paging_tmpl.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  29. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  30. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  49. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  50. #define PT_MAX_FULL_LEVELS 2
  51. #define CMPXCHG cmpxchg
  52. #else
  53. #error Invalid PTTYPE value
  54. #endif
  55. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  56. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  57. /*
  58. * The guest_walker structure emulates the behavior of the hardware page
  59. * table walker.
  60. */
  61. struct guest_walker {
  62. int level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  66. unsigned pt_access;
  67. unsigned pte_access;
  68. gfn_t gfn;
  69. u32 error_code;
  70. };
  71. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  72. {
  73. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  74. }
  75. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  76. gfn_t table_gfn, unsigned index,
  77. pt_element_t orig_pte, pt_element_t new_pte)
  78. {
  79. pt_element_t ret;
  80. pt_element_t *table;
  81. struct page *page;
  82. page = gfn_to_page(kvm, table_gfn);
  83. table = kmap_atomic(page, KM_USER0);
  84. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  85. kunmap_atomic(table, KM_USER0);
  86. kvm_release_page_dirty(page);
  87. return (ret != orig_pte);
  88. }
  89. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  90. {
  91. unsigned access;
  92. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  93. #if PTTYPE == 64
  94. if (is_nx(vcpu))
  95. access &= ~(gpte >> PT64_NX_SHIFT);
  96. #endif
  97. return access;
  98. }
  99. /*
  100. * Fetch a guest pte for a guest virtual address
  101. */
  102. static int FNAME(walk_addr)(struct guest_walker *walker,
  103. struct kvm_vcpu *vcpu, gva_t addr,
  104. int write_fault, int user_fault, int fetch_fault)
  105. {
  106. pt_element_t pte;
  107. gfn_t table_gfn;
  108. unsigned index, pt_access, pte_access;
  109. gpa_t pte_gpa;
  110. int rsvd_fault = 0;
  111. trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
  112. fetch_fault);
  113. walk:
  114. walker->level = vcpu->arch.mmu.root_level;
  115. pte = vcpu->arch.cr3;
  116. #if PTTYPE == 64
  117. if (!is_long_mode(vcpu)) {
  118. pte = kvm_pdptr_read(vcpu, (addr >> 30) & 3);
  119. trace_kvm_mmu_paging_element(pte, walker->level);
  120. if (!is_present_gpte(pte))
  121. goto not_present;
  122. --walker->level;
  123. }
  124. #endif
  125. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  126. (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  127. pt_access = ACC_ALL;
  128. for (;;) {
  129. index = PT_INDEX(addr, walker->level);
  130. table_gfn = gpte_to_gfn(pte);
  131. pte_gpa = gfn_to_gpa(table_gfn);
  132. pte_gpa += index * sizeof(pt_element_t);
  133. walker->table_gfn[walker->level - 1] = table_gfn;
  134. walker->pte_gpa[walker->level - 1] = pte_gpa;
  135. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  136. trace_kvm_mmu_paging_element(pte, walker->level);
  137. if (!is_present_gpte(pte))
  138. goto not_present;
  139. rsvd_fault = is_rsvd_bits_set(vcpu, pte, walker->level);
  140. if (rsvd_fault)
  141. goto access_error;
  142. if (write_fault && !is_writeble_pte(pte))
  143. if (user_fault || is_write_protection(vcpu))
  144. goto access_error;
  145. if (user_fault && !(pte & PT_USER_MASK))
  146. goto access_error;
  147. #if PTTYPE == 64
  148. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  149. goto access_error;
  150. #endif
  151. if (!(pte & PT_ACCESSED_MASK)) {
  152. trace_kvm_mmu_set_accessed_bit(table_gfn, index,
  153. sizeof(pte));
  154. mark_page_dirty(vcpu->kvm, table_gfn);
  155. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  156. index, pte, pte|PT_ACCESSED_MASK))
  157. goto walk;
  158. pte |= PT_ACCESSED_MASK;
  159. }
  160. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  161. walker->ptes[walker->level - 1] = pte;
  162. if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
  163. ((walker->level == PT_DIRECTORY_LEVEL) &&
  164. (pte & PT_PAGE_SIZE_MASK) &&
  165. (PTTYPE == 64 || is_pse(vcpu))) ||
  166. ((walker->level == PT_PDPE_LEVEL) &&
  167. (pte & PT_PAGE_SIZE_MASK) &&
  168. is_long_mode(vcpu))) {
  169. int lvl = walker->level;
  170. walker->gfn = gpte_to_gfn_lvl(pte, lvl);
  171. walker->gfn += (addr & PT_LVL_OFFSET_MASK(lvl))
  172. >> PAGE_SHIFT;
  173. if (PTTYPE == 32 &&
  174. walker->level == PT_DIRECTORY_LEVEL &&
  175. is_cpuid_PSE36())
  176. walker->gfn += pse36_gfn_delta(pte);
  177. break;
  178. }
  179. pt_access = pte_access;
  180. --walker->level;
  181. }
  182. if (write_fault && !is_dirty_gpte(pte)) {
  183. bool ret;
  184. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  185. mark_page_dirty(vcpu->kvm, table_gfn);
  186. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  187. pte|PT_DIRTY_MASK);
  188. if (ret)
  189. goto walk;
  190. pte |= PT_DIRTY_MASK;
  191. walker->ptes[walker->level - 1] = pte;
  192. }
  193. walker->pt_access = pt_access;
  194. walker->pte_access = pte_access;
  195. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  196. __func__, (u64)pte, pt_access, pte_access);
  197. return 1;
  198. not_present:
  199. walker->error_code = 0;
  200. goto err;
  201. access_error:
  202. walker->error_code = PFERR_PRESENT_MASK;
  203. err:
  204. if (write_fault)
  205. walker->error_code |= PFERR_WRITE_MASK;
  206. if (user_fault)
  207. walker->error_code |= PFERR_USER_MASK;
  208. if (fetch_fault)
  209. walker->error_code |= PFERR_FETCH_MASK;
  210. if (rsvd_fault)
  211. walker->error_code |= PFERR_RSVD_MASK;
  212. trace_kvm_mmu_walker_error(walker->error_code);
  213. return 0;
  214. }
  215. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  216. u64 *spte, const void *pte)
  217. {
  218. pt_element_t gpte;
  219. unsigned pte_access;
  220. pfn_t pfn;
  221. gpte = *(const pt_element_t *)pte;
  222. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  223. if (!is_present_gpte(gpte))
  224. __set_spte(spte, shadow_notrap_nonpresent_pte);
  225. return;
  226. }
  227. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  228. pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
  229. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  230. return;
  231. pfn = vcpu->arch.update_pte.pfn;
  232. if (is_error_pfn(pfn))
  233. return;
  234. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  235. return;
  236. kvm_get_pfn(pfn);
  237. /*
  238. * we call mmu_set_spte() with reset_host_protection = true beacuse that
  239. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  240. */
  241. mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
  242. gpte & PT_DIRTY_MASK, NULL, PT_PAGE_TