boot.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426
  1. /*P:010
  2. * A hypervisor allows multiple Operating Systems to run on a single machine.
  3. * To quote David Wheeler: "Any problem in computer science can be solved with
  4. * another layer of indirection."
  5. *
  6. * We keep things simple in two ways. First, we start with a normal Linux
  7. * kernel and insert a module (lg.ko) which allows us to run other Linux
  8. * kernels the same way we'd run processes. We call the first kernel the Host,
  9. * and the others the Guests. The program which sets up and configures Guests
  10. * (such as the example in Documentation/lguest/lguest.c) is called the
  11. * Launcher.
  12. *
  13. * Secondly, we only run specially modified Guests, not normal kernels: setting
  14. * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
  15. * how to be a Guest at boot time. This means that you can use the same kernel
  16. * you boot normally (ie. as a Host) as a Guest.
  17. *
  18. * These Guests know that they cannot do privileged operations, such as disable
  19. * interrupts, and that they have to ask the Host to do such things explicitly.
  20. * This file consists of all the replacements for such low-level native
  21. * hardware operations: these special Guest versions call the Host.
  22. *
  23. * So how does the kernel know it's a Guest? We'll see that later, but let's
  24. * just say that we end up here where we replace the native functions various
  25. * "paravirt" structures with our Guest versions, then boot like normal.
  26. :*/
  27. /*
  28. * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
  29. *
  30. * This program is free software; you can redistribute it and/or modify
  31. * it under the terms of the GNU General Public License as published by
  32. * the Free Software Foundation; either version 2 of the License, or
  33. * (at your option) any later version.
  34. *
  35. * This program is distributed in the hope that it will be useful, but
  36. * WITHOUT ANY WARRANTY; without even the implied warranty of
  37. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  38. * NON INFRINGEMENT. See the GNU General Public License for more
  39. * details.
  40. *
  41. * You should have received a copy of the GNU General Public License
  42. * along with this program; if not, write to the Free Software
  43. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  44. */
  45. #include <linux/kernel.h>
  46. #include <linux/start_kernel.h>
  47. #include <linux/string.h>
  48. #include <linux/console.h>
  49. #include <linux/screen_info.h>
  50. #include <linux/irq.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/clocksource.h>
  53. #include <linux/clockchips.h>
  54. #include <linux/lguest.h>
  55. #include <linux/lguest_launcher.h>
  56. #include <linux/virtio_console.h>
  57. #include <linux/pm.h>
  58. #include <asm/apic.h>
  59. #include <asm/lguest.h>
  60. #include <asm/paravirt.h>
  61. #include <asm/param.h>
  62. #include <asm/page.h>
  63. #include <asm/pgtable.h>
  64. #include <asm/desc.h>
  65. #include <asm/setup.h>
  66. #include <asm/e820.h>
  67. #include <asm/mce.h>
  68. #include <asm/io.h>
  69. #include <asm/i387.h>
  70. #include <asm/stackprotector.h>
  71. #include <asm/reboot.h> /* for struct machine_ops */
  72. /*G:010 Welcome to the Guest!
  73. *
  74. * The Guest in our tale is a simple creature: identical to the Host but
  75. * behaving in simplified but equivalent ways. In particular, the Guest is the
  76. * same kernel as the Host (or at least, built from the same source code).
  77. :*/
  78. struct lguest_data lguest_data = {
  79. .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
  80. .noirq_start = (u32)lguest_noirq_start,
  81. .noirq_end = (u32)lguest_noirq_end,
  82. .kernel_address = PAGE_OFFSET,
  83. .blocked_interrupts = { 1 }, /* Block timer interrupts */
  84. .syscall_vec = SYSCALL_VECTOR,
  85. };
  86. /*G:037
  87. * async_hcall() is pretty simple: I'm quite proud of it really. We have a
  88. * ring buffer of stored hypercalls which the Host will run though next time we
  89. * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
  90. * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
  91. * and 255 once the Host has finished with it.
  92. *
  93. * If we come around to a slot which hasn't been finished, then the table is
  94. * full and we just make the hypercall directly. This has the nice side
  95. * effect of causing the Host to run all the stored calls in the ring buffer
  96. * which empties it for next time!
  97. */
  98. static void async_hcall(unsigned long call, unsigned long arg1,
  99. unsigned long arg2, unsigned long arg3,
  100. unsigned long arg4)
  101. {
  102. /* Note: This code assumes we're uniprocessor. */
  103. static unsigned int next_call;
  104. unsigned long flags;
  105. /*
  106. * Disable interrupts if not already disabled: we don't want an
  107. * interrupt handler making a hypercall while we're already doing
  108. * one!
  109. */
  110. local_irq_save(flags);
  111. if (lguest_data.hcall_status[next_call] != 0xFF) {
  112. /* Table full, so do normal hcall which will flush table. */
  113. kvm_hypercall4(call, arg1, arg2, arg3, arg4);
  114. } else {
  115. lguest_data.hcalls[next_call].arg0 = call;
  116. lguest_data.hcalls[next_call].arg1 = arg1;
  117. lguest_data.hcalls[next_call].arg2 = arg2;
  118. lguest_data.hcalls[next_call].arg3 = arg3;
  119. lguest_data.hcalls[next_call].arg4 = arg4;
  120. /* Arguments must all be written before we mark it to go */
  121. wmb();
  122. lguest_data.hcall_status[next_call] = 0;
  123. if (++next_call == LHCALL_RING_SIZE)
  124. next_call = 0;
  125. }
  126. local_irq_restore(flags);
  127. }
  128. /*G:035
  129. * Notice the lazy_hcall() above, rather than hcall(). This is our first real
  130. * optimization trick!
  131. *
  132. * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
  133. * them as a batch when lazy_mode is eventually turned off. Because hypercalls
  134. * are reasonably expensive, batching them up makes sense. For example, a
  135. * large munmap might update dozens of page table entries: that code calls
  136. * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
  137. * lguest_leave_lazy_mode().
