation for re-adding it. In this case
  2036. * the highest_lun should be left unchanged and the LunID
  2037. * should not be cleared.
  2038. * via_ioctl
  2039. * This indicates whether we've reached this path via ioctl.
  2040. * This affects the maximum usage count allowed for c0d0 to be messed with.
  2041. * If this path is reached via ioctl(), then the max_usage_count will
  2042. * be 1, as the process calling ioctl() has got to have the device open.
  2043. * If we get here via sysfs, then the max usage count will be zero.
  2044. */
  2045. static int deregister_disk(ctlr_info_t *h, int drv_index,
  2046. int clear_all, int via_ioctl)
  2047. {
  2048. int i;
  2049. struct gendisk *disk;
  2050. drive_info_struct *drv;
  2051. int recalculate_highest_lun;
  2052. if (!capable(CAP_SYS_RAWIO))
  2053. return -EPERM;
  2054. drv = h->drv[drv_index];
  2055. disk = h->gendisk[drv_index];
  2056. /* make sure logical volume is NOT is use */
  2057. if (clear_all || (h->gendisk[0] == disk)) {
  2058. if (drv->usage_count > via_ioctl)
  2059. return -EBUSY;
  2060. } else if (drv->usage_count > 0)
  2061. return -EBUSY;
  2062. recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
  2063. /* invalidate the devices and deregister the disk. If it is disk
  2064. * zero do not deregister it but just zero out it's values. This
  2065. * allows us to delete disk zero but keep the controller registered.
  2066. */
  2067. if (h->gendisk[0] != disk) {
  2068. struct request_queue *q = disk->queue;
  2069. if (disk->flags & GENHD_FL_UP) {
  2070. cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
  2071. del_gendisk(disk);
  2072. }
  2073. if (q)
  2074. blk_cleanup_queue(q);
  2075. /* If clear_all is set then we are deleting the logical
  2076. * drive, not just refreshing its info. For drives
  2077. * other than disk 0 we will call put_disk. We do not
  2078. * do this for disk 0 as we need it to be able to
  2079. * configure the controller.
  2080. */
  2081. if (clear_all){
  2082. /* This isn't pretty, but we need to find the
  2083. * disk in our array and NULL our the pointer.
  2084. * This is so that we will call alloc_disk if
  2085. * this index is used again later.
  2086. */
  2087. for (i=0; i < CISS_MAX_LUN; i++){
  2088. if (h->gendisk[i] == disk) {
  2089. h->gendisk[i] = NULL;
  2090. break;
  2091. }
  2092. }
  2093. put_disk(disk);
  2094. }
  2095. } else {
  2096. set_capacity(disk, 0);
  2097. cciss_clear_drive_info(drv);
  2098. }
  2099. --h->num_luns;
  2100. /* if it was the last disk, find the new hightest lun */
  2101. if (clear_all && recalculate_highest_lun) {
  2102. int i, newhighest = -1;
  2103. for (i = 0; i <= h->highest_lun; i++) {
  2104. /* if the disk has size > 0, it is available */
  2105. if (h->drv[i] && h->drv[i]->heads)
  2106. newhighest = i;
  2107. }
  2108. h->highest_lun = newhighest;
  2109. }
  2110. return 0;
  2111. }
  2112. static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
  2113. size_t size, __u8 page_code, unsigned char *scsi3addr,
  2114. int cmd_type)
  2115. {
  2116. ctlr_info_t *h = hba[ctlr];
  2117. u64bit buff_dma_handle;
  2118. int status = IO_OK;
  2119. c->cmd_type = CMD_IOCTL_PEND;
  2120. c->Header.ReplyQueue = 0;
  2121. if (buff != NULL) {
  2122. c->Header.SGList = 1;
  2123. c->Header.SGTotal = 1;
  2124. } else {
  2125. c->Header.SGList = 0;
  2126. c->Header.SGTotal = 0;
  2127. }
  2128. c->Header.Tag.lower = c->busaddr;
  2129. memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
  2130. c->Request.Type.Type = cmd_type;
  2131. if (cmd_type == TYPE_CMD) {
  2132. switch (cmd) {
  2133. case CISS_INQUIRY:
  2134. /* are we trying to read a vital product page */
  2135. if (page_code != 0) {
  2136. c->Request.CDB[1] = 0x01;
  2137. c->Request.CDB[2] = page_code;
  2138. }
  2139. c->Request.CDBLen = 6;
  2140. c->Request.Type.Attribute = ATTR_SIMPLE;
  2141. c->Request.Type.Direction = XFER_READ;
  2142. c->Request.Timeout = 0;
  2143. c->Request.CDB[0] = CISS_INQUIRY;
  2144. c->Request.CDB[4] = size & 0xFF;
  2145. break;
  2146. case CISS_REPORT_LOG:
  2147. case CISS_REPORT_PHYS:
  2148. /* Talking to controller so It's a physical command
  2149. mode = 00 target = 0. Nothing to write.
  2150. */
  2151. c->Request.CDBLen = 12;
  2152. c->Request.Type.Attribute = ATTR_SIMPLE;
  2153. c->Request.Type.Direction = XFER_READ;
  2154. c->Request.Timeout = 0;
  2155. c->Request.CDB[0] = cmd;
  2156. c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
  2157. c->Request.CDB[7] = (size >> 16) & 0xFF;
  2158. c->Request.CDB[8] = (size >> 8) & 0xFF;
  2159. c->Request.CDB[9] = size & 0xFF;
  2160. break;
  2161. case CCISS_READ_CAPACITY:
  2162. c->Request.CDBLen = 10;
  2163. c->Request.Type.Attribute = ATTR_SIMPLE;
  2164. c->Request.Type.Direction = XFER_READ;
  2165. c->Request.Timeout = 0;
  2166. c->Request.CDB[0] = cmd;
  2167. break;
  2168. case CCISS_READ_CAPACITY_16:
  2169. c->Request.CDBLen = 16;
  2170. c->Request.Type.Attribute = ATTR_SIMPLE;
  2171. c->Request.Type.Direction = XFER_READ;
  2172. c->Request.Timeout = 0;
  2173. c->Request.CDB[0] = cmd;
  2174. c->Request.CDB[1] = 0x10;
  2175. c->Request.CDB[10] = (size >> 24) & 0xFF;
  2176. c->Request.CDB[11] = (size >> 16) & 0xFF;
  2177. c->Request.CDB[12] = (size >> 8) & 0xFF;
  2178. c->Request.CDB[13] = size & 0xFF;
  2179. c->Request.Timeout = 0;
  2180. c->Request.CDB[0] = cmd;
  2181. break;
  2182. case CCISS_CACHE_FLUSH:
  2183. c->Request.CDBLen = 12;
  2184. c->Request.Type.Attribute = ATTR_SIMPLE;
  2185. c->Request.Type.Direction = XFER_WRITE;
  2186. c->Request.Timeout = 0;
  2187. c->Request.CDB[0] = BMIC_WRITE;
  2188. c->Request.CDB[6] = BMIC_CACHE_FLUSH;
  2189. break;
  2190. case TEST_UNIT_READY:
  2191. c->Request.CDBLen = 6;
  2192. c->Request.Type.Attribute = ATTR_SIMPLE;
  2193. c->Request.Type.Direction = XFER_NONE;
  2194. c->Request.Timeout = 0;
  2195. break;
  2196. default:
  2197. printk(KERN_WARNING
  2198. "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
  2199. return IO_ERROR;
  2200. }
  2201. } else if (cmd_type == TYPE_MSG) {
  2202. switch (cmd) {
  2203. case 0: /* ABORT message */
  2204. c->Request.CDBLen = 12;
  2205. c->Request.Type.Attribute = ATTR_SIMPLE;
  2206. c->Request.Type.Direction = XFER_WRITE;
  2207. c->Request.Timeout = 0;
  2208. c->Request.CDB[0] = cmd; /* abort */
  2209. c->Request.CDB[1] = 0; /* abort a command */
  2210. /* buff contains the tag of the command to abort */
  2211. memcpy(&c->Request.CDB[4], buff, 8);
  2212. break;
  2213. case 1: /* RESET message */
  2214. c->Request.CDBLen = 16;
  2215. c->Request.Type.Attribute = ATTR_SIMPLE;
  2216. c->Request.Type.Direction = XFER_NONE;
  2217. c->Request.Timeout = 0;
  2218. memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
  2219. c->Request.CDB[0] = cmd; /* reset */
  2220. c->Request.CDB[1] = 0x03; /* reset a target */
  2221. break;
  2222. case 3: /* No-Op message */
  2223. c->Request.CDBLen = 1;
  2224. c->Request.Type.Attribute = ATTR_SIMPLE;
  2225. c->Request.Type.Direction = XFER_WRITE;
  2226. c->Request.Timeout = 0;
  2227. c->Request.CDB[0] = cmd;
  2228. break;
  2229. default:
  2230. printk(KERN_WARNING
  2231. "cciss%d: unknown message type %d\n", ctlr, cmd);
  2232. return IO_ERROR;
  2233. }
  2234. } else {
  2235. printk(KERN_WARNING
  2236. "cciss%d: unknown command type %d\n", ctlr, cmd_type);
  2237. return IO_ERROR;
  2238. }
  2239. /* Fill in the scatter gather information */
  2240. if (size > 0) {
  2241. buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
  2242. buff, size,
  2243. PCI_DMA_BIDIRECTIONAL);
  2244. c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
  2245. c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
  2246. c->SG[0].Len = size;
  2247. c->SG[0].Ext = 0; /* we are not chaining */
  2248. }
  2249. return status;
  2250. }
  2251. static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
  2252. {
  2253. switch (c->err_info->ScsiStatus) {
  2254. case SAM_STAT_GOOD:
  2255. return IO_OK;
  2256. case SAM_STAT_CHECK_CONDITION:
  2257. switch (0xf & c->err_info->SenseInfo[2]) {
  2258. case 0: return IO_OK; /* no sense */
  2259. case 1: return IO_OK; /* recovered error */
  2260. default:
  2261. printk(KERN_WARNING "cciss%d: cmd 0x%02x "
  2262. "check condition, sense key = 0x%02x\n",
  2263. h->ctlr, c->Request.CDB[0],
  2264. c->err_info->SenseInfo[2]);
  2265. }
  2266. break;
  2267. default:
  2268. printk(KERN_WARNING "cciss%d: cmd 0x%02x"
  2269. "scsi status = 0x%02x\n", h->ctlr,
  2270. c->Request.CDB[0], c->err_info->ScsiStatus);
  2271. break;
  2272. }
  2273. return IO_ERROR;
  2274. }
  2275. static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
  2276. {
  2277. int return_status = IO_OK;
  2278. if (c->err_info->CommandStatus == CMD_SUCCESS)
  2279. return IO_OK;
  2280. switch (c->err_info->CommandStatus) {
  2281. case CMD_TARGET_STATUS:
  2282. return_status = check_target_status(h, c);
  2283. break;
  2284. case CMD_DATA_UNDERRUN:
  2285. case CMD_DATA_OVERRUN:
  2286. /* expected for inquiry and report lun commands */
  2287. break;
  2288. case CMD_INVALID:
  2289. printk(KERN_WARNING "cciss: cmd 0x%02x is "
  2290. "reported invalid\n", c->Request.CDB[0]);
  2291. return_status = IO_ERROR;
  2292. break;
  2293. case CMD_PROTOCOL_ERR:
  2294. printk(KERN_WARNING "cciss: cmd 0x%02x has "
  2295. "protocol error \n", c->Request.CDB[0]);
  2296. return_status = IO_ERROR;
  2297. break;
  2298. case CMD_HARDWARE_ERR:
  2299. printk(KERN_WARNING "cciss: cmd 0x%02x had "
  2300. " hardware error\n", c->Request.CDB[0]);
  2301. return_status = IO_ERROR;
  2302. break;
  2303. case CMD_CONNECTION_LOST:
  2304. printk(KERN_WARNING "cciss: cmd 0x%02x had "
  2305. "connection lost\n", c->Request.CDB[0]);
  2306. return_status = IO_ERROR;
  2307. break;
  2308. case CMD_ABORTED:
  2309. printk(KERN_WARNING "cciss: cmd 0x%02x was "
  2310. "aborted\n", c->Request.CDB[0]);
  2311. return_status = IO_ERROR;
  2312. break;
  2313. case CMD_ABORT_FAILED:
  2314. printk(KERN_WARNING "cciss: cmd 0x%02x reports "
  2315. "abort failed\n", c->Request.CDB[0]);
  2316. return_status = IO_ERROR;
  2317. break;
  2318. case CMD_UNSOLICITED_ABORT:
  2319. printk(KERN_WARNING
  2320. "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
  2321. c->Request.CDB[0]);
  2322. return_status = IO_NEEDS_RETRY;
  2323. break;
  2324. default:
  2325. printk(KERN_WARNING "cciss: cmd 0x%02x returned "
  2326. "unknown status %x\n", c->Request.CDB[0],
  2327. c->err_info->CommandStatus);
  2328. return_status = IO_ERROR;
  2329. }
  2330. return return_status;
  2331. }
  2332. static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
  2333. int attempt_retry)
  2334. {
  2335. DECLARE_COMPLETION_ONSTACK(wait);
  2336. u64bit buff_dma_handle;
  2337. unsigned long flags;
  2338. int return_status = IO_OK;
  2339. resend_cmd2:
  2340. c->waiting = &wait;
  2341. /* Put the request on the tail of the queue and send it */
  2342. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  2343. addQ(&h->reqQ, c);
  2344. h->Qdepth++;
  2345. start_io(h);
  2346. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  2347. wait_for_completion(&wait);
  2348. if (c->err_info->CommandStatus == 0 || !attempt_retry)
  2349. goto command_done;
  2350. return_status = process_sendcmd_error(h, c);
  2351. if (return_status == IO_NEEDS_RETRY &&
  2352. c->retry_count < MAX_CMD_RETRIES) {
  2353. printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
  2354. c->Request.CDB[0]);
  2355. c->retry_count++;
  2356. /* erase the old error information */
  2357. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2358. return_status = IO_OK;
  2359. INIT_COMPLETION(wait);
  2360. goto resend_cmd2;
  2361. }
  2362. command_done:
  2363. /* unlock the buffers from DMA */
  2364. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2365. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2366. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2367. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2368. return return_status;
  2369. }
  2370. static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
  2371. __u8 page_code, unsigned char scsi3addr[],
  2372. int cmd_type)
  2373. {
  2374. ctlr_info_t *h = hba[ctlr];
  2375. CommandList_struct *c;
  2376. int return_status;
  2377. c = cmd_alloc(h, 0);
  2378. if (!c)
  2379. return -ENOMEM;
  2380. return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
  2381. scsi3addr, cmd_type);
  2382. if (return_status == IO_OK)
  2383. return_status = sendcmd_withirq_core(h, c, 1);
  2384. cmd_free(h, c, 0);
  2385. return return_status;
  2386. }
  2387. static void cciss_geometry_inquiry(int ctlr, int logvol,
  2388. int withirq, sector_t total_size,
  2389. unsigned int block_size,
  2390. InquiryData_struct *inq_buff,
  2391. drive_info_struct *drv)
  2392. {
  2393. int return_code;
  2394. unsigned long t;
  2395. unsigned char scsi3addr[8];
  2396. memset(inq_buff, 0, sizeof(InquiryData_struct));
  2397. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2398. if (withirq)
  2399. return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
  2400. inq_buff, sizeof(*inq_buff),
  2401. 0xC1, scsi3addr, TYPE_CMD);
  2402. else
  2403. return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
  2404. sizeof(*inq_buff), 0xC1, scsi3addr,
  2405. TYPE_CMD);
  2406. if (return_code == IO_OK) {
  2407. if (inq_buff->data_byte[8] == 0xFF) {
  2408. printk(KERN_WARNING
  2409. "cciss: reading geometry failed, volume "
  2410. "does not support reading geometry\n");
  2411. drv->heads = 255;
  2412. drv->sectors = 32; // Sectors per track
  2413. drv->cylinders = total_size + 1;
  2414. drv->raid_level = RAID_UNKNOWN;
  2415. } else {
  2416. drv->heads = inq_buff->data_byte[6];
  2417. drv->sectors = inq_buff->data_byte[7];
  2418. drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
  2419. drv->cylinders += inq_buff->data_byte[5];
  2420. drv->raid_level = inq_buff->data_byte[8];
  2421. }
  2422. drv->block_size = block_size;
  2423. drv->nr_blocks = total_size + 1;
  2424. t = drv->heads * drv->sectors;
  2425. if (t > 1) {
  2426. sector_t real_size = total_size + 1;
  2427. unsigned long rem = sector_div(real_size, t);
  2428. if (rem)
  2429. real_size++;
  2430. drv->cylinders = real_size;
  2431. }
  2432. } else { /* Get geometry failed */
  2433. printk(KERN_WARNING "cciss: reading geometry failed\n");
  2434. }
  2435. }
  2436. static void
  2437. cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
  2438. unsigned int *block_size)
  2439. {
  2440. ReadCapdata_struct *buf;
  2441. int return_code;
  2442. unsigned char scsi3addr[8];
  2443. buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
  2444. if (!buf) {
  2445. printk(KERN_WARNING "cciss: out of memory\n");
  2446. return;
  2447. }
  2448. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2449. if (withirq)
  2450. return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
  2451. ctlr, buf, sizeof(ReadCapdata_struct),
  2452. 0, scsi3addr, TYPE_CMD);
  2453. else
  2454. return_code = sendcmd(CCISS_READ_CAPACITY,
  2455. ctlr, buf, sizeof(ReadCapdata_struct),
  2456. 0, scsi3addr, TYPE_CMD);
  2457. if (return_code == IO_OK) {
  2458. *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
  2459. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2460. } else { /* read capacity command failed */
  2461. printk(KERN_WARNING "cciss: read capacity failed\n");
  2462. *total_size = 0;
  2463. *block_size = BLOCK_SIZE;
  2464. }
  2465. kfree(buf);
  2466. }
  2467. static void
  2468. cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
  2469. {
  2470. ReadCapdata_struct_16 *buf;
  2471. int return_code;
  2472. unsigned char scsi3addr[8];
  2473. buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
  2474. if (!buf) {
  2475. printk(KERN_WARNING "cciss: out of memory\n");
  2476. return;
  2477. }
  2478. log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
  2479. if (withirq) {
  2480. return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
  2481. ctlr, buf, sizeof(ReadCapdata_struct_16),
  2482. 0, scsi3addr, TYPE_CMD);
  2483. }
  2484. else {
  2485. return_code = sendcmd(CCISS_READ_CAPACITY_16,
  2486. ctlr, buf, sizeof(ReadCapdata_struct_16),
  2487. 0, scsi3addr, TYPE_CMD);
  2488. }
  2489. if (return_code == IO_OK) {
  2490. *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
  2491. *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
  2492. } else { /* read capacity command failed */
  2493. printk(KERN_WARNING "cciss: read capacity failed\n");
  2494. *total_size = 0;
  2495. *block_size = BLOCK_SIZE;
  2496. }
  2497. printk(KERN_INFO " blocks= %llu block_size= %d\n",
  2498. (unsigned long long)*total_size+1, *block_size);
  2499. kfree(buf);
  2500. }
  2501. static int cciss_revalidate(struct gendisk *disk)
  2502. {
  2503. ctlr_info_t *h = get_host(disk);
  2504. drive_info_struct *drv = get_drv(disk);
  2505. int logvol;
  2506. int FOUND = 0;
  2507. unsigned int block_size;
  2508. sector_t total_size;
  2509. InquiryData_struct *inq_buff = NULL;
  2510. for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
  2511. if (memcmp(h->drv[logvol]->LunID, drv->LunID,
  2512. sizeof(drv->LunID)) == 0) {
  2513. FOUND = 1;
  2514. break;
  2515. }
  2516. }
  2517. if (!FOUND)
  2518. return 1;
  2519. inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  2520. if (inq_buff == NULL) {
  2521. printk(KERN_WARNING "cciss: out of memory\n");
  2522. return 1;
  2523. }
  2524. if (h->cciss_read == CCISS_READ_10) {
  2525. cciss_read_capacity(h->ctlr, logvol, 1,
  2526. &total_size, &block_size);
  2527. } else {
  2528. cciss_read_capacity_16(h->ctlr, logvol, 1,
  2529. &total_size, &block_size);
  2530. }
  2531. cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
  2532. inq_buff, drv);
  2533. blk_queue_logical_block_size(drv->queue, drv->block_size);
  2534. set_capacity(disk, drv->nr_blocks);
  2535. kfree(inq_buff);
  2536. return 0;
  2537. }
  2538. /*
  2539. * Wait polling for a command to complete.
