numa_64.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754
  1. /*
  2. * Generic VM initialization for x86-64 NUMA setups.
  3. * Copyright 2002,2003 Andi Kleen, SuSE Labs.
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/mm.h>
  7. #include <linux/string.h>
  8. #include <linux/init.h>
  9. #include <linux/bootmem.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/ctype.h>
  12. #include <linux/module.h>
  13. #include <linux/nodemask.h>
  14. #include <linux/sched.h>
  15. #include <asm/e820.h>
  16. #include <asm/proto.h>
  17. #include <asm/dma.h>
  18. #include <asm/numa.h>
  19. #include <asm/acpi.h>
  20. #include <asm/k8.h>
  21. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  22. EXPORT_SYMBOL(node_data);
  23. struct memnode memnode;
  24. s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
  25. [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
  26. };
  27. int numa_off __initdata;
  28. static unsigned long __initdata nodemap_addr;
  29. static unsigned long __initdata nodemap_size;
  30. DEFINE_PER_CPU(int, node_number) = 0;
  31. EXPORT_PER_CPU_SYMBOL(node_number);
  32. /*
  33. * Map cpu index to node index
  34. */
  35. DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
  36. EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
  37. /*
  38. * Given a shift value, try to populate memnodemap[]
  39. * Returns :
  40. * 1 if OK
  41. * 0 if memnodmap[] too small (of shift too small)
  42. * -1 if node overlap or lost ram (shift too big)
  43. */
  44. static int __init populate_memnodemap(const struct bootnode *nodes,
  45. int numnodes, int shift, int *nodeids)
  46. {
  47. unsigned long addr, end;
  48. int i, res = -1;
  49. memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
  50. for (i = 0; i < numnodes; i++) {
  51. addr = nodes[i].start;
  52. end = nodes[i].end;
  53. if (addr >= end)
  54. continue;
  55. if ((end >> shift) >= memnodemapsize)
  56. return 0;
  57. do {
  58. if (memnodemap[addr >> shift] != NUMA_NO_NODE)
  59. return -1;
  60. if (!nodeids)
  61. memnodemap[addr >> shift] = i;
  62. else
  63. memnodemap[addr >> shift] = nodeids[i];
  64. addr += (1UL << shift);
  65. } while (addr < end);
  66. res = 1;
  67. }
  68. return res;
  69. }
  70. static int __init allocate_cachealigned_memnodemap(void)
  71. {
  72. unsigned long addr;
  73. memnodemap = memnode.embedded_map;
  74. if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
  75. return 0;
  76. addr = 0x8000;
  77. nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
  78. nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
  79. nodemap_size, L1_CACHE_BYTES);
  80. if (nodemap_addr == -1UL) {
  81. printk(KERN_ERR
  82. "NUMA: Unable to allocate Memory to Node hash map\n");
  83. nodemap_addr = nodemap_size = 0;
  84. return -1;
  85. }
  86. memnodemap = phys_to_virt(nodemap_addr);
  87. reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
  88. printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
  89. nodemap_addr, nodemap_addr + nodemap_size);
  90. return 0;
  91. }
  92. /*
  93. * The LSB of all start and end addresses in the node map is the value of the
  94. * maximum possible shift.
  95. */
  96. static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
  97. int numnodes)
  98. {
  99. int i, nodes_used = 0;
  100. unsigned long start, end;
  101. unsigned long bitfield = 0, memtop = 0;
  102. for (i = 0; i < numnodes; i++) {
  103. start = nodes[i].start;
  104. end = nodes[i].end;
  105. if (start >= end)
  106. continue;
  107. bitfield |= start;
  108. nodes_used++;
  109. if (end > memtop)
  110. memtop = end;
  111. }
  112. if (nodes_used <= 1)
  113. i = 63;
  114. else
  115. i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
  116. memnodemapsize = (memtop >> i)+1;
  117. return i;
  118. }
  119. int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
  120. int *nodeids)
  121. {
  122. int shift;
  123. shift = extract_lsb_from_nodes(nodes, numnodes);
  124. if (allocate_cachealigned_memnodemap())
  125. return -1;
  126. printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
  127. shift);
  128. if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
  129. printk(KERN_INFO "Your memory is not aligned you need to "
  130. "rebuild your kernel with a bigger NODEMAPSIZE "
  131. "shift=%d\n", shift);
  132. return -1;
  133. }
  134. return shift;
  135. }
  136. int __meminit __early_pfn_to_nid(unsigned long pfn)
  137. {
  138. return phys_to_nid(pfn << PAGE_SHIFT);
  139. }
  140. static void * __init early_node_mem(int nodeid, unsigned long start,
  141. unsigned long end, unsigned long size,
  142. unsigned long align)
  143. {
  144. unsigned long mem = find_e820_area(start, end, size, align);
  145. void *ptr;
  146. if (mem != -1L)