  138. *
  139. * So, when we're in lazy mode, we call async_hcall() to store the call for
  140. * future processing:
  141. */
  142. static void lazy_hcall1(unsigned long call,
  143. unsigned long arg1)
  144. {
  145. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  146. kvm_hypercall1(call, arg1);
  147. else
  148. async_hcall(call, arg1, 0, 0, 0);
  149. }
  150. /* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
  151. static void lazy_hcall2(unsigned long call,
  152. unsigned long arg1,
  153. unsigned long arg2)
  154. {
  155. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  156. kvm_hypercall2(call, arg1, arg2);
  157. else
  158. async_hcall(call, arg1, arg2, 0, 0);
  159. }
  160. static void lazy_hcall3(unsigned long call,
  161. unsigned long arg1,
  162. unsigned long arg2,
  163. unsigned long arg3)
  164. {
  165. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  166. kvm_hypercall3(call, arg1, arg2, arg3);
  167. else
  168. async_hcall(call, arg1, arg2, arg3, 0);
  169. }
  170. #ifdef CONFIG_X86_PAE
  171. static void lazy_hcall4(unsigned long call,
  172. unsigned long arg1,
  173. unsigned long arg2,
  174. unsigned long arg3,
  175. unsigned long arg4)
  176. {
  177. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
  178. kvm_hypercall4(call, arg1, arg2, arg3, arg4);
  179. else
  180. async_hcall(call, arg1, arg2, arg3, arg4);
  181. }
  182. #endif
  183. /*G:036
  184. * When lazy mode is turned off reset the per-cpu lazy mode variable and then
  185. * issue the do-nothing hypercall to flush any stored calls.
  186. :*/
  187. static void lguest_leave_lazy_mmu_mode(void)
  188. {
  189. kvm_hypercall0(LHCALL_FLUSH_ASYNC);
  190. paravirt_leave_lazy_mmu();
  191. }
  192. static void lguest_end_context_switch(struct task_struct *next)
  193. {
  194. kvm_hypercall0(LHCALL_FLUSH_ASYNC);
  195. paravirt_end_context_switch(next);
  196. }
  197. /*G:032
  198. * After that diversion we return to our first native-instruction
  199. * replacements: four functions for interrupt control.
  200. *
  201. * The simplest way of implementing these would be to have "turn interrupts
  202. * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
  203. * these are by far the most commonly called functions of those we override.
  204. *
  205. * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
  206. * which the Guest can update with a single instruction. The Host knows to
  207. * check there before it tries to deliver an interrupt.
  208. */
  209. /*
  210. * save_flags() is expected to return the processor state (ie. "flags"). The
  211. * flags word contains all kind of stuff, but in practice Linux only cares
  212. * about the interrupt flag. Our "save_flags()" just returns that.
  213. */
  214. static unsigned long save_fl(void)
  215. {
  216. return lguest_data.irq_enabled;
  217. }
  218. /* Interrupts go off... */
  219. static void irq_disable(void)
  220. {
  221. lguest_data.irq_enabled = 0;
  222. }
  223. /*
  224. * Let's pause a moment. Remember how I said these are called so often?
  225. * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
  226. * break some rules. In particular, these functions are assumed to save their
  227. * own registers if they need to: normal C functions assume they can trash the
  228. * eax register. To use normal C functions, we use
  229. * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
  230. * C function, then restores it.
  231. */
  232. PV_CALLEE_SAVE_REGS_THUNK(save_fl);
  233. PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
  234. /*:*/
  235. /* These are in i386_head.S */
  236. extern void lg_irq_enable(void);
  237. extern void lg_restore_fl(unsigned long flags);
  238. /*M:003
  239. * We could be more efficient in our checking of outstanding interrupts, rather
  240. * than using a branch. One way would be to put the "irq_enabled" field in a
  241. * page by itself, and have the Host write-protect it when an interrupt comes
  242. * in when irqs are disabled. There will then be a page fault as soon as
  243. * interrupts are re-enabled.
  244. *
  245. * A better method is to implement soft interrupt disable generally for x86:
  246. * instead of disabling interrupts, we set a flag. If an interrupt does come
  247. * in, we then disable them for real. This is uncommon, so we could simply use
  248. * a hypercall for interrupt control and not worry about efficiency.
  249. :*/
  250. /*G:034
  251. * The Interrupt Descriptor Table (IDT).
  252. *
  253. * The IDT tells the processor what to do when an interrupt comes in. Each
  254. * entry in the table is a 64-bit descriptor: this holds the privilege level,
  255. * address of the handler, and... well, who cares? The Guest just asks the
  256. * Host to make the change anyway, because the Host controls the real IDT.
  257. */
  258. static void lguest_write_idt_entry(gate_desc *dt,
  259. int entrynum, const gate_desc *g)
  260. {
  261. /*
  262. * The gate_desc structure is 8 bytes long: we hand it to the Host in
  263. * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
  264. * around like this; typesafety wasn't a big concern in Linux's early
  265. * years.
  266. */
  267. u32 *desc = (u32 *)g;
  268. /* Keep the local copy up to date. */
  269. native_write_idt_entry(dt, entrynum, g);
  270. /* Tell Host about this new entry. */
  271. kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1]);
  272. }
  273. /*
  274. * Changing to a different IDT is very rare: we keep the IDT up-to-date every
  275. * time it is written, so we can simply loop through all entries and tell the
  276. * Host about them.
  277. */
  278. static void lguest_load_idt(const struct desc_ptr *desc)
  279. {
  280. unsigned int i;
  281. struct desc_struct *idt = (void *)desc->address;
  282. for (i = 0; i < (desc->size+1)/8; i++)
  283. kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b);
  284. }
  285. /*
  286. * The Global Descriptor Table.
  287. *
  288. * The Intel architecture defines another table, called the Global Descriptor
  289. * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
  290. * instruction, and then several other instructions refer to entries in the
  291. * table. There are three entries which the Switcher needs, so the Host simply
  292. * controls the entire thing and the Guest asks it to make changes using the
  293. * LOAD_GDT hypercall.
  294. *
  295. * This is the exactly like the IDT code.
  296. */
  297. static void lguest_load_gdt(const struct desc_ptr *desc)
  298. {
  299. unsigned int i;
  300. struct desc_struct *gdt = (void *)desc->address;
  301. for (i = 0; i < (desc->size+1)/8; i++)
  302. kvm_hypercall3(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b);
  303. }
  304. /*
  305. * For a single GDT entry which changes, we do the lazy thing: alter our GDT,
  306. * then tell the Host to reload the entire thing. This operation is so rare
  307. * that this naive implementation is reasonable.
  308. */
  309. static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
  310. const void *desc, int type)
  311. {
  312. native_write_gdt_entry(dt, entrynum, desc, type);
  313. /* Tell Host about this new entry. */
  314. kvm_hypercall3(LHCALL_LOAD_GDT_ENTRY, entrynum,
  315. dt[entrynum].a, dt[entrynum].b);
  316. }
  317. /*
  318. * OK, I lied. There are three "thread local storage" GDT entries which change
  319. * on every context switch (these three entries are how glibc implements
  320. * __thread variables). So we have a hypercall specifically for this case.
  321. */
  322. static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
  323. {
  324. /*
  325. * There's one problem which normal hardware doesn't have: the Host
  326. * can't handle us removing entries we're currently using. So we clear
  327. * the GS register here: if it's needed it'll be reloaded anyway.
