brd.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * Ram backed block device driver.
  3. *
  4. * Copyright (C) 2007 Nick Piggin
  5. * Copyright (C) 2007 Novell Inc.
  6. *
  7. * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  8. * of their respective owners.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/major.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/bio.h>
  16. #include <linux/highmem.h>
  17. #include <linux/gfp.h>
  18. #include <linux/radix-tree.h>
  19. #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
  20. #include <asm/uaccess.h>
  21. #define SECTOR_SHIFT 9
  22. #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
  23. #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
  24. /*
  25. * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  26. * the pages containing the block device's contents. A brd page's ->index is
  27. * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  28. * with, the kernel's pagecache or buffer cache (which sit above our block
  29. * device).
  30. */
  31. struct brd_device {
  32. int brd_number;
  33. int brd_refcnt;
  34. loff_t brd_offset;
  35. loff_t brd_sizelimit;
  36. unsigned brd_blocksize;
  37. struct request_queue *brd_queue;
  38. struct gendisk *brd_disk;
  39. struct list_head brd_list;
  40. /*
  41. * Backing store of pages and lock to protect it. This is the contents
  42. * of the block device.
  43. */
  44. spinlock_t brd_lock;
  45. struct radix_tree_root brd_pages;
  46. };
  47. /*
  48. * Look up and return a brd's page for a given sector.
  49. */
  50. static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  51. {
  52. pgoff_t idx;
  53. struct page *page;
  54. /*
  55. * The page lifetime is protected by the fact that we have opened the
  56. * device node -- brd pages will never be deleted under us, so we
  57. * don't need any further locking or refcounting.
  58. *
  59. * This is strictly true for the radix-tree nodes as well (ie. we
  60. * don't actually need the rcu_read_lock()), however that is not a
  61. * documented feature of the radix-tree API so it is better to be
  62. * safe here (we don't have total exclusion from radix tree updates
  63. * here, only deletes).
  64. */
  65. rcu_read_lock();
  66. idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  67. page = radix_tree_lookup(&brd->brd_pages, idx);
  68. rcu_read_unlock();
  69. BUG_ON(page && page->index != idx);
  70. return page;
  71. }
  72. /*
  73. * Look up and return a brd's page for a given sector.
  74. * If one does not exist, allocate an empty page, and insert that. Then
  75. * return it.
  76. */
  77. static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  78. {
  79. pgoff_t idx;
  80. struct page *page;
  81. gfp_t gfp_flags;
  82. page = brd_lookup_page(brd, sector);
  83. if (page)
  84. return page;
  85. /*
  86. * Must use NOIO because we don't want to recurse back into the
  87. * block or filesystem layers from page reclaim.
  88. *
  89. * Cannot support XIP and highmem, because our ->direct_access
  90. * routine for XIP must return memory that is always addressable.
  91. * If XIP was reworked to use pfns and kmap throughout, this
  92. * restriction might be able to be lifted.
  93. */
  94. gfp_flags = GFP_NOIO | __GFP_ZERO;
  95. #ifndef CONFIG_BLK_DEV_XIP
  96. gfp_flags |= __GFP_HIGHMEM;
  97. #endif
  98. page = alloc_page(gfp_flags);
  99. if (!page)
  100. return NULL;
  101. if (radix_tree_preload(GFP_NOIO)) {
  102. __free_page(page);
  103. return NULL;
  104. }
  105. spin_lock(&brd->brd_lock);
  106. idx = sector >> PAGE_SECTORS_SHIFT;
  107. if (radix_tree_insert(&brd->brd_pages, idx, page)) {
  108. __free_page(page);
  109. page = radix_tree_lookup(&brd->brd_pages, idx);
  110. BUG_ON(!page);
  111. BUG_ON(page->index != idx);
  112. } else
  113. page->index = idx;
  114. spin_unlock(&brd->brd_lock);
  115. radix_tree_preload_end();
  116. return page;
  117. }
  118. /*
  119. * Free all backing store pages and radix tree. This must only be called when
  120. * there are no other users of the device.
