x86.c 120 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <trace/events/kvm.h>
  39. #undef TRACE_INCLUDE_FILE
  40. #define CREATE_TRACE_POINTS
  41. #include "trace.h"
  42. #include <asm/uaccess.h>
  43. #include <asm/msr.h>
  44. #include <asm/desc.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/mce.h>
  47. #define MAX_IO_MSRS 256
  48. #define CR0_RESERVED_BITS \
  49. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  50. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  51. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  52. #define CR4_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  54. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  55. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  56. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  57. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  60. /* EFER defaults:
  61. * - enable syscall per default because its emulated by KVM
  62. * - enable LME and LMA per default on 64 bit KVM
  63. */
  64. #ifdef CONFIG_X86_64
  65. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  66. #else
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  68. #endif
  69. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  70. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  71. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  72. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  73. struct kvm_cpuid_entry2 __user *entries);
  74. struct kvm_x86_ops *kvm_x86_ops;
  75. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  76. int ignore_msrs = 0;
  77. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  78. struct kvm_stats_debugfs_item debugfs_entries[] = {
  79. { "pf_fixed", VCPU_STAT(pf_fixed) },
  80. { "pf_guest", VCPU_STAT(pf_guest) },
  81. { "tlb_flush", VCPU_STAT(tlb_flush) },
  82. { "invlpg", VCPU_STAT(invlpg) },
  83. { "exits", VCPU_STAT(exits) },
  84. { "io_exits", VCPU_STAT(io_exits) },
  85. { "mmio_exits", VCPU_STAT(mmio_exits) },
  86. { "signal_exits", VCPU_STAT(signal_exits) },
  87. { "irq_window", VCPU_STAT(irq_window_exits) },
  88. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  89. { "halt_exits", VCPU_STAT(halt_exits) },
  90. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  91. { "hypercalls", VCPU_STAT(hypercalls) },
  92. { "request_irq", VCPU_STAT(request_irq_exits) },
  93. { "irq_exits", VCPU_STAT(irq_exits) },
  94. { "host_state_reload", VCPU_STAT(host_state_reload) },
  95. { "efer_reload", VCPU_STAT(efer_reload) },
  96. { "fpu_reload", VCPU_STAT(fpu_reload) },
  97. { "insn_emulation", VCPU_STAT(insn_emulation) },
  98. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  99. { "irq_injections", VCPU_STAT(irq_injections) },
  100. { "nmi_injections", VCPU_STAT(nmi_injections) },
  101. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  102. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  103. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  104. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  105. { "mmu_flooded", VM_STAT(mmu_flooded) },
  106. { "mmu_recycled", VM_STAT(mmu_recycled) },
  107. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  108. { "mmu_unsync", VM_STAT(mmu_unsync) },
  109. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  110. { "largepages", VM_STAT(lpages) },
  111. { NULL }
  112. };
  113. unsigned long segment_base(u16 selector)
  114. {
  115. struct descriptor_table gdt;
  116. struct desc_struct *d;
  117. unsigned long table_base;
  118. unsigned long v;
  119. if (selector == 0)
  120. return 0;
  121. kvm_get_gdt(&gdt);
  122. table_base = gdt.base;
  123. if (selector & 4) { /* from ldt */
  124. u16 ldt_selector = kvm_read_ldt();
  125. table_base = segment_base(ldt_selector);
  126. }
  127. d = (struct desc_struct *)(table_base + (selector & ~7));
  128. v = get_desc_base(d);
  129. #ifdef CONFIG_X86_64
  130. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  131. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  132. #endif
  133. return v;
  134. }
  135. EXPORT_SYMBOL_GPL(segment_base);
  136. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  137. {
  138. if (irqchip_in_kernel(vcpu->kvm))
  139. return vcpu->arch.apic_base;
  140. else
  141. return vcpu->arch.apic_base;
  142. }
  143. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  144. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  145. {
  146. /* TODO: reserve bits check */
  147. if (irqchip_in_kernel(vcpu->kvm))
  148. kvm_lapic_set_base(vcpu, data);
  149. else
  150. vcpu->arch.apic_base = data;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  153. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  154. {
  155. WARN_ON(vcpu->arch.exception.pending);
  156. vcpu->arch.exception.pending = true;
  157. vcpu->arch.exception.has_error_code = false;
  158. vcpu->arch.exception.nr = nr;
  159. }
  160. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  161. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  162. u32 error_code)
  163. {
  164. ++vcpu->stat.pf_guest;
  165. if (vcpu->arch.exception.pending) {
  166. switch(vcpu->arch.exception.nr) {
  167. case DF_VECTOR:
  168. /* triple fault -> shutdown */
  169. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  170. return;
  171. case PF_VECTOR:
  172. vcpu->arch.exception.nr = DF_VECTOR;
  173. vcpu->arch.exception.error_code = 0;
  174. return;
  175. default:
  176. /* replace previous exception with a new one in a hope
  177. that instruction re-execution will regenerate lost
  178. exception */
  179. vcpu->arch.exception.pending = false;
  180. break;
  181. }
  182. }
  183. vcpu->arch.cr2 = addr;
  184. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  185. }
  186. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  187. {
  188. vcpu->arch.nmi_pending = 1;
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  191. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  192. {
  193. WARN_ON(vcpu->arch.exception.pending);
  194. vcpu->arch.exception.pending = true;
  195. vcpu->arch.exception.has_error_code = true;
  196. vcpu->arch.exception.nr = nr;
  197. vcpu->arch.exception.error_code = error_code;
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  200. /*
  201. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  202. * a #GP and return false.
  203. */
  204. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  205. {
  206. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  207. return true;
  208. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  209. return false;
  210. }
  211. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  212. /*
  213. * Load the pae pdptrs. Return true is they are all valid.
  214. */
  215. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  216. {
  217. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  218. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  219. int i;
  220. int ret;
  221. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  222. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  223. offset * sizeof(u64), sizeof(pdpte));
  224. if (ret < 0) {
  225. ret = 0;
  226. goto out;
  227. }
  228. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  229. if (is_present_gpte(pdpte[i]) &&
  230. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  231. ret = 0;
  232. goto out;
  233. }
  234. }
  235. ret = 1;
  236. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  237. __set_bit(VCPU_EXREG_PDPTR,
  238. (unsigned long *)&vcpu->arch.regs_avail);
  239. __set_bit(VCPU_EXREG_PDPTR,
  240. (unsigned long *)&vcpu->arch.regs_dirty);
  241. out:
  242. return ret;
  243. }
  244. EXPORT_SYMBOL_GPL(load_pdptrs);
  245. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  246. {
  247. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  248. bool changed = true;
  249. int r;
  250. if (is_long_mode(vcpu) || !is_pae(vcpu))
  251. return false;
  252. if (!test_bit(VCPU_EXREG_PDPTR,
  253. (unsigned long *)&vcpu->arch.regs_avail))
  254. return true;
  255. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  256. if (r < 0)
  257. goto out;
  258. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  259. out:
  260. return changed;
  261. }
  262. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  263. {
  264. if (cr0 & CR0_RESERVED_BITS) {
  265. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  266. cr0, vcpu->arch.cr0);
  267. kvm_inject_gp(vcpu, 0);
  268. return;
  269. }
  270. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  271. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  272. kvm_inject_gp(vcpu, 0);
  273. return;
  274. }
  275. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  276. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  277. "and a clear PE flag\n");
  278. kvm_inject_gp(vcpu, 0);
  279. return;
  280. }
  281. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  282. #ifdef CONFIG_X86_64
  283. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  284. int cs_db, cs_l;
  285. if (!is_pae(vcpu)) {
  286. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  287. "in long mode while PAE is disabled\n");
  288. kvm_inject_gp(vcpu, 0);
  289. return;
  290. }
  291. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  292. if (cs_l) {
  293. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  294. "in long mode while CS.L == 1\n");
  295. kvm_inject_gp(vcpu, 0);
  296. return;
  297. }
  298. } else
  299. #endif
  300. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  301. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  302. "reserved bits\n");
  303. kvm_inject_gp(vcpu, 0);
  304. return;
  305. }
  306. }
  307. kvm_x86_ops->set_cr0(vcpu, cr0);
  308. vcpu->arch.cr0 = cr0;
  309. kvm_mmu_reset_context(vcpu);
  310. return;
  311. }
  312. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  313. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  314. {
  315. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  316. }
  317. EXPORT_SYMBOL_GPL(kvm_lmsw);
  318. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  319. {
  320. unsigned long old_cr4 = vcpu->arch.cr4;
  321. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  322. if (cr4 & CR4_RESERVED_BITS) {
  323. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  324. kvm_inject_gp(vcpu, 0);
  325. return;
  326. }
  327. if (is_long_mode(vcpu)) {
  328. if (!(cr4 & X86_CR4_PAE)) {
  329. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  330. "in long mode\n");
  331. kvm_inject_gp(vcpu, 0);
  332. return;
  333. }
  334. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  335. && ((cr4 ^ old_cr4) & pdptr_bits)
  336. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  337. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  338. kvm_inject_gp(vcpu, 0);
  339. return;
  340. }
  341. if (cr4 & X86_CR4_VMXE) {
  342. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  343. kvm_inject_gp(vcpu, 0);
  344. return;
  345. }
  346. kvm_x86_ops->set_cr4(vcpu, cr4);
  347. vcpu->arch.cr4 = cr4;
  348. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  349. kvm_mmu_reset_context(vcpu);
  350. }
  351. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  352. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  353. {
  354. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  355. kvm_mmu_sync_roots(vcpu);
  356. kvm_mmu_flush_tlb(vcpu);
  357. return;
  358. }
  359. if (is_long_mode(vcpu)) {
  360. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  361. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  362. kvm_inject_gp(vcpu, 0);
  363. return;
  364. }
  365. } else {
  366. if (is_pae(vcpu)) {
  367. if (cr3 & CR3_PAE_RESERVED_BITS) {
  368. printk(KERN_DEBUG
  369. "set_cr3: #GP, reserved bits\n");
  370. kvm_inject_gp(vcpu, 0);
  371. return;
  372. }
  373. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  374. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  375. "reserved bits\n");
  376. kvm_inject_gp(vcpu, 0);
  377. return;
  378. }
  379. }
  380. /*
  381. * We don't check reserved bits in nonpae mode, because
  382. * this isn't enforced, and VMware depends on this.
  383. */
  384. }
  385. /*
  386. * Does the new cr3 value map to physical memory? (Note, we
  387. * catch an invalid cr3 even in real-mode, because it would
  388. * cause trouble later on when we turn on paging anyway.)
  389. *
  390. * A real CPU would silently accept an invalid cr3 and would
  391. * attempt to use it - with largely undefined (and often hard
  392. * to debug) behavior on the guest side.
  393. */
  394. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  395. kvm_inject_gp(vcpu, 0);
  396. else {
  397. vcpu->arch.cr3 = cr3;
  398. vcpu->arch.mmu.new_cr3(vcpu);
  399. }
  400. }
  401. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  402. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  403. {
  404. if (cr8 & CR8_RESERVED_BITS) {
  405. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  406. kvm_inject_gp(vcpu, 0);
  407. return;
  408. }
  409. if (irqchip_in_kernel(vcpu->kvm))
  410. kvm_lapic_set_tpr(vcpu, cr8);
  411. else
  412. vcpu->arch.cr8 = cr8;
  413. }
  414. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  415. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  416. {
  417. if (irqchip_in_kernel(vcpu->kvm))
  418. return kvm_lapic_get_cr8(vcpu);
  419. else
  420. return vcpu->arch.cr8;
  421. }
  422. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  423. static inline u32 bit(int bitno)
  424. {
  425. return 1 << (bitno & 31);
  426. }
  427. /*
  428. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  429. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  430. *
  431. * This list is modified at module load time to reflect the
  432. * capabilities of the host cpu.
  433. */
  434. static u32 msrs_to_save[] = {
  435. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  436. MSR_K6_STAR,
  437. #ifdef CONFIG_X86_64
  438. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  439. #endif
  440. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  441. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  442. };
  443. static unsigned num_msrs_to_save;
  444. static u32 emulated_msrs[] = {
  445. MSR_IA32_MISC_ENABLE,
  446. };
  447. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  448. {
  449. if (efer & efer_reserved_bits) {
  450. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  451. efer);
  452. kvm_inject_gp(vcpu, 0);
  453. return;
  454. }
  455. if (is_paging(vcpu)
  456. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  457. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  458. kvm_inject_gp(vcpu, 0);
  459. return;
  460. }
  461. if (efer & EFER_FFXSR) {
  462. struct kvm_cpuid_entry2 *feat;
  463. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  464. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  465. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  466. kvm_inject_gp(vcpu, 0);
  467. return;
  468. }
  469. }
  470. if (efer & EFER_SVME) {
  471. struct kvm_cpuid_entry2 *feat;
  472. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  473. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  474. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  475. kvm_inject_gp(vcpu, 0);
  476. return;
  477. }
  478. }
  479. kvm_x86_ops->set_efer(vcpu, efer);
  480. efer &= ~EFER_LMA;
  481. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  482. vcpu->arch.shadow_efer = efer;
  483. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  484. kvm_mmu_reset_context(vcpu);
  485. }
  486. void kvm_enable_efer_bits(u64 mask)
  487. {
  488. efer_reserved_bits &= ~mask;
  489. }
  490. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  491. /*
  492. * Writes msr value into into the appropriate "register".
  493. * Returns 0 on success, non-0 otherwise.
  494. * Assumes vcpu_load() was already called.
  495. */
  496. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  497. {
  498. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  499. }
  500. /*
  501. * Adapt set_msr() to msr_io()'s calling convention
  502. */
  503. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  504. {
  505. return kvm_set_msr(vcpu, index, *data);
  506. }
  507. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  508. {
  509. static int version;
  510. struct pvclock_wall_clock wc;
  511. struct timespec now, sys, boot;
  512. if (!wall_clock)
  513. return;
  514. version++;
  515. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  516. /*
  517. * The guest calculates current wall clock time by adding
  518. * system time (updated by kvm_write_guest_time below) to the
  519. * wall clock specified here. guest system time equals host
  520. * system time for us, thus we must fill in host boot time here.
  521. */
  522. now = current_kernel_time();
  523. ktime_get_ts(&sys);
  524. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  525. wc.sec = boot.tv_sec;
  526. wc.nsec = boot.tv_nsec;
  527. wc.version = version;
  528. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  529. version++;
  530. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  531. }
  532. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  533. {
  534. uint32_t quotient, remainder;
  535. /* Don't try to replace with do_div(), this one calculates
  536. * "(dividend << 32) / divisor" */
  537. __asm__ ( "divl %4"
  538. : "=a" (quotient), "=d" (remainder)
  539. : "0" (0), "1" (dividend), "r" (divisor) );
  540. return quotient;
  541. }
  542. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  543. {
  544. uint64_t nsecs = 1000000000LL;
  545. int32_t shift = 0;
  546. uint64_t tps64;
  547. uint32_t tps32;
  548. tps64 = tsc_khz * 1000LL;
  549. while (tps64 > nsecs*2) {
  550. tps64 >>= 1;
  551. shift--;
  552. }
  553. tps32 = (uint32_t)tps64;
  554. while (tps32 <= (uint32_t)nsecs) {
  555. tps32 <<= 1;
  556. shift++;
  557. }
  558. hv_clock->tsc_shift = shift;
  559. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  560. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  561. __func__, tsc_khz, hv_clock->tsc_shift,
  562. hv_clock->tsc_to_system_mul);
  563. }
  564. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  565. static void kvm_write_guest_time(struct kvm_vcpu *v)
  566. {
  567. struct timespec ts;
  568. unsigned long flags;
  569. struct kvm_vcpu_arch *vcpu = &v->arch;
  570. void *shared_kaddr;
  571. unsigned long this_tsc_khz;
  572. if ((!vcpu->time_page))
  573. return;
  574. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  575. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  576. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  577. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  578. }
  579. put_cpu_var(cpu_tsc_khz);
  580. /* Keep irq disabled to prevent changes to the clock */
  581. local_irq_save(flags);
  582. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  583. ktime_get_ts(&ts);
  584. local_irq_restore(flags);
  585. /* With all the info we got, fill in the values */
  586. vcpu->hv_clock.system_time = ts.tv_nsec +
  587. (NSEC_PER_SEC * (u64)ts.tv_sec);
  588. /*
  589. * The interface expects us to write an even number signaling that the
  590. * update is finished. Since the guest won't see the intermediate
  591. * state, we just increase by 2 at the end.
  592. */
  593. vcpu->hv_clock.version += 2;
  594. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  595. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  596. sizeof(vcpu->hv_clock));
  597. kunmap_atomic(shared_kaddr, KM_USER0);
  598. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  599. }
  600. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  601. {
  602. struct kvm_vcpu_arch *vcpu = &v->arch;
  603. if (!vcpu->time_page)
  604. return 0;
  605. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  606. return 1;
  607. }
  608. static bool msr_mtrr_valid(unsigned msr)
  609. {
  610. switch (msr) {
  611. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  612. case MSR_MTRRfix64K_00000:
  613. case MSR_MTRRfix16K_80000:
  614. case MSR_MTRRfix16K_A0000:
  615. case MSR_MTRRfix4K_C0000:
  616. case MSR_MTRRfix4K_C8000:
  617. case MSR_MTRRfix4K_D0000:
  618. case MSR_MTRRfix4K_D8000:
  619. case MSR_MTRRfix4K_E0000:
  620. case MSR_MTRRfix4K_E8000:
  621. case MSR_MTRRfix4K_F0000:
  622. case MSR_MTRRfix4K_F8000:
  623. case MSR_MTRRdefType:
  624. case MSR_IA32_CR_PAT:
  625. return true;
  626. case 0x2f8:
  627. return true;
  628. }
  629. return false;
  630. }
  631. static bool valid_pat_type(unsigned t)
  632. {
  633. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  634. }
  635. static bool valid_mtrr_type(unsigned t)
  636. {
  637. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  638. }
  639. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  640. {
  641. int i;
  642. if (!msr_mtrr_valid(msr))
  643. return false;
  644. if (msr == MSR_IA32_CR_PAT) {
  645. for (i = 0; i < 8; i++)
  646. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  647. return false;
  648. return true;
  649. } else if (msr == MSR_MTRRdefType) {
  650. if (data & ~0xcff)
  651. return false;
  652. return valid_mtrr_type(data & 0xff);
  653. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  654. for (i = 0; i < 8 ; i++)
  655. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  656. return false;
  657. return true;
  658. }
  659. /* variable MTRRs */
  660. return valid_mtrr_type(data & 0xff);
  661. }
  662. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  663. {
  664. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  665. if (!mtrr_valid(vcpu, msr, data))
  666. return 1;
  667. if (msr == MSR_MTRRdefType) {
  668. vcpu->arch.mtrr_state.def_type = data;
  669. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  670. } else if (msr == MSR_MTRRfix64K_00000)
  671. p[0] = data;
  672. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  673. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  674. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  675. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  676. else if (msr == MSR_IA32_CR_PAT)
  677. vcpu->arch.pat = data;
  678. else { /* Variable MTRRs */
  679. int idx, is_mtrr_mask;
  680. u64 *pt;
  681. idx = (msr - 0x200) / 2;
  682. is_mtrr_mask = msr - 0x200 - 2 * idx;
  683. if (!is_mtrr_mask)
  684. pt =
  685. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  686. else
  687. pt =
  688. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  689. *pt = data;
  690. }
  691. kvm_mmu_reset_context(vcpu);
  692. return 0;
  693. }
  694. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  695. {
  696. u64 mcg_cap = vcpu->arch.mcg_cap;
  697. unsigned bank_num = mcg_cap & 0xff;
  698. switch (msr) {
  699. case MSR_IA32_MCG_STATUS:
  700. vcpu->arch.mcg_status = data;
  701. break;
  702. case MSR_IA32_MCG_CTL:
  703. if (!(mcg_cap & MCG_CTL_P))
  704. return 1;
  705. if (data != 0 && data != ~(u64)0)
  706. return -1;
  707. vcpu->arch.mcg_ctl = data;
  708. break;
  709. default:
  710. if (msr >= MSR_IA32_MC0_CTL &&
  711. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  712. u32 offset = msr - MSR_IA32_MC0_CTL;
  713. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  714. if ((offset & 0x3) == 0 &&
  715. data != 0 && data != ~(u64)0)
  716. return -1;
  717. vcpu->arch.mce_banks[offset] = data;
  718. break;
  719. }
  720. return 1;
  721. }
  722. return 0;
  723. }
  724. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  725. {
  726. switch (msr) {
  727. case MSR_EFER:
  728. set_efer(vcpu, data);
  729. break;
  730. case MSR_K7_HWCR:
  731. data &= ~(u64)0x40; /* ignore flush filter disable */
  732. if (data != 0) {
  733. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  734. data);
  735. return 1;
  736. }
  737. break;
  738. case MSR_FAM10H_MMIO_CONF_BASE:
  739. if (data != 0) {
  740. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  741. "0x%llx\n", data);
  742. return 1;
  743. }
  744. break;
  745. case MSR_AMD64_NB_CFG:
  746. break;
  747. case MSR_IA32_DEBUGCTLMSR:
  748. if (!data) {
  749. /* We support the non-activated case already */
  750. break;
  751. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  752. /* Values other than LBR and BTF are vendor-specific,
  753. thus reserved and should throw a #GP */
  754. return 1;
  755. }
  756. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  757. __func__, data);
  758. break;
  759. case MSR_IA32_UCODE_REV:
  760. case MSR_IA32_UCODE_WRITE:
  761. case MSR_VM_HSAVE_PA:
  762. case MSR_AMD64_PATCH_LOADER:
  763. break;
  764. case 0x200 ... 0x2ff:
  765. return set_msr_mtrr(vcpu, msr, data);
  766. case MSR_IA32_APICBASE:
  767. kvm_set_apic_base(vcpu, data);
  768. break;
  769. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  770. return kvm_x2apic_msr_write(vcpu, msr, data);
  771. case MSR_IA32_MISC_ENABLE:
  772. vcpu->arch.ia32_misc_enable_msr = data;
  773. break;
  774. case MSR_KVM_WALL_CLOCK:
  775. vcpu->kvm->arch.wall_clock = data;
  776. kvm_write_wall_clock(vcpu->kvm, data);
  777. break;
  778. case MSR_KVM_SYSTEM_TIME: {
  779. if (vcpu->arch.time_page) {
  780. kvm_release_page_dirty(vcpu->arch.time_page);
  781. vcpu->arch.time_page = NULL;
  782. }
  783. vcpu->arch.time = data;
  784. /* we verify if the enable bit is set... */
  785. if (!(data & 1))
  786. break;
  787. /* ...but clean it before doing the actual write */
  788. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  789. vcpu->arch.time_page =
  790. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  791. if (is_error_page(vcpu->arch.time_page)) {
  792. kvm_release_page_clean(vcpu->arch.time_page);
  793. vcpu->arch.time_page = NULL;
  794. }
  795. kvm_request_guest_time_update(vcpu);
  796. break;
  797. }
  798. case MSR_IA32_MCG_CTL:
  799. case MSR_IA32_MCG_STATUS:
  800. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  801. return set_msr_mce(vcpu, msr, data);
  802. /* Performance counters are not protected by a CPUID bit,
  803. * so we should check all of them in the generic path for the sake of
  804. * cross vendor migration.
  805. * Writing a zero into the event select MSRs disables them,
  806. * which we perfectly emulate ;-). Any other value should be at least
  807. * reported, some guests depend on them.
  808. */
  809. case MSR_P6_EVNTSEL0:
  810. case MSR_P6_EVNTSEL1:
  811. case MSR_K7_EVNTSEL0:
  812. case MSR_K7_EVNTSEL1:
  813. case MSR_K7_EVNTSEL2:
  814. case MSR_K7_EVNTSEL3:
  815. if (data != 0)
  816. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  817. "0x%x data 0x%llx\n", msr, data);
  818. break;
  819. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  820. * so we ignore writes to make it happy.
  821. */
  822. case MSR_P6_PERFCTR0:
  823. case MSR_P6_PERFCTR1:
  824. case MSR_K7_PERFCTR0:
  825. case MSR_K7_PERFCTR1:
  826. case MSR_K7_PERFCTR2:
  827. case MSR_K7_PERFCTR3:
  828. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  829. "0x%x data 0x%llx\n", msr, data);
  830. break;
  831. default:
  832. if (!ignore_msrs) {
  833. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  834. msr, data);
  835. return 1;
  836. } else {
  837. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  838. msr, data);
  839. break;
  840. }
  841. }
  842. return 0;
  843. }
  844. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  845. /*
  846. * Reads an msr value (of 'msr_index') into 'pdata'.
  847. * Returns 0 on success, non-0 otherwise.
  848. * Assumes vcpu_load() was already called.
  849. */
  850. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  851. {
  852. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  853. }
  854. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  855. {
  856. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  857. if (!msr_mtrr_valid(msr))
  858. return 1;
  859. if (msr == MSR_MTRRdefType)
  860. *pdata = vcpu->arch.mtrr_state.def_type +
  861. (vcpu->arch.mtrr_state.enabled << 10);
  862. else if (msr == MSR_MTRRfix64K_00000)
  863. *pdata = p[0];
  864. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  865. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  866. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  867. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  868. else if (msr == MSR_IA32_CR_PAT)
  869. *pdata = vcpu->arch.pat;
  870. else { /* Variable MTRRs */
  871. int idx, is_mtrr_mask;
  872. u64 *pt;
  873. idx = (msr - 0x200) / 2;
  874. is_mtrr_mask = msr - 0x200 - 2 * idx;
  875. if (!is_mtrr_mask)
  876. pt =
  877. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  878. else
  879. pt =
  880. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  881. *pdata = *pt;
  882. }
  883. return 0;
  884. }
  885. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  886. {
  887. u64 data;
  888. u64 mcg_cap = vcpu->arch.mcg_cap;
  889. unsigned bank_num = mcg_cap & 0xff;
  890. switch (msr) {
  891. case MSR_IA32_P5_MC_ADDR:
  892. case MSR_IA32_P5_MC_TYPE:
  893. data = 0;
  894. break;
  895. case MSR_IA32_MCG_CAP:
  896. data = vcpu->arch.mcg_cap;
  897. break;
  898. case MSR_IA32_MCG_CTL:
  899. if (!(mcg_cap & MCG_CTL_P))
  900. return 1;
  901. data = vcpu->arch.mcg_ctl;
  902. break;
  903. case MSR_IA32_MCG_STATUS:
  904. data = vcpu->arch.mcg_status;
  905. break;
  906. default:
  907. if (msr >= MSR_IA32_MC0_CTL &&
  908. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  909. u32 offset = msr - MSR_IA32_MC0_CTL;
  910. data = vcpu->arch.mce_banks[offset];
  911. break;
  912. }
  913. return 1;
  914. }
  915. *pdata = data;
  916. return 0;
  917. }
  918. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  919. {
  920. u64 data;
  921. switch (msr) {
  922. case MSR_IA32_PLATFORM_ID:
  923. case MSR_IA32_UCODE_REV:
  924. case MSR_IA32_EBL_CR_POWERON:
  925. case MSR_IA32_DEBUGCTLMSR:
  926. case MSR_IA32_LASTBRANCHFROMIP:
  927. case MSR_IA32_LASTBRANCHTOIP:
  928. case MSR_IA32_LASTINTFROMIP:
  929. case MSR_IA32_LASTINTTOIP:
  930. case MSR_K8_SYSCFG:
  931. case MSR_K7_HWCR:
  932. case MSR_VM_HSAVE_PA:
  933. case MSR_P6_PERFCTR0:
  934. case MSR_P6_PERFCTR1:
  935. case MSR_P6_EVNTSEL0:
  936. case MSR_P6_EVNTSEL1:
  937. case MSR_K7_EVNTSEL0:
  938. case MSR_K7_PERFCTR0:
  939. case MSR_K8_INT_PENDING_MSG:
  940. case MSR_AMD64_NB_CFG:
  941. case MSR_FAM10H_MMIO_CONF_BASE:
  942. data = 0;
  943. break;
  944. case MSR_MTRRcap:
  945. data = 0x500 | KVM_NR_VAR_MTRR;
  946. break;
  947. case 0x200 ... 0x2ff:
  948. return get_msr_mtrr(vcpu, msr, pdata);
  949. case 0xcd: /* fsb frequency */
  950. data = 3;
  951. break;
  952. case MSR_IA32_APICBASE:
  953. data = kvm_get_apic_base(vcpu);
  954. break;
  955. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  956. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  957. break;
  958. case MSR_IA32_MISC_ENABLE:
  959. data = vcpu->arch.ia32_misc_enable_msr;
  960. break;
  961. case MSR_IA32_PERF_STATUS:
  962. /* TSC increment by tick */
  963. data = 1000ULL;
  964. /* CPU multiplier */
  965. data |= (((uint64_t)4ULL) << 40);
  966. break;
  967. case MSR_EFER:
  968. data = vcpu->arch.shadow_efer;
  969. break;
  970. case MSR_KVM_WALL_CLOCK:
  971. data = vcpu->kvm->arch.wall_clock;
  972. break;
  973. case MSR_KVM_SYSTEM_TIME:
  974. data = vcpu->arch.time;
  975. break;
  976. case MSR_IA32_P5_MC_ADDR:
  977. case MSR_IA32_P5_MC_TYPE:
  978. case MSR_IA32_MCG_CAP:
  979. case MSR_IA32_MCG_CTL:
  980. case MSR_IA32_MCG_STATUS:
  981. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  982. return get_msr_mce(vcpu, msr, pdata);
  983. default:
  984. if (!ignore_msrs) {
  985. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  986. return 1;
  987. } else {
  988. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  989. data = 0;
  990. }
  991. break;
  992. }
  993. *pdata = data;
  994. return 0;
  995. }
  996. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  997. /*
  998. * Read or write a bunch of msrs. All parameters are kernel addresses.
  999. *
  1000. * @return number of msrs set successfully.
  1001. */
  1002. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1003. struct kvm_msr_entry *entries,
  1004. int (*do_msr)(struct kvm_vcpu *vcpu,
  1005. unsigned index, u64 *data))
  1006. {
  1007. int i;
  1008. vcpu_load(vcpu);
  1009. down_read(&vcpu->kvm->slots_lock);
  1010. for (i = 0; i < msrs->nmsrs; ++i)
  1011. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1012. break;
  1013. up_read(&vcpu->kvm->slots_lock);
  1014. vcpu_put(vcpu);
  1015. return i;
  1016. }
  1017. /*
  1018. * Read or write a bunch of msrs. Parameters are user addresses.
  1019. *
  1020. * @return number of msrs set successfully.
  1021. */
  1022. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1023. int (*do_msr)(struct kvm_vcpu *vcpu,
  1024. unsigned index, u64 *data),
  1025. int writeback)
  1026. {
  1027. struct kvm_msrs msrs;
  1028. struct kvm_msr_entry *entries;
  1029. int r, n;
  1030. unsigned size;
  1031. r = -EFAULT;
  1032. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1033. goto out;
  1034. r = -E2BIG;
  1035. if (msrs.nmsrs >= MAX_IO_MSRS)
  1036. goto out;
  1037. r = -ENOMEM;
  1038. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1039. entries = vmalloc(size);
  1040. if (!entries)
  1041. goto out;
  1042. r = -EFAULT;
  1043. if (copy_from_user(entries, user_msrs->entries, size))
  1044. goto out_free;
  1045. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1046. if (r < 0)
  1047. goto out_free;
  1048. r = -EFAULT;
  1049. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1050. goto out_free;
  1051. r = n;
  1052. out_free:
  1053. vfree(entries);
  1054. out:
  1055. return r;
  1056. }
  1057. int kvm_dev_ioctl_check_extension(long ext)
  1058. {
  1059. int r;
  1060. switch (ext) {
  1061. case KVM_CAP_IRQCHIP:
  1062. case KVM_CAP_HLT:
  1063. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1064. case KVM_CAP_SET_TSS_ADDR:
  1065. case KVM_CAP_EXT_CPUID:
  1066. case KVM_CAP_CLOCKSOURCE:
  1067. case KVM_CAP_PIT:
  1068. case KVM_CAP_NOP_IO_DELAY:
  1069. case KVM_CAP_MP_STATE:
  1070. case KVM_CAP_SYNC_MMU:
  1071. case KVM_CAP_REINJECT_CONTROL:
  1072. case KVM_CAP_IRQ_INJECT_STATUS:
  1073. case KVM_CAP_ASSIGN_DEV_IRQ:
  1074. case KVM_CAP_IRQFD:
  1075. case KVM_CAP_IOEVENTFD:
  1076. case KVM_CAP_PIT2:
  1077. case KVM_CAP_PIT_STATE2:
  1078. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1079. r = 1;
  1080. break;
  1081. case KVM_CAP_COALESCED_MMIO:
  1082. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1083. break;
  1084. case KVM_CAP_VAPIC:
  1085. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1086. break;
  1087. case KVM_CAP_NR_VCPUS:
  1088. r = KVM_MAX_VCPUS;
  1089. break;
  1090. case KVM_CAP_NR_MEMSLOTS:
  1091. r = KVM_MEMORY_SLOTS;
  1092. break;
  1093. case KVM_CAP_PV_MMU:
  1094. r = !tdp_enabled;
  1095. break;
  1096. case KVM_CAP_IOMMU:
  1097. r = iommu_found();
  1098. break;
  1099. case KVM_CAP_MCE:
  1100. r = KVM_MAX_MCE_BANKS;
  1101. break;
  1102. default:
  1103. r = 0;
  1104. break;
  1105. }
  1106. return r;
  1107. }
  1108. long kvm_arch_dev_ioctl(struct file *filp,
  1109. unsigned int ioctl, unsigned long arg)
  1110. {
  1111. void __user *argp = (void __user *)arg;
  1112. long r;
  1113. switch (ioctl) {
  1114. case KVM_GET_MSR_INDEX_LIST: {
  1115. struct kvm_msr_list __user *user_msr_list = argp;
  1116. struct kvm_msr_list msr_list;
  1117. unsigned n;
  1118. r = -EFAULT;
  1119. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1120. goto out;
  1121. n = msr_list.nmsrs;
  1122. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1123. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1124. goto out;
  1125. r = -E2BIG;
  1126. if (n < msr_list.nmsrs)
  1127. goto out;
  1128. r = -EFAULT;
  1129. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1130. num_msrs_to_save * sizeof(u32)))
  1131. goto out;
  1132. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1133. &emulated_msrs,
  1134. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1135. goto out;
  1136. r = 0;
  1137. break;
  1138. }
  1139. case KVM_GET_SUPPORTED_CPUID: {
  1140. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1141. struct kvm_cpuid2 cpuid;
  1142. r = -EFAULT;
  1143. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1144. goto out;
  1145. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1146. cpuid_arg->entries);
  1147. if (r)
  1148. goto out;
  1149. r = -EFAULT;
  1150. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1151. goto out;
  1152. r = 0;
  1153. break;
  1154. }
  1155. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1156. u64 mce_cap;
  1157. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1158. r = -EFAULT;
  1159. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1160. goto out;
  1161. r = 0;
  1162. break;
  1163. }
  1164. default:
  1165. r = -EINVAL;
  1166. }
  1167. out:
  1168. return r;
  1169. }
  1170. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1171. {
  1172. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1173. kvm_request_guest_time_update(vcpu);
  1174. }
  1175. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1176. {
  1177. kvm_x86_ops->vcpu_put(vcpu);
  1178. kvm_put_guest_fpu(vcpu);
  1179. }
  1180. static int is_efer_nx(void)
  1181. {
  1182. unsigned long long efer = 0;
  1183. rdmsrl_safe(MSR_EFER, &efer);
  1184. return efer & EFER_NX;
  1185. }
  1186. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1187. {
  1188. int i;
  1189. struct kvm_cpuid_entry2 *e, *entry;
  1190. entry = NULL;
  1191. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1192. e = &vcpu->arch.cpuid_entries[i];
  1193. if (e->function == 0x80000001) {
  1194. entry = e;
  1195. break;
  1196. }
  1197. }
  1198. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1199. entry->edx &= ~(1 << 20);
  1200. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1201. }
  1202. }
  1203. /* when an old userspace process fills a new kernel module */
  1204. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1205. struct kvm_cpuid *cpuid,
  1206. struct kvm_cpuid_entry __user *entries)
  1207. {
  1208. int r, i;
  1209. struct kvm_cpuid_entry *cpuid_entries;
  1210. r = -E2BIG;
  1211. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1212. goto out;
  1213. r = -ENOMEM;
  1214. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1215. if (!cpuid_entries)
  1216. goto out;
  1217. r = -EFAULT;
  1218. if (copy_from_user(cpuid_entries, entries,
  1219. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1220. goto out_free;
  1221. for (i = 0; i < cpuid->nent; i++) {
  1222. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1223. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1224. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1225. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1226. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1227. vcpu->arch.cpuid_entries[i].index = 0;
  1228. vcpu->arch.cpuid_entries[i].flags = 0;
  1229. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1230. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1231. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1232. }
  1233. vcpu->arch.cpuid_nent = cpuid->nent;
  1234. cpuid_fix_nx_cap(vcpu);
  1235. r = 0;
  1236. kvm_apic_set_version(vcpu);
  1237. out_free:
  1238. vfree(cpuid_entries);
  1239. out:
  1240. return r;
  1241. }
  1242. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1243. struct kvm_cpuid2 *cpuid,
  1244. struct kvm_cpuid_entry2 __user *entries)
  1245. {
  1246. int r;
  1247. r = -E2BIG;
  1248. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1249. goto out;
  1250. r = -EFAULT;
  1251. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1252. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1253. goto out;
  1254. vcpu->arch.cpuid_nent = cpuid->nent;
  1255. kvm_apic_set_version(vcpu);
  1256. return 0;
  1257. out:
  1258. return r;
  1259. }
  1260. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1261. struct kvm_cpuid2 *cpuid,
  1262. struct kvm_cpuid_entry2 __user *entries)
  1263. {
  1264. int r;
  1265. r = -E2BIG;
  1266. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1267. goto out;
  1268. r = -EFAULT;
  1269. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1270. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1271. goto out;
  1272. return 0;
  1273. out:
  1274. cpuid->nent = vcpu->arch.cpuid_nent;
  1275. return r;
  1276. }
  1277. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1278. u32 index)
  1279. {
  1280. entry->function = function;
  1281. entry->index = index;
  1282. cpuid_count(entry->function, entry->index,
  1283. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1284. entry->flags = 0;
  1285. }
  1286. #define F(x) bit(X86_FEATURE_##x)
  1287. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1288. u32 index, int *nent, int maxnent)
  1289. {
  1290. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1291. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1292. #ifdef CONFIG_X86_64
  1293. unsigned f_lm = F(LM);
  1294. #else
  1295. unsigned f_lm = 0;
  1296. #endif
  1297. /* cpuid 1.edx */
  1298. const u32 kvm_supported_word0_x86_features =
  1299. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1300. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1301. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1302. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1303. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1304. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1305. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1306. 0 /* HTT, TM, Reserved, PBE */;
  1307. /* cpuid 0x80000001.edx */
  1308. const u32 kvm_supported_word1_x86_features =
  1309. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1310. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1311. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1312. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1313. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1314. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1315. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1316. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1317. /* cpuid 1.ecx */
  1318. const u32 kvm_supported_word4_x86_features =
  1319. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1320. 0 /* DS-CPL, VMX, SMX, EST */ |
  1321. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1322. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1323. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1324. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1325. 0 /* Reserved, XSAVE, OSXSAVE */;
  1326. /* cpuid 0x80000001.ecx */
  1327. const u32 kvm_supported_word6_x86_features =
  1328. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1329. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1330. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1331. 0 /* SKINIT */ | 0 /* WDT */;
  1332. /* all calls to cpuid_count() should be made on the same cpu */
  1333. get_cpu();
  1334. do_cpuid_1_ent(entry, function, index);
  1335. ++*nent;
  1336. switch (function) {
  1337. case 0:
  1338. entry->eax = min(entry->eax, (u32)0xb);
  1339. break;
  1340. case 1:
  1341. entry->edx &= kvm_supported_word0_x86_features;
  1342. entry->ecx &= kvm_supported_word4_x86_features;
  1343. /* we support x2apic emulation even if host does not support
  1344. * it since we emulate x2apic in software */
  1345. entry->ecx |= F(X2APIC);
  1346. break;
  1347. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1348. * may return different values. This forces us to get_cpu() before
  1349. * issuing the first command, and also to emulate this annoying behavior
  1350. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1351. case 2: {
  1352. int t, times = entry->eax & 0xff;
  1353. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1354. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1355. for (t = 1; t < times && *nent < maxnent; ++t) {
  1356. do_cpuid_1_ent(&entry[t], function, 0);
  1357. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1358. ++*nent;
  1359. }
  1360. break;
  1361. }
  1362. /* function 4 and 0xb have additional index. */
  1363. case 4: {
  1364. int i, cache_type;
  1365. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1366. /* read more entries until cache_type is zero */
  1367. for (i = 1; *nent < maxnent; ++i) {
  1368. cache_type = entry[i - 1].eax & 0x1f;
  1369. if (!cache_type)
  1370. break;
  1371. do_cpuid_1_ent(&entry[i], function, i);
  1372. entry[i].flags |=
  1373. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1374. ++*nent;
  1375. }
  1376. break;
  1377. }
  1378. case 0xb: {
  1379. int i, level_type;
  1380. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1381. /* read more entries until level_type is zero */
  1382. for (i = 1; *nent < maxnent; ++i) {
  1383. level_type = entry[i - 1].ecx & 0xff00;
  1384. if (!level_type)
  1385. break;
  1386. do_cpuid_1_ent(&entry[i], function, i);
  1387. entry[i].flags |=
  1388. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1389. ++*nent;
  1390. }
  1391. break;
  1392. }
  1393. case 0x80000000:
  1394. entry->eax = min(entry->eax, 0x8000001a);
  1395. break;
  1396. case 0x80000001:
  1397. entry->edx &= kvm_supported_word1_x86_features;
  1398. entry->ecx &= kvm_supported_word6_x86_features;
  1399. break;
  1400. }
  1401. put_cpu();
  1402. }
  1403. #undef F
  1404. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1405. struct kvm_cpuid_entry2 __user *entries)
  1406. {
  1407. struct kvm_cpuid_entry2 *cpuid_entries;
  1408. int limit, nent = 0, r = -E2BIG;
  1409. u32 func;
  1410. if (cpuid->nent < 1)
  1411. goto out;
  1412. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1413. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1414. r = -ENOMEM;
  1415. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1416. if (!cpuid_entries)
  1417. goto out;
  1418. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1419. limit = cpuid_entries[0].eax;
  1420. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1421. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1422. &nent, cpuid->nent);
  1423. r = -E2BIG;
  1424. if (nent >= cpuid->nent)
  1425. goto out_free;
  1426. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1427. limit = cpuid_entries[nent - 1].eax;
  1428. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1429. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1430. &nent, cpuid->nent);
  1431. r = -E2BIG;
  1432. if (nent >= cpuid->nent)
  1433. goto out_free;
  1434. r = -EFAULT;
  1435. if (copy_to_user(entries, cpuid_entries,
  1436. nent * sizeof(struct kvm_cpuid_entry2)))
  1437. goto out_free;
  1438. cpuid->nent = nent;
  1439. r = 0;
  1440. out_free:
  1441. vfree(cpuid_entries);
  1442. out:
  1443. return r;
  1444. }
  1445. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1446. struct kvm_lapic_state *s)
  1447. {
  1448. vcpu_load(vcpu);
  1449. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1450. vcpu_put(vcpu);
  1451. return 0;
  1452. }
  1453. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1454. struct kvm_lapic_state *s)
  1455. {
  1456. vcpu_load(vcpu);
  1457. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1458. kvm_apic_post_state_restore(vcpu);
  1459. update_cr8_intercept(vcpu);
  1460. vcpu_put(vcpu);
  1461. return 0;
  1462. }
  1463. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1464. struct kvm_interrupt *irq)
  1465. {
  1466. if (irq->irq < 0 || irq->irq >= 256)
  1467. return -EINVAL;
  1468. if (irqchip_in_kernel(vcpu->kvm))
  1469. return -ENXIO;
  1470. vcpu_load(vcpu);
  1471. kvm_queue_interrupt(vcpu, irq->irq, false);
  1472. vcpu_put(vcpu);
  1473. return 0;
  1474. }
  1475. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1476. {
  1477. vcpu_load(vcpu);
  1478. kvm_inject_nmi(vcpu);
  1479. vcpu_put(vcpu);
  1480. return 0;
  1481. }
  1482. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1483. struct kvm_tpr_access_ctl *tac)
  1484. {
  1485. if (tac->flags)
  1486. return -EINVAL;
  1487. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1488. return 0;
  1489. }
  1490. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1491. u64 mcg_cap)
  1492. {
  1493. int r;
  1494. unsigned bank_num = mcg_cap & 0xff, bank;
  1495. r = -EINVAL;
  1496. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1497. goto out;
  1498. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1499. goto out;
  1500. r = 0;
  1501. vcpu->arch.mcg_cap = mcg_cap;
  1502. /* Init IA32_MCG_CTL to all 1s */
  1503. if (mcg_cap & MCG_CTL_P)
  1504. vcpu->arch.mcg_ctl = ~(u64)0;
  1505. /* Init IA32_MCi_CTL to all 1s */
  1506. for (bank = 0; bank < bank_num; bank++)
  1507. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1508. out:
  1509. return r;
  1510. }
  1511. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1512. struct kvm_x86_mce *mce)
  1513. {
  1514. u64 mcg_cap = vcpu->arch.mcg_cap;
  1515. unsigned bank_num = mcg_cap & 0xff;
  1516. u64 *banks = vcpu->arch.mce_banks;
  1517. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1518. return -EINVAL;
  1519. /*
  1520. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1521. * reporting is disabled
  1522. */
  1523. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1524. vcpu->arch.mcg_ctl != ~(u64)0)
  1525. return 0;
  1526. banks += 4 * mce->bank;
  1527. /*
  1528. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1529. * reporting is disabled for the bank
  1530. */
  1531. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1532. return 0;
  1533. if (mce->status & MCI_STATUS_UC) {
  1534. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1535. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1536. printk(KERN_DEBUG "kvm: set_mce: "
  1537. "injects mce exception while "
  1538. "previous one is in progress!\n");
  1539. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1540. return 0;
  1541. }
  1542. if (banks[1] & MCI_STATUS_VAL)
  1543. mce->status |= MCI_STATUS_OVER;
  1544. banks[2] = mce->addr;
  1545. banks[3] = mce->misc;
  1546. vcpu->arch.mcg_status = mce->mcg_status;
  1547. banks[1] = mce->status;
  1548. kvm_queue_exception(vcpu, MC_VECTOR);
  1549. } else if (!(banks[1] & MCI_STATUS_VAL)
  1550. || !(banks[1] & MCI_STATUS_UC)) {
  1551. if (banks[1] & MCI_STATUS_VAL)
  1552. mce->status |= MCI_STATUS_OVER;
  1553. banks[2] = mce->addr;
  1554. banks[3] = mce->misc;
  1555. banks[1] = mce->status;
  1556. } else
  1557. banks[1] |= MCI_STATUS_OVER;
  1558. return 0;
  1559. }
  1560. long kvm_arch_vcpu_ioctl(struct file *filp,
  1561. unsigned int ioctl, unsigned long arg)
  1562. {
  1563. struct kvm_vcpu *vcpu = filp->private_data;
  1564. void __user *argp = (void __user *)arg;
  1565. int r;
  1566. struct kvm_lapic_state *lapic = NULL;
  1567. switch (ioctl) {
  1568. case KVM_GET_LAPIC: {
  1569. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1570. r = -ENOMEM;
  1571. if (!lapic)
  1572. goto out;
  1573. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1574. if (r)
  1575. goto out;
  1576. r = -EFAULT;
  1577. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1578. goto out;
  1579. r = 0;
  1580. break;
  1581. }
  1582. case KVM_SET_LAPIC: {
  1583. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1584. r = -ENOMEM;
  1585. if (!lapic)
  1586. goto out;
  1587. r = -EFAULT;
  1588. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1589. goto out;
  1590. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1591. if (r)
  1592. goto out;
  1593. r = 0;
  1594. break;
  1595. }
  1596. case KVM_INTERRUPT: {
  1597. struct kvm_interrupt irq;
  1598. r = -EFAULT;
  1599. if (copy_from_user(&irq, argp, sizeof irq))
  1600. goto out;
  1601. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1602. if (r)
  1603. goto out;
  1604. r = 0;
  1605. break;
  1606. }
  1607. case KVM_NMI: {
  1608. r = kvm_vcpu_ioctl_nmi(vcpu);
  1609. if (r)
  1610. goto out;
  1611. r = 0;
  1612. break;
  1613. }
  1614. case KVM_SET_CPUID: {
  1615. struct kvm_cpuid __user *cpuid_arg = argp;
  1616. struct kvm_cpuid cpuid;
  1617. r = -EFAULT;
  1618. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1619. goto out;
  1620. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1621. if (r)
  1622. goto out;
  1623. break;
  1624. }
  1625. case KVM_SET_CPUID2: {
  1626. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1627. struct kvm_cpuid2 cpuid;
  1628. r = -EFAULT;
  1629. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1630. goto out;
  1631. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1632. cpuid_arg->entries);
  1633. if (r)
  1634. goto out;
  1635. break;
  1636. }
  1637. case KVM_GET_CPUID2: {
  1638. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1639. struct kvm_cpuid2 cpuid;
  1640. r = -EFAULT;
  1641. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1642. goto out;
  1643. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1644. cpuid_arg->entries);
  1645. if (r)
  1646. goto out;
  1647. r = -EFAULT;
  1648. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1649. goto out;
  1650. r = 0;
  1651. break;
  1652. }
  1653. case KVM_GET_MSRS:
  1654. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1655. break;
  1656. case KVM_SET_MSRS:
  1657. r = msr_io(vcpu, argp, do_set_msr, 0);
  1658. break;
  1659. case KVM_TPR_ACCESS_REPORTING: {
  1660. struct kvm_tpr_access_ctl tac;
  1661. r = -EFAULT;
  1662. if (copy_from_user(&tac, argp, sizeof tac))
  1663. goto out;
  1664. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1665. if (r)
  1666. goto out;
  1667. r = -EFAULT;
  1668. if (copy_to_user(argp, &tac, sizeof tac))
  1669. goto out;
  1670. r = 0;
  1671. break;
  1672. };
  1673. case KVM_SET_VAPIC_ADDR: {
  1674. struct kvm_vapic_addr va;
  1675. r = -EINVAL;
  1676. if (!irqchip_in_kernel(vcpu->kvm))
  1677. goto out;
  1678. r = -EFAULT;
  1679. if (copy_from_user(&va, argp, sizeof va))
  1680. goto out;
  1681. r = 0;
  1682. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1683. break;
  1684. }
  1685. case KVM_X86_SETUP_MCE: {
  1686. u64 mcg_cap;
  1687. r = -EFAULT;
  1688. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1689. goto out;
  1690. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1691. break;
  1692. }
  1693. case KVM_X86_SET_MCE: {
  1694. struct kvm_x86_mce mce;
  1695. r = -EFAULT;
  1696. if (copy_from_user(&mce, argp, sizeof mce))
  1697. goto out;
  1698. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1699. break;
  1700. }
  1701. default:
  1702. r = -EINVAL;
  1703. }
  1704. out:
  1705. kfree(lapic);
  1706. return r;
  1707. }
  1708. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1709. {
  1710. int ret;
  1711. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1712. return -1;
  1713. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1714. return ret;
  1715. }
  1716. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1717. u64 ident_addr)
  1718. {
  1719. kvm->arch.ept_identity_map_addr = ident_addr;
  1720. return 0;
  1721. }
  1722. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1723. u32 kvm_nr_mmu_pages)
  1724. {
  1725. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1726. return -EINVAL;
  1727. down_write(&kvm->slots_lock);
  1728. spin_lock(&kvm->mmu_lock);
  1729. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1730. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1731. spin_unlock(&kvm->mmu_lock);
  1732. up_write(&kvm->slots_lock);
  1733. return 0;
  1734. }
  1735. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1736. {
  1737. return kvm->arch.n_alloc_mmu_pages;
  1738. }
  1739. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1740. {
  1741. int i;
  1742. struct kvm_mem_alias *alias;
  1743. for (i = 0; i < kvm->arch.naliases; ++i) {
  1744. alias = &kvm->arch.aliases[i];
  1745. if (gfn >= alias->base_gfn
  1746. && gfn < alias->base_gfn + alias->npages)
  1747. return alias->target_gfn + gfn - alias->base_gfn;
  1748. }
  1749. return gfn;
  1750. }
  1751. /*
  1752. * Set a new alias region. Aliases map a portion of physical memory into
  1753. * another portion. This is useful for memory windows, for example the PC
  1754. * VGA region.
  1755. */
  1756. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1757. struct kvm_memory_alias *alias)
  1758. {
  1759. int r, n;
  1760. struct kvm_mem_alias *p;
  1761. r = -EINVAL;
  1762. /* General sanity checks */
  1763. if (alias->memory_size & (PAGE_SIZE - 1))
  1764. goto out;
  1765. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1766. goto out;
  1767. if (alias->slot >= KVM_ALIAS_SLOTS)
  1768. goto out;
  1769. if (alias->guest_phys_addr + alias->memory_size
  1770. < alias->guest_phys_addr)
  1771. goto out;
  1772. if (alias->target_phys_addr + alias->memory_size
  1773. < alias->target_phys_addr)
  1774. goto out;
  1775. down_write(&kvm->slots_lock);
  1776. spin_lock(&kvm->mmu_lock);
  1777. p = &kvm->arch.aliases[alias->slot];
  1778. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1779. p->npages = alias->memory_size >> PAGE_SHIFT;
  1780. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1781. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1782. if (kvm->arch.aliases[n - 1].npages)
  1783. break;
  1784. kvm->arch.naliases = n;
  1785. spin_unlock(&kvm->mmu_lock);
  1786. kvm_mmu_zap_all(kvm);
  1787. up_write(&kvm->slots_lock);
  1788. return 0;
  1789. out:
  1790. return r;
  1791. }
  1792. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1793. {
  1794. int r;
  1795. r = 0;
  1796. switch (chip->chip_id) {
  1797. case KVM_IRQCHIP_PIC_MASTER:
  1798. memcpy(&chip->chip.pic,
  1799. &pic_irqchip(kvm)->pics[0],
  1800. sizeof(struct kvm_pic_state));
  1801. break;
  1802. case KVM_IRQCHIP_PIC_SLAVE:
  1803. memcpy(&chip->chip.pic,
  1804. &pic_irqchip(kvm)->pics[1],
  1805. sizeof(struct kvm_pic_state));
  1806. break;
  1807. case KVM_IRQCHIP_IOAPIC:
  1808. memcpy(&chip->chip.ioapic,
  1809. ioapic_irqchip(kvm),
  1810. sizeof(struct kvm_ioapic_state));
  1811. break;
  1812. default:
  1813. r = -EINVAL;
  1814. break;
  1815. }
  1816. return r;
  1817. }
  1818. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1819. {
  1820. int r;
  1821. r = 0;
  1822. switch (chip->chip_id) {
  1823. case KVM_IRQCHIP_PIC_MASTER:
  1824. spin_lock(&pic_irqchip(kvm)->lock);
  1825. memcpy(&pic_irqchip(kvm)->pics[0],
  1826. &chip->chip.pic,
  1827. sizeof(struct kvm_pic_state));
  1828. spin_unlock(&pic_irqchip(kvm)->lock);
  1829. break;
  1830. case KVM_IRQCHIP_PIC_SLAVE:
  1831. spin_lock(&pic_irqchip(kvm)->lock);
  1832. memcpy(&pic_irqchip(kvm)->pics[1],
  1833. &chip->chip.pic,
  1834. sizeof(struct kvm_pic_state));
  1835. spin_unlock(&pic_irqchip(kvm)->lock);
  1836. break;
  1837. case KVM_IRQCHIP_IOAPIC:
  1838. mutex_lock(&kvm->irq_lock);
  1839. memcpy(ioapic_irqchip(kvm),
  1840. &chip->chip.ioapic,
  1841. sizeof(struct kvm_ioapic_state));
  1842. mutex_unlock(&kvm->irq_lock);
  1843. break;
  1844. default:
  1845. r = -EINVAL;
  1846. break;
  1847. }
  1848. kvm_pic_update_irq(pic_irqchip(kvm));
  1849. return r;
  1850. }
  1851. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1852. {
  1853. int r = 0;
  1854. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1855. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1856. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1857. return r;
  1858. }
  1859. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1860. {
  1861. int r = 0;
  1862. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1863. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1864. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  1865. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1866. return r;
  1867. }
  1868. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1869. {
  1870. int r = 0;
  1871. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1872. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  1873. sizeof(ps->channels));
  1874. ps->flags = kvm->arch.vpit->pit_state.flags;
  1875. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1876. return r;
  1877. }
  1878. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1879. {
  1880. int r = 0, start = 0;
  1881. u32 prev_legacy, cur_legacy;
  1882. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1883. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1884. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1885. if (!prev_legacy && cur_legacy)
  1886. start = 1;
  1887. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  1888. sizeof(kvm->arch.vpit->pit_state.channels));
  1889. kvm->arch.vpit->pit_state.flags = ps->flags;
  1890. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  1891. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1892. return r;
  1893. }
  1894. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1895. struct kvm_reinject_control *control)
  1896. {
  1897. if (!kvm->arch.vpit)
  1898. return -ENXIO;
  1899. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1900. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1901. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1902. return 0;
  1903. }
  1904. /*
  1905. * Get (and clear) the dirty memory log for a memory slot.
  1906. */
  1907. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1908. struct kvm_dirty_log *log)
  1909. {
  1910. int r;
  1911. int n;
  1912. struct kvm_memory_slot *memslot;
  1913. int is_dirty = 0;
  1914. down_write(&kvm->slots_lock);
  1915. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1916. if (r)
  1917. goto out;
  1918. /* If nothing is dirty, don't bother messing with page tables. */
  1919. if (is_dirty) {
  1920. spin_lock(&kvm->mmu_lock);
  1921. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1922. spin_unlock(&kvm->mmu_lock);
  1923. memslot = &kvm->memslots[log->slot];
  1924. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1925. memset(memslot->dirty_bitmap, 0, n);
  1926. }
  1927. r = 0;
  1928. out:
  1929. up_write(&kvm->slots_lock);
  1930. return r;
  1931. }
  1932. long kvm_arch_vm_ioctl(struct file *filp,
  1933. unsigned int ioctl, unsigned long arg)
  1934. {
  1935. struct kvm *kvm = filp->private_data;
  1936. void __user *argp = (void __user *)arg;
  1937. int r = -EINVAL;
  1938. /*
  1939. * This union makes it completely explicit to gcc-3.x
  1940. * that these two variables' stack usage should be
  1941. * combined, not added together.
  1942. */
  1943. union {
  1944. struct kvm_pit_state ps;
  1945. struct kvm_pit_state2 ps2;
  1946. struct kvm_memory_alias alias;
  1947. struct kvm_pit_config pit_config;
  1948. } u;
  1949. switch (ioctl) {
  1950. case KVM_SET_TSS_ADDR:
  1951. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1952. if (r < 0)
  1953. goto out;
  1954. break;
  1955. case KVM_SET_IDENTITY_MAP_ADDR: {
  1956. u64 ident_addr;
  1957. r = -EFAULT;
  1958. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  1959. goto out;
  1960. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  1961. if (r < 0)
  1962. goto out;
  1963. break;
  1964. }
  1965. case KVM_SET_MEMORY_REGION: {
  1966. struct kvm_memory_region kvm_mem;
  1967. struct kvm_userspace_memory_region kvm_userspace_mem;
  1968. r = -EFAULT;
  1969. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1970. goto out;
  1971. kvm_userspace_mem.slot = kvm_mem.slot;
  1972. kvm_userspace_mem.flags = kvm_mem.flags;
  1973. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1974. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1975. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1976. if (r)
  1977. goto out;
  1978. break;
  1979. }
  1980. case KVM_SET_NR_MMU_PAGES:
  1981. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1982. if (r)
  1983. goto out;
  1984. break;
  1985. case KVM_GET_NR_MMU_PAGES:
  1986. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1987. break;
  1988. case KVM_SET_MEMORY_ALIAS:
  1989. r = -EFAULT;
  1990. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1991. goto out;
  1992. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1993. if (r)
  1994. goto out;
  1995. break;
  1996. case KVM_CREATE_IRQCHIP:
  1997. r = -ENOMEM;
  1998. kvm->arch.vpic = kvm_create_pic(kvm);
  1999. if (kvm->arch.vpic) {
  2000. r = kvm_ioapic_init(kvm);
  2001. if (r) {
  2002. kfree(kvm->arch.vpic);
  2003. kvm->arch.vpic = NULL;
  2004. goto out;
  2005. }
  2006. } else
  2007. goto out;
  2008. r = kvm_setup_default_irq_routing(kvm);
  2009. if (r) {
  2010. kfree(kvm->arch.vpic);
  2011. kfree(kvm->arch.vioapic);
  2012. goto out;
  2013. }
  2014. break;
  2015. case KVM_CREATE_PIT:
  2016. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2017. goto create_pit;
  2018. case KVM_CREATE_PIT2:
  2019. r = -EFAULT;
  2020. if (copy_from_user(&u.pit_config, argp,
  2021. sizeof(struct kvm_pit_config)))
  2022. goto out;
  2023. create_pit:
  2024. down_write(&kvm->slots_lock);
  2025. r = -EEXIST;
  2026. if (kvm->arch.vpit)
  2027. goto create_pit_unlock;
  2028. r = -ENOMEM;
  2029. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2030. if (kvm->arch.vpit)
  2031. r = 0;
  2032. create_pit_unlock:
  2033. up_write(&kvm->slots_lock);
  2034. break;
  2035. case KVM_IRQ_LINE_STATUS:
  2036. case KVM_IRQ_LINE: {
  2037. struct kvm_irq_level irq_event;
  2038. r = -EFAULT;
  2039. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2040. goto out;
  2041. if (irqchip_in_kernel(kvm)) {
  2042. __s32 status;
  2043. mutex_lock(&kvm->irq_lock);
  2044. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2045. irq_event.irq, irq_event.level);
  2046. mutex_unlock(&kvm->irq_lock);
  2047. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2048. irq_event.status = status;
  2049. if (copy_to_user(argp, &irq_event,
  2050. sizeof irq_event))
  2051. goto out;
  2052. }
  2053. r = 0;
  2054. }
  2055. break;
  2056. }
  2057. case KVM_GET_IRQCHIP: {
  2058. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2059. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2060. r = -ENOMEM;
  2061. if (!chip)
  2062. goto out;
  2063. r = -EFAULT;
  2064. if (copy_from_user(chip, argp, sizeof *chip))
  2065. goto get_irqchip_out;
  2066. r = -ENXIO;
  2067. if (!irqchip_in_kernel(kvm))
  2068. goto get_irqchip_out;
  2069. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2070. if (r)
  2071. goto get_irqchip_out;
  2072. r = -EFAULT;
  2073. if (copy_to_user(argp, chip, sizeof *chip))
  2074. goto get_irqchip_out;
  2075. r = 0;
  2076. get_irqchip_out:
  2077. kfree(chip);
  2078. if (r)
  2079. goto out;
  2080. break;
  2081. }
  2082. case KVM_SET_IRQCHIP: {
  2083. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2084. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2085. r = -ENOMEM;
  2086. if (!chip)
  2087. goto out;
  2088. r = -EFAULT;
  2089. if (copy_from_user(chip, argp, sizeof *chip))
  2090. goto set_irqchip_out;
  2091. r = -ENXIO;
  2092. if (!irqchip_in_kernel(kvm))
  2093. goto set_irqchip_out;
  2094. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2095. if (r)
  2096. goto set_irqchip_out;
  2097. r = 0;
  2098. set_irqchip_out:
  2099. kfree(chip);
  2100. if (r)
  2101. goto out;
  2102. break;
  2103. }
  2104. case KVM_GET_PIT: {
  2105. r = -EFAULT;
  2106. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2107. goto out;
  2108. r = -ENXIO;
  2109. if (!kvm->arch.vpit)
  2110. goto out;
  2111. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2112. if (r)
  2113. goto out;
  2114. r = -EFAULT;
  2115. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2116. goto out;
  2117. r = 0;
  2118. break;
  2119. }
  2120. case KVM_SET_PIT: {
  2121. r = -EFAULT;
  2122. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2123. goto out;
  2124. r = -ENXIO;
  2125. if (!kvm->arch.vpit)
  2126. goto out;
  2127. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2128. if (r)
  2129. goto out;
  2130. r = 0;
  2131. break;
  2132. }
  2133. case KVM_GET_PIT2: {
  2134. r = -ENXIO;
  2135. if (!kvm->arch.vpit)
  2136. goto out;
  2137. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2138. if (r)
  2139. goto out;
  2140. r = -EFAULT;
  2141. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2142. goto out;
  2143. r = 0;
  2144. break;
  2145. }
  2146. case KVM_SET_PIT2: {
  2147. r = -EFAULT;
  2148. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2149. goto out;
  2150. r = -ENXIO;
  2151. if (!kvm->arch.vpit)
  2152. goto out;
  2153. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2154. if (r)
  2155. goto out;
  2156. r = 0;
  2157. break;
  2158. }
  2159. case KVM_REINJECT_CONTROL: {
  2160. struct kvm_reinject_control control;
  2161. r = -EFAULT;
  2162. if (copy_from_user(&control, argp, sizeof(control)))
  2163. goto out;
  2164. r = kvm_vm_ioctl_reinject(kvm, &control);
  2165. if (r)
  2166. goto out;
  2167. r = 0;
  2168. break;
  2169. }
  2170. default:
  2171. ;
  2172. }
  2173. out:
  2174. return r;
  2175. }
  2176. static void kvm_init_msr_list(void)
  2177. {
  2178. u32 dummy[2];
  2179. unsigned i, j;
  2180. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2181. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2182. continue;
  2183. if (j < i)
  2184. msrs_to_save[j] = msrs_to_save[i];
  2185. j++;
  2186. }
  2187. num_msrs_to_save = j;
  2188. }
  2189. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2190. const void *v)
  2191. {
  2192. if (vcpu->arch.apic &&
  2193. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2194. return 0;
  2195. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2196. }
  2197. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2198. {
  2199. if (vcpu->arch.apic &&
  2200. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2201. return 0;
  2202. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2203. }
  2204. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2205. struct kvm_vcpu *vcpu)
  2206. {
  2207. void *data = val;
  2208. int r = X86EMUL_CONTINUE;
  2209. while (bytes) {
  2210. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2211. unsigned offset = addr & (PAGE_SIZE-1);
  2212. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2213. int ret;
  2214. if (gpa == UNMAPPED_GVA) {
  2215. r = X86EMUL_PROPAGATE_FAULT;
  2216. goto out;
  2217. }
  2218. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2219. if (ret < 0) {
  2220. r = X86EMUL_UNHANDLEABLE;
  2221. goto out;
  2222. }
  2223. bytes -= toread;
  2224. data += toread;
  2225. addr += toread;
  2226. }
  2227. out:
  2228. return r;
  2229. }
  2230. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2231. struct kvm_vcpu *vcpu)
  2232. {
  2233. void *data = val;
  2234. int r = X86EMUL_CONTINUE;
  2235. while (bytes) {
  2236. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2237. unsigned offset = addr & (PAGE_SIZE-1);
  2238. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2239. int ret;
  2240. if (gpa == UNMAPPED_GVA) {
  2241. r = X86EMUL_PROPAGATE_FAULT;
  2242. goto out;
  2243. }
  2244. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2245. if (ret < 0) {
  2246. r = X86EMUL_UNHANDLEABLE;
  2247. goto out;
  2248. }
  2249. bytes -= towrite;
  2250. data += towrite;
  2251. addr += towrite;
  2252. }
  2253. out:
  2254. return r;
  2255. }
  2256. static int emulator_read_emulated(unsigned long addr,
  2257. void *val,
  2258. unsigned int bytes,
  2259. struct kvm_vcpu *vcpu)
  2260. {
  2261. gpa_t gpa;
  2262. if (vcpu->mmio_read_completed) {
  2263. memcpy(val, vcpu->mmio_data, bytes);
  2264. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2265. vcpu->mmio_phys_addr, *(u64 *)val);
  2266. vcpu->mmio_read_completed = 0;
  2267. return X86EMUL_CONTINUE;
  2268. }
  2269. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2270. /* For APIC access vmexit */
  2271. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2272. goto mmio;
  2273. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2274. == X86EMUL_CONTINUE)
  2275. return X86EMUL_CONTINUE;
  2276. if (gpa == UNMAPPED_GVA)
  2277. return X86EMUL_PROPAGATE_FAULT;
  2278. mmio:
  2279. /*
  2280. * Is this MMIO handled locally?