  328. */
  329. lazy_load_gs(0);
  330. lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
  331. }
  332. /*G:038
  333. * That's enough excitement for now, back to ploughing through each of the
  334. * different pv_ops structures (we're about 1/3 of the way through).
  335. *
  336. * This is the Local Descriptor Table, another weird Intel thingy. Linux only
  337. * uses this for some strange applications like Wine. We don't do anything
  338. * here, so they'll get an informative and friendly Segmentation Fault.
  339. */
  340. static void lguest_set_ldt(const void *addr, unsigned entries)
  341. {
  342. }
  343. /*
  344. * This loads a GDT entry into the "Task Register": that entry points to a
  345. * structure called the Task State Segment. Some comments scattered though the
  346. * kernel code indicate that this used for task switching in ages past, along
  347. * with blood sacrifice and astrology.
  348. *
  349. * Now there's nothing interesting in here that we don't get told elsewhere.
  350. * But the native version uses the "ltr" instruction, which makes the Host
  351. * complain to the Guest about a Segmentation Fault and it'll oops. So we
  352. * override the native version with a do-nothing version.
  353. */
  354. static void lguest_load_tr_desc(void)
  355. {
  356. }
  357. /*
  358. * The "cpuid" instruction is a way of querying both the CPU identity
  359. * (manufacturer, model, etc) and its features. It was introduced before the
  360. * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
  361. * As you might imagine, after a decade and a half this treatment, it is now a
  362. * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
  363. *
  364. * This instruction even it has its own Wikipedia entry. The Wikipedia entry
  365. * has been translated into 5 languages. I am not making this up!
  366. *
  367. * We could get funky here and identify ourselves as "GenuineLguest", but
  368. * instead we just use the real "cpuid" instruction. Then I pretty much turned
  369. * off feature bits until the Guest booted. (Don't say that: you'll damage
  370. * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
  371. * hardly future proof.) Noone's listening! They don't like you anyway,
  372. * parenthetic weirdo!
  373. *
  374. * Replacing the cpuid so we can turn features off is great for the kernel, but
  375. * anyone (including userspace) can just use the raw "cpuid" instruction and
  376. * the Host won't even notice since it isn't privileged. So we try not to get
  377. * too worked up about it.
  378. */
  379. static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
  380. unsigned int *cx, unsigned int *dx)
  381. {
  382. int function = *ax;
  383. native_cpuid(ax, bx, cx, dx);
  384. switch (function) {
  385. /*
  386. * CPUID 0 gives the highest legal CPUID number (and the ID string).
  387. * We futureproof our code a little by sticking to known CPUID values.
  388. */
  389. case 0:
  390. if (*ax > 5)
  391. *ax = 5;
  392. break;
  393. /*
  394. * CPUID 1 is a basic feature request.
  395. *
  396. * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
  397. * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
  398. */
  399. case 1:
  400. *cx &= 0x00002201;
  401. *dx &= 0x07808151;
  402. /*
  403. * The Host can do a nice optimization if it knows that the
  404. * kernel mappings (addresses above 0xC0000000 or whatever
  405. * PAGE_OFFSET is set to) haven't changed. But Linux calls
  406. * flush_tlb_user() for both user and kernel mappings unless
  407. * the Page Global Enable (PGE) feature bit is set.
  408. */
  409. *dx |= 0x00002000;
  410. /*
  411. * We also lie, and say we're family id 5. 6 or greater
  412. * leads to a rdmsr in early_init_intel which we can't handle.
  413. * Family ID is returned as bits 8-12 in ax.
  414. */
  415. *ax &= 0xFFFFF0FF;
  416. *ax |= 0x00000500;
  417. break;
  418. /*
  419. * 0x80000000 returns the highest Extended Function, so we futureproof
  420. * like we do above by limiting it to known fields.
  421. */
  422. case 0x80000000:
  423. if (*ax > 0x80000008)
  424. *ax = 0x80000008;
  425. break;
  426. /*
  427. * PAE systems can mark pages as non-executable. Linux calls this the
  428. * NX bit. Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
  429. * Virus Protection). We just switch turn if off here, since we don't
  430. * support it.
  431. */
  432. case 0x80000001:
  433. *dx &= ~(1 << 20);
  434. break;
  435. }
  436. }
  437. /*
  438. * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
  439. * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
  440. * it. The Host needs to know when the Guest wants to change them, so we have
  441. * a whole series of functions like read_cr0() and write_cr0().
  442. *
  443. * We start with cr0. cr0 allows you to turn on and off all kinds of basic
  444. * features, but Linux only really cares about one: the horrifically-named Task
  445. * Switched (TS) bit at bit 3 (ie. 8)
  446. *
  447. * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
  448. * the floating point unit is used. Which allows us to restore FPU state
  449. * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
  450. * name like "FPUTRAP bit" be a little less cryptic?
  451. *
  452. * We store cr0 locally because the Host never changes it. The Guest sometimes
  453. * wants to read it and we'd prefer not to bother the Host unnecessarily.
  454. */
  455. static unsigned long current_cr0;
  456. static void lguest_write_cr0(unsigned long val)
  457. {
  458. lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
  459. current_cr0 = val;
  460. }
  461. static unsigned long lguest_read_cr0(void)
  462. {
  463. return current_cr0;
  464. }
  465. /*
  466. * Intel provided a special instruction to clear the TS bit for people too cool
  467. * to use write_cr0() to do it. This "clts" instruction is faster, because all
  468. * the vowels have been optimized out.
  469. */
  470. static void lguest_clts(void)
  471. {
  472. lazy_hcall1(LHCALL_TS, 0);
  473. current_cr0 &= ~X86_CR0_TS;
  474. }
  475. /*
  476. * cr2 is the virtual address of the last page fault, which the Guest only ever
  477. * reads. The Host kindly writes this into our "struct lguest_data", so we
  478. * just read it out of there.
  479. */
  480. static unsigned long lguest_read_cr2(void)
  481. {
  482. return lguest_data.cr2;
  483. }
  484. /* See lguest_set_pte() below. */
  485. static bool cr3_changed = false;
  486. /*
  487. * cr3 is the current toplevel pagetable page: the principle is the same as
  488. * cr0. Keep a local copy, and tell the Host when it changes. The only
  489. * difference is that our local copy is in lguest_data because the Host needs
  490. * to set it upon our initial hypercall.