  2540. * The memory mapped FIFO is polled for the completion.
  2541. * Used only at init time, interrupts from the HBA are disabled.
  2542. */
  2543. static unsigned long pollcomplete(int ctlr)
  2544. {
  2545. unsigned long done;
  2546. int i;
  2547. /* Wait (up to 20 seconds) for a command to complete */
  2548. for (i = 20 * HZ; i > 0; i--) {
  2549. done = hba[ctlr]->access.command_completed(hba[ctlr]);
  2550. if (done == FIFO_EMPTY)
  2551. schedule_timeout_uninterruptible(1);
  2552. else
  2553. return done;
  2554. }
  2555. /* Invalid address to tell caller we ran out of time */
  2556. return 1;
  2557. }
  2558. /* Send command c to controller h and poll for it to complete.
  2559. * Turns interrupts off on the board. Used at driver init time
  2560. * and during SCSI error recovery.
  2561. */
  2562. static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
  2563. {
  2564. int i;
  2565. unsigned long complete;
  2566. int status = IO_ERROR;
  2567. u64bit buff_dma_handle;
  2568. resend_cmd1:
  2569. /* Disable interrupt on the board. */
  2570. h->access.set_intr_mask(h, CCISS_INTR_OFF);
  2571. /* Make sure there is room in the command FIFO */
  2572. /* Actually it should be completely empty at this time */
  2573. /* unless we are in here doing error handling for the scsi */
  2574. /* tape side of the driver. */
  2575. for (i = 200000; i > 0; i--) {
  2576. /* if fifo isn't full go */
  2577. if (!(h->access.fifo_full(h)))
  2578. break;
  2579. udelay(10);
  2580. printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
  2581. " waiting!\n", h->ctlr);
  2582. }
  2583. h->access.submit_command(h, c); /* Send the cmd */
  2584. do {
  2585. complete = pollcomplete(h->ctlr);
  2586. #ifdef CCISS_DEBUG
  2587. printk(KERN_DEBUG "cciss: command completed\n");
  2588. #endif /* CCISS_DEBUG */
  2589. if (complete == 1) {
  2590. printk(KERN_WARNING
  2591. "cciss cciss%d: SendCmd Timeout out, "
  2592. "No command list address returned!\n", h->ctlr);
  2593. status = IO_ERROR;
  2594. break;
  2595. }
  2596. /* Make sure it's the command we're expecting. */
  2597. if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
  2598. printk(KERN_WARNING "cciss%d: Unexpected command "
  2599. "completion.\n", h->ctlr);
  2600. continue;
  2601. }
  2602. /* It is our command. If no error, we're done. */
  2603. if (!(complete & CISS_ERROR_BIT)) {
  2604. status = IO_OK;
  2605. break;
  2606. }
  2607. /* There is an error... */
  2608. /* if data overrun or underun on Report command ignore it */
  2609. if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
  2610. (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
  2611. (c->Request.CDB[0] == CISS_INQUIRY)) &&
  2612. ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
  2613. (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
  2614. complete = c->busaddr;
  2615. status = IO_OK;
  2616. break;
  2617. }
  2618. if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
  2619. printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
  2620. h->ctlr, c);
  2621. if (c->retry_count < MAX_CMD_RETRIES) {
  2622. printk(KERN_WARNING "cciss%d: retrying %p\n",
  2623. h->ctlr, c);
  2624. c->retry_count++;
  2625. /* erase the old error information */
  2626. memset(c->err_info, 0, sizeof(c->err_info));
  2627. goto resend_cmd1;
  2628. }
  2629. printk(KERN_WARNING "cciss%d: retried %p too many "
  2630. "times\n", h->ctlr, c);
  2631. status = IO_ERROR;
  2632. break;
  2633. }
  2634. if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
  2635. printk(KERN_WARNING "cciss%d: command could not be "
  2636. "aborted.\n", h->ctlr);
  2637. status = IO_ERROR;
  2638. break;
  2639. }
  2640. if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
  2641. status = check_target_status(h, c);
  2642. break;
  2643. }
  2644. printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
  2645. printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
  2646. c->Request.CDB[0], c->err_info->CommandStatus);
  2647. status = IO_ERROR;
  2648. break;
  2649. } while (1);
  2650. /* unlock the data buffer from DMA */
  2651. buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
  2652. buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
  2653. pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
  2654. c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
  2655. return status;
  2656. }
  2657. /*
  2658. * Send a command to the controller, and wait for it to complete.
  2659. * Used at init time, and during SCSI error recovery.
  2660. */
  2661. static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
  2662. __u8 page_code, unsigned char *scsi3addr, int cmd_type)
  2663. {
  2664. CommandList_struct *c;
  2665. int status;
  2666. c = cmd_alloc(hba[ctlr], 1);
  2667. if (!c) {
  2668. printk(KERN_WARNING "cciss: unable to get memory");
  2669. return IO_ERROR;
  2670. }
  2671. status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
  2672. scsi3addr, cmd_type);
  2673. if (status == IO_OK)
  2674. status = sendcmd_core(hba[ctlr], c);
  2675. cmd_free(hba[ctlr], c, 1);
  2676. return status;
  2677. }
  2678. /*
  2679. * Map (physical) PCI mem into (virtual) kernel space
  2680. */
  2681. static void __iomem *remap_pci_mem(ulong base, ulong size)
  2682. {
  2683. ulong page_base = ((ulong) base) & PAGE_MASK;
  2684. ulong page_offs = ((ulong) base) - page_base;
  2685. void __iomem *page_remapped = ioremap(page_base, page_offs + size);
  2686. return page_remapped ? (page_remapped + page_offs) : NULL;
  2687. }
  2688. /*
  2689. * Takes jobs of the Q and sends them to the hardware, then puts it on
  2690. * the Q to wait for completion.
  2691. */
  2692. static void start_io(ctlr_info_t *h)
  2693. {
  2694. CommandList_struct *c;
  2695. while (!hlist_empty(&h->reqQ)) {
  2696. c = hlist_entry(h->reqQ.first, CommandList_struct, list);
  2697. /* can't do anything if fifo is full */
  2698. if ((h->access.fifo_full(h))) {
  2699. printk(KERN_WARNING "cciss: fifo full\n");
  2700. break;
  2701. }
  2702. /* Get the first entry from the Request Q */
  2703. removeQ(c);
  2704. h->Qdepth--;
  2705. /* Tell the controller execute command */
  2706. h->access.submit_command(h, c);
  2707. /* Put job onto the completed Q */
  2708. addQ(&h->cmpQ, c);
  2709. }
  2710. }
  2711. /* Assumes that CCISS_LOCK(h->ctlr) is held. */
  2712. /* Zeros out the error record and then resends the command back */
  2713. /* to the controller */
  2714. static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
  2715. {
  2716. /* erase the old error information */
  2717. memset(c->err_info, 0, sizeof(ErrorInfo_struct));
  2718. /* add it to software queue and then send it to the controller */
  2719. addQ(&h->reqQ, c);
  2720. h->Qdepth++;
  2721. if (h->Qdepth > h->maxQsinceinit)
  2722. h->maxQsinceinit = h->Qdepth;
  2723. start_io(h);
  2724. }
  2725. static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
  2726. unsigned int msg_byte, unsigned int host_byte,
  2727. unsigned int driver_byte)
  2728. {
  2729. /* inverse of macros in scsi.h */
  2730. return (scsi_status_byte & 0xff) |
  2731. ((msg_byte & 0xff) << 8) |
  2732. ((host_byte & 0xff) << 16) |
  2733. ((driver_byte & 0xff) << 24);
  2734. }
  2735. static inline int evaluate_target_status(ctlr_info_t *h,
  2736. CommandList_struct *cmd, int *retry_cmd)
  2737. {
  2738. unsigned char sense_key;
  2739. unsigned char status_byte, msg_byte, host_byte, driver_byte;
  2740. int error_value;
  2741. *retry_cmd = 0;
  2742. /* If we get in here, it means we got "target status", that is, scsi status */
  2743. status_byte = cmd->err_info->ScsiStatus;
  2744. driver_byte = DRIVER_OK;
  2745. msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
  2746. if (blk_pc_request(cmd->rq))
  2747. host_byte = DID_PASSTHROUGH;
  2748. else
  2749. host_byte = DID_OK;
  2750. error_value = make_status_bytes(status_byte, msg_byte,
  2751. host_byte, driver_byte);
  2752. if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
  2753. if (!blk_pc_request(cmd->rq))
  2754. printk(KERN_WARNING "cciss: cmd %p "
  2755. "has SCSI Status 0x%x\n",
  2756. cmd, cmd->err_info->ScsiStatus);
  2757. return error_value;
  2758. }
  2759. /* check the sense key */
  2760. sense_key = 0xf & cmd->err_info->SenseInfo[2];
  2761. /* no status or recovered error */
  2762. if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
  2763. error_value = 0;
  2764. if (check_for_unit_attention(h, cmd)) {
  2765. *retry_cmd = !blk_pc_request(cmd->rq);
  2766. return 0;
  2767. }
  2768. if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
  2769. if (error_value != 0)
  2770. printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
  2771. " sense key = 0x%x\n", cmd, sense_key);
  2772. return error_value;
  2773. }
  2774. /* SG_IO or similar, copy sense data back */
  2775. if (cmd->rq->sense) {
  2776. if (cmd->rq->sense_len > cmd->err_info->SenseLen)
  2777. cmd->rq->sense_len = cmd->err_info->SenseLen;
  2778. memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
  2779. cmd->rq->sense_len);
  2780. } else
  2781. cmd->rq->sense_len = 0;
  2782. return error_value;
  2783. }
  2784. /* checks the status of the job and calls complete buffers to mark all
  2785. * buffers for the completed job. Note that this function does not need
  2786. * to hold the hba/queue lock.