  121. */
  122. #define FREE_BATCH 16
  123. static void brd_free_pages(struct brd_device *brd)
  124. {
  125. unsigned long pos = 0;
  126. struct page *pages[FREE_BATCH];
  127. int nr_pages;
  128. do {
  129. int i;
  130. nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
  131. (void **)pages, pos, FREE_BATCH);
  132. for (i = 0; i < nr_pages; i++) {
  133. void *ret;
  134. BUG_ON(pages[i]->index < pos);
  135. pos = pages[i]->index;
  136. ret = radix_tree_delete(&brd->brd_pages, pos);
  137. BUG_ON(!ret || ret != pages[i]);
  138. __free_page(pages[i]);
  139. }
  140. pos++;
  141. /*
  142. * This assumes radix_tree_gang_lookup always returns as
  143. * many pages as possible. If the radix-tree code changes,
  144. * so will this have to.
  145. */
  146. } while (nr_pages == FREE_BATCH);
  147. }
  148. /*
  149. * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
  150. */
  151. static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
  152. {
  153. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  154. size_t copy;
  155. copy = min_t(size_t, n, PAGE_SIZE - offset);
  156. if (!brd_insert_page(brd, sector))
  157. return -ENOMEM;
  158. if (copy < n) {
  159. sector += copy >> SECTOR_SHIFT;
  160. if (!brd_insert_page(brd, sector))
  161. return -ENOMEM;
  162. }
  163. return 0;
  164. }
  165. /*
  166. * Copy n bytes from src to the brd starting at sector. Does not sleep.
  167. */
  168. static void copy_to_brd(struct brd_device *brd, const void *src,
  169. sector_t sector, size_t n)
  170. {
  171. struct page *page;
  172. void *dst;
  173. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  174. size_t copy;
  175. copy = min_t(size_t, n, PAGE_SIZE - offset);
  176. page = brd_lookup_page(brd, sector);
  177. BUG_ON(!page);
  178. dst = kmap_atomic(page, KM_USER1);
  179. memcpy(dst + offset, src, copy);
  180. kunmap_atomic(dst, KM_USER1);
  181. if (copy < n) {
  182. src += copy;
  183. sector += copy >> SECTOR_SHIFT;
  184. copy = n - copy;
  185. page = brd_lookup_page(brd, sector);
  186. BUG_ON(!page);
  187. dst = kmap_atomic(page, KM_USER1);
  188. memcpy(dst, src, copy);
  189. kunmap_atomic(dst, KM_USER1);
  190. }
  191. }
  192. /*
  193. * Copy n bytes to dst from the brd starting at sector. Does not sleep.
  194. */
  195. static void copy_from_brd(void *dst, struct brd_device *brd,
  196. sector_t sector, size_t n)
  197. {
  198. struct page *page;
  199. void *src;
  200. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  201. size_t copy;
  202. copy = min_t(size_t, n, PAGE_SIZE - offset);
  203. page = brd_lookup_page(brd, sector);
  204. if (page) {
  205. src = kmap_atomic(page, KM_USER1);
  206. memcpy(dst, src + offset, copy);
  207. kunmap_atomic(src, KM_USER1);
  208. } else
  209. memset(dst, 0, copy);
  210. if (copy < n) {
  211. dst += copy;
  212. sector += copy >> SECTOR_SHIFT;
  213. copy = n - copy;
  214. page = brd_lookup_page(brd, sector);
  215. if (page) {
  216. src = kmap_atomic(page, KM_USER1);
  217. memcpy(dst, src, copy);
  218. kunmap_atomic(src, KM_USER1);
  219. } else
  220. memset(dst, 0, copy);
  221. }
  222. }
  223. /*
  224. * Process a single bvec of a bio.