  491. */
  492. static void lguest_write_cr3(unsigned long cr3)
  493. {
  494. lguest_data.pgdir = cr3;
  495. lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
  496. cr3_changed = true;
  497. }
  498. static unsigned long lguest_read_cr3(void)
  499. {
  500. return lguest_data.pgdir;
  501. }
  502. /* cr4 is used to enable and disable PGE, but we don't care. */
  503. static unsigned long lguest_read_cr4(void)
  504. {
  505. return 0;
  506. }
  507. static void lguest_write_cr4(unsigned long val)
  508. {
  509. }
  510. /*
  511. * Page Table Handling.
  512. *
  513. * Now would be a good time to take a rest and grab a coffee or similarly
  514. * relaxing stimulant. The easy parts are behind us, and the trek gradually
  515. * winds uphill from here.
  516. *
  517. * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
  518. * maps virtual addresses to physical addresses using "page tables". We could
  519. * use one huge index of 1 million entries: each address is 4 bytes, so that's
  520. * 1024 pages just to hold the page tables. But since most virtual addresses
  521. * are unused, we use a two level index which saves space. The cr3 register
  522. * contains the physical address of the top level "page directory" page, which
  523. * contains physical addresses of up to 1024 second-level pages. Each of these
  524. * second level pages contains up to 1024 physical addresses of actual pages,
  525. * or Page Table Entries (PTEs).
  526. *
  527. * Here's a diagram, where arrows indicate physical addresses:
  528. *
  529. * cr3 ---> +---------+
  530. * | --------->+---------+
  531. * | | | PADDR1 |
  532. * Mid-level | | PADDR2 |
  533. * (PMD) page | | |
  534. * | | Lower-level |
  535. * | | (PTE) page |
  536. * | | | |
  537. * .... ....
  538. *
  539. * So to convert a virtual address to a physical address, we look up the top
  540. * level, which points us to the second level, which gives us the physical
  541. * address of that page. If the top level entry was not present, or the second
  542. * level entry was not present, then the virtual address is invalid (we
  543. * say "the page was not mapped").
  544. *
  545. * Put another way, a 32-bit virtual address is divided up like so:
  546. *
  547. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  548. * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
  549. * Index into top Index into second Offset within page
  550. * page directory page pagetable page
  551. *
  552. * Now, unfortunately, this isn't the whole story: Intel added Physical Address
  553. * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits).
  554. * These are held in 64-bit page table entries, so we can now only fit 512
  555. * entries in a page, and the neat three-level tree breaks down.
  556. *
  557. * The result is a four level page table:
  558. *
  559. * cr3 --> [ 4 Upper ]
  560. * [ Level ]
  561. * [ Entries ]
  562. * [(PUD Page)]---> +---------+
  563. * | --------->+---------+
  564. * | | | PADDR1 |
  565. * Mid-level | | PADDR2 |
  566. * (PMD) page | | |
  567. * | | Lower-level |
  568. * | | (PTE) page |
  569. * | | | |
  570. * .... ....
  571. *
  572. *
  573. * And the virtual address is decoded as:
  574. *
  575. * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  576. * |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>|
  577. * Index into Index into mid Index into lower Offset within page
  578. * top entries directory page pagetable page
  579. *
  580. * It's too hard to switch between these two formats at runtime, so Linux only
  581. * supports one or the other depending on whether CONFIG_X86_PAE is set. Many
  582. * distributions turn it on, and not just for people with silly amounts of
  583. * memory: the larger PTE entries allow room for the NX bit, which lets the
  584. * kernel disable execution of pages and increase security.
  585. *
  586. * This was a problem for lguest, which couldn't run on these distributions;
  587. * then Matias Zabaljauregui figured it all out and implemented it, and only a
  588. * handful of puppies were crushed in the process!
  589. *
  590. * Back to our point: the kernel spends a lot of time changing both the
  591. * top-level page directory and lower-level pagetable pages. The Guest doesn't
  592. * know physical addresses, so while it maintains these page tables exactly
  593. * like normal, it also needs to keep the Host informed whenever it makes a
  594. * change: the Host will create the real page tables based on the Guests'.
  595. */
  596. /*
  597. * The Guest calls this after it has set a second-level entry (pte), ie. to map
  598. * a page into a process' address space. Wetell the Host the toplevel and
  599. * address this corresponds to. The Guest uses one pagetable per process, so
  600. * we need to tell the Host which one we're changing (mm->pgd).
  601. */
  602. static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
  603. pte_t *ptep)
  604. {
  605. #ifdef CONFIG_X86_PAE
  606. /* PAE needs to hand a 64 bit page table entry, so it uses two args. */
  607. lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
  608. ptep->pte_low, ptep->pte_high);
  609. #else
  610. lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
  611. #endif
  612. }
  613. /* This is the "set and update" combo-meal-deal version. */
  614. static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
  615. pte_t *ptep, pte_t pteval)
  616. {
  617. native_set_pte(ptep, pteval);
  618. lguest_pte_update(mm, addr, ptep);
  619. }
  620. /*
  621. * The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
  622. * to set a middle-level entry when PAE is activated.
  623. *
  624. * Again, we set the entry then tell the Host which page we changed,
  625. * and the index of the entry we changed.
  626. */
  627. #ifdef CONFIG_X86_PAE
  628. static void lguest_set_pud(pud_t *pudp, pud_t pudval)
  629. {
  630. native_set_pud(pudp, pudval);
  631. /* 32 bytes aligned pdpt address and the index. */
  632. lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
  633. (__pa(pudp) & 0x1F) / sizeof(pud_t));
  634. }
  635. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  636. {
  637. native_set_pmd(pmdp, pmdval);
  638. lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
  639. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  640. }
  641. #else
  642. /* The Guest calls lguest_set_pmd to set a top-level entry when !PAE. */
  643. static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
  644. {
  645. native_set_pmd(pmdp, pmdval);
  646. lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
  647. (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
  648. }
  649. #endif
  650. /*
  651. * There are a couple of legacy places where the kernel sets a PTE, but we
  652. * don't know the top level any more. This is useless for us, since we don't
  653. * know which pagetable is changing or what address, so we just tell the Host
  654. * to forget all of them. Fortunately, this is very rare.
  655. *
  656. * ... except in early boot when the kernel sets up the initial pagetables,
  657. * which makes booting astonishingly slow: 1.83 seconds! So we don't even tell
  658. * the Host anything changed until we've done the first page table switch,
  659. * which brings boot back to 0.25 seconds.
  660. */
  661. static void lguest_set_pte(pte_t *ptep, pte_t pteval)
  662. {
  663. native_set_pte(ptep, pteval);
  664. if (cr3_changed)
  665. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  666. }
  667. #ifdef CONFIG_X86_PAE
  668. /*
  669. * With 64-bit PTE values, we need to be careful setting them: if we set 32
  670. * bits at a time, the hardware could see a weird half-set entry. These
  671. * versions ensure we update all 64 bits at once.