  2787. */
  2788. static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
  2789. int timeout)
  2790. {
  2791. int retry_cmd = 0;
  2792. struct request *rq = cmd->rq;
  2793. rq->errors = 0;
  2794. if (timeout)
  2795. rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
  2796. if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
  2797. goto after_error_processing;
  2798. switch (cmd->err_info->CommandStatus) {
  2799. case CMD_TARGET_STATUS:
  2800. rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
  2801. break;
  2802. case CMD_DATA_UNDERRUN:
  2803. if (blk_fs_request(cmd->rq)) {
  2804. printk(KERN_WARNING "cciss: cmd %p has"
  2805. " completed with data underrun "
  2806. "reported\n", cmd);
  2807. cmd->rq->resid_len = cmd->err_info->ResidualCnt;
  2808. }
  2809. break;
  2810. case CMD_DATA_OVERRUN:
  2811. if (blk_fs_request(cmd->rq))
  2812. printk(KERN_WARNING "cciss: cmd %p has"
  2813. " completed with data overrun "
  2814. "reported\n", cmd);
  2815. break;
  2816. case CMD_INVALID:
  2817. printk(KERN_WARNING "cciss: cmd %p is "
  2818. "reported invalid\n", cmd);
  2819. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2820. cmd->err_info->CommandStatus, DRIVER_OK,
  2821. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2822. break;
  2823. case CMD_PROTOCOL_ERR:
  2824. printk(KERN_WARNING "cciss: cmd %p has "
  2825. "protocol error \n", cmd);
  2826. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2827. cmd->err_info->CommandStatus, DRIVER_OK,
  2828. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2829. break;
  2830. case CMD_HARDWARE_ERR:
  2831. printk(KERN_WARNING "cciss: cmd %p had "
  2832. " hardware error\n", cmd);
  2833. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2834. cmd->err_info->CommandStatus, DRIVER_OK,
  2835. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2836. break;
  2837. case CMD_CONNECTION_LOST:
  2838. printk(KERN_WARNING "cciss: cmd %p had "
  2839. "connection lost\n", cmd);
  2840. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2841. cmd->err_info->CommandStatus, DRIVER_OK,
  2842. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2843. break;
  2844. case CMD_ABORTED:
  2845. printk(KERN_WARNING "cciss: cmd %p was "
  2846. "aborted\n", cmd);
  2847. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2848. cmd->err_info->CommandStatus, DRIVER_OK,
  2849. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
  2850. break;
  2851. case CMD_ABORT_FAILED:
  2852. printk(KERN_WARNING "cciss: cmd %p reports "
  2853. "abort failed\n", cmd);
  2854. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2855. cmd->err_info->CommandStatus, DRIVER_OK,
  2856. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2857. break;
  2858. case CMD_UNSOLICITED_ABORT:
  2859. printk(KERN_WARNING "cciss%d: unsolicited "
  2860. "abort %p\n", h->ctlr, cmd);
  2861. if (cmd->retry_count < MAX_CMD_RETRIES) {
  2862. retry_cmd = 1;
  2863. printk(KERN_WARNING
  2864. "cciss%d: retrying %p\n", h->ctlr, cmd);
  2865. cmd->retry_count++;
  2866. } else
  2867. printk(KERN_WARNING
  2868. "cciss%d: %p retried too "
  2869. "many times\n", h->ctlr, cmd);
  2870. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2871. cmd->err_info->CommandStatus, DRIVER_OK,
  2872. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
  2873. break;
  2874. case CMD_TIMEOUT:
  2875. printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
  2876. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2877. cmd->err_info->CommandStatus, DRIVER_OK,
  2878. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2879. break;
  2880. default:
  2881. printk(KERN_WARNING "cciss: cmd %p returned "
  2882. "unknown status %x\n", cmd,
  2883. cmd->err_info->CommandStatus);
  2884. rq->errors = make_status_bytes(SAM_STAT_GOOD,
  2885. cmd->err_info->CommandStatus, DRIVER_OK,
  2886. blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
  2887. }
  2888. after_error_processing:
  2889. /* We need to return this command */
  2890. if (retry_cmd) {
  2891. resend_cciss_cmd(h, cmd);
  2892. return;
  2893. }
  2894. cmd->rq->completion_data = cmd;
  2895. blk_complete_request(cmd->rq);
  2896. }
  2897. /*
  2898. * Get a request and submit it to the controller.
  2899. */
  2900. static void do_cciss_request(struct request_queue *q)
  2901. {
  2902. ctlr_info_t *h = q->queuedata;
  2903. CommandList_struct *c;
  2904. sector_t start_blk;
  2905. int seg;
  2906. struct request *creq;
  2907. u64bit temp64;
  2908. struct scatterlist tmp_sg[MAXSGENTRIES];
  2909. drive_info_struct *drv;
  2910. int i, dir;
  2911. /* We call start_io here in case there is a command waiting on the
  2912. * queue that has not been sent.
  2913. */
  2914. if (blk_queue_plugged(q))
  2915. goto startio;
  2916. queue:
  2917. creq = blk_peek_request(q);
  2918. if (!creq)
  2919. goto startio;
  2920. BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
  2921. if ((c = cmd_alloc(h, 1)) == NULL)
  2922. goto full;
  2923. blk_start_request(creq);
  2924. spin_unlock_irq(q->queue_lock);
  2925. c->cmd_type = CMD_RWREQ;
  2926. c->rq = creq;
  2927. /* fill in the request */
  2928. drv = creq->rq_disk->private_data;
  2929. c->Header.ReplyQueue = 0; // unused in simple mode
  2930. /* got command from pool, so use the command block index instead */
  2931. /* for direct lookups. */
  2932. /* The first 2 bits are reserved for controller error reporting. */
  2933. c->Header.Tag.lower = (c->cmdindex << 3);
  2934. c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
  2935. memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
  2936. c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
  2937. c->Request.Type.Type = TYPE_CMD; // It is a command.
  2938. c->Request.Type.Attribute = ATTR_SIMPLE;
  2939. c->Request.Type.Direction =
  2940. (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
  2941. c->Request.Timeout = 0; // Don't time out
  2942. c->Request.CDB[0] =
  2943. (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
  2944. start_blk = blk_rq_pos(creq);
  2945. #ifdef CCISS_DEBUG
  2946. printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
  2947. (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
  2948. #endif /* CCISS_DEBUG */
  2949. sg_init_table(tmp_sg, MAXSGENTRIES);
  2950. seg = blk_rq_map_sg(q, creq, tmp_sg);
  2951. /* get the DMA records for the setup */
  2952. if (c->Request.Type.Direction == XFER_READ)
  2953. dir = PCI_DMA_FROMDEVICE;
  2954. else
  2955. dir = PCI_DMA_TODEVICE;
  2956. for (i = 0; i < seg; i++) {
  2957. c->SG[i].Len = tmp_sg[i].length;
  2958. temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
  2959. tmp_sg[i].offset,
  2960. tmp_sg[i].length, dir);
  2961. c->SG[i].Addr.lower = temp64.val32.lower;
  2962. c->SG[i].Addr.upper = temp64.val32.upper;
  2963. c->SG[i].Ext = 0; // we are not chaining
  2964. }
  2965. /* track how many SG entries we are using */
  2966. if (seg > h->maxSG)
  2967. h->maxSG = seg;
  2968. #ifdef CCISS_DEBUG
  2969. printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
  2970. blk_rq_sectors(creq), seg);
  2971. #endif /* CCISS_DEBUG */
  2972. c->Header.SGList = c->Header.SGTotal = seg;
  2973. if (likely(blk_fs_request(creq))) {
  2974. if(h->cciss_read == CCISS_READ_10) {
  2975. c->Request.CDB[1] = 0;
  2976. c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
  2977. c->Request.CDB[3] = (start_blk >> 16) & 0xff;
  2978. c->Request.CDB[4] = (start_blk >> 8) & 0xff;
  2979. c->Request.CDB[5] = start_blk & 0xff;
  2980. c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
  2981. c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
  2982. c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
  2983. c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
  2984. } else {
  2985. u32 upper32 = upper_32_bits(start_blk);
  2986. c->Request.CDBLen = 16;
  2987. c->Request.CDB[1]= 0;
  2988. c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
  2989. c->Request.CDB[3]= (upper32 >> 16) & 0xff;
  2990. c->Request.CDB[4]= (upper32 >> 8) & 0xff;
  2991. c->Request.CDB[5]= upper32 & 0xff;
  2992. c->Request.CDB[6]= (start_blk >> 24) & 0xff;
  2993. c->Request.CDB[7]= (start_blk >> 16) & 0xff;
  2994. c->Request.CDB[8]= (start_blk >> 8) & 0xff;
  2995. c->Request.CDB[9]= start_blk & 0xff;
  2996. c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
  2997. c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
  2998. c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
  2999. c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
  3000. c->Request.CDB[14] = c->Request.CDB[15] = 0;
  3001. }
  3002. } else if (blk_pc_request(creq)) {
  3003. c->Request.CDBLen = creq->cmd_len;
  3004. memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
  3005. } else {
  3006. printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
  3007. BUG();
  3008. }
  3009. spin_lock_irq(q->queue_lock);
  3010. addQ(&h->reqQ, c);
  3011. h->Qdepth++;
  3012. if (h->Qdepth > h->maxQsinceinit)
  3013. h->maxQsinceinit = h->Qdepth;
  3014. goto queue;
  3015. full:
  3016. blk_stop_queue(q);
  3017. startio:
  3018. /* We will already have the driver lock here so not need
  3019. * to lock it.
  3020. */
  3021. start_io(h);
  3022. }
  3023. static inline unsigned long get_next_completion(ctlr_info_t *h)
  3024. {
  3025. return h->access.command_completed(h);
  3026. }
  3027. static inline int interrupt_pending(ctlr_info_t *h)
  3028. {
  3029. return h->access.intr_pending(h);
  3030. }
  3031. static inline long interrupt_not_for_us(ctlr_info_t *h)
  3032. {
  3033. return (((h->access.intr_pending(h) == 0) ||
  3034. (h->interrupts_enabled == 0)));
  3035. }
  3036. static irqreturn_t do_cciss_intr(int irq, void *dev_id)
  3037. {
  3038. ctlr_info_t *h = dev_id;
  3039. CommandList_struct *c;
  3040. unsigned long flags;
  3041. __u32 a, a1, a2;
  3042. if (interrupt_not_for_us(h))
  3043. return IRQ_NONE;
  3044. /*
  3045. * If there are completed commands in the completion queue,
  3046. * we had better do something about it.
