tlb.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290
  1. #include <linux/init.h>
  2. #include <linux/mm.h>
  3. #include <linux/spinlock.h>
  4. #include <linux/smp.h>
  5. #include <linux/interrupt.h>
  6. #include <linux/module.h>
  7. #include <asm/tlbflush.h>
  8. #include <asm/mmu_context.h>
  9. #include <asm/apic.h>
  10. #include <asm/uv/uv.h>
  11. DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
  12. = { &init_mm, 0, };
  13. /*
  14. * Smarter SMP flushing macros.
  15. * c/o Linus Torvalds.
  16. *
  17. * These mean you can really definitely utterly forget about
  18. * writing to user space from interrupts. (Its not allowed anyway).
  19. *
  20. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  21. *
  22. * More scalable flush, from Andi Kleen
  23. *
  24. * To avoid global state use 8 different call vectors.
  25. * Each CPU uses a specific vector to trigger flushes on other
  26. * CPUs. Depending on the received vector the target CPUs look into
  27. * the right array slot for the flush data.
  28. *
  29. * With more than 8 CPUs they are hashed to the 8 available
  30. * vectors. The limited global vector space forces us to this right now.
  31. * In future when interrupts are split into per CPU domains this could be
  32. * fixed, at the cost of triggering multiple IPIs in some cases.
  33. */
  34. union smp_flush_state {
  35. struct {
  36. struct mm_struct *flush_mm;
  37. unsigned long flush_va;
  38. spinlock_t tlbstate_lock;
  39. DECLARE_BITMAP(flush_cpumask, NR_CPUS);
  40. };
  41. char pad[CONFIG_X86_INTERNODE_CACHE_BYTES];
  42. } ____cacheline_internodealigned_in_smp;
  43. /* State is put into the per CPU data section, but padded
  44. to a full cache line because other CPUs can access it and we don't
  45. want false sharing in the per cpu data segment. */
  46. static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS];
  47. /*
  48. * We cannot call mmdrop() because we are in interrupt context,
  49. * instead update mm->cpu_vm_mask.
  50. */
  51. void leave_mm(int cpu)
  52. {
  53. if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
  54. BUG();
  55. cpumask_clear_cpu(cpu,
  56. mm_cpumask(percpu_read(cpu_tlbstate.active_mm)));
  57. load_cr3(swapper_pg_dir);
  58. }
  59. EXPORT_SYMBOL_GPL(leave_mm);
  60. /*
  61. *
  62. * The flush IPI assumes that a thread switch happens in this order:
  63. * [cpu0: the cpu that switches]
  64. * 1) switch_mm() either 1a) or 1b)
  65. * 1a) thread switch to a different mm
  66. * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  67. * Stop ipi delivery for the old mm. This is not synchronized with
  68. * the other cpus, but smp_invalidate_interrupt ignore flush ipis
  69. * for the wrong mm, and in the worst case we perform a superfluous
  70. * tlb flush.
  71. * 1a2) set cpu mmu_state to TLBSTATE_OK
  72. * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  73. * was in lazy tlb mode.
  74. * 1a3) update cpu active_mm
  75. * Now cpu0 accepts tlb flushes for the new mm.
  76. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  77. * Now the other cpus will send tlb flush ipis.
  78. * 1a4) change cr3.
  79. * 1b) thread switch without mm change
  80. * cpu active_mm is correct, cpu0 already handles
  81. * flush ipis.
  82. * 1b1) set cpu mmu_state to TLBSTATE_OK
  83. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  84. * Atomically set the bit [other cpus will start sending flush ipis],
  85. * and test the bit.
  86. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  87. * 2) switch %%esp, ie current
  88. *
  89. * The interrupt must handle 2 special cases:
  90. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  91. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  92. * runs in kernel space, the cpu could load tlb entries for user space
  93. * pages.
  94. *
  95. * The good news is that cpu mmu_state is local to each cpu, no
  96. * write/read ordering problems.
  97. */
  98. /*
  99. * TLB flush IPI:
  100. *
  101. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  102. * 2) Leave the mm if we are in the lazy tlb mode.
  103. *
  104. * Interrupts are disabled.
  105. */
  106. /*
  107. * FIXME: use of asmlinkage is not consistent. On x86_64 it's noop
  108. * but still used for documentation purpose but the usage is slightly
  109. * inconsistent. On x86_32, asmlinkage is regparm(0) but interrupt
  110. * entry calls in with the first parameter in %eax. Maybe define
  111. * intrlinkage?