  672. */
  673. static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
  674. {
  675. native_set_pte_atomic(ptep, pte);
  676. if (cr3_changed)
  677. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  678. }
  679. static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr,
  680. pte_t *ptep)
  681. {
  682. native_pte_clear(mm, addr, ptep);
  683. lguest_pte_update(mm, addr, ptep);
  684. }
  685. static void lguest_pmd_clear(pmd_t *pmdp)
  686. {
  687. lguest_set_pmd(pmdp, __pmd(0));
  688. }
  689. #endif
  690. /*
  691. * Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
  692. * native page table operations. On native hardware you can set a new page
  693. * table entry whenever you want, but if you want to remove one you have to do
  694. * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
  695. *
  696. * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
  697. * called when a valid entry is written, not when it's removed (ie. marked not
  698. * present). Instead, this is where we come when the Guest wants to remove a
  699. * page table entry: we tell the Host to set that entry to 0 (ie. the present
  700. * bit is zero).
  701. */
  702. static void lguest_flush_tlb_single(unsigned long addr)
  703. {
  704. /* Simply set it to zero: if it was not, it will fault back in. */
  705. lazy_hcall3(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
  706. }
  707. /*
  708. * This is what happens after the Guest has removed a large number of entries.
  709. * This tells the Host that any of the page table entries for userspace might
  710. * have changed, ie. virtual addresses below PAGE_OFFSET.
  711. */
  712. static void lguest_flush_tlb_user(void)
  713. {
  714. lazy_hcall1(LHCALL_FLUSH_TLB, 0);
  715. }
  716. /*
  717. * This is called when the kernel page tables have changed. That's not very
  718. * common (unless the Guest is using highmem, which makes the Guest extremely
  719. * slow), so it's worth separating this from the user flushing above.
  720. */
  721. static void lguest_flush_tlb_kernel(void)
  722. {
  723. lazy_hcall1(LHCALL_FLUSH_TLB, 1);
  724. }
  725. /*
  726. * The Unadvanced Programmable Interrupt Controller.
  727. *
  728. * This is an attempt to implement the simplest possible interrupt controller.
  729. * I spent some time looking though routines like set_irq_chip_and_handler,
  730. * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
  731. * I *think* this is as simple as it gets.
  732. *
  733. * We can tell the Host what interrupts we want blocked ready for using the
  734. * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
  735. * simple as setting a bit. We don't actually "ack" interrupts as such, we
  736. * just mask and unmask them. I wonder if we should be cleverer?
  737. */
  738. static void disable_lguest_irq(unsigned int irq)
  739. {
  740. set_bit(irq, lguest_data.blocked_interrupts);
  741. }
  742. static void enable_lguest_irq(unsigned int irq)
  743. {
  744. clear_bit(irq, lguest_data.blocked_interrupts);
  745. }
  746. /* This structure describes the lguest IRQ controller. */
  747. static struct irq_chip lguest_irq_controller = {
  748. .name = "lguest",
  749. .mask = disable_lguest_irq,
  750. .mask_ack = disable_lguest_irq,
  751. .unmask = enable_lguest_irq,
  752. };
  753. /*
  754. * This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
  755. * interrupt (except 128, which is used for system calls), and then tells the
  756. * Linux infrastructure that each interrupt is controlled by our level-based
  757. * lguest interrupt controller.
  758. */
  759. static void __init lguest_init_IRQ(void)
  760. {
  761. unsigned int i;
  762. for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
  763. /* Some systems map "vectors" to interrupts weirdly. Not us! */
  764. __get_cpu_var(vector_irq)[i] = i - FIRST_EXTERNAL_VECTOR;
  765. if (i != SYSCALL_VECTOR)
  766. set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
  767. }
  768. /*
  769. * This call is required to set up for 4k stacks, where we have
  770. * separate stacks for hard and soft interrupts.
  771. */
  772. irq_ctx_init(smp_processor_id());
  773. }
  774. /*
  775. * With CONFIG_SPARSE_IRQ, interrupt descriptors are allocated as-needed, so
  776. * rather than set them in lguest_init_IRQ we are called here every time an
  777. * lguest device needs an interrupt.
  778. *
  779. * FIXME: irq_to_desc_alloc_node() can fail due to lack of memory, we should
  780. * pass that up!
  781. */
  782. void lguest_setup_irq(unsigned int irq)
  783. {
  784. irq_to_desc_alloc_node(irq, 0);
  785. set_irq_chip_and_handler_name(irq, &lguest_irq_controller,
  786. handle_level_irq, "level");
  787. }
  788. /*
  789. * Time.
  790. *
  791. * It would be far better for everyone if the Guest had its own clock, but
  792. * until then the Host gives us the time on every interrupt.
  793. */
  794. static unsigned long lguest_get_wallclock(void)
  795. {
  796. return lguest_data.time.tv_sec;
  797. }
  798. /*
  799. * The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
  800. * what speed it runs at, or 0 if it's unusable as a reliable clock source.
  801. * This matches what we want here: if we return 0 from this function, the x86
  802. * TSC clock will give up and not register itself.
  803. */
  804. static unsigned long lguest_tsc_khz(void)
  805. {
  806. return lguest_data.tsc_khz;
  807. }
  808. /*
  809. * If we can't use the TSC, the kernel falls back to our lower-priority
  810. * "lguest_clock", where we read the time value given to us by the Host.
  811. */
  812. static cycle_t lguest_clock_read(struct clocksource *cs)
  813. {
  814. unsigned long sec, nsec;
  815. /*
  816. * Since the time is in two parts (seconds and nanoseconds), we risk
  817. * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
  818. * and getting 99 and 0. As Linux tends to come apart under the stress
  819. * of time travel, we must be careful:
  820. */
  821. do {
  822. /* First we read the seconds part. */
  823. sec = lguest_data.time.tv_sec;
  824. /*
  825. * This read memory barrier tells the compiler and the CPU that
  826. * this can't be reordered: we have to complete the above
  827. * before going on.
  828. */
  829. rmb();
  830. /* Now we read the nanoseconds part. */
  831. nsec = lguest_data.time.tv_nsec;
  832. /* Make sure we've done that. */
  833. rmb();
  834. /* Now if the seconds part has changed, try again. */
  835. } while (unlikely(lguest_data.time.tv_sec != sec));
  836. /* Our lguest clock is in real nanoseconds. */
  837. return sec*1000000000ULL + nsec;
  838. }
  839. /* This is the fallback clocksource: lower priority than the TSC clocksource. */
  840. static struct clocksource lguest_clock = {
  841. .name = "lguest",
  842. .rating = 200,
  843. .read = lguest_clock_read,
  844. .mask = CLOCKSOURCE_MASK(64),
  845. .mult = 1 << 22,
  846. .shift = 22,
  847. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  848. };
  849. /*
  850. * We also need a "struct clock_event_device": Linux asks us to set it to go
  851. * off some time in the future. Actually, James Morris figured all this out, I
  852. * just applied the patch.