  3047. */
  3048. spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
  3049. while (interrupt_pending(h)) {
  3050. while ((a = get_next_completion(h)) != FIFO_EMPTY) {
  3051. a1 = a;
  3052. if ((a & 0x04)) {
  3053. a2 = (a >> 3);
  3054. if (a2 >= h->nr_cmds) {
  3055. printk(KERN_WARNING
  3056. "cciss: controller cciss%d failed, stopping.\n",
  3057. h->ctlr);
  3058. fail_all_cmds(h->ctlr);
  3059. return IRQ_HANDLED;
  3060. }
  3061. c = h->cmd_pool + a2;
  3062. a = c->busaddr;
  3063. } else {
  3064. struct hlist_node *tmp;
  3065. a &= ~3;
  3066. c = NULL;
  3067. hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
  3068. if (c->busaddr == a)
  3069. break;
  3070. }
  3071. }
  3072. /*
  3073. * If we've found the command, take it off the
  3074. * completion Q and free it
  3075. */
  3076. if (c && c->busaddr == a) {
  3077. removeQ(c);
  3078. if (c->cmd_type == CMD_RWREQ) {
  3079. complete_command(h, c, 0);
  3080. } else if (c->cmd_type == CMD_IOCTL_PEND) {
  3081. complete(c->waiting);
  3082. }
  3083. # ifdef CONFIG_CISS_SCSI_TAPE
  3084. else if (c->cmd_type == CMD_SCSI)
  3085. complete_scsi_command(c, 0, a1);
  3086. # endif
  3087. continue;
  3088. }
  3089. }
  3090. }
  3091. spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
  3092. return IRQ_HANDLED;
  3093. }
  3094. /**
  3095. * add_to_scan_list() - add controller to rescan queue
  3096. * @h: Pointer to the controller.
  3097. *
  3098. * Adds the controller to the rescan queue if not already on the queue.
  3099. *
  3100. * returns 1 if added to the queue, 0 if skipped (could be on the
  3101. * queue already, or the controller could be initializing or shutting
  3102. * down).
  3103. **/
  3104. static int add_to_scan_list(struct ctlr_info *h)
  3105. {
  3106. struct ctlr_info *test_h;
  3107. int found = 0;
  3108. int ret = 0;
  3109. if (h->busy_initializing)
  3110. return 0;
  3111. if (!mutex_trylock(&h->busy_shutting_down))
  3112. return 0;
  3113. mutex_lock(&scan_mutex);
  3114. list_for_each_entry(test_h, &scan_q, scan_list) {
  3115. if (test_h == h) {
  3116. found = 1;
  3117. break;
  3118. }
  3119. }
  3120. if (!found && !h->busy_scanning) {
  3121. INIT_COMPLETION(h->scan_wait);
  3122. list_add_tail(&h->scan_list, &scan_q);
  3123. ret = 1;
  3124. }
  3125. mutex_unlock(&scan_mutex);
  3126. mutex_unlock(&h->busy_shutting_down);
  3127. return ret;
  3128. }
  3129. /**
  3130. * remove_from_scan_list() - remove controller from rescan queue
  3131. * @h: Pointer to the controller.
  3132. *
  3133. * Removes the controller from the rescan queue if present. Blocks if
  3134. * the controller is currently conducting a rescan.
  3135. **/
  3136. static void remove_from_scan_list(struct ctlr_info *h)
  3137. {
  3138. struct ctlr_info *test_h, *tmp_h;
  3139. int scanning = 0;
  3140. mutex_lock(&scan_mutex);
  3141. list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
  3142. if (test_h == h) {
  3143. list_del(&h->scan_list);
  3144. complete_all(&h->scan_wait);
  3145. mutex_unlock(&scan_mutex);
  3146. return;
  3147. }
  3148. }
  3149. if (&h->busy_scanning)
  3150. scanning = 0;
  3151. mutex_unlock(&scan_mutex);
  3152. if (scanning)
  3153. wait_for_completion(&h->scan_wait);
  3154. }
  3155. /**
  3156. * scan_thread() - kernel thread used to rescan controllers
  3157. * @data: Ignored.
  3158. *
  3159. * A kernel thread used scan for drive topology changes on
  3160. * controllers. The thread processes only one controller at a time
  3161. * using a queue. Controllers are added to the queue using
  3162. * add_to_scan_list() and removed from the queue either after done
  3163. * processing or using remove_from_scan_list().
  3164. *
  3165. * returns 0.
  3166. **/
  3167. static int scan_thread(void *data)
  3168. {
  3169. struct ctlr_info *h;
  3170. while (1) {
  3171. set_current_state(TASK_INTERRUPTIBLE);
  3172. schedule();
  3173. if (kthread_should_stop())
  3174. break;
  3175. while (1) {
  3176. mutex_lock(&scan_mutex);
  3177. if (list_empty(&scan_q)) {
  3178. mutex_unlock(&scan_mutex);
  3179. break;
  3180. }
  3181. h = list_entry(scan_q.next,
  3182. struct ctlr_info,
  3183. scan_list);
  3184. list_del(&h->scan_list);
  3185. h->busy_scanning = 1;
  3186. mutex_unlock(&scan_mutex);
  3187. if (h) {
  3188. rebuild_lun_table(h, 0, 0);
  3189. complete_all(&h->scan_wait);
  3190. mutex_lock(&scan_mutex);
  3191. h->busy_scanning = 0;
  3192. mutex_unlock(&scan_mutex);
  3193. }
  3194. }
  3195. }
  3196. return 0;
  3197. }
  3198. static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
  3199. {
  3200. if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
  3201. return 0;
  3202. switch (c->err_info->SenseInfo[12]) {
  3203. case STATE_CHANGED:
  3204. printk(KERN_WARNING "cciss%d: a state change "
  3205. "detected, command retried\n", h->ctlr);
  3206. return 1;
  3207. break;
  3208. case LUN_FAILED:
  3209. printk(KERN_WARNING "cciss%d: LUN failure "
  3210. "detected, action required\n", h->ctlr);
  3211. return 1;
  3212. break;
  3213. case REPORT_LUNS_CHANGED:
  3214. printk(KERN_WARNING "cciss%d: report LUN data "
  3215. "changed\n", h->ctlr);
  3216. add_to_scan_list(h);
  3217. wake_up_process(cciss_scan_thread);
  3218. return 1;
  3219. break;
  3220. case POWER_OR_RESET:
  3221. printk(KERN_WARNING "cciss%d: a power on "
  3222. "or device reset detected\n", h->ctlr);
  3223. return 1;
  3224. break;
  3225. case UNIT_ATTENTION_CLEARED:
  3226. printk(KERN_WARNING "cciss%d: unit attention "
  3227. "cleared by another initiator\n", h->ctlr);
  3228. return 1;
  3229. break;
  3230. default:
  3231. printk(KERN_WARNING "cciss%d: unknown "
  3232. "unit attention detected\n", h->ctlr);
  3233. return 1;
  3234. }
  3235. }
  3236. /*
  3237. * We cannot read the structure directly, for portability we must use
  3238. * the io functions.
  3239. * This is for debug only.
  3240. */
  3241. #ifdef CCISS_DEBUG
  3242. static void print_cfg_table(CfgTable_struct *tb)
  3243. {
  3244. int i;
  3245. char temp_name[17];
  3246. printk("Controller Configuration information\n");
  3247. printk("------------------------------------\n");
  3248. for (i = 0; i < 4; i++)
  3249. temp_name[i] = readb(&(tb->Signature[i]));
  3250. temp_name[4] = '\0';
  3251. printk(" Signature = %s\n", temp_name);
  3252. printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
  3253. printk(" Transport methods supported = 0x%x\n",
  3254. readl(&(tb->TransportSupport)));
  3255. printk(" Transport methods active = 0x%x\n",
  3256. readl(&(tb->TransportActive)));
  3257. printk(" Requested transport Method = 0x%x\n",
  3258. readl(&(tb->HostWrite.TransportRequest)));
  3259. printk(" Coalesce Interrupt Delay = 0x%x\n",
  3260. readl(&(tb->HostWrite.CoalIntDelay)));
  3261. printk(" Coalesce Interrupt Count = 0x%x\n",
  3262. readl(&(tb->HostWrite.CoalIntCount)));
  3263. printk(" Max outstanding commands = 0x%d\n",
  3264. readl(&(tb->CmdsOutMax)));
  3265. printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
  3266. for (i = 0; i < 16; i++)
  3267. temp_name[i] = readb(&(tb->ServerName[i]));
  3268. temp_name[16] = '\0';
  3269. printk(" Server Name = %s\n", temp_name);
  3270. printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
  3271. }
  3272. #endif /* CCISS_DEBUG */
  3273. static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
  3274. {
  3275. int i, offset, mem_type, bar_type;
  3276. if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
  3277. return 0;
  3278. offset = 0;
  3279. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3280. bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
  3281. if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
  3282. offset += 4;
  3283. else {
  3284. mem_type = pci_resource_flags(pdev, i) &
  3285. PCI_BASE_ADDRESS_MEM_TYPE_MASK;
  3286. switch (mem_type) {
  3287. case PCI_BASE_ADDRESS_MEM_TYPE_32:
  3288. case PCI_BASE_ADDRESS_MEM_TYPE_1M:
  3289. offset += 4; /* 32 bit */
  3290. break;
  3291. case PCI_BASE_ADDRESS_MEM_TYPE_64:
  3292. offset += 8;
  3293. break;
  3294. default: /* reserved in PCI 2.2 */
  3295. printk(KERN_WARNING
  3296. "Base address is invalid\n");
  3297. return -1;
  3298. break;
  3299. }
  3300. }
  3301. if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
  3302. return i + 1;
  3303. }
  3304. return -1;
  3305. }
  3306. /* If MSI/MSI-X is supported by the kernel we will try to enable it on
  3307. * controllers that are capable. If not, we use IO-APIC mode.