  225. */
  226. static int brd_do_bvec(struct brd_device *brd, struct page *page,
  227. unsigned int len, unsigned int off, int rw,
  228. sector_t sector)
  229. {
  230. void *mem;
  231. int err = 0;
  232. if (rw != READ) {
  233. err = copy_to_brd_setup(brd, sector, len);
  234. if (err)
  235. goto out;
  236. }
  237. mem = kmap_atomic(page, KM_USER0);
  238. if (rw == READ) {
  239. copy_from_brd(mem + off, brd, sector, len);
  240. flush_dcache_page(page);
  241. } else {
  242. flush_dcache_page(page);
  243. copy_to_brd(brd, mem + off, sector, len);
  244. }
  245. kunmap_atomic(mem, KM_USER0);
  246. out:
  247. return err;
  248. }
  249. static int brd_make_request(struct request_queue *q, struct bio *bio)
  250. {
  251. struct block_device *bdev = bio->bi_bdev;
  252. struct brd_device *brd = bdev->bd_disk->private_data;
  253. int rw;
  254. struct bio_vec *bvec;
  255. sector_t sector;
  256. int i;
  257. int err = -EIO;
  258. sector = bio->bi_sector;
  259. if (sector + (bio->bi_size >> SECTOR_SHIFT) >
  260. get_capacity(bdev->bd_disk))
  261. goto out;
  262. rw = bio_rw(bio);
  263. if (rw == READA)
  264. rw = READ;
  265. bio_for_each_segment(bvec, bio, i) {
  266. unsigned int len = bvec->bv_len;
  267. err = brd_do_bvec(brd, bvec->bv_page, len,
  268. bvec->bv_offset, rw, sector);
  269. if (err)
  270. break;
  271. sector += len >> SECTOR_SHIFT;
  272. }
  273. out:
  274. bio_endio(bio, err);
  275. return 0;
  276. }
  277. #ifdef CONFIG_BLK_DEV_XIP
  278. static int brd_direct_access (struct block_device *bdev, sector_t sector,
  279. void **kaddr, unsigned long *pfn)
  280. {
  281. struct brd_device *brd = bdev->bd_disk->private_data;
  282. struct page *page;
  283. if (!brd)
  284. return -ENODEV;
  285. if (sector & (PAGE_SECTORS-1))
  286. return -EINVAL;
  287. if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
  288. return -ERANGE;
  289. page = brd_insert_page(brd, sector);
  290. if (!page)
  291. return -ENOMEM;
  292. *kaddr = page_address(page);
  293. *pfn = page_to_pfn(page);
  294. return 0;
  295. }
  296. #endif
  297. static int brd_ioctl(struct block_device *bdev, fmode_t mode,
  298. unsigned int cmd, unsigned long arg)
  299. {
  300. int error;
  301. struct brd_device *brd = bdev->bd_disk->private_data;
  302. if (cmd != BLKFLSBUF)
  303. return -ENOTTY;
  304. /*
  305. * ram device BLKFLSBUF has special semantics, we want to actually
  306. * release and destroy the ramdisk data.
  307. */
  308. mutex_lock(&bdev->bd_mutex);
  309. error = -EBUSY;
  310. if (bdev->bd_openers <= 1) {
  311. /*
  312. * Invalidate the cache first, so it isn't written
  313. * back to the device.
  314. *
  315. * Another thread might instantiate more buffercache here,
  316. * but there is not much we can do to close that race.
  317. */
  318. invalidate_bh_lrus();
  319. truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
  320. brd_free_pages(brd);
  321. error = 0;
  322. }
  323. mutex_unlock(&bdev->bd_mutex);
  324. return error;
  325. }
  326. static const struct block_device_operations brd_fops = {
  327. .owner = THIS_MODULE,
  328. .locked_ioctl = brd_ioctl,
  329. #ifdef CONFIG_BLK_DEV_XIP
  330. .direct_access = brd_direct_access,
  331. #endif
  332. };
  333. /*
  334. * And now the modules code and kernel interface.
  335. */
  336. static int rd_nr;
  337. int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
  338. static int max_part;
  339. static int part_shift;
  340. module_param(rd_nr, int, 0);
  341. MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
  342. module_param(rd_size, int, 0);
  343. MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
  344. module_param(max_part, int, 0);
  345. MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
  346. MODULE_LICENSE("GPL");
  347. MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
  348. MODULE_ALIAS("rd");
  349. #ifndef MODULE
  350. /* Legacy boot options - nonmodular */
  351. static int __init ramdisk_size(char *str)
  352. {
  353. rd_size = simple_strtol(str, NULL, 0);
  354. return 1;
  355. }
  356. __setup("ramdisk_size=", ramdisk_size);
  357. #endif
  358. /*
  359. * The device scheme is derived from loop.c. Keep them in synch where possible
  360. * (should share code eventually).