  853. */
  854. static int lguest_clockevent_set_next_event(unsigned long delta,
  855. struct clock_event_device *evt)
  856. {
  857. /* FIXME: I don't think this can ever happen, but James tells me he had
  858. * to put this code in. Maybe we should remove it now. Anyone? */
  859. if (delta < LG_CLOCK_MIN_DELTA) {
  860. if (printk_ratelimit())
  861. printk(KERN_DEBUG "%s: small delta %lu ns\n",
  862. __func__, delta);
  863. return -ETIME;
  864. }
  865. /* Please wake us this far in the future. */
  866. kvm_hypercall1(LHCALL_SET_CLOCKEVENT, delta);
  867. return 0;
  868. }
  869. static void lguest_clockevent_set_mode(enum clock_event_mode mode,
  870. struct clock_event_device *evt)
  871. {
  872. switch (mode) {
  873. case CLOCK_EVT_MODE_UNUSED:
  874. case CLOCK_EVT_MODE_SHUTDOWN:
  875. /* A 0 argument shuts the clock down. */
  876. kvm_hypercall0(LHCALL_SET_CLOCKEVENT);
  877. break;
  878. case CLOCK_EVT_MODE_ONESHOT:
  879. /* This is what we expect. */
  880. break;
  881. case CLOCK_EVT_MODE_PERIODIC:
  882. BUG();
  883. case CLOCK_EVT_MODE_RESUME:
  884. break;
  885. }
  886. }
  887. /* This describes our primitive timer chip. */
  888. static struct clock_event_device lguest_clockevent = {
  889. .name = "lguest",
  890. .features = CLOCK_EVT_FEAT_ONESHOT,
  891. .set_next_event = lguest_clockevent_set_next_event,
  892. .set_mode = lguest_clockevent_set_mode,
  893. .rating = INT_MAX,
  894. .mult = 1,
  895. .shift = 0,
  896. .min_delta_ns = LG_CLOCK_MIN_DELTA,
  897. .max_delta_ns = LG_CLOCK_MAX_DELTA,
  898. };
  899. /*
  900. * This is the Guest timer interrupt handler (hardware interrupt 0). We just
  901. * call the clockevent infrastructure and it does whatever needs doing.
  902. */
  903. static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
  904. {
  905. unsigned long flags;
  906. /* Don't interrupt us while this is running. */
  907. local_irq_save(flags);
  908. lguest_clockevent.event_handler(&lguest_clockevent);
  909. local_irq_restore(flags);
  910. }
  911. /*
  912. * At some point in the boot process, we get asked to set up our timing
  913. * infrastructure. The kernel doesn't expect timer interrupts before this, but
  914. * we cleverly initialized the "blocked_interrupts" field of "struct
  915. * lguest_data" so that timer interrupts were blocked until now.
  916. */
  917. static void lguest_time_init(void)
  918. {
  919. /* Set up the timer interrupt (0) to go to our simple timer routine */
  920. set_irq_handler(0, lguest_time_irq);
  921. clocksource_register(&lguest_clock);
  922. /* We can't set cpumask in the initializer: damn C limitations! Set it
  923. * here and register our timer device. */
  924. lguest_clockevent.cpumask = cpumask_of(0);
  925. clockevents_register_device(&lguest_clockevent);
  926. /* Finally, we unblock the timer interrupt. */
  927. enable_lguest_irq(0);
  928. }
  929. /*
  930. * Miscellaneous bits and pieces.
  931. *
  932. * Here is an oddball collection of functions which the Guest needs for things
  933. * to work. They're pretty simple.
  934. */
  935. /*
  936. * The Guest needs to tell the Host what stack it expects traps to use. For
  937. * native hardware, this is part of the Task State Segment mentioned above in
  938. * lguest_load_tr_desc(), but to help hypervisors there's this special call.
  939. *
  940. * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
  941. * segment), the privilege level (we're privilege level 1, the Host is 0 and
  942. * will not tolerate us trying to use that), the stack pointer, and the number
  943. * of pages in the stack.
  944. */
  945. static void lguest_load_sp0(struct tss_struct *tss,
  946. struct thread_struct *thread)
  947. {
  948. lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
  949. THREAD_SIZE / PAGE_SIZE);
  950. }
  951. /* Let's just say, I wouldn't do debugging under a Guest. */
  952. static void lguest_set_debugreg(int regno, unsigned long value)
  953. {
  954. /* FIXME: Implement */
  955. }
  956. /*
  957. * There are times when the kernel wants to make sure that no memory writes are
  958. * caught in the cache (that they've all reached real hardware devices). This
  959. * doesn't matter for the Guest which has virtual hardware.
  960. *
  961. * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
  962. * (clflush) instruction is available and the kernel uses that. Otherwise, it
  963. * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
  964. * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
  965. * ignore clflush, but replace wbinvd.
  966. */
  967. static void lguest_wbinvd(void)
  968. {
  969. }
  970. /*
  971. * If the Guest expects to have an Advanced Programmable Interrupt Controller,
  972. * we play dumb by ignoring writes and returning 0 for reads. So it's no
  973. * longer Programmable nor Controlling anything, and I don't think 8 lines of
  974. * code qualifies for Advanced. It will also never interrupt anything. It
  975. * does, however, allow us to get through the Linux boot code.
  976. */
  977. #ifdef CONFIG_X86_LOCAL_APIC
  978. static void lguest_apic_write(u32 reg, u32 v)
  979. {
  980. }
  981. static u32 lguest_apic_read(u32 reg)
  982. {
  983. return 0;
  984. }
  985. static u64 lguest_apic_icr_read(void)
  986. {
  987. return 0;
  988. }
  989. static void lguest_apic_icr_write(u32 low, u32 id)
  990. {
  991. /* Warn to see if there's any stray references */
  992. WARN_ON(1);
  993. }
  994. static void lguest_apic_wait_icr_idle(void)
  995. {
  996. return;
  997. }
  998. static u32 lguest_apic_safe_wait_icr_idle(void)
  999. {
  1000. return 0;
  1001. }
  1002. static void set_lguest_basic_apic_ops(void)
  1003. {
  1004. apic->read = lguest_apic_read;
  1005. apic->write = lguest_apic_write;
  1006. apic->icr_read = lguest_apic_icr_read;
  1007. apic->icr_write = lguest_apic_icr_write;
  1008. apic->wait_icr_idle = lguest_apic_wait_icr_idle;
  1009. apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
  1010. };
  1011. #endif
  1012. /* STOP! Until an interrupt comes in. */
  1013. static void lguest_safe_halt(void)
  1014. {
  1015. kvm_hypercall0(LHCALL_HALT);
  1016. }
  1017. /*
  1018. * The SHUTDOWN hypercall takes a string to describe what's happening, and
  1019. * an argument which says whether this to restart (reboot) the Guest or not.