  3308. */
  3309. static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
  3310. struct pci_dev *pdev, __u32 board_id)
  3311. {
  3312. #ifdef CONFIG_PCI_MSI
  3313. int err;
  3314. struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
  3315. {0, 2}, {0, 3}
  3316. };
  3317. /* Some boards advertise MSI but don't really support it */
  3318. if ((board_id == 0x40700E11) ||
  3319. (board_id == 0x40800E11) ||
  3320. (board_id == 0x40820E11) || (board_id == 0x40830E11))
  3321. goto default_int_mode;
  3322. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
  3323. err = pci_enable_msix(pdev, cciss_msix_entries, 4);
  3324. if (!err) {
  3325. c->intr[0] = cciss_msix_entries[0].vector;
  3326. c->intr[1] = cciss_msix_entries[1].vector;
  3327. c->intr[2] = cciss_msix_entries[2].vector;
  3328. c->intr[3] = cciss_msix_entries[3].vector;
  3329. c->msix_vector = 1;
  3330. return;
  3331. }
  3332. if (err > 0) {
  3333. printk(KERN_WARNING "cciss: only %d MSI-X vectors "
  3334. "available\n", err);
  3335. goto default_int_mode;
  3336. } else {
  3337. printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
  3338. err);
  3339. goto default_int_mode;
  3340. }
  3341. }
  3342. if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
  3343. if (!pci_enable_msi(pdev)) {
  3344. c->msi_vector = 1;
  3345. } else {
  3346. printk(KERN_WARNING "cciss: MSI init failed\n");
  3347. }
  3348. }
  3349. default_int_mode:
  3350. #endif /* CONFIG_PCI_MSI */
  3351. /* if we get here we're going to use the default interrupt mode */
  3352. c->intr[SIMPLE_MODE_INT] = pdev->irq;
  3353. return;
  3354. }
  3355. static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
  3356. {
  3357. ushort subsystem_vendor_id, subsystem_device_id, command;
  3358. __u32 board_id, scratchpad = 0;
  3359. __u64 cfg_offset;
  3360. __u32 cfg_base_addr;
  3361. __u64 cfg_base_addr_index;
  3362. int i, prod_index, err;
  3363. subsystem_vendor_id = pdev->subsystem_vendor;
  3364. subsystem_device_id = pdev->subsystem_device;
  3365. board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
  3366. subsystem_vendor_id);
  3367. for (i = 0; i < ARRAY_SIZE(products); i++) {
  3368. /* Stand aside for hpsa driver on request */
  3369. if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
  3370. return -ENODEV;
  3371. if (board_id == products[i].board_id)
  3372. break;
  3373. }
  3374. prod_index = i;
  3375. if (prod_index == ARRAY_SIZE(products)) {
  3376. dev_warn(&pdev->dev,
  3377. "unrecognized board ID: 0x%08lx, ignoring.\n",
  3378. (unsigned long) board_id);
  3379. return -ENODEV;
  3380. }
  3381. /* check to see if controller has been disabled */
  3382. /* BEFORE trying to enable it */
  3383. (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
  3384. if (!(command & 0x02)) {
  3385. printk(KERN_WARNING
  3386. "cciss: controller appears to be disabled\n");
  3387. return -ENODEV;
  3388. }
  3389. err = pci_enable_device(pdev);
  3390. if (err) {
  3391. printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
  3392. return err;
  3393. }
  3394. err = pci_request_regions(pdev, "cciss");
  3395. if (err) {
  3396. printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
  3397. "aborting\n");
  3398. return err;
  3399. }
  3400. #ifdef CCISS_DEBUG
  3401. printk("command = %x\n", command);
  3402. printk("irq = %x\n", pdev->irq);
  3403. printk("board_id = %x\n", board_id);
  3404. #endif /* CCISS_DEBUG */
  3405. /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
  3406. * else we use the IO-APIC interrupt assigned to us by system ROM.
  3407. */
  3408. cciss_interrupt_mode(c, pdev, board_id);
  3409. /* find the memory BAR */
  3410. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3411. if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
  3412. break;
  3413. }
  3414. if (i == DEVICE_COUNT_RESOURCE) {
  3415. printk(KERN_WARNING "cciss: No memory BAR found\n");
  3416. err = -ENODEV;
  3417. goto err_out_free_res;
  3418. }
  3419. c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
  3420. * already removed
  3421. */
  3422. #ifdef CCISS_DEBUG
  3423. printk("address 0 = %lx\n", c->paddr);
  3424. #endif /* CCISS_DEBUG */
  3425. c->vaddr = remap_pci_mem(c->paddr, 0x250);
  3426. /* Wait for the board to become ready. (PCI hotplug needs this.)
  3427. * We poll for up to 120 secs, once per 100ms. */
  3428. for (i = 0; i < 1200; i++) {
  3429. scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
  3430. if (scratchpad == CCISS_FIRMWARE_READY)
  3431. break;
  3432. set_current_state(TASK_INTERRUPTIBLE);
  3433. schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
  3434. }
  3435. if (scratchpad != CCISS_FIRMWARE_READY) {
  3436. printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
  3437. err = -ENODEV;
  3438. goto err_out_free_res;
  3439. }
  3440. /* get the address index number */
  3441. cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
  3442. cfg_base_addr &= (__u32) 0x0000ffff;
  3443. #ifdef CCISS_DEBUG
  3444. printk("cfg base address = %x\n", cfg_base_addr);
  3445. #endif /* CCISS_DEBUG */
  3446. cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
  3447. #ifdef CCISS_DEBUG
  3448. printk("cfg base address index = %llx\n",
  3449. (unsigned long long)cfg_base_addr_index);
  3450. #endif /* CCISS_DEBUG */
  3451. if (cfg_base_addr_index == -1) {
  3452. printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
  3453. err = -ENODEV;
  3454. goto err_out_free_res;
  3455. }
  3456. cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
  3457. #ifdef CCISS_DEBUG
  3458. printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
  3459. #endif /* CCISS_DEBUG */
  3460. c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
  3461. cfg_base_addr_index) +
  3462. cfg_offset, sizeof(CfgTable_struct));
  3463. c->board_id = board_id;
  3464. #ifdef CCISS_DEBUG
  3465. print_cfg_table(c->cfgtable);
  3466. #endif /* CCISS_DEBUG */
  3467. /* Some controllers support Zero Memory Raid (ZMR).
  3468. * When configured in ZMR mode the number of supported
  3469. * commands drops to 64. So instead of just setting an
  3470. * arbitrary value we make the driver a little smarter.
  3471. * We read the config table to tell us how many commands
  3472. * are supported on the controller then subtract 4 to
  3473. * leave a little room for ioctl calls.
  3474. */
  3475. c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
  3476. c->product_name = products[prod_index].product_name;
  3477. c->access = *(products[prod_index].access);
  3478. c->nr_cmds = c->max_commands - 4;
  3479. if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
  3480. (readb(&c->cfgtable->Signature[1]) != 'I') ||
  3481. (readb(&c->cfgtable->Signature[2]) != 'S') ||
  3482. (readb(&c->cfgtable->Signature[3]) != 'S')) {
  3483. printk("Does not appear to be a valid CISS config table\n");
  3484. err = -ENODEV;
  3485. goto err_out_free_res;
  3486. }
  3487. #ifdef CONFIG_X86
  3488. {
  3489. /* Need to enable prefetch in the SCSI core for 6400 in x86 */
  3490. __u32 prefetch;
  3491. prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
  3492. prefetch |= 0x100;
  3493. writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
  3494. }
  3495. #endif
  3496. /* Disabling DMA prefetch and refetch for the P600.
  3497. * An ASIC bug may result in accesses to invalid memory addresses.
  3498. * We've disabled prefetch for some time now. Testing with XEN
  3499. * kernels revealed a bug in the refetch if dom0 resides on a P600.
  3500. */
  3501. if(board_id == 0x3225103C) {
  3502. __u32 dma_prefetch;
  3503. __u32 dma_refetch;
  3504. dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
  3505. dma_prefetch |= 0x8000;
  3506. writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
  3507. pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
  3508. dma_refetch |= 0x1;
  3509. pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
  3510. }
  3511. #ifdef CCISS_DEBUG
  3512. printk("Trying to put board into Simple mode\n");
  3513. #endif /* CCISS_DEBUG */
  3514. c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
  3515. /* Update the field, and then ring the doorbell */
  3516. writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
  3517. writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
  3518. /* under certain very rare conditions, this can take awhile.
  3519. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
  3520. * as we enter this code.) */
  3521. for (i = 0; i < MAX_CONFIG_WAIT; i++) {
  3522. if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
  3523. break;
  3524. /* delay and try again */
  3525. set_current_state(TASK_INTERRUPTIBLE);
  3526. schedule_timeout(msecs_to_jiffies(1));
  3527. }
  3528. #ifdef CCISS_DEBUG
  3529. printk(KERN_DEBUG "I counter got to %d %x\n", i,
  3530. readl(c->vaddr + SA5_DOORBELL));
  3531. #endif /* CCISS_DEBUG */
  3532. #ifdef CCISS_DEBUG
  3533. print_cfg_table(c->cfgtable);
  3534. #endif /* CCISS_DEBUG */
  3535. if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
  3536. printk(KERN_WARNING "cciss: unable to get board into"
  3537. " simple mode\n");
  3538. err = -ENODEV;
  3539. goto err_out_free_res;
  3540. }
  3541. return 0;
  3542. err_out_free_res:
  3543. /*
  3544. * Deliberately omit pci_disable_device(): it does something nasty to
  3545. * Smart Array controllers that pci_enable_device does not undo
  3546. */
  3547. pci_release_regions(pdev);
  3548. return err;
  3549. }
  3550. /* Function to find the first free pointer into our hba[] array
  3551. * Returns -1 if no free entries are left.