  2281. */
  2282. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2283. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2284. return X86EMUL_CONTINUE;
  2285. }
  2286. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2287. vcpu->mmio_needed = 1;
  2288. vcpu->mmio_phys_addr = gpa;
  2289. vcpu->mmio_size = bytes;
  2290. vcpu->mmio_is_write = 0;
  2291. return X86EMUL_UNHANDLEABLE;
  2292. }
  2293. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2294. const void *val, int bytes)
  2295. {
  2296. int ret;
  2297. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2298. if (ret < 0)
  2299. return 0;
  2300. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2301. return 1;
  2302. }
  2303. static int emulator_write_emulated_onepage(unsigned long addr,
  2304. const void *val,
  2305. unsigned int bytes,
  2306. struct kvm_vcpu *vcpu)
  2307. {
  2308. gpa_t gpa;
  2309. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2310. if (gpa == UNMAPPED_GVA) {
  2311. kvm_inject_page_fault(vcpu, addr, 2);
  2312. return X86EMUL_PROPAGATE_FAULT;
  2313. }
  2314. /* For APIC access vmexit */
  2315. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2316. goto mmio;
  2317. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2318. return X86EMUL_CONTINUE;
  2319. mmio:
  2320. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2321. /*
  2322. * Is this MMIO handled locally?
  2323. */
  2324. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2325. return X86EMUL_CONTINUE;
  2326. vcpu->mmio_needed = 1;
  2327. vcpu->mmio_phys_addr = gpa;
  2328. vcpu->mmio_size = bytes;
  2329. vcpu->mmio_is_write = 1;
  2330. memcpy(vcpu->mmio_data, val, bytes);
  2331. return X86EMUL_CONTINUE;
  2332. }
  2333. int emulator_write_emulated(unsigned long addr,
  2334. const void *val,
  2335. unsigned int bytes,
  2336. struct kvm_vcpu *vcpu)
  2337. {
  2338. /* Crossing a page boundary? */
  2339. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2340. int rc, now;
  2341. now = -addr & ~PAGE_MASK;
  2342. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2343. if (rc != X86EMUL_CONTINUE)
  2344. return rc;
  2345. addr += now;
  2346. val += now;
  2347. bytes -= now;
  2348. }
  2349. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2350. }
  2351. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2352. static int emulator_cmpxchg_emulated(unsigned long addr,
  2353. const void *old,
  2354. const void *new,
  2355. unsigned int bytes,
  2356. struct kvm_vcpu *vcpu)
  2357. {
  2358. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2359. #ifndef CONFIG_X86_64
  2360. /* guests cmpxchg8b have to be emulated atomically */
  2361. if (bytes == 8) {
  2362. gpa_t gpa;
  2363. struct page *page;
  2364. char *kaddr;
  2365. u64 val;
  2366. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2367. if (gpa == UNMAPPED_GVA ||
  2368. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2369. goto emul_write;
  2370. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2371. goto emul_write;
  2372. val = *(u64 *)new;
  2373. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2374. kaddr = kmap_atomic(page, KM_USER0);
  2375. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2376. kunmap_atomic(kaddr, KM_USER0);
  2377. kvm_release_page_dirty(page);
  2378. }
  2379. emul_write:
  2380. #endif
  2381. return emulator_write_emulated(addr, new, bytes, vcpu);
  2382. }
  2383. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2384. {
  2385. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2386. }
  2387. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2388. {
  2389. kvm_mmu_invlpg(vcpu, address);
  2390. return X86EMUL_CONTINUE;
  2391. }
  2392. int emulate_clts(struct kvm_vcpu *vcpu)
  2393. {
  2394. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2395. return X86EMUL_CONTINUE;
  2396. }
  2397. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2398. {
  2399. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2400. switch (dr) {
  2401. case 0 ... 3:
  2402. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2403. return X86EMUL_CONTINUE;
  2404. default:
  2405. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2406. return X86EMUL_UNHANDLEABLE;
  2407. }
  2408. }
  2409. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2410. {
  2411. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2412. int exception;
  2413. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2414. if (exception) {
  2415. /* FIXME: better handling */
  2416. return X86EMUL_UNHANDLEABLE;
  2417. }
  2418. return X86EMUL_CONTINUE;
  2419. }
  2420. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2421. {
  2422. u8 opcodes[4];
  2423. unsigned long rip = kvm_rip_read(vcpu);
  2424. unsigned long rip_linear;
  2425. if (!printk_ratelimit())
  2426. return;
  2427. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2428. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2429. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2430. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2431. }
  2432. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2433. static struct x86_emulate_ops emulate_ops = {
  2434. .read_std = kvm_read_guest_virt,
  2435. .read_emulated = emulator_read_emulated,
  2436. .write_emulated = emulator_write_emulated,
  2437. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2438. };
  2439. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2440. {
  2441. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2442. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2443. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2444. vcpu->arch.regs_dirty = ~0;
  2445. }
  2446. int emulate_instruction(struct kvm_vcpu *vcpu,
  2447. struct kvm_run *run,
  2448. unsigned long cr2,
  2449. u16 error_code,
  2450. int emulation_type)
  2451. {
  2452. int r, shadow_mask;
  2453. struct decode_cache *c;
  2454. kvm_clear_exception_queue(vcpu);
  2455. vcpu->arch.mmio_fault_cr2 = cr2;
  2456. /*
  2457. * TODO: fix emulate.c to use guest_read/write_register
  2458. * instead of direct ->regs accesses, can save hundred cycles
  2459. * on Intel for instructions that don't read/change RSP, for
  2460. * for example.
  2461. */
  2462. cache_all_regs(vcpu);
  2463. vcpu->mmio_is_write = 0;
  2464. vcpu->arch.pio.string = 0;
  2465. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2466. int cs_db, cs_l;
  2467. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2468. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2469. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2470. vcpu->arch.emulate_ctxt.mode =
  2471. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2472. ? X86EMUL_MODE_REAL : cs_l
  2473. ? X86EMUL_MODE_PROT64 : cs_db
  2474. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2475. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2476. /* Only allow emulation of specific instructions on #UD
  2477. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2478. c = &vcpu->arch.emulate_ctxt.decode;
  2479. if (emulation_type & EMULTYPE_TRAP_UD) {
  2480. if (!c->twobyte)
  2481. return EMULATE_FAIL;
  2482. switch (c->b) {
  2483. case 0x01: /* VMMCALL */
  2484. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2485. return EMULATE_FAIL;
  2486. break;
  2487. case 0x34: /* sysenter */
  2488. case 0x35: /* sysexit */
  2489. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2490. return EMULATE_FAIL;
  2491. break;
  2492. case 0x05: /* syscall */
  2493. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2494. return EMULATE_FAIL;
  2495. break;
  2496. default:
  2497. return EMULATE_FAIL;
  2498. }
  2499. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2500. return EMULATE_FAIL;
  2501. }
  2502. ++vcpu->stat.insn_emulation;
  2503. if (r) {
  2504. ++vcpu->stat.insn_emulation_fail;
  2505. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2506. return EMULATE_DONE;
  2507. return EMULATE_FAIL;
  2508. }
  2509. }
  2510. if (emulation_type & EMULTYPE_SKIP) {
  2511. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2512. return EMULATE_DONE;
  2513. }
  2514. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2515. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2516. if (r == 0)
  2517. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2518. if (vcpu->arch.pio.string)
  2519. return EMULATE_DO_MMIO;
  2520. if ((r || vcpu->mmio_is_write) && run) {
  2521. run->exit_reason = KVM_EXIT_MMIO;
  2522. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2523. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2524. run->mmio.len = vcpu->mmio_size;
  2525. run->mmio.is_write = vcpu->mmio_is_write;
  2526. }
  2527. if (r) {
  2528. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2529. return EMULATE_DONE;
  2530. if (!vcpu->mmio_needed) {
  2531. kvm_report_emulation_failure(vcpu, "mmio");
  2532. return EMULATE_FAIL;
  2533. }
  2534. return EMULATE_DO_MMIO;
  2535. }
  2536. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2537. if (vcpu->mmio_is_write) {
  2538. vcpu->mmio_needed = 0;
  2539. return EMULATE_DO_MMIO;
  2540. }
  2541. return EMULATE_DONE;
  2542. }
  2543. EXPORT_SYMBOL_GPL(emulate_instruction);
  2544. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2545. {
  2546. void *p = vcpu->arch.pio_data;
  2547. gva_t q = vcpu->arch.pio.guest_gva;
  2548. unsigned bytes;
  2549. int ret;
  2550. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2551. if (vcpu->arch.pio.in)
  2552. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2553. else
  2554. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2555. return ret;
  2556. }
  2557. int complete_pio(struct kvm_vcpu *vcpu)
  2558. {
  2559. struct kvm_pio_request *io = &vcpu->arch.pio;
  2560. long delta;
  2561. int r;
  2562. unsigned long val;
  2563. if (!io->string) {
  2564. if (io->in) {
  2565. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2566. memcpy(&val, vcpu->arch.pio_data, io->size);
  2567. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2568. }
  2569. } else {
  2570. if (io->in) {
  2571. r = pio_copy_data(vcpu);
  2572. if (r)
  2573. return r;
  2574. }
  2575. delta = 1;
  2576. if (io->rep) {
  2577. delta *= io->cur_count;
  2578. /*
  2579. * The size of the register should really depend on
  2580. * current address size.
  2581. */
  2582. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2583. val -= delta;
  2584. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2585. }
  2586. if (io->down)
  2587. delta = -delta;
  2588. delta *= io->size;
  2589. if (io->in) {
  2590. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2591. val += delta;
  2592. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2593. } else {
  2594. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2595. val += delta;
  2596. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2597. }
  2598. }
  2599. io->count -= io->cur_count;
  2600. io->cur_count = 0;
  2601. return 0;
  2602. }
  2603. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2604. {
  2605. /* TODO: String I/O for in kernel device */
  2606. int r;
  2607. if (vcpu->arch.pio.in)
  2608. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2609. vcpu->arch.pio.size, pd);
  2610. else
  2611. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2612. vcpu->arch.pio.size, pd);
  2613. return r;
  2614. }
  2615. static int pio_string_write(struct kvm_vcpu *vcpu)
  2616. {
  2617. struct kvm_pio_request *io = &vcpu->arch.pio;
  2618. void *pd = vcpu->arch.pio_data;
  2619. int i, r = 0;
  2620. for (i = 0; i < io->cur_count; i++) {
  2621. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2622. io->port, io->size, pd)) {
  2623. r = -EOPNOTSUPP;
  2624. break;
  2625. }
  2626. pd += io->size;
  2627. }
  2628. return r;
  2629. }
  2630. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2631. int size, unsigned port)
  2632. {
  2633. unsigned long val;
  2634. vcpu->run->exit_reason = KVM_EXIT_IO;
  2635. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2636. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2637. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2638. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2639. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2640. vcpu->arch.pio.in = in;
  2641. vcpu->arch.pio.string = 0;
  2642. vcpu->arch.pio.down = 0;
  2643. vcpu->arch.pio.rep = 0;
  2644. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2645. size, 1);
  2646. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2647. memcpy(vcpu->arch.pio_data, &val, 4);
  2648. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2649. complete_pio(vcpu);
  2650. return 1;
  2651. }
  2652. return 0;
  2653. }
  2654. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2655. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2656. int size, unsigned long count, int down,
  2657. gva_t address, int rep, unsigned port)
  2658. {
  2659. unsigned now, in_page;
  2660. int ret = 0;
  2661. vcpu->run->exit_reason = KVM_EXIT_IO;
  2662. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2663. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2664. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2665. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2666. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2667. vcpu->arch.pio.in = in;
  2668. vcpu->arch.pio.string = 1;
  2669. vcpu->arch.pio.down = down;
  2670. vcpu->arch.pio.rep = rep;
  2671. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2672. size, count);
  2673. if (!count) {
  2674. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2675. return 1;
  2676. }
  2677. if (!down)
  2678. in_page = PAGE_SIZE - offset_in_page(address);
  2679. else
  2680. in_page = offset_in_page(address) + size;
  2681. now = min(count, (unsigned long)in_page / size);
  2682. if (!now)
  2683. now = 1;
  2684. if (down) {
  2685. /*
  2686. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2687. */
  2688. pr_unimpl(vcpu, "guest string pio down\n");
  2689. kvm_inject_gp(vcpu, 0);
  2690. return 1;
  2691. }
  2692. vcpu->run->io.count = now;
  2693. vcpu->arch.pio.cur_count = now;
  2694. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2695. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2696. vcpu->arch.pio.guest_gva = address;
  2697. if (!vcpu->arch.pio.in) {
  2698. /* string PIO write */
  2699. ret = pio_copy_data(vcpu);
  2700. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2701. kvm_inject_gp(vcpu, 0);
  2702. return 1;
  2703. }
  2704. if (ret == 0 && !pio_string_write(vcpu)) {
  2705. complete_pio(vcpu);
  2706. if (vcpu->arch.pio.count == 0)
  2707. ret = 1;
  2708. }
  2709. }
  2710. /* no string PIO read support yet */
  2711. return ret;
  2712. }
  2713. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2714. static void bounce_off(void *info)
  2715. {
  2716. /* nothing */
  2717. }
  2718. static unsigned int ref_freq;
  2719. static unsigned long tsc_khz_ref;
  2720. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2721. void *data)
  2722. {
  2723. struct cpufreq_freqs *freq = data;
  2724. struct kvm *kvm;
  2725. struct kvm_vcpu *vcpu;
  2726. int i, send_ipi = 0;
  2727. if (!ref_freq)
  2728. ref_freq = freq->old;
  2729. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2730. return 0;
  2731. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2732. return 0;
  2733. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2734. spin_lock(&kvm_lock);
  2735. list_for_each_entry(kvm, &vm_list, vm_list) {
  2736. kvm_for_each_vcpu(i, vcpu, kvm) {
  2737. if (vcpu->cpu != freq->cpu)
  2738. continue;
  2739. if (!kvm_request_guest_time_update(vcpu))
  2740. continue;
  2741. if (vcpu->cpu != smp_processor_id())
  2742. send_ipi++;
  2743. }
  2744. }
  2745. spin_unlock(&kvm_lock);
  2746. if (freq->old < freq->new && send_ipi) {
  2747. /*
  2748. * We upscale the frequency. Must make the guest
  2749. * doesn't see old kvmclock values while running with
  2750. * the new frequency, otherwise we risk the guest sees
  2751. * time go backwards.