  1020. *
  1021. * Note that the Host always prefers that the Guest speak in physical addresses
  1022. * rather than virtual addresses, so we use __pa() here.
  1023. */
  1024. static void lguest_power_off(void)
  1025. {
  1026. kvm_hypercall2(LHCALL_SHUTDOWN, __pa("Power down"),
  1027. LGUEST_SHUTDOWN_POWEROFF);
  1028. }
  1029. /*
  1030. * Panicing.
  1031. *
  1032. * Don't. But if you did, this is what happens.
  1033. */
  1034. static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
  1035. {
  1036. kvm_hypercall2(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF);
  1037. /* The hcall won't return, but to keep gcc happy, we're "done". */
  1038. return NOTIFY_DONE;
  1039. }
  1040. static struct notifier_block paniced = {
  1041. .notifier_call = lguest_panic
  1042. };
  1043. /* Setting up memory is fairly easy. */
  1044. static __init char *lguest_memory_setup(void)
  1045. {
  1046. /*
  1047. *The Linux bootloader header contains an "e820" memory map: the
  1048. * Launcher populated the first entry with our memory limit.
  1049. */
  1050. e820_add_region(boot_params.e820_map[0].addr,
  1051. boot_params.e820_map[0].size,
  1052. boot_params.e820_map[0].type);
  1053. /* This string is for the boot messages. */
  1054. return "LGUEST";
  1055. }
  1056. /*
  1057. * We will eventually use the virtio console device to produce console output,
  1058. * but before that is set up we use LHCALL_NOTIFY on normal memory to produce
  1059. * console output.
  1060. */
  1061. static __init int early_put_chars(u32 vtermno, const char *buf, int count)
  1062. {
  1063. char scratch[17];
  1064. unsigned int len = count;
  1065. /* We use a nul-terminated string, so we make a copy. Icky, huh? */
  1066. if (len > sizeof(scratch) - 1)
  1067. len = sizeof(scratch) - 1;
  1068. scratch[len] = '\0';
  1069. memcpy(scratch, buf, len);
  1070. kvm_hypercall1(LHCALL_NOTIFY, __pa(scratch));
  1071. /* This routine returns the number of bytes actually written. */
  1072. return len;
  1073. }
  1074. /*
  1075. * Rebooting also tells the Host we're finished, but the RESTART flag tells the
  1076. * Launcher to reboot us.
  1077. */
  1078. static void lguest_restart(char *reason)
  1079. {
  1080. kvm_hypercall2(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART);
  1081. }
  1082. /*G:050
  1083. * Patching (Powerfully Placating Performance Pedants)
  1084. *
  1085. * We have already seen that pv_ops structures let us replace simple native
  1086. * instructions with calls to the appropriate back end all throughout the
  1087. * kernel. This allows the same kernel to run as a Guest and as a native
  1088. * kernel, but it's slow because of all the indirect branches.
  1089. *
  1090. * Remember that David Wheeler quote about "Any problem in computer science can
  1091. * be solved with another layer of indirection"? The rest of that quote is
  1092. * "... But that usually will create another problem." This is the first of
  1093. * those problems.
  1094. *
  1095. * Our current solution is to allow the paravirt back end to optionally patch
  1096. * over the indirect calls to replace them with something more efficient. We
  1097. * patch two of the simplest of the most commonly called functions: disable
  1098. * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
  1099. * into: the Guest versions of these operations are small enough that we can
  1100. * fit comfortably.
  1101. *
  1102. * First we need assembly templates of each of the patchable Guest operations,
  1103. * and these are in i386_head.S.
  1104. */
  1105. /*G:060 We construct a table from the assembler templates: */
  1106. static const struct lguest_insns
  1107. {
  1108. const char *start, *end;
  1109. } lguest_insns[] = {
  1110. [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
  1111. [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
  1112. };
  1113. /*
  1114. * Now our patch routine is fairly simple (based on the native one in
  1115. * paravirt.c). If we have a replacement, we copy it in and return how much of
  1116. * the available space we used.
  1117. */
  1118. static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
  1119. unsigned long addr, unsigned len)
  1120. {
  1121. unsigned int insn_len;
  1122. /* Don't do anything special if we don't have a replacement */
  1123. if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
  1124. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1125. insn_len = lguest_insns[type].end - lguest_insns[type].start;
  1126. /* Similarly if it can't fit (doesn't happen, but let's be thorough). */
  1127. if (len < insn_len)
  1128. return paravirt_patch_default(type, clobber, ibuf, addr, len);
  1129. /* Copy in our instructions. */
  1130. memcpy(ibuf, lguest_insns[type].start, insn_len);
  1131. return insn_len;
  1132. }
  1133. /*G:029
  1134. * Once we get to lguest_init(), we know we're a Guest. The various
  1135. * pv_ops structures in the kernel provide points for (almost) every routine we
  1136. * have to override to avoid privileged instructions.
  1137. */
  1138. __init void lguest_init(void)
  1139. {
  1140. /* We're under lguest. */
  1141. pv_info.name = "lguest";
  1142. /* Paravirt is enabled. */
  1143. pv_info.paravirt_enabled = 1;
  1144. /* We're running at privilege level 1, not 0 as normal. */
  1145. pv_info.kernel_rpl = 1;
  1146. /* Everyone except Xen runs with this set. */
  1147. pv_info.shared_kernel_pmd = 1;
  1148. /*
  1149. * We set up all the lguest overrides for sensitive operations. These
  1150. * are detailed with the operations themselves.