  147. return __va(mem);
  148. ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
  149. if (ptr == NULL) {
  150. printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
  151. size, nodeid);
  152. return NULL;
  153. }
  154. return ptr;
  155. }
  156. /* Initialize bootmem allocator for a node */
  157. void __init
  158. setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
  159. {
  160. unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size;
  161. const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
  162. unsigned long bootmap_start, nodedata_phys;
  163. void *bootmap;
  164. int nid;
  165. if (!end)
  166. return;
  167. /*
  168. * Don't confuse VM with a node that doesn't have the
  169. * minimum amount of memory:
  170. */
  171. if (end && (end - start) < NODE_MIN_SIZE)
  172. return;
  173. start = roundup(start, ZONE_ALIGN);
  174. printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
  175. start, end);
  176. start_pfn = start >> PAGE_SHIFT;
  177. last_pfn = end >> PAGE_SHIFT;
  178. node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
  179. SMP_CACHE_BYTES);
  180. if (node_data[nodeid] == NULL)
  181. return;
  182. nodedata_phys = __pa(node_data[nodeid]);
  183. printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
  184. nodedata_phys + pgdat_size - 1);
  185. memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
  186. NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
  187. NODE_DATA(nodeid)->node_start_pfn = start_pfn;
  188. NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
  189. /*
  190. * Find a place for the bootmem map
  191. * nodedata_phys could be on other nodes by alloc_bootmem,
  192. * so need to sure bootmap_start not to be small, otherwise
  193. * early_node_mem will get that with find_e820_area instead
  194. * of alloc_bootmem, that could clash with reserved range
  195. */
  196. bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
  197. nid = phys_to_nid(nodedata_phys);
  198. if (nid == nodeid)
  199. bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
  200. else
  201. bootmap_start = roundup(start, PAGE_SIZE);
  202. /*
  203. * SMP_CACHE_BYTES could be enough, but init_bootmem_node like
  204. * to use that to align to PAGE_SIZE
  205. */
  206. bootmap = early_node_mem(nodeid, bootmap_start, end,
  207. bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
  208. if (bootmap == NULL) {
  209. if (nodedata_phys < start || nodedata_phys >= end)
  210. free_bootmem(nodedata_phys, pgdat_size);
  211. node_data[nodeid] = NULL;
  212. return;
  213. }
  214. bootmap_start = __pa(bootmap);
  215. bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
  216. bootmap_start >> PAGE_SHIFT,
  217. start_pfn, last_pfn);
  218. printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n",
  219. bootmap_start, bootmap_start + bootmap_size - 1,
  220. bootmap_pages);
  221. free_bootmem_with_active_regions(nodeid, end);
  222. /*
  223. * convert early reserve to bootmem reserve earlier
  224. * otherwise early_node_mem could use early reserved mem
  225. * on previous node
  226. */
  227. early_res_to_bootmem(start, end);
  228. /*
  229. * in some case early_node_mem could use alloc_bootmem
  230. * to get range on other node, don't reserve that again
  231. */
  232. if (nid != nodeid)
  233. printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
  234. else
  235. reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys,
  236. pgdat_size, BOOTMEM_DEFAULT);
  237. nid = phys_to_nid(bootmap_start);
  238. if (nid != nodeid)
  239. printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid);
  240. else
  241. reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
  242. bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT);
  243. node_set_online(nodeid);
  244. }
  245. /*
  246. * There are unfortunately some poorly designed mainboards around that
  247. * only connect memory to a single CPU. This breaks the 1:1 cpu->node
  248. * mapping. To avoid this fill in the mapping for all possible CPUs,
  249. * as the number of CPUs is not known yet. We round robin the existing
  250. * nodes.
  251. */
  252. void __init numa_init_array(void)
  253. {
  254. int rr, i;
  255. rr = first_node(node_online_map);
  256. for (i = 0; i < nr_cpu_ids; i++) {
  257. if (early_cpu_to_node(i) != NUMA_NO_NODE)
  258. continue;
  259. numa_set_node(i, rr);
  260. rr = next_node(rr, node_online_map);
  261. if (rr == MAX_NUMNODES)
  262. rr = first_node(node_online_map);
  263. }
  264. }
  265. #ifdef CONFIG_NUMA_EMU
  266. /* Numa emulation */
  267. static char *cmdline __initdata;
  268. /*
  269. * Setups up nid to range from addr to addr + size. If the end
  270. * boundary is greater than max_addr, then max_addr is used instead.