  3552. */
  3553. static int alloc_cciss_hba(void)
  3554. {
  3555. int i;
  3556. for (i = 0; i < MAX_CTLR; i++) {
  3557. if (!hba[i]) {
  3558. ctlr_info_t *p;
  3559. p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
  3560. if (!p)
  3561. goto Enomem;
  3562. hba[i] = p;
  3563. return i;
  3564. }
  3565. }
  3566. printk(KERN_WARNING "cciss: This driver supports a maximum"
  3567. " of %d controllers.\n", MAX_CTLR);
  3568. return -1;
  3569. Enomem:
  3570. printk(KERN_ERR "cciss: out of memory.\n");
  3571. return -1;
  3572. }
  3573. static void free_hba(int n)
  3574. {
  3575. ctlr_info_t *h = hba[n];
  3576. int i;
  3577. hba[n] = NULL;
  3578. for (i = 0; i < h->highest_lun + 1; i++)
  3579. if (h->gendisk[i] != NULL)
  3580. put_disk(h->gendisk[i]);
  3581. kfree(h);
  3582. }
  3583. /* Send a message CDB to the firmware. */
  3584. static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
  3585. {
  3586. typedef struct {
  3587. CommandListHeader_struct CommandHeader;
  3588. RequestBlock_struct Request;
  3589. ErrDescriptor_struct ErrorDescriptor;
  3590. } Command;
  3591. static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
  3592. Command *cmd;
  3593. dma_addr_t paddr64;
  3594. uint32_t paddr32, tag;
  3595. void __iomem *vaddr;
  3596. int i, err;
  3597. vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
  3598. if (vaddr == NULL)
  3599. return -ENOMEM;
  3600. /* The Inbound Post Queue only accepts 32-bit physical addresses for the
  3601. CCISS commands, so they must be allocated from the lower 4GiB of
  3602. memory. */
  3603. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3604. if (err) {
  3605. iounmap(vaddr);
  3606. return -ENOMEM;
  3607. }
  3608. cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
  3609. if (cmd == NULL) {
  3610. iounmap(vaddr);
  3611. return -ENOMEM;
  3612. }
  3613. /* This must fit, because of the 32-bit consistent DMA mask. Also,
  3614. although there's no guarantee, we assume that the address is at
  3615. least 4-byte aligned (most likely, it's page-aligned). */
  3616. paddr32 = paddr64;
  3617. cmd->CommandHeader.ReplyQueue = 0;
  3618. cmd->CommandHeader.SGList = 0;
  3619. cmd->CommandHeader.SGTotal = 0;
  3620. cmd->CommandHeader.Tag.lower = paddr32;
  3621. cmd->CommandHeader.Tag.upper = 0;
  3622. memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
  3623. cmd->Request.CDBLen = 16;
  3624. cmd->Request.Type.Type = TYPE_MSG;
  3625. cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
  3626. cmd->Request.Type.Direction = XFER_NONE;
  3627. cmd->Request.Timeout = 0; /* Don't time out */
  3628. cmd->Request.CDB[0] = opcode;
  3629. cmd->Request.CDB[1] = type;
  3630. memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
  3631. cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
  3632. cmd->ErrorDescriptor.Addr.upper = 0;
  3633. cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
  3634. writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
  3635. for (i = 0; i < 10; i++) {
  3636. tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
  3637. if ((tag & ~3) == paddr32)
  3638. break;
  3639. schedule_timeout_uninterruptible(HZ);
  3640. }
  3641. iounmap(vaddr);
  3642. /* we leak the DMA buffer here ... no choice since the controller could
  3643. still complete the command. */
  3644. if (i == 10) {
  3645. printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
  3646. opcode, type);
  3647. return -ETIMEDOUT;
  3648. }
  3649. pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
  3650. if (tag & 2) {
  3651. printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
  3652. opcode, type);
  3653. return -EIO;
  3654. }
  3655. printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
  3656. opcode, type);
  3657. return 0;
  3658. }
  3659. #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
  3660. #define cciss_noop(p) cciss_message(p, 3, 0)
  3661. static __devinit int cciss_reset_msi(struct pci_dev *pdev)
  3662. {
  3663. /* the #defines are stolen from drivers/pci/msi.h. */
  3664. #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
  3665. #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
  3666. int pos;
  3667. u16 control = 0;
  3668. pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
  3669. if (pos) {
  3670. pci_read_config_word(pdev, msi_control_reg(pos), &control);
  3671. if (control & PCI_MSI_FLAGS_ENABLE) {
  3672. printk(KERN_INFO "cciss: resetting MSI\n");
  3673. pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
  3674. }
  3675. }
  3676. pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
  3677. if (pos) {
  3678. pci_read_config_word(pdev, msi_control_reg(pos), &control);
  3679. if (control & PCI_MSIX_FLAGS_ENABLE) {
  3680. printk(KERN_INFO "cciss: resetting MSI-X\n");
  3681. pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
  3682. }
  3683. }
  3684. return 0;
  3685. }
  3686. /* This does a hard reset of the controller using PCI power management
  3687. * states. */
  3688. static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
  3689. {
  3690. u16 pmcsr, saved_config_space[32];
  3691. int i, pos;
  3692. printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
  3693. /* This is very nearly the same thing as
  3694. pci_save_state(pci_dev);
  3695. pci_set_power_state(pci_dev, PCI_D3hot);
  3696. pci_set_power_state(pci_dev, PCI_D0);
  3697. pci_restore_state(pci_dev);
  3698. but we can't use these nice canned kernel routines on
  3699. kexec, because they also check the MSI/MSI-X state in PCI
  3700. configuration space and do the wrong thing when it is
  3701. set/cleared. Also, the pci_save/restore_state functions
  3702. violate the ordering requirements for restoring the
  3703. configuration space from the CCISS document (see the
  3704. comment below). So we roll our own .... */
  3705. for (i = 0; i < 32; i++)
  3706. pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
  3707. pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
  3708. if (pos == 0) {
  3709. printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
  3710. return -ENODEV;
  3711. }
  3712. /* Quoting from the Open CISS Specification: "The Power
  3713. * Management Control/Status Register (CSR) controls the power
  3714. * state of the device. The normal operating state is D0,
  3715. * CSR=00h. The software off state is D3, CSR=03h. To reset
  3716. * the controller, place the interface device in D3 then to
  3717. * D0, this causes a secondary PCI reset which will reset the
  3718. * controller." */
  3719. /* enter the D3hot power management state */
  3720. pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
  3721. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3722. pmcsr |= PCI_D3hot;
  3723. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3724. schedule_timeout_uninterruptible(HZ >> 1);
  3725. /* enter the D0 power management state */
  3726. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3727. pmcsr |= PCI_D0;
  3728. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3729. schedule_timeout_uninterruptible(HZ >> 1);
  3730. /* Restore the PCI configuration space. The Open CISS
  3731. * Specification says, "Restore the PCI Configuration
  3732. * Registers, offsets 00h through 60h. It is important to
  3733. * restore the command register, 16-bits at offset 04h,
  3734. * last. Do not restore the configuration status register,
  3735. * 16-bits at offset 06h." Note that the offset is 2*i. */
  3736. for (i = 0; i < 32; i++) {
  3737. if (i == 2 || i == 3)
  3738. continue;
  3739. pci_write_config_word(pdev, 2*i, saved_config_space[i]);
  3740. }
  3741. wmb();
  3742. pci_write_config_word(pdev, 4, saved_config_space[2]);
  3743. return 0;
  3744. }
  3745. /*
  3746. * This is it. Find all the controllers and register them. I really hate
  3747. * stealing all these major device numbers.
  3748. * returns the number of block devices registered.
  3749. */
  3750. static int __devinit cciss_init_one(struct pci_dev *pdev,
  3751. const struct pci_device_id *ent)
  3752. {
  3753. int i;
  3754. int j = 0;
  3755. int rc;
  3756. int dac, return_code;
  3757. InquiryData_struct *inq_buff;
  3758. if (reset_devices) {
  3759. /* Reset the controller with a PCI power-cycle */
  3760. if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
  3761. return -ENODEV;
  3762. /* Now try to get the controller to respond to a no-op. Some
  3763. devices (notably the HP Smart Array 5i Controller) need
  3764. up to 30 seconds to respond. */
  3765. for (i=0; i<30; i++) {
  3766. if (cciss_noop(pdev) == 0)
  3767. break;
  3768. schedule_timeout_uninterruptible(HZ);
  3769. }
  3770. if (i == 30) {
  3771. printk(KERN_ERR "cciss: controller seems dead\n");
  3772. return -EBUSY;
  3773. }
  3774. }
  3775. i = alloc_cciss_hba();
  3776. if (i < 0)
  3777. return -1;
  3778. hba[i]->busy_initializing = 1;
  3779. INIT_HLIST_HEAD(&hba[i]->cmpQ);
  3780. INIT_HLIST_HEAD(&hba[i]->reqQ);
  3781. mutex_init(&hba[i]->busy_shutting_down);
  3782. if (cciss_pci_init(hba[i], pdev) != 0)
  3783. goto clean_no_release_regions;
  3784. sprintf(hba[i]->devname, "cciss%d", i);
  3785. hba[i]->ctlr = i;
  3786. hba[i]->pdev = pdev;
  3787. init_completion(&hba[i]->scan_wait);
  3788. if (cciss_create_hba_sysfs_entry(hba[i]))
  3789. goto clean0;
  3790. /* configure PCI DMA stuff */
  3791. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
  3792. dac = 1;
  3793. else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
  3794. dac = 0;
  3795. else {
  3796. printk(KERN_ERR "cciss: no suitable DMA available\n");
  3797. goto clean1;
  3798. }
  3799. /*
  3800. * register with the major number, or get a dynamic major number
  3801. * by passing 0 as argument. This is done for greater than
  3802. * 8 controller support.
  3803. */
  3804. if (i < MAX_CTLR_ORIG)
  3805. hba[i]->major = COMPAQ_CISS_MAJOR + i;
  3806. rc = register_blkdev(hba[i]->major, hba[i]->devname);
  3807. if (rc == -EBUSY || rc == -EINVAL) {
  3808. printk(KERN_ERR
  3809. "cciss: Unable to get major number %d for %s "
  3810. "on hba %d\n", hba[i]->major, hba[i]->devname, i);
  3811. goto clean1;
  3812. } else {
  3813. if (i >= MAX_CTLR_ORIG)
  3814. hba[i]->major = rc;
  3815. }
  3816. /* make sure the board interrupts are off */
  3817. hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
  3818. if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
  3819. IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
  3820. printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
  3821. hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
  3822. goto clean2;
  3823. }
  3824. printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
  3825. hba[i]->devname, pdev->device, pci_name(pdev),
  3826. hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
  3827. hba[i]->cmd_pool_bits =
  3828. kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
  3829. * sizeof(unsigned long), GFP_KERNEL);
  3830. hba[i]->cmd_pool = (CommandList_struct *)
  3831. pci_alloc_consistent(hba[i]->pdev,
  3832. hba[i]->nr_cmds * sizeof(CommandList_struct),
  3833. &(hba[i]->cmd_pool_dhandle));
  3834. hba[i]->errinfo_pool = (ErrorInfo_struct *)
  3835. pci_alloc_consistent(hba[i]->pdev,
  3836. hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3837. &(hba[i]->errinfo_pool_dhandle));
  3838. if ((hba[i]->cmd_pool_bits == NULL)
  3839. || (hba[i]->cmd_pool == NULL)
  3840. || (hba[i]->errinfo_pool == NULL)) {
  3841. printk(KERN_ERR "cciss: out of memory");
  3842. goto clean4;
  3843. }
  3844. spin_lock_init(&hba[i]->lock);
  3845. /* Initialize the pdev driver private data.