  1151. */
  1152. /* Interrupt-related operations */
  1153. pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
  1154. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
  1155. pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
  1156. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
  1157. pv_irq_ops.safe_halt = lguest_safe_halt;
  1158. /* Setup operations */
  1159. pv_init_ops.patch = lguest_patch;
  1160. /* Intercepts of various CPU instructions */
  1161. pv_cpu_ops.load_gdt = lguest_load_gdt;
  1162. pv_cpu_ops.cpuid = lguest_cpuid;
  1163. pv_cpu_ops.load_idt = lguest_load_idt;
  1164. pv_cpu_ops.iret = lguest_iret;
  1165. pv_cpu_ops.load_sp0 = lguest_load_sp0;
  1166. pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
  1167. pv_cpu_ops.set_ldt = lguest_set_ldt;
  1168. pv_cpu_ops.load_tls = lguest_load_tls;
  1169. pv_cpu_ops.set_debugreg = lguest_set_debugreg;
  1170. pv_cpu_ops.clts = lguest_clts;
  1171. pv_cpu_ops.read_cr0 = lguest_read_cr0;
  1172. pv_cpu_ops.write_cr0 = lguest_write_cr0;
  1173. pv_cpu_ops.read_cr4 = lguest_read_cr4;
  1174. pv_cpu_ops.write_cr4 = lguest_write_cr4;
  1175. pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
  1176. pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
  1177. pv_cpu_ops.wbinvd = lguest_wbinvd;
  1178. pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
  1179. pv_cpu_ops.end_context_switch = lguest_end_context_switch;
  1180. /* Pagetable management */
  1181. pv_mmu_ops.write_cr3 = lguest_write_cr3;
  1182. pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
  1183. pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
  1184. pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
  1185. pv_mmu_ops.set_pte = lguest_set_pte;
  1186. pv_mmu_ops.set_pte_at = lguest_set_pte_at;
  1187. pv_mmu_ops.set_pmd = lguest_set_pmd;
  1188. #ifdef CONFIG_X86_PAE
  1189. pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
  1190. pv_mmu_ops.pte_clear = lguest_pte_clear;
  1191. pv_mmu_ops.pmd_clear = lguest_pmd_clear;
  1192. pv_mmu_ops.set_pud = lguest_set_pud;
  1193. #endif
  1194. pv_mmu_ops.read_cr2 = lguest_read_cr2;
  1195. pv_mmu_ops.read_cr3 = lguest_read_cr3;
  1196. pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
  1197. pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
  1198. pv_mmu_ops.pte_update = lguest_pte_update;
  1199. pv_mmu_ops.pte_update_defer = lguest_pte_update;
  1200. #ifdef CONFIG_X86_LOCAL_APIC
  1201. /* APIC read/write intercepts */
  1202. set_lguest_basic_apic_ops();
  1203. #endif
  1204. x86_init.resources.memory_setup = lguest_memory_setup;
  1205. x86_init.irqs.intr_init = lguest_init_IRQ;
  1206. x86_init.timers.timer_init = lguest_time_init;
  1207. x86_platform.calibrate_tsc = lguest_tsc_khz;
  1208. x86_platform.get_wallclock = lguest_get_wallclock;
  1209. /*
  1210. * Now is a good time to look at the implementations of these functions
  1211. * before returning to the rest of lguest_init().
  1212. */
  1213. /*G:070
  1214. * Now we've seen all the paravirt_ops, we return to
  1215. * lguest_init() where the rest of the fairly chaotic boot setup
  1216. * occurs.
  1217. */
  1218. /*
  1219. * The stack protector is a weird thing where gcc places a canary
  1220. * value on the stack and then checks it on return. This file is
  1221. * compiled with -fno-stack-protector it, so we got this far without
  1222. * problems. The value of the canary is kept at offset 20 from the
  1223. * %gs register, so we need to set that up before calling C functions
  1224. * in other files.
  1225. */
  1226. setup_stack_canary_segment(0);
  1227. /*
  1228. * We could just call load_stack_canary_segment(), but we might as well
  1229. * call switch_to_new_gdt() which loads the whole table and sets up the
  1230. * per-cpu segment descriptor register %fs as well.
  1231. */
  1232. switch_to_new_gdt(0);
  1233. /* We actually boot with all memory mapped, but let's say 128MB. */
  1234. max_pfn_mapped = (128*1024*1024) >> PAGE_SHIFT;
  1235. /*
  1236. * The Host<->Guest Switcher lives at the top of our address space, and
  1237. * the Host told us how big it is when we made LGUEST_INIT hypercall:
  1238. * it put the answer in lguest_data.reserve_mem
  1239. */
  1240. reserve_top_address(lguest_data.reserve_mem);
  1241. /*
  1242. * If we don't initialize the lock dependency checker now, it crashes
  1243. * atomic_notifier_chain_register, then paravirt_disable_iospace.
  1244. */
  1245. lockdep_init();
  1246. /* Hook in our special panic hypercall code. */
  1247. atomic_notifier_chain_register(&panic_notifier_list, &paniced);
  1248. /*
  1249. * The IDE code spends about 3 seconds probing for disks: if we reserve
  1250. * all the I/O ports up front it can't get them and so doesn't probe.
  1251. * Other device drivers are similar (but less severe). This cuts the
  1252. * kernel boot time on my machine from 4.1 seconds to 0.45 seconds.
  1253. */
  1254. paravirt_disable_iospace();
  1255. /*
  1256. * This is messy CPU setup stuff which the native boot code does before
  1257. * start_kernel, so we have to do, too:
  1258. */
  1259. cpu_detect(&new_cpu_data);
  1260. /* head.S usually sets up the first capability word, so do it here. */
  1261. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1262. /* Math is always hard! */
  1263. new_cpu_data.hard_math = 1;
  1264. /* We don't have features. We have puppies! Puppies! */
  1265. #ifdef CONFIG_X86_MCE
  1266. mce_disabled = 1;
  1267. #endif
  1268. #ifdef CONFIG_ACPI
  1269. acpi_disabled = 1;
  1270. acpi_ht = 0;
  1271. #endif
  1272. /*
  1273. * We set the preferred console to "hvc". This is the "hypervisor
  1274. * virtual console" driver written by the PowerPC people, which we also
  1275. * adapted for lguest's use.
  1276. */
  1277. add_preferred_console("hvc", 0, NULL);
  1278. /* Register our very early console. */
  1279. virtio_cons_early_init(early_put_chars);
  1280. /*
  1281. * Last of all, we set the power management poweroff hook to point to
  1282. * the Guest routine to power off, and the reboot hook to our restart
  1283. * routine.
  1284. */
  1285. pm_power_off = lguest_power_off;
  1286. machine_ops.restart = lguest_restart;
  1287. /*
  1288. * Now we're set up, call i386_start_kernel() in head32.c and we proceed
  1289. * to boot as normal. It never returns.
  1290. */
  1291. i386_start_kernel();
  1292. }
  1293. /*
  1294. * This marks the end of stage II of our journey, The Guest.
  1295. *
  1296. * It is now time for us to explore the layer of virtual drivers and complete
  1297. * our understanding of the Guest in "make Drivers".
  1298. */