  2752. *
  2753. * In case we update the frequency for another cpu
  2754. * (which might be in guest context) send an interrupt
  2755. * to kick the cpu out of guest context. Next time
  2756. * guest context is entered kvmclock will be updated,
  2757. * so the guest will not see stale values.
  2758. */
  2759. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2760. }
  2761. return 0;
  2762. }
  2763. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2764. .notifier_call = kvmclock_cpufreq_notifier
  2765. };
  2766. int kvm_arch_init(void *opaque)
  2767. {
  2768. int r, cpu;
  2769. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2770. if (kvm_x86_ops) {
  2771. printk(KERN_ERR "kvm: already loaded the other module\n");
  2772. r = -EEXIST;
  2773. goto out;
  2774. }
  2775. if (!ops->cpu_has_kvm_support()) {
  2776. printk(KERN_ERR "kvm: no hardware support\n");
  2777. r = -EOPNOTSUPP;
  2778. goto out;
  2779. }
  2780. if (ops->disabled_by_bios()) {
  2781. printk(KERN_ERR "kvm: disabled by bios\n");
  2782. r = -EOPNOTSUPP;
  2783. goto out;
  2784. }
  2785. r = kvm_mmu_module_init();
  2786. if (r)
  2787. goto out;
  2788. kvm_init_msr_list();
  2789. kvm_x86_ops = ops;
  2790. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2791. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2792. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2793. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2794. for_each_possible_cpu(cpu)
  2795. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2796. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2797. tsc_khz_ref = tsc_khz;
  2798. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2799. CPUFREQ_TRANSITION_NOTIFIER);
  2800. }
  2801. return 0;
  2802. out:
  2803. return r;
  2804. }
  2805. void kvm_arch_exit(void)
  2806. {
  2807. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2808. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2809. CPUFREQ_TRANSITION_NOTIFIER);
  2810. kvm_x86_ops = NULL;
  2811. kvm_mmu_module_exit();
  2812. }
  2813. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2814. {
  2815. ++vcpu->stat.halt_exits;
  2816. if (irqchip_in_kernel(vcpu->kvm)) {
  2817. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2818. return 1;
  2819. } else {
  2820. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2821. return 0;
  2822. }
  2823. }
  2824. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2825. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2826. unsigned long a1)
  2827. {
  2828. if (is_long_mode(vcpu))
  2829. return a0;
  2830. else
  2831. return a0 | ((gpa_t)a1 << 32);
  2832. }
  2833. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2834. {
  2835. unsigned long nr, a0, a1, a2, a3, ret;
  2836. int r = 1;
  2837. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2838. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2839. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2840. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2841. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2842. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2843. if (!is_long_mode(vcpu)) {
  2844. nr &= 0xFFFFFFFF;
  2845. a0 &= 0xFFFFFFFF;
  2846. a1 &= 0xFFFFFFFF;
  2847. a2 &= 0xFFFFFFFF;
  2848. a3 &= 0xFFFFFFFF;
  2849. }
  2850. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  2851. ret = -KVM_EPERM;
  2852. goto out;
  2853. }
  2854. switch (nr) {
  2855. case KVM_HC_VAPIC_POLL_IRQ:
  2856. ret = 0;
  2857. break;
  2858. case KVM_HC_MMU_OP:
  2859. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2860. break;
  2861. default:
  2862. ret = -KVM_ENOSYS;
  2863. break;
  2864. }
  2865. out:
  2866. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2867. ++vcpu->stat.hypercalls;
  2868. return r;
  2869. }
  2870. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2871. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2872. {
  2873. char instruction[3];
  2874. int ret = 0;
  2875. unsigned long rip = kvm_rip_read(vcpu);
  2876. /*
  2877. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2878. * to ensure that the updated hypercall appears atomically across all
  2879. * VCPUs.
  2880. */
  2881. kvm_mmu_zap_all(vcpu->kvm);
  2882. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2883. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2884. != X86EMUL_CONTINUE)
  2885. ret = -EFAULT;
  2886. return ret;
  2887. }
  2888. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2889. {
  2890. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2891. }
  2892. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2893. {
  2894. struct descriptor_table dt = { limit, base };
  2895. kvm_x86_ops->set_gdt(vcpu, &dt);
  2896. }
  2897. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2898. {
  2899. struct descriptor_table dt = { limit, base };
  2900. kvm_x86_ops->set_idt(vcpu, &dt);
  2901. }
  2902. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2903. unsigned long *rflags)
  2904. {
  2905. kvm_lmsw(vcpu, msw);
  2906. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2907. }
  2908. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2909. {
  2910. unsigned long value;
  2911. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2912. switch (cr) {
  2913. case 0:
  2914. value = vcpu->arch.cr0;
  2915. break;
  2916. case 2:
  2917. value = vcpu->arch.cr2;
  2918. break;
  2919. case 3:
  2920. value = vcpu->arch.cr3;
  2921. break;
  2922. case 4:
  2923. value = vcpu->arch.cr4;
  2924. break;
  2925. case 8:
  2926. value = kvm_get_cr8(vcpu);
  2927. break;
  2928. default:
  2929. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2930. return 0;
  2931. }
  2932. return value;
  2933. }
  2934. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2935. unsigned long *rflags)
  2936. {
  2937. switch (cr) {
  2938. case 0:
  2939. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2940. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2941. break;
  2942. case 2:
  2943. vcpu->arch.cr2 = val;
  2944. break;
  2945. case 3:
  2946. kvm_set_cr3(vcpu, val);
  2947. break;
  2948. case 4:
  2949. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2950. break;
  2951. case 8:
  2952. kvm_set_cr8(vcpu, val & 0xfUL);
  2953. break;
  2954. default:
  2955. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2956. }
  2957. }
  2958. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2959. {
  2960. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2961. int j, nent = vcpu->arch.cpuid_nent;
  2962. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2963. /* when no next entry is found, the current entry[i] is reselected */
  2964. for (j = i + 1; ; j = (j + 1) % nent) {
  2965. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2966. if (ej->function == e->function) {
  2967. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2968. return j;
  2969. }
  2970. }
  2971. return 0; /* silence gcc, even though control never reaches here */
  2972. }
  2973. /* find an entry with matching function, matching index (if needed), and that
  2974. * should be read next (if it's stateful) */
  2975. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2976. u32 function, u32 index)
  2977. {
  2978. if (e->function != function)
  2979. return 0;
  2980. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2981. return 0;
  2982. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2983. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2984. return 0;
  2985. return 1;
  2986. }
  2987. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2988. u32 function, u32 index)
  2989. {
  2990. int i;
  2991. struct kvm_cpuid_entry2 *best = NULL;
  2992. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2993. struct kvm_cpuid_entry2 *e;
  2994. e = &vcpu->arch.cpuid_entries[i];
  2995. if (is_matching_cpuid_entry(e, function, index)) {
  2996. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2997. move_to_next_stateful_cpuid_entry(vcpu, i);
  2998. best = e;
  2999. break;
  3000. }
  3001. /*
  3002. * Both basic or both extended?
  3003. */
  3004. if (((e->function ^ function) & 0x80000000) == 0)
  3005. if (!best || e->function > best->function)
  3006. best = e;
  3007. }
  3008. return best;
  3009. }
  3010. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3011. {
  3012. struct kvm_cpuid_entry2 *best;
  3013. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3014. if (best)
  3015. return best->eax & 0xff;
  3016. return 36;
  3017. }
  3018. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3019. {
  3020. u32 function, index;
  3021. struct kvm_cpuid_entry2 *best;
  3022. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3023. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3024. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3025. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3026. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3027. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3028. best = kvm_find_cpuid_entry(vcpu, function, index);
  3029. if (best) {
  3030. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3031. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3032. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3033. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3034. }
  3035. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3036. trace_kvm_cpuid(function,
  3037. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3038. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3039. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3040. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3041. }
  3042. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3043. /*
  3044. * Check if userspace requested an interrupt window, and that the
  3045. * interrupt window is open.
  3046. *
  3047. * No need to exit to userspace if we already have an interrupt queued.
  3048. */
  3049. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  3050. struct kvm_run *kvm_run)
  3051. {
  3052. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3053. kvm_run->request_interrupt_window &&
  3054. kvm_arch_interrupt_allowed(vcpu));
  3055. }
  3056. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  3057. struct kvm_run *kvm_run)
  3058. {
  3059. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3060. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3061. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3062. if (irqchip_in_kernel(vcpu->kvm))
  3063. kvm_run->ready_for_interrupt_injection = 1;
  3064. else
  3065. kvm_run->ready_for_interrupt_injection =
  3066. kvm_arch_interrupt_allowed(vcpu) &&
  3067. !kvm_cpu_has_interrupt(vcpu) &&
  3068. !kvm_event_needs_reinjection(vcpu);
  3069. }
  3070. static void vapic_enter(struct kvm_vcpu *vcpu)
  3071. {
  3072. struct kvm_lapic *apic = vcpu->arch.apic;
  3073. struct page *page;
  3074. if (!apic || !apic->vapic_addr)
  3075. return;
  3076. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3077. vcpu->arch.apic->vapic_page = page;
  3078. }
  3079. static void vapic_exit(struct kvm_vcpu *vcpu)
  3080. {
  3081. struct kvm_lapic *apic = vcpu->arch.apic;
  3082. if (!apic || !apic->vapic_addr)
  3083. return;
  3084. down_read(&vcpu->kvm->slots_lock);
  3085. kvm_release_page_dirty(apic->vapic_page);
  3086. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3087. up_read(&vcpu->kvm->slots_lock);
  3088. }
  3089. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3090. {
  3091. int max_irr, tpr;
  3092. if (!kvm_x86_ops->update_cr8_intercept)
  3093. return;
  3094. if (!vcpu->arch.apic)
  3095. return;
  3096. if (!vcpu->arch.apic->vapic_addr)
  3097. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3098. else
  3099. max_irr = -1;
  3100. if (max_irr != -1)
  3101. max_irr >>= 4;
  3102. tpr = kvm_lapic_get_cr8(vcpu);
  3103. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3104. }
  3105. static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3106. {
  3107. /* try to reinject previous events if any */
  3108. if (vcpu->arch.exception.pending) {
  3109. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3110. vcpu->arch.exception.has_error_code,
  3111. vcpu->arch.exception.error_code);
  3112. return;
  3113. }
  3114. if (vcpu->arch.nmi_injected) {
  3115. kvm_x86_ops->set_nmi(vcpu);
  3116. return;
  3117. }
  3118. if (vcpu->arch.interrupt.pending) {
  3119. kvm_x86_ops->set_irq(vcpu);
  3120. return;
  3121. }
  3122. /* try to inject new event if pending */
  3123. if (vcpu->arch.nmi_pending) {
  3124. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3125. vcpu->arch.nmi_pending = false;
  3126. vcpu->arch.nmi_injected = true;
  3127. kvm_x86_ops->set_nmi(vcpu);
  3128. }
  3129. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3130. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3131. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3132. false);
  3133. kvm_x86_ops->set_irq(vcpu);
  3134. }
  3135. }
  3136. }
  3137. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3138. {
  3139. int r;
  3140. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3141. kvm_run->request_interrupt_window;
  3142. if (vcpu->requests)
  3143. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3144. kvm_mmu_unload(vcpu);
  3145. r = kvm_mmu_reload(vcpu);
  3146. if (unlikely(r))
  3147. goto out;
  3148. if (vcpu->requests) {
  3149. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3150. __kvm_migrate_timers(vcpu);
  3151. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3152. kvm_write_guest_time(vcpu);
  3153. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3154. kvm_mmu_sync_roots(vcpu);
  3155. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3156. kvm_x86_ops->tlb_flush(vcpu);
  3157. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3158. &vcpu->requests)) {
  3159. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3160. r = 0;
  3161. goto out;
  3162. }
  3163. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3164. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  3165. r = 0;
  3166. goto out;
  3167. }
  3168. }
  3169. preempt_disable();
  3170. kvm_x86_ops->prepare_guest_switch(vcpu);
  3171. kvm_load_guest_fpu(vcpu);
  3172. local_irq_disable();
  3173. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3174. smp_mb__after_clear_bit();
  3175. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3176. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3177. local_irq_enable();
  3178. preempt_enable();
  3179. r = 1;
  3180. goto out;
  3181. }
  3182. inject_pending_event(vcpu, kvm_run);
  3183. /* enable NMI/IRQ window open exits if needed */
  3184. if (vcpu->arch.nmi_pending)
  3185. kvm_x86_ops->enable_nmi_window(vcpu);
  3186. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3187. kvm_x86_ops->enable_irq_window(vcpu);
  3188. if (kvm_lapic_enabled(vcpu)) {
  3189. update_cr8_intercept(vcpu);
  3190. kvm_lapic_sync_to_vapic(vcpu);
  3191. }
  3192. up_read(&vcpu->kvm->slots_lock);
  3193. kvm_guest_enter();
  3194. if (unlikely(vcpu->arch.switch_db_regs)) {
  3195. set_debugreg(0, 7);
  3196. set_debugreg(vcpu->arch.eff_db[0], 0);
  3197. set_debugreg(vcpu->arch.eff_db[1], 1);
  3198. set_debugreg(vcpu->arch.eff_db[2], 2);
  3199. set_debugreg(vcpu->arch.eff_db[3], 3);
  3200. }
  3201. trace_kvm_entry(vcpu->vcpu_id);
  3202. kvm_x86_ops->run(vcpu, kvm_run);
  3203. if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
  3204. set_debugreg(current->thread.debugreg0, 0);
  3205. set_debugreg(current->thread.debugreg1, 1);
  3206. set_debugreg(current->thread.debugreg2, 2);
  3207. set_debugreg(current->thread.debugreg3, 3);
  3208. set_debugreg(current->thread.debugreg6, 6);
  3209. set_debugreg(current->thread.debugreg7, 7);
  3210. }
  3211. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3212. local_irq_enable();
  3213. ++vcpu->stat.exits;
  3214. /*
  3215. * We must have an instruction between local_irq_enable() and
  3216. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3217. * the interrupt shadow. The stat.exits increment will do nicely.