  112. */
  113. #ifdef CONFIG_X86_64
  114. asmlinkage
  115. #endif
  116. void smp_invalidate_interrupt(struct pt_regs *regs)
  117. {
  118. unsigned int cpu;
  119. unsigned int sender;
  120. union smp_flush_state *f;
  121. cpu = smp_processor_id();
  122. /*
  123. * orig_rax contains the negated interrupt vector.
  124. * Use that to determine where the sender put the data.
  125. */
  126. sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
  127. f = &flush_state[sender];
  128. if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask)))
  129. goto out;
  130. /*
  131. * This was a BUG() but until someone can quote me the
  132. * line from the intel manual that guarantees an IPI to
  133. * multiple CPUs is retried _only_ on the erroring CPUs
  134. * its staying as a return
  135. *
  136. * BUG();
  137. */
  138. if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
  139. if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
  140. if (f->flush_va == TLB_FLUSH_ALL)
  141. local_flush_tlb();
  142. else
  143. __flush_tlb_one(f->flush_va);
  144. } else
  145. leave_mm(cpu);
  146. }
  147. out:
  148. ack_APIC_irq();
  149. smp_mb__before_clear_bit();
  150. cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask));
  151. smp_mb__after_clear_bit();
  152. inc_irq_stat(irq_tlb_count);
  153. }
  154. static void flush_tlb_others_ipi(const struct cpumask *cpumask,
  155. struct mm_struct *mm, unsigned long va)
  156. {
  157. unsigned int sender;
  158. union smp_flush_state *f;
  159. /* Caller has disabled preemption */
  160. sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
  161. f = &flush_state[sender];
  162. /*
  163. * Could avoid this lock when
  164. * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
  165. * probably not worth checking this for a cache-hot lock.
  166. */
  167. spin_lock(&f->tlbstate_lock);
  168. f->flush_mm = mm;
  169. f->flush_va = va;
  170. if (cpumask_andnot(to_cpumask(f->flush_cpumask), cpumask, cpumask_of(smp_processor_id()))) {
  171. /*
  172. * We have to send the IPI only to
  173. * CPUs affected.
  174. */
  175. apic->send_IPI_mask(to_cpumask(f->flush_cpumask),
  176. INVALIDATE_TLB_VECTOR_START + sender);
  177. while (!cpumask_empty(to_cpumask(f->flush_cpumask)))
  178. cpu_relax();
  179. }
  180. f->flush_mm = NULL;
  181. f->flush_va = 0;
  182. spin_unlock(&f->tlbstate_lock);
  183. }
  184. void native_flush_tlb_others(const struct cpumask *cpumask,
  185. struct mm_struct *mm, unsigned long va)
  186. {
  187. if (is_uv_system()) {
  188. unsigned int cpu;
  189. cpu = get_cpu();
  190. cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu);
  191. if (cpumask)
  192. flush_tlb_others_ipi(cpumask, mm, va);
  193. put_cpu();
  194. return;
  195. }
  196. flush_tlb_others_ipi(cpumask, mm, va);
  197. }
  198. static int __cpuinit init_smp_flush(void)
  199. {
  200. int i;
  201. for (i = 0; i < ARRAY_SIZE(flush_state); i++)
  202. spin_lock_init(&flush_state[i].tlbstate_lock);
  203. return 0;
  204. }
  205. core_initcall(init_smp_flush);
  206. void flush_tlb_current_task(void)
  207. {
  208. struct mm_struct *mm = current->mm;
  209. preempt_disable();
  210. local_flush_tlb();
  211. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  212. flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
  213. preempt_enable();
  214. }
  215. void flush_tlb_mm(struct mm_struct *mm)
  216. {
  217. preempt_disable();
  218. if (current->active_mm == mm) {
  219. if (current->mm)
  220. local_flush_tlb();
  221. else
  222. leave_mm(smp_processor_id());
  223. }
  224. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  225. flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
  226. preempt_enable();
  227. }
  228. void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
  229. {
  230. struct mm_struct *mm = vma->vm_mm;
  231. preempt_disable();
  232. if (current->active_mm == mm) {
  233. if (current->mm)
  234. __flush_tlb_one(va);
  235. else
  236. leave_mm(smp_processor_id());
  237. }
  238. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  239. flush_tlb_others(mm_cpumask(mm), mm, va);
  240. preempt_enable();
  241. }
  242. static void do_flush_tlb_all(void *info)
  243. {
  244. unsigned long cpu = smp_processor_id();
  245. __flush_tlb_all();
  246. if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
  247. leave_mm(cpu);
  248. }
  249. void flush_tlb_all(void)
  250. {
  251. on_each_cpu(do_flush_tlb_all, NULL, 1);
  252. }