  3846. have it point to hba[i]. */
  3847. pci_set_drvdata(pdev, hba[i]);
  3848. /* command and error info recs zeroed out before
  3849. they are used */
  3850. memset(hba[i]->cmd_pool_bits, 0,
  3851. DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
  3852. * sizeof(unsigned long));
  3853. hba[i]->num_luns = 0;
  3854. hba[i]->highest_lun = -1;
  3855. for (j = 0; j < CISS_MAX_LUN; j++) {
  3856. hba[i]->drv[j] = NULL;
  3857. hba[i]->gendisk[j] = NULL;
  3858. }
  3859. cciss_scsi_setup(i);
  3860. /* Turn the interrupts on so we can service requests */
  3861. hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
  3862. /* Get the firmware version */
  3863. inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
  3864. if (inq_buff == NULL) {
  3865. printk(KERN_ERR "cciss: out of memory\n");
  3866. goto clean4;
  3867. }
  3868. return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
  3869. sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
  3870. if (return_code == IO_OK) {
  3871. hba[i]->firm_ver[0] = inq_buff->data_byte[32];
  3872. hba[i]->firm_ver[1] = inq_buff->data_byte[33];
  3873. hba[i]->firm_ver[2] = inq_buff->data_byte[34];
  3874. hba[i]->firm_ver[3] = inq_buff->data_byte[35];
  3875. } else { /* send command failed */
  3876. printk(KERN_WARNING "cciss: unable to determine firmware"
  3877. " version of controller\n");
  3878. }
  3879. kfree(inq_buff);
  3880. cciss_procinit(i);
  3881. hba[i]->cciss_max_sectors = 2048;
  3882. rebuild_lun_table(hba[i], 1, 0);
  3883. hba[i]->busy_initializing = 0;
  3884. return 1;
  3885. clean4:
  3886. kfree(hba[i]->cmd_pool_bits);
  3887. if (hba[i]->cmd_pool)
  3888. pci_free_consistent(hba[i]->pdev,
  3889. hba[i]->nr_cmds * sizeof(CommandList_struct),
  3890. hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
  3891. if (hba[i]->errinfo_pool)
  3892. pci_free_consistent(hba[i]->pdev,
  3893. hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3894. hba[i]->errinfo_pool,
  3895. hba[i]->errinfo_pool_dhandle);
  3896. free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
  3897. clean2:
  3898. unregister_blkdev(hba[i]->major, hba[i]->devname);
  3899. clean1:
  3900. cciss_destroy_hba_sysfs_entry(hba[i]);
  3901. clean0:
  3902. pci_release_regions(pdev);
  3903. clean_no_release_regions:
  3904. hba[i]->busy_initializing = 0;
  3905. /*
  3906. * Deliberately omit pci_disable_device(): it does something nasty to
  3907. * Smart Array controllers that pci_enable_device does not undo
  3908. */
  3909. pci_set_drvdata(pdev, NULL);
  3910. free_hba(i);
  3911. return -1;
  3912. }
  3913. static void cciss_shutdown(struct pci_dev *pdev)
  3914. {
  3915. ctlr_info_t *tmp_ptr;
  3916. int i;
  3917. char flush_buf[4];
  3918. int return_code;
  3919. tmp_ptr = pci_get_drvdata(pdev);
  3920. if (tmp_ptr == NULL)
  3921. return;
  3922. i = tmp_ptr->ctlr;
  3923. if (hba[i] == NULL)
  3924. return;
  3925. /* Turn board interrupts off and send the flush cache command */
  3926. /* sendcmd will turn off interrupt, and send the flush...
  3927. * To write all data in the battery backed cache to disks */
  3928. memset(flush_buf, 0, 4);
  3929. return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
  3930. CTLR_LUNID, TYPE_CMD);
  3931. if (return_code == IO_OK) {
  3932. printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
  3933. } else {
  3934. printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
  3935. }
  3936. free_irq(hba[i]->intr[2], hba[i]);
  3937. }
  3938. static void __devexit cciss_remove_one(struct pci_dev *pdev)
  3939. {
  3940. ctlr_info_t *tmp_ptr;
  3941. int i, j;
  3942. if (pci_get_drvdata(pdev) == NULL) {
  3943. printk(KERN_ERR "cciss: Unable to remove device \n");
  3944. return;
  3945. }
  3946. tmp_ptr = pci_get_drvdata(pdev);
  3947. i = tmp_ptr->ctlr;
  3948. if (hba[i] == NULL) {
  3949. printk(KERN_ERR "cciss: device appears to "
  3950. "already be removed \n");
  3951. return;
  3952. }
  3953. mutex_lock(&hba[i]->busy_shutting_down);
  3954. remove_from_scan_list(hba[i]);
  3955. remove_proc_entry(hba[i]->devname, proc_cciss);
  3956. unregister_blkdev(hba[i]->major, hba[i]->devname);
  3957. /* remove it from the disk list */
  3958. for (j = 0; j < CISS_MAX_LUN; j++) {
  3959. struct gendisk *disk = hba[i]->gendisk[j];
  3960. if (disk) {
  3961. struct request_queue *q = disk->queue;
  3962. if (disk->flags & GENHD_FL_UP) {
  3963. cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
  3964. del_gendisk(disk);
  3965. }
  3966. if (q)
  3967. blk_cleanup_queue(q);
  3968. }
  3969. }
  3970. #ifdef CONFIG_CISS_SCSI_TAPE
  3971. cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
  3972. #endif
  3973. cciss_shutdown(pdev);
  3974. #ifdef CONFIG_PCI_MSI
  3975. if (hba[i]->msix_vector)
  3976. pci_disable_msix(hba[i]->pdev);
  3977. else if (hba[i]->msi_vector)
  3978. pci_disable_msi(hba[i]->pdev);
  3979. #endif /* CONFIG_PCI_MSI */
  3980. iounmap(hba[i]->vaddr);
  3981. pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
  3982. hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
  3983. pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
  3984. hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
  3985. kfree(hba[i]->cmd_pool_bits);
  3986. /*
  3987. * Deliberately omit pci_disable_device(): it does something nasty to
  3988. * Smart Array controllers that pci_enable_device does not undo
  3989. */
  3990. pci_release_regions(pdev);
  3991. pci_set_drvdata(pdev, NULL);
  3992. cciss_destroy_hba_sysfs_entry(hba[i]);
  3993. mutex_unlock(&hba[i]->busy_shutting_down);
  3994. free_hba(i);
  3995. }
  3996. static struct pci_driver cciss_pci_driver = {
  3997. .name = "cciss",
  3998. .probe = cciss_init_one,
  3999. .remove = __devexit_p(cciss_remove_one),
  4000. .id_table = cciss_pci_device_id, /* id_table */
  4001. .shutdown = cciss_shutdown,
  4002. };
  4003. /*
  4004. * This is it. Register the PCI driver information for the cards we control
  4005. * the OS will call our registered routines when it finds one of our cards.
  4006. */
  4007. static int __init cciss_init(void)
  4008. {
  4009. int err;
  4010. /*
  4011. * The hardware requires that commands are aligned on a 64-bit
  4012. * boundary. Given that we use pci_alloc_consistent() to allocate an
  4013. * array of them, the size must be a multiple of 8 bytes.
  4014. */
  4015. BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
  4016. printk(KERN_INFO DRIVER_NAME "\n");
  4017. err = bus_register(&cciss_bus_type);
  4018. if (err)
  4019. return err;
  4020. /* Start the scan thread */
  4021. cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
  4022. if (IS_ERR(cciss_scan_thread)) {
  4023. err = PTR_ERR(cciss_scan_thread);
  4024. goto err_bus_unregister;
  4025. }
  4026. /* Register for our PCI devices */
  4027. err = pci_register_driver(&cciss_pci_driver);
  4028. if (err)
  4029. goto err_thread_stop;
  4030. return err;
  4031. err_thread_stop:
  4032. kthread_stop(cciss_scan_thread);
  4033. err_bus_unregister:
  4034. bus_unregister(&cciss_bus_type);
  4035. return err;
  4036. }
  4037. static void __exit cciss_cleanup(void)
  4038. {
  4039. int i;
  4040. pci_unregister_driver(&cciss_pci_driver);
  4041. /* double check that all controller entrys have been removed */
  4042. for (i = 0; i < MAX_CTLR; i++) {
  4043. if (hba[i] != NULL) {
  4044. printk(KERN_WARNING "cciss: had to remove"
  4045. " controller %d\n", i);
  4046. cciss_remove_one(hba[i]->pdev);
  4047. }
  4048. }
  4049. kthread_stop(cciss_scan_thread);
  4050. remove_proc_entry("driver/cciss", NULL);
  4051. bus_unregister(&cciss_bus_type);
  4052. }
  4053. static void fail_all_cmds(unsigned long ctlr)
  4054. {
  4055. /* If we get here, the board is apparently dead. */
  4056. ctlr_info_t *h = hba[ctlr];
  4057. CommandList_struct *c;
  4058. unsigned long flags;
  4059. printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
  4060. h->alive = 0; /* the controller apparently died... */
  4061. spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
  4062. pci_disable_device(h->pdev); /* Make sure it is really dead. */
  4063. /* move everything off the request queue onto the completed queue */
  4064. while (!hlist_empty(&h->reqQ)) {
  4065. c = hlist_entry(h->reqQ.first, CommandList_struct, list);
  4066. removeQ(c);
  4067. h->Qdepth--;
  4068. addQ(&h->cmpQ, c);
  4069. }
  4070. /* Now, fail everything on the completed queue with a HW error */
  4071. while (!hlist_empty(&h->cmpQ)) {
  4072. c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
  4073. removeQ(c);
  4074. if (c->cmd_type != CMD_MSG_STALE)
  4075. c->err_info->CommandStatus = CMD_HARDWARE_ERR;
  4076. if (c->cmd_type == CMD_RWREQ) {
  4077. complete_command(h, c, 0);
  4078. } else if (c->cmd_type == CMD_IOCTL_PEND)
  4079. complete(c->waiting);
  4080. #ifdef CONFIG_CISS_SCSI_TAPE
  4081. else if (c->cmd_type == CMD_SCSI)
  4082. complete_scsi_command(c, 0, 0);
  4083. #endif
  4084. }
  4085. spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
  4086. return;
  4087. }
  4088. module_init(cciss_init);
  4089. module_exit(cciss_cleanup);