  3218. * But we need to prevent reordering, hence this barrier():
  3219. */
  3220. barrier();
  3221. kvm_guest_exit();
  3222. preempt_enable();
  3223. down_read(&vcpu->kvm->slots_lock);
  3224. /*
  3225. * Profile KVM exit RIPs:
  3226. */
  3227. if (unlikely(prof_on == KVM_PROFILING)) {
  3228. unsigned long rip = kvm_rip_read(vcpu);
  3229. profile_hit(KVM_PROFILING, (void *)rip);
  3230. }
  3231. kvm_lapic_sync_from_vapic(vcpu);
  3232. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  3233. out:
  3234. return r;
  3235. }
  3236. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3237. {
  3238. int r;
  3239. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3240. pr_debug("vcpu %d received sipi with vector # %x\n",
  3241. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3242. kvm_lapic_reset(vcpu);
  3243. r = kvm_arch_vcpu_reset(vcpu);
  3244. if (r)
  3245. return r;
  3246. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3247. }
  3248. down_read(&vcpu->kvm->slots_lock);
  3249. vapic_enter(vcpu);
  3250. r = 1;
  3251. while (r > 0) {
  3252. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3253. r = vcpu_enter_guest(vcpu, kvm_run);
  3254. else {
  3255. up_read(&vcpu->kvm->slots_lock);
  3256. kvm_vcpu_block(vcpu);
  3257. down_read(&vcpu->kvm->slots_lock);
  3258. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3259. {
  3260. switch(vcpu->arch.mp_state) {
  3261. case KVM_MP_STATE_HALTED:
  3262. vcpu->arch.mp_state =
  3263. KVM_MP_STATE_RUNNABLE;
  3264. case KVM_MP_STATE_RUNNABLE:
  3265. break;
  3266. case KVM_MP_STATE_SIPI_RECEIVED:
  3267. default:
  3268. r = -EINTR;
  3269. break;
  3270. }
  3271. }
  3272. }
  3273. if (r <= 0)
  3274. break;
  3275. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3276. if (kvm_cpu_has_pending_timer(vcpu))
  3277. kvm_inject_pending_timer_irqs(vcpu);
  3278. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  3279. r = -EINTR;
  3280. kvm_run->exit_reason = KVM_EXIT_INTR;
  3281. ++vcpu->stat.request_irq_exits;
  3282. }
  3283. if (signal_pending(current)) {
  3284. r = -EINTR;
  3285. kvm_run->exit_reason = KVM_EXIT_INTR;
  3286. ++vcpu->stat.signal_exits;
  3287. }
  3288. if (need_resched()) {
  3289. up_read(&vcpu->kvm->slots_lock);
  3290. kvm_resched(vcpu);
  3291. down_read(&vcpu->kvm->slots_lock);
  3292. }
  3293. }
  3294. up_read(&vcpu->kvm->slots_lock);
  3295. post_kvm_run_save(vcpu, kvm_run);
  3296. vapic_exit(vcpu);
  3297. return r;
  3298. }
  3299. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3300. {
  3301. int r;
  3302. sigset_t sigsaved;
  3303. vcpu_load(vcpu);
  3304. if (vcpu->sigset_active)
  3305. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3306. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3307. kvm_vcpu_block(vcpu);
  3308. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3309. r = -EAGAIN;
  3310. goto out;
  3311. }
  3312. /* re-sync apic's tpr */
  3313. if (!irqchip_in_kernel(vcpu->kvm))
  3314. kvm_set_cr8(vcpu, kvm_run->cr8);
  3315. if (vcpu->arch.pio.cur_count) {
  3316. r = complete_pio(vcpu);
  3317. if (r)
  3318. goto out;
  3319. }
  3320. #if CONFIG_HAS_IOMEM
  3321. if (vcpu->mmio_needed) {
  3322. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3323. vcpu->mmio_read_completed = 1;
  3324. vcpu->mmio_needed = 0;
  3325. down_read(&vcpu->kvm->slots_lock);
  3326. r = emulate_instruction(vcpu, kvm_run,
  3327. vcpu->arch.mmio_fault_cr2, 0,
  3328. EMULTYPE_NO_DECODE);
  3329. up_read(&vcpu->kvm->slots_lock);
  3330. if (r == EMULATE_DO_MMIO) {
  3331. /*
  3332. * Read-modify-write. Back to userspace.
  3333. */
  3334. r = 0;
  3335. goto out;
  3336. }
  3337. }
  3338. #endif
  3339. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3340. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3341. kvm_run->hypercall.ret);
  3342. r = __vcpu_run(vcpu, kvm_run);
  3343. out:
  3344. if (vcpu->sigset_active)
  3345. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3346. vcpu_put(vcpu);
  3347. return r;
  3348. }
  3349. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3350. {
  3351. vcpu_load(vcpu);
  3352. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3353. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3354. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3355. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3356. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3357. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3358. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3359. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3360. #ifdef CONFIG_X86_64
  3361. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3362. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3363. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3364. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3365. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3366. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3367. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3368. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3369. #endif
  3370. regs->rip = kvm_rip_read(vcpu);
  3371. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3372. /*
  3373. * Don't leak debug flags in case they were set for guest debugging
  3374. */
  3375. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3376. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3377. vcpu_put(vcpu);
  3378. return 0;
  3379. }
  3380. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3381. {
  3382. vcpu_load(vcpu);
  3383. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3384. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3385. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3386. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3387. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3388. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3389. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3390. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3391. #ifdef CONFIG_X86_64
  3392. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3393. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3394. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3395. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3396. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3397. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3398. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3399. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3400. #endif
  3401. kvm_rip_write(vcpu, regs->rip);
  3402. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3403. vcpu->arch.exception.pending = false;
  3404. vcpu_put(vcpu);
  3405. return 0;
  3406. }
  3407. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3408. struct kvm_segment *var, int seg)
  3409. {
  3410. kvm_x86_ops->get_segment(vcpu, var, seg);
  3411. }
  3412. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3413. {
  3414. struct kvm_segment cs;
  3415. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3416. *db = cs.db;
  3417. *l = cs.l;
  3418. }
  3419. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3420. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3421. struct kvm_sregs *sregs)
  3422. {
  3423. struct descriptor_table dt;
  3424. vcpu_load(vcpu);
  3425. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3426. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3427. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3428. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3429. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3430. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3431. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3432. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3433. kvm_x86_ops->get_idt(vcpu, &dt);
  3434. sregs->idt.limit = dt.limit;
  3435. sregs->idt.base = dt.base;
  3436. kvm_x86_ops->get_gdt(vcpu, &dt);
  3437. sregs->gdt.limit = dt.limit;
  3438. sregs->gdt.base = dt.base;
  3439. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3440. sregs->cr0 = vcpu->arch.cr0;
  3441. sregs->cr2 = vcpu->arch.cr2;
  3442. sregs->cr3 = vcpu->arch.cr3;
  3443. sregs->cr4 = vcpu->arch.cr4;
  3444. sregs->cr8 = kvm_get_cr8(vcpu);
  3445. sregs->efer = vcpu->arch.shadow_efer;
  3446. sregs->apic_base = kvm_get_apic_base(vcpu);
  3447. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3448. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3449. set_bit(vcpu->arch.interrupt.nr,
  3450. (unsigned long *)sregs->interrupt_bitmap);
  3451. vcpu_put(vcpu);
  3452. return 0;
  3453. }
  3454. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3455. struct kvm_mp_state *mp_state)
  3456. {
  3457. vcpu_load(vcpu);
  3458. mp_state->mp_state = vcpu->arch.mp_state;
  3459. vcpu_put(vcpu);
  3460. return 0;
  3461. }
  3462. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3463. struct kvm_mp_state *mp_state)
  3464. {
  3465. vcpu_load(vcpu);
  3466. vcpu->arch.mp_state = mp_state->mp_state;
  3467. vcpu_put(vcpu);
  3468. return 0;
  3469. }
  3470. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3471. struct kvm_segment *var, int seg)
  3472. {
  3473. kvm_x86_ops->set_segment(vcpu, var, seg);
  3474. }
  3475. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3476. struct kvm_segment *kvm_desct)
  3477. {
  3478. kvm_desct->base = get_desc_base(seg_desc);
  3479. kvm_desct->limit = get_desc_limit(seg_desc);
  3480. if (seg_desc->g) {
  3481. kvm_desct->limit <<= 12;
  3482. kvm_desct->limit |= 0xfff;
  3483. }
  3484. kvm_desct->selector = selector;
  3485. kvm_desct->type = seg_desc->type;
  3486. kvm_desct->present = seg_desc->p;
  3487. kvm_desct->dpl = seg_desc->dpl;
  3488. kvm_desct->db = seg_desc->d;
  3489. kvm_desct->s = seg_desc->s;
  3490. kvm_desct->l = seg_desc->l;
  3491. kvm_desct->g = seg_desc->g;
  3492. kvm_desct->avl = seg_desc->avl;
  3493. if (!selector)
  3494. kvm_desct->unusable = 1;
  3495. else
  3496. kvm_desct->unusable = 0;
  3497. kvm_desct->padding = 0;
  3498. }
  3499. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3500. u16 selector,
  3501. struct descriptor_table *dtable)
  3502. {
  3503. if (selector & 1 << 2) {
  3504. struct kvm_segment kvm_seg;
  3505. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3506. if (kvm_seg.unusable)
  3507. dtable->limit = 0;
  3508. else
  3509. dtable->limit = kvm_seg.limit;
  3510. dtable->base = kvm_seg.base;
  3511. }
  3512. else
  3513. kvm_x86_ops->get_gdt(vcpu, dtable);
  3514. }
  3515. /* allowed just for 8 bytes segments */
  3516. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3517. struct desc_struct *seg_desc)
  3518. {
  3519. struct descriptor_table dtable;
  3520. u16 index = selector >> 3;
  3521. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3522. if (dtable.limit < index * 8 + 7) {
  3523. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3524. return 1;
  3525. }
  3526. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3527. }
  3528. /* allowed just for 8 bytes segments */
  3529. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3530. struct desc_struct *seg_desc)
  3531. {
  3532. struct descriptor_table dtable;
  3533. u16 index = selector >> 3;
  3534. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3535. if (dtable.limit < index * 8 + 7)
  3536. return 1;
  3537. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3538. }
  3539. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3540. struct desc_struct *seg_desc)
  3541. {
  3542. u32 base_addr = get_desc_base(seg_desc);
  3543. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3544. }
  3545. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3546. {
  3547. struct kvm_segment kvm_seg;
  3548. kvm_get_segment(vcpu, &kvm_seg, seg);
  3549. return kvm_seg.selector;
  3550. }
  3551. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3552. u16 selector,
  3553. struct kvm_segment *kvm_seg)
  3554. {
  3555. struct desc_struct seg_desc;
  3556. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3557. return 1;
  3558. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3559. return 0;
  3560. }
  3561. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3562. {
  3563. struct kvm_segment segvar = {
  3564. .base = selector << 4,
  3565. .limit = 0xffff,
  3566. .selector = selector,
  3567. .type = 3,
  3568. .present = 1,
  3569. .dpl = 3,
  3570. .db = 0,
  3571. .s = 1,
  3572. .l = 0,
  3573. .g = 0,
  3574. .avl = 0,
  3575. .unusable = 0,
  3576. };
  3577. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3578. return 0;
  3579. }
  3580. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3581. {
  3582. return (seg != VCPU_SREG_LDTR) &&
  3583. (seg != VCPU_SREG_TR) &&
  3584. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
  3585. }
  3586. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3587. int type_bits, int seg)
  3588. {
  3589. struct kvm_segment kvm_seg;
  3590. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3591. return kvm_load_realmode_segment(vcpu, selector, seg);
  3592. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3593. return 1;
  3594. kvm_seg.type |= type_bits;
  3595. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3596. seg != VCPU_SREG_LDTR)
  3597. if (!kvm_seg.s)
  3598. kvm_seg.unusable = 1;
  3599. kvm_set_segment(vcpu, &kvm_seg, seg);
  3600. return 0;
  3601. }
  3602. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3603. struct tss_segment_32 *tss)
  3604. {
  3605. tss->cr3 = vcpu->arch.cr3;
  3606. tss->eip = kvm_rip_read(vcpu);
  3607. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3608. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3609. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3610. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3611. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3612. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3613. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3614. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3615. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3616. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3617. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3618. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3619. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3620. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3621. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3622. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3623. }
  3624. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3625. struct tss_segment_32 *tss)
  3626. {
  3627. kvm_set_cr3(vcpu, tss->cr3);
  3628. kvm_rip_write(vcpu, tss->eip);
  3629. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3630. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3631. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3632. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3633. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3634. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3635. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3636. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3637. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3638. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3639. return 1;
  3640. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3641. return 1;
  3642. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3643. return 1;
  3644. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3645. return 1;
  3646. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3647. return 1;
  3648. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3649. return 1;
  3650. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3651. return 1;
  3652. return 0;
  3653. }
  3654. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3655. struct tss_segment_16 *tss)
  3656. {
  3657. tss->ip = kvm_rip_read(vcpu);
  3658. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3659. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3660. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3661. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3662. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3663. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3664. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3665. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3666. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3667. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3668. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3669. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3670. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3671. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3672. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3673. }
  3674. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3675. struct tss_segment_16 *tss)
  3676. {
  3677. kvm_rip_write(vcpu, tss->ip);
  3678. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3679. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3680. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3681. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3682. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3683. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3684. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3685. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3686. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3687. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3688. return 1;
  3689. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3690. return 1;
  3691. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3692. return 1;
  3693. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3694. return 1;
  3695. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3696. return 1;
  3697. return 0;
  3698. }
  3699. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3700. u16 old_tss_sel, u32 old_tss_base,
  3701. struct desc_struct *nseg_desc)
  3702. {
  3703. struct tss_segment_16 tss_segment_16;
  3704. int ret = 0;
  3705. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3706. sizeof tss_segment_16))
  3707. goto out;
  3708. save_state_to_tss16(vcpu, &tss_segment_16);
  3709. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3710. sizeof tss_segment_16))
  3711. goto out;
  3712. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3713. &tss_segment_16, sizeof tss_segment_16))
  3714. goto out;
  3715. if (old_tss_sel != 0xffff) {
  3716. tss_segment_16.prev_task_link = old_tss_sel;
  3717. if (kvm_write_guest(vcpu->kvm,
  3718. get_tss_base_addr(vcpu, nseg_desc),
  3719. &tss_segment_16.prev_task_link,
  3720. sizeof tss_segment_16.prev_task_link))
  3721. goto out;
  3722. }
  3723. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3724. goto out;
  3725. ret = 1;
  3726. out:
  3727. return ret;
  3728. }
  3729. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3730. u16 old_tss_sel, u32 old_tss_base,
  3731. struct desc_struct *nseg_desc)
  3732. {
  3733. struct tss_segment_32 tss_segment_32;
  3734. int ret = 0;
  3735. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3736. sizeof tss_segment_32))
  3737. goto out;
  3738. save_state_to_tss32(vcpu, &tss_segment_32);
  3739. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3740. sizeof tss_segment_32))
  3741. goto out;
  3742. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3743. &tss_segment_32, sizeof tss_segment_32))
  3744. goto out;
  3745. if (old_tss_sel != 0xffff) {
  3746. tss_segment_32.prev_task_link = old_tss_sel;
  3747. if (kvm_write_guest(vcpu->kvm,
  3748. get_tss_base_addr(vcpu, nseg_desc),
  3749. &tss_segment_32.prev_task_link,
  3750. sizeof tss_segment_32.prev_task_link))
  3751. goto out;
  3752. }
  3753. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3754. goto out;
  3755. ret = 1;
  3756. out:
  3757. return ret;
  3758. }
  3759. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3760. {
  3761. struct kvm_segment tr_seg;
  3762. struct desc_struct cseg_desc;
  3763. struct desc_struct nseg_desc;
  3764. int ret = 0;
  3765. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3766. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3767. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3768. /* FIXME: Handle errors. Failure to read either TSS or their
  3769. * descriptors should generate a pagefault.