  271. * The return value is 0 if there is additional memory left for
  272. * allocation past addr and -1 otherwise. addr is adjusted to be at
  273. * the end of the node.
  274. */
  275. static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
  276. u64 size, u64 max_addr)
  277. {
  278. int ret = 0;
  279. nodes[nid].start = *addr;
  280. *addr += size;
  281. if (*addr >= max_addr) {
  282. *addr = max_addr;
  283. ret = -1;
  284. }
  285. nodes[nid].end = *addr;
  286. node_set(nid, node_possible_map);
  287. printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
  288. nodes[nid].start, nodes[nid].end,
  289. (nodes[nid].end - nodes[nid].start) >> 20);
  290. return ret;
  291. }
  292. /*
  293. * Splits num_nodes nodes up equally starting at node_start. The return value
  294. * is the number of nodes split up and addr is adjusted to be at the end of the
  295. * last node allocated.
  296. */
  297. static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
  298. u64 max_addr, int node_start,
  299. int num_nodes)
  300. {
  301. unsigned int big;
  302. u64 size;
  303. int i;
  304. if (num_nodes <= 0)
  305. return -1;
  306. if (num_nodes > MAX_NUMNODES)
  307. num_nodes = MAX_NUMNODES;
  308. size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
  309. num_nodes;
  310. /*
  311. * Calculate the number of big nodes that can be allocated as a result
  312. * of consolidating the leftovers.
  313. */
  314. big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
  315. FAKE_NODE_MIN_SIZE;
  316. /* Round down to nearest FAKE_NODE_MIN_SIZE. */
  317. size &= FAKE_NODE_MIN_HASH_MASK;
  318. if (!size) {
  319. printk(KERN_ERR "Not enough memory for each node. "
  320. "NUMA emulation disabled.\n");
  321. return -1;
  322. }
  323. for (i = node_start; i < num_nodes + node_start; i++) {
  324. u64 end = *addr + size;
  325. if (i < big)
  326. end += FAKE_NODE_MIN_SIZE;
  327. /*
  328. * The final node can have the remaining system RAM. Other
  329. * nodes receive roughly the same amount of available pages.
  330. */
  331. if (i == num_nodes + node_start - 1)
  332. end = max_addr;
  333. else
  334. while (end - *addr - e820_hole_size(*addr, end) <
  335. size) {
  336. end += FAKE_NODE_MIN_SIZE;
  337. if (end > max_addr) {
  338. end = max_addr;
  339. break;
  340. }
  341. }
  342. if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
  343. break;
  344. }
  345. return i - node_start + 1;
  346. }
  347. /*
  348. * Splits the remaining system RAM into chunks of size. The remaining memory is
  349. * always assigned to a final node and can be asymmetric. Returns the number of
  350. * nodes split.
  351. */
  352. static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
  353. u64 max_addr, int node_start, u64 size)
  354. {
  355. int i = node_start;
  356. size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
  357. while (!setup_node_range(i++, nodes, addr, size, max_addr))
  358. ;
  359. return i - node_start;
  360. }
  361. /*
  362. * Sets up the system RAM area from start_pfn to last_pfn according to the
  363. * numa=fake command-line option.
  364. */
  365. static struct bootnode nodes[MAX_NUMNODES] __initdata;
  366. static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn)
  367. {
  368. u64 size, addr = start_pfn << PAGE_SHIFT;
  369. u64 max_addr = last_pfn << PAGE_SHIFT;
  370. int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
  371. memset(&nodes, 0, sizeof(nodes));
  372. /*
  373. * If the numa=fake command-line is just a single number N, split the
  374. * system RAM into N fake nodes.
  375. */
  376. if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
  377. long n = simple_strtol(cmdline, NULL, 0);
  378. num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
  379. if (num_nodes < 0)
  380. return num_nodes;
  381. goto out;
  382. }
  383. /* Parse the command line. */
  384. for (coeff_flag = 0; ; cmdline++) {
  385. if (*cmdline && isdigit(*cmdline)) {
  386. num = num * 10 + *cmdline - '0';
  387. continue;
  388. }
  389. if (*cmdline == '*') {
  390. if (num > 0)
  391. coeff = num;
  392. coeff_flag = 1;
  393. }
  394. if (!*cmdline || *cmdline == ',') {
  395. if (!coeff_flag)
  396. coeff = 1;
  397. /*
  398. * Round down to the nearest FAKE_NODE_MIN_SIZE.