  361. */
  362. static LIST_HEAD(brd_devices);
  363. static DEFINE_MUTEX(brd_devices_mutex);
  364. static struct brd_device *brd_alloc(int i)
  365. {
  366. struct brd_device *brd;
  367. struct gendisk *disk;
  368. brd = kzalloc(sizeof(*brd), GFP_KERNEL);
  369. if (!brd)
  370. goto out;
  371. brd->brd_number = i;
  372. spin_lock_init(&brd->brd_lock);
  373. INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
  374. brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
  375. if (!brd->brd_queue)
  376. goto out_free_dev;
  377. blk_queue_make_request(brd->brd_queue, brd_make_request);
  378. blk_queue_ordered(brd->brd_queue, QUEUE_ORDERED_TAG, NULL);
  379. blk_queue_max_sectors(brd->brd_queue, 1024);
  380. blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
  381. disk = brd->brd_disk = alloc_disk(1 << part_shift);
  382. if (!disk)
  383. goto out_free_queue;
  384. disk->major = RAMDISK_MAJOR;
  385. disk->first_minor = i << part_shift;
  386. disk->fops = &brd_fops;
  387. disk->private_data = brd;
  388. disk->queue = brd->brd_queue;
  389. disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
  390. sprintf(disk->disk_name, "ram%d", i);
  391. set_capacity(disk, rd_size * 2);
  392. return brd;
  393. out_free_queue:
  394. blk_cleanup_queue(brd->brd_queue);
  395. out_free_dev:
  396. kfree(brd);
  397. out:
  398. return NULL;
  399. }
  400. static void brd_free(struct brd_device *brd)
  401. {
  402. put_disk(brd->brd_disk);
  403. blk_cleanup_queue(brd->brd_queue);
  404. brd_free_pages(brd);
  405. kfree(brd);
  406. }
  407. static struct brd_device *brd_init_one(int i)
  408. {
  409. struct brd_device *brd;
  410. list_for_each_entry(brd, &brd_devices, brd_list) {
  411. if (brd->brd_number == i)
  412. goto out;
  413. }
  414. brd = brd_alloc(i);
  415. if (brd) {
  416. add_disk(brd->brd_disk);
  417. list_add_tail(&brd->brd_list, &brd_devices);
  418. }
  419. out:
  420. return brd;
  421. }
  422. static void brd_del_one(struct brd_device *brd)
  423. {
  424. list_del(&brd->brd_list);
  425. del_gendisk(brd->brd_disk);
  426. brd_free(brd);
  427. }
  428. static struct kobject *brd_probe(dev_t dev, int *part, void *data)
  429. {
  430. struct brd_device *brd;
  431. struct kobject *kobj;
  432. mutex_lock(&brd_devices_mutex);
  433. brd = brd_init_one(dev & MINORMASK);
  434. kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
  435. mutex_unlock(&brd_devices_mutex);
  436. *part = 0;
  437. return kobj;
  438. }
  439. static int __init brd_init(void)
  440. {
  441. int i, nr;
  442. unsigned long range;
  443. struct brd_device *brd, *next;
  444. /*
  445. * brd module now has a feature to instantiate underlying device
  446. * structure on-demand, provided that there is an access dev node.
  447. * However, this will not work well with user space tool that doesn't
  448. * know about such "feature". In order to not break any existing
  449. * tool, we do the following:
  450. *
  451. * (1) if rd_nr is specified, create that many upfront, and this
  452. * also becomes a hard limit.
  453. * (2) if rd_nr is not specified, create 1 rd device on module
  454. * load, user can further extend brd device by create dev node
  455. * themselves and have kernel automatically instantiate actual
  456. * device on-demand.
  457. */
  458. part_shift = 0;
  459. if (max_part > 0)
  460. part_shift = fls(max_part);
  461. if (rd_nr > 1UL << (MINORBITS - part_shift))
  462. return -EINVAL;
  463. if (rd_nr) {
  464. nr = rd_nr;
  465. range = rd_nr;
  466. } else {
  467. nr = CONFIG_BLK_DEV_RAM_COUNT;
  468. range = 1UL << (MINORBITS - part_shift);
  469. }
  470. if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
  471. return -EIO;
  472. for (i = 0; i < nr; i++) {
  473. brd = brd_alloc(i);
  474. if (!brd)
  475. goto out_free;
  476. list_add_tail(&brd->brd_list, &brd_devices);
  477. }
  478. /* point of no return */
  479. list_for_each_entry(brd, &brd_devices, brd_list)
  480. add_disk(brd->brd_disk);
  481. blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
  482. THIS_MODULE, brd_probe, NULL, NULL);
  483. printk(KERN_INFO "brd: module loaded\n");
  484. return 0;
  485. out_free:
  486. list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
  487. list_del(&brd->brd_list);
  488. brd_free(brd);
  489. }
  490. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  491. return -ENOMEM;
  492. }
  493. static void __exit brd_exit(void)
  494. {
  495. unsigned long range;
  496. struct brd_device *brd, *next;
  497. range = rd_nr ? rd_nr : 1UL << (MINORBITS - part_shift);
  498. list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
  499. brd_del_one(brd);
  500. blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
  501. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  502. }
  503. module_init(brd_init);
  504. module_exit(brd_exit);