  3770. */
  3771. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3772. goto out;
  3773. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3774. goto out;
  3775. if (reason != TASK_SWITCH_IRET) {
  3776. int cpl;
  3777. cpl = kvm_x86_ops->get_cpl(vcpu);
  3778. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3779. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3780. return 1;
  3781. }
  3782. }
  3783. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  3784. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3785. return 1;
  3786. }
  3787. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3788. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3789. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3790. }
  3791. if (reason == TASK_SWITCH_IRET) {
  3792. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3793. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3794. }
  3795. /* set back link to prev task only if NT bit is set in eflags
  3796. note that old_tss_sel is not used afetr this point */
  3797. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3798. old_tss_sel = 0xffff;
  3799. /* set back link to prev task only if NT bit is set in eflags
  3800. note that old_tss_sel is not used afetr this point */
  3801. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3802. old_tss_sel = 0xffff;
  3803. if (nseg_desc.type & 8)
  3804. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3805. old_tss_base, &nseg_desc);
  3806. else
  3807. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3808. old_tss_base, &nseg_desc);
  3809. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3810. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3811. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3812. }
  3813. if (reason != TASK_SWITCH_IRET) {
  3814. nseg_desc.type |= (1 << 1);
  3815. save_guest_segment_descriptor(vcpu, tss_selector,
  3816. &nseg_desc);
  3817. }
  3818. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3819. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3820. tr_seg.type = 11;
  3821. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3822. out:
  3823. return ret;
  3824. }
  3825. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3826. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3827. struct kvm_sregs *sregs)
  3828. {
  3829. int mmu_reset_needed = 0;
  3830. int pending_vec, max_bits;
  3831. struct descriptor_table dt;
  3832. vcpu_load(vcpu);
  3833. dt.limit = sregs->idt.limit;
  3834. dt.base = sregs->idt.base;
  3835. kvm_x86_ops->set_idt(vcpu, &dt);
  3836. dt.limit = sregs->gdt.limit;
  3837. dt.base = sregs->gdt.base;
  3838. kvm_x86_ops->set_gdt(vcpu, &dt);
  3839. vcpu->arch.cr2 = sregs->cr2;
  3840. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3841. vcpu->arch.cr3 = sregs->cr3;
  3842. kvm_set_cr8(vcpu, sregs->cr8);
  3843. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3844. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3845. kvm_set_apic_base(vcpu, sregs->apic_base);
  3846. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3847. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3848. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3849. vcpu->arch.cr0 = sregs->cr0;
  3850. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3851. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3852. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3853. load_pdptrs(vcpu, vcpu->arch.cr3);
  3854. if (mmu_reset_needed)
  3855. kvm_mmu_reset_context(vcpu);
  3856. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3857. pending_vec = find_first_bit(
  3858. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3859. if (pending_vec < max_bits) {
  3860. kvm_queue_interrupt(vcpu, pending_vec, false);
  3861. pr_debug("Set back pending irq %d\n", pending_vec);
  3862. if (irqchip_in_kernel(vcpu->kvm))
  3863. kvm_pic_clear_isr_ack(vcpu->kvm);
  3864. }
  3865. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3866. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3867. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3868. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3869. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3870. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3871. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3872. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3873. update_cr8_intercept(vcpu);
  3874. /* Older userspace won't unhalt the vcpu on reset. */
  3875. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3876. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3877. !(vcpu->arch.cr0 & X86_CR0_PE))
  3878. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3879. vcpu_put(vcpu);
  3880. return 0;
  3881. }
  3882. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3883. struct kvm_guest_debug *dbg)
  3884. {
  3885. int i, r;
  3886. vcpu_load(vcpu);
  3887. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3888. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3889. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3890. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3891. vcpu->arch.switch_db_regs =
  3892. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3893. } else {
  3894. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3895. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3896. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3897. }
  3898. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3899. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3900. kvm_queue_exception(vcpu, DB_VECTOR);
  3901. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3902. kvm_queue_exception(vcpu, BP_VECTOR);
  3903. vcpu_put(vcpu);
  3904. return r;
  3905. }
  3906. /*
  3907. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3908. * we have asm/x86/processor.h
  3909. */
  3910. struct fxsave {
  3911. u16 cwd;
  3912. u16 swd;
  3913. u16 twd;
  3914. u16 fop;
  3915. u64 rip;
  3916. u64 rdp;
  3917. u32 mxcsr;
  3918. u32 mxcsr_mask;
  3919. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3920. #ifdef CONFIG_X86_64
  3921. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3922. #else
  3923. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3924. #endif
  3925. };
  3926. /*
  3927. * Translate a guest virtual address to a guest physical address.
  3928. */
  3929. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3930. struct kvm_translation *tr)
  3931. {
  3932. unsigned long vaddr = tr->linear_address;
  3933. gpa_t gpa;
  3934. vcpu_load(vcpu);
  3935. down_read(&vcpu->kvm->slots_lock);
  3936. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3937. up_read(&vcpu->kvm->slots_lock);
  3938. tr->physical_address = gpa;
  3939. tr->valid = gpa != UNMAPPED_GVA;
  3940. tr->writeable = 1;
  3941. tr->usermode = 0;
  3942. vcpu_put(vcpu);
  3943. return 0;
  3944. }
  3945. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3946. {
  3947. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3948. vcpu_load(vcpu);
  3949. memcpy(fpu->fpr, fxsave->st_space, 128);
  3950. fpu->fcw = fxsave->cwd;
  3951. fpu->fsw = fxsave->swd;
  3952. fpu->ftwx = fxsave->twd;
  3953. fpu->last_opcode = fxsave->fop;
  3954. fpu->last_ip = fxsave->rip;
  3955. fpu->last_dp = fxsave->rdp;
  3956. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3957. vcpu_put(vcpu);
  3958. return 0;
  3959. }
  3960. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3961. {
  3962. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3963. vcpu_load(vcpu);
  3964. memcpy(fxsave->st_space, fpu->fpr, 128);
  3965. fxsave->cwd = fpu->fcw;
  3966. fxsave->swd = fpu->fsw;
  3967. fxsave->twd = fpu->ftwx;
  3968. fxsave->fop = fpu->last_opcode;
  3969. fxsave->rip = fpu->last_ip;
  3970. fxsave->rdp = fpu->last_dp;
  3971. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3972. vcpu_put(vcpu);
  3973. return 0;
  3974. }
  3975. void fx_init(struct kvm_vcpu *vcpu)
  3976. {
  3977. unsigned after_mxcsr_mask;
  3978. /*
  3979. * Touch the fpu the first time in non atomic context as if
  3980. * this is the first fpu instruction the exception handler
  3981. * will fire before the instruction returns and it'll have to
  3982. * allocate ram with GFP_KERNEL.
  3983. */
  3984. if (!used_math())
  3985. kvm_fx_save(&vcpu->arch.host_fx_image);
  3986. /* Initialize guest FPU by resetting ours and saving into guest's */
  3987. preempt_disable();
  3988. kvm_fx_save(&vcpu->arch.host_fx_image);
  3989. kvm_fx_finit();
  3990. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3991. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3992. preempt_enable();
  3993. vcpu->arch.cr0 |= X86_CR0_ET;
  3994. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3995. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3996. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3997. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3998. }
  3999. EXPORT_SYMBOL_GPL(fx_init);
  4000. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4001. {
  4002. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4003. return;
  4004. vcpu->guest_fpu_loaded = 1;
  4005. kvm_fx_save(&vcpu->arch.host_fx_image);
  4006. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4007. }
  4008. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4009. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4010. {
  4011. if (!vcpu->guest_fpu_loaded)
  4012. return;
  4013. vcpu->guest_fpu_loaded = 0;
  4014. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4015. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4016. ++vcpu->stat.fpu_reload;
  4017. }
  4018. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4019. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4020. {
  4021. if (vcpu->arch.time_page) {
  4022. kvm_release_page_dirty(vcpu->arch.time_page);
  4023. vcpu->arch.time_page = NULL;
  4024. }
  4025. kvm_x86_ops->vcpu_free(vcpu);
  4026. }
  4027. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4028. unsigned int id)
  4029. {
  4030. return kvm_x86_ops->vcpu_create(kvm, id);
  4031. }
  4032. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4033. {
  4034. int r;
  4035. /* We do fxsave: this must be aligned. */
  4036. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4037. vcpu->arch.mtrr_state.have_fixed = 1;
  4038. vcpu_load(vcpu);
  4039. r = kvm_arch_vcpu_reset(vcpu);
  4040. if (r == 0)
  4041. r = kvm_mmu_setup(vcpu);
  4042. vcpu_put(vcpu);
  4043. if (r < 0)
  4044. goto free_vcpu;
  4045. return 0;
  4046. free_vcpu:
  4047. kvm_x86_ops->vcpu_free(vcpu);
  4048. return r;
  4049. }
  4050. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4051. {
  4052. vcpu_load(vcpu);
  4053. kvm_mmu_unload(vcpu);
  4054. vcpu_put(vcpu);
  4055. kvm_x86_ops->vcpu_free(vcpu);
  4056. }
  4057. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4058. {
  4059. vcpu->arch.nmi_pending = false;
  4060. vcpu->arch.nmi_injected = false;
  4061. vcpu->arch.switch_db_regs = 0;
  4062. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4063. vcpu->arch.dr6 = DR6_FIXED_1;
  4064. vcpu->arch.dr7 = DR7_FIXED_1;
  4065. return kvm_x86_ops->vcpu_reset(vcpu);
  4066. }
  4067. void kvm_arch_hardware_enable(void *garbage)
  4068. {
  4069. kvm_x86_ops->hardware_enable(garbage);
  4070. }
  4071. void kvm_arch_hardware_disable(void *garbage)
  4072. {
  4073. kvm_x86_ops->hardware_disable(garbage);
  4074. }
  4075. int kvm_arch_hardware_setup(void)
  4076. {
  4077. return kvm_x86_ops->hardware_setup();
  4078. }
  4079. void kvm_arch_hardware_unsetup(void)
  4080. {
  4081. kvm_x86_ops->hardware_unsetup();
  4082. }
  4083. void kvm_arch_check_processor_compat(void *rtn)
  4084. {
  4085. kvm_x86_ops->check_processor_compatibility(rtn);
  4086. }
  4087. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4088. {
  4089. struct page *page;
  4090. struct kvm *kvm;
  4091. int r;
  4092. BUG_ON(vcpu->kvm == NULL);
  4093. kvm = vcpu->kvm;
  4094. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4095. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4096. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4097. else
  4098. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4099. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4100. if (!page) {
  4101. r = -ENOMEM;
  4102. goto fail;
  4103. }
  4104. vcpu->arch.pio_data = page_address(page);
  4105. r = kvm_mmu_create(vcpu);
  4106. if (r < 0)
  4107. goto fail_free_pio_data;
  4108. if (irqchip_in_kernel(kvm)) {
  4109. r = kvm_create_lapic(vcpu);
  4110. if (r < 0)
  4111. goto fail_mmu_destroy;
  4112. }
  4113. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4114. GFP_KERNEL);
  4115. if (!vcpu->arch.mce_banks) {
  4116. r = -ENOMEM;
  4117. goto fail_mmu_destroy;
  4118. }
  4119. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4120. return 0;
  4121. fail_mmu_destroy:
  4122. kvm_mmu_destroy(vcpu);
  4123. fail_free_pio_data:
  4124. free_page((unsigned long)vcpu->arch.pio_data);
  4125. fail:
  4126. return r;
  4127. }
  4128. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4129. {
  4130. kvm_free_lapic(vcpu);
  4131. down_read(&vcpu->kvm->slots_lock);
  4132. kvm_mmu_destroy(vcpu);
  4133. up_read(&vcpu->kvm->slots_lock);
  4134. free_page((unsigned long)vcpu->arch.pio_data);
  4135. }
  4136. struct kvm *kvm_arch_create_vm(void)
  4137. {
  4138. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4139. if (!kvm)
  4140. return ERR_PTR(-ENOMEM);
  4141. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4142. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4143. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4144. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4145. rdtscll(kvm->arch.vm_init_tsc);
  4146. return kvm;
  4147. }
  4148. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4149. {
  4150. vcpu_load(vcpu);
  4151. kvm_mmu_unload(vcpu);
  4152. vcpu_put(vcpu);
  4153. }
  4154. static void kvm_free_vcpus(struct kvm *kvm)
  4155. {
  4156. unsigned int i;
  4157. struct kvm_vcpu *vcpu;
  4158. /*
  4159. * Unpin any mmu pages first.
  4160. */
  4161. kvm_for_each_vcpu(i, vcpu, kvm)
  4162. kvm_unload_vcpu_mmu(vcpu);
  4163. kvm_for_each_vcpu(i, vcpu, kvm)
  4164. kvm_arch_vcpu_free(vcpu);
  4165. mutex_lock(&kvm->lock);
  4166. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4167. kvm->vcpus[i] = NULL;
  4168. atomic_set(&kvm->online_vcpus, 0);
  4169. mutex_unlock(&kvm->lock);
  4170. }
  4171. void kvm_arch_sync_events(struct kvm *kvm)
  4172. {
  4173. kvm_free_all_assigned_devices(kvm);
  4174. }
  4175. void kvm_arch_destroy_vm(struct kvm *kvm)
  4176. {
  4177. kvm_iommu_unmap_guest(kvm);
  4178. kvm_free_pit(kvm);
  4179. kfree(kvm->arch.vpic);
  4180. kfree(kvm->arch.vioapic);
  4181. kvm_free_vcpus(kvm);
  4182. kvm_free_physmem(kvm);
  4183. if (kvm->arch.apic_access_page)
  4184. put_page(kvm->arch.apic_access_page);
  4185. if (kvm->arch.ept_identity_pagetable)
  4186. put_page(kvm->arch.ept_identity_pagetable);
  4187. kfree(kvm);
  4188. }
  4189. int kvm_arch_set_memory_region(struct kvm *kvm,
  4190. struct kvm_userspace_memory_region *mem,
  4191. struct kvm_memory_slot old,
  4192. int user_alloc)
  4193. {
  4194. int npages = mem->memory_size >> PAGE_SHIFT;
  4195. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4196. /*To keep backward compatibility with older userspace,
  4197. *x86 needs to hanlde !user_alloc case.
  4198. */
  4199. if (!user_alloc) {
  4200. if (npages && !old.rmap) {
  4201. unsigned long userspace_addr;
  4202. down_write(&current->mm->mmap_sem);
  4203. userspace_addr = do_mmap(NULL, 0,
  4204. npages * PAGE_SIZE,
  4205. PROT_READ | PROT_WRITE,
  4206. MAP_PRIVATE | MAP_ANONYMOUS,
  4207. 0);
  4208. up_write(&current->mm->mmap_sem);
  4209. if (IS_ERR((void *)userspace_addr))
  4210. return PTR_ERR((void *)userspace_addr);
  4211. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4212. spin_lock(&kvm->mmu_lock);
  4213. memslot->userspace_addr = userspace_addr;
  4214. spin_unlock(&kvm->mmu_lock);
  4215. } else {
  4216. if (!old.user_alloc && old.rmap) {
  4217. int ret;
  4218. down_write(&current->mm->mmap_sem);
  4219. ret = do_munmap(current->mm, old.userspace_addr,
  4220. old.npages * PAGE_SIZE);
  4221. up_write(&current->mm->mmap_sem);
  4222. if (ret < 0)
  4223. printk(KERN_WARNING
  4224. "kvm_vm_ioctl_set_memory_region: "
  4225. "failed to munmap memory\n");
  4226. }
  4227. }
  4228. }
  4229. spin_lock(&kvm->mmu_lock);
  4230. if (!kvm->arch.n_requested_mmu_pages) {
  4231. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4232. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4233. }
  4234. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4235. spin_unlock(&kvm->mmu_lock);
  4236. return 0;
  4237. }
  4238. void kvm_arch_flush_shadow(struct kvm *kvm)
  4239. {
  4240. kvm_mmu_zap_all(kvm);
  4241. kvm_reload_remote_mmus(kvm);
  4242. }
  4243. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4244. {
  4245. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4246. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4247. || vcpu->arch.nmi_pending ||
  4248. (kvm_arch_interrupt_allowed(vcpu) &&
  4249. kvm_cpu_has_interrupt(vcpu));
  4250. }
  4251. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4252. {
  4253. int me;
  4254. int cpu = vcpu->cpu;
  4255. if (waitqueue_active(&vcpu->wq)) {
  4256. wake_up_interruptible(&vcpu->wq);
  4257. ++vcpu->stat.halt_wakeup;
  4258. }
  4259. me = get_cpu();
  4260. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4261. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4262. smp_send_reschedule(cpu);
  4263. put_cpu();
  4264. }
  4265. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4266. {
  4267. return kvm_x86_ops->interrupt_allowed(vcpu);
  4268. }
  4269. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4270. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4271. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4272. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4273. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);