  399. * Command-line coefficients are in megabytes.
  400. */
  401. size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
  402. if (size)
  403. for (i = 0; i < coeff; i++, num_nodes++)
  404. if (setup_node_range(num_nodes, nodes,
  405. &addr, size, max_addr) < 0)
  406. goto done;
  407. if (!*cmdline)
  408. break;
  409. coeff_flag = 0;
  410. coeff = -1;
  411. }
  412. num = 0;
  413. }
  414. done:
  415. if (!num_nodes)
  416. return -1;
  417. /* Fill remainder of system RAM, if appropriate. */
  418. if (addr < max_addr) {
  419. if (coeff_flag && coeff < 0) {
  420. /* Split remaining nodes into num-sized chunks */
  421. num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
  422. num_nodes, num);
  423. goto out;
  424. }
  425. switch (*(cmdline - 1)) {
  426. case '*':
  427. /* Split remaining nodes into coeff chunks */
  428. if (coeff <= 0)
  429. break;
  430. num_nodes += split_nodes_equally(nodes, &addr, max_addr,
  431. num_nodes, coeff);
  432. break;
  433. case ',':
  434. /* Do not allocate remaining system RAM */
  435. break;
  436. default:
  437. /* Give one final node */
  438. setup_node_range(num_nodes, nodes, &addr,
  439. max_addr - addr, max_addr);
  440. num_nodes++;
  441. }
  442. }
  443. out:
  444. memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
  445. if (memnode_shift < 0) {
  446. memnode_shift = 0;
  447. printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
  448. "disabled.\n");
  449. return -1;
  450. }
  451. /*
  452. * We need to vacate all active ranges that may have been registered by
  453. * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
  454. * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
  455. */
  456. remove_all_active_ranges();
  457. #ifdef CONFIG_ACPI_NUMA
  458. acpi_numa = -1;
  459. #endif
  460. for_each_node_mask(i, node_possible_map) {
  461. e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
  462. nodes[i].end >> PAGE_SHIFT);
  463. setup_node_bootmem(i, nodes[i].start, nodes[i].end);
  464. }
  465. acpi_fake_nodes(nodes, num_nodes);
  466. numa_init_array();
  467. return 0;
  468. }
  469. #endif /* CONFIG_NUMA_EMU */
  470. void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn)
  471. {
  472. int i;
  473. nodes_clear(node_possible_map);
  474. nodes_clear(node_online_map);
  475. #ifdef CONFIG_NUMA_EMU
  476. if (cmdline && !numa_emulation(start_pfn, last_pfn))
  477. return;
  478. nodes_clear(node_possible_map);
  479. nodes_clear(node_online_map);
  480. #endif
  481. #ifdef CONFIG_ACPI_NUMA
  482. if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
  483. last_pfn << PAGE_SHIFT))
  484. return;
  485. nodes_clear(node_possible_map);
  486. nodes_clear(node_online_map);
  487. #endif
  488. #ifdef CONFIG_K8_NUMA
  489. if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
  490. last_pfn<<PAGE_SHIFT))
  491. return;
  492. nodes_clear(node_possible_map);
  493. nodes_clear(node_online_map);
  494. #endif
  495. printk(KERN_INFO "%s\n",
  496. numa_off ? "NUMA turned off" : "No NUMA configuration found");
  497. printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
  498. start_pfn << PAGE_SHIFT,
  499. last_pfn << PAGE_SHIFT);
  500. /* setup dummy node covering all memory */
  501. memnode_shift = 63;
  502. memnodemap = memnode.embedded_map;
  503. memnodemap[0] = 0;
  504. node_set_online(0);
  505. node_set(0, node_possible_map);
  506. for (i = 0; i < nr_cpu_ids; i++)
  507. numa_set_node(i, 0);
  508. e820_register_active_regions(0, start_pfn, last_pfn);
  509. setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
  510. }
  511. unsigned long __init numa_free_all_bootmem(void)
  512. {
  513. unsigned long pages = 0;
  514. int i;
  515. for_each_online_node(i)
  516. pages += free_all_bootmem_node(NODE_DATA(i));
  517. return pages;
  518. }
  519. static __init int numa_setup(char *opt)
  520. {
  521. if (!opt)
  522. return -EINVAL;
  523. if (!strncmp(opt, "off", 3))
  524. numa_off = 1;
  525. #ifdef CONFIG_NUMA_EMU
  526. if (!strncmp(opt, "fake=", 5))
  527. cmdline = opt + 5;
  528. #endif
  529. #ifdef CONFIG_ACPI_NUMA
  530. if (!strncmp(opt, "noacpi", 6))
  531. acpi_numa = -1;
  532. #endif
  533. return 0;
  534. }
  535. early_param("numa", numa_setup);
  536. #ifdef CONFIG_NUMA
  537. /*
  538. * Setup early cpu_to_node.
  539. *
  540. * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
  541. * and apicid_to_node[] tables have valid entries for a CPU.
  542. * This means we skip cpu_to_node[] initialisation for NUMA
  543. * emulation and faking node case (when running a kernel compiled
  544. * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
  545. * is already initialized in a round robin manner at numa_init_array,
  546. * prior to this call, and this initialization is good enough
  547. * for the fake NUMA cases.
  548. *
  549. * Called before the per_cpu areas are setup.
  550. */
  551. void __init init_cpu_to_node(void)
  552. {
  553. int cpu;
  554. u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
  555. BUG_ON(cpu_to_apicid == NULL);
  556. for_each_possible_cpu(cpu) {
  557. int node;
  558. u16 apicid = cpu_to_apicid[cpu];
  559. if (apicid == BAD_APICID)
  560. continue;
  561. node = apicid_to_node[apicid];
  562. if (node == NUMA_NO_NODE)
  563. continue;
  564. if (!node_online(node))
  565. continue;
  566. numa_set_node(cpu, node);
  567. }
  568. }
  569. #endif
  570. void __cpuinit numa_set_node(int cpu, int node)
  571. {
  572. int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
  573. /* early setting, no percpu area yet */
  574. if (cpu_to_node_map) {
  575. cpu_to_node_map[cpu] = node;
  576. return;
  577. }
  578. #ifdef CONFIG_DEBUG_PER_CPU_MAPS
  579. if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
  580. printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
  581. dump_stack();
  582. return;
  583. }
  584. #endif
  585. per_cpu(x86_cpu_to_node_map, cpu) = node;
  586. if (node != NUMA_NO_NODE)
  587. per_cpu(node_number, cpu) = node;
  588. }
  589. void __cpuinit numa_clear_node(int cpu)
  590. {
  591. numa_set_node(cpu, NUMA_NO_NODE);
  592. }
  593. #ifndef CONFIG_DEBUG_PER_CPU_MAPS
  594. void __cpuinit numa_add_cpu(int cpu)
  595. {
  596. cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  597. }
  598. void __cpuinit numa_remove_cpu(int cpu)
  599. {
  600. cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  601. }
  602. #else /* CONFIG_DEBUG_PER_CPU_MAPS */
  603. /*
  604. * --------- debug versions of the numa functions ---------
  605. */
  606. static void __cpuinit numa_set_cpumask(int cpu, int enable)
  607. {
  608. int node = early_cpu_to_node(cpu);
  609. struct cpumask *mask;
  610. char buf[64];
  611. mask = node_to_cpumask_map[node];
  612. if (mask == NULL) {
  613. printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
  614. dump_stack();
  615. return;
  616. }
  617. if (enable)
  618. cpumask_set_cpu(cpu, mask);
  619. else
  620. cpumask_clear_cpu(cpu, mask);
  621. cpulist_scnprintf(buf, sizeof(buf), mask);
  622. printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
  623. enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
  624. }
  625. void __cpuinit numa_add_cpu(int cpu)
  626. {
  627. numa_set_cpumask(cpu, 1);
  628. }
  629. void __cpuinit numa_remove_cpu(int cpu)
  630. {
  631. numa_set_cpumask(cpu, 0);
  632. }
  633. int cpu_to_node(int cpu)
  634. {
  635. if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
  636. printk(KERN_WARNING
  637. "cpu_to_node(%d): usage too early!\n", cpu);
  638. dump_stack();
  639. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  640. }
  641. return per_cpu(x86_cpu_to_node_map, cpu);
  642. }
  643. EXPORT_SYMBOL(cpu_to_node);
  644. /*
  645. * Same function as cpu_to_node() but used if called before the
  646. * per_cpu areas are setup.
  647. */
  648. int early_cpu_to_node(int cpu)
  649. {
  650. if (early_per_cpu_ptr(x86_cpu_to_node_map))
  651. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  652. if (!cpu_possible(cpu)) {
  653. printk(KERN_WARNING
  654. "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
  655. dump_stack();
  656. return NUMA_NO_NODE;
  657. }
  658. return per_cpu(x86_cpu_to_node_map, cpu);
  659. }
  660. /*
  661. * --------- end of debug versions of the numa functions ---------
  662. */
  663. #endif /* CONFIG_DEBUG_PER_CPU_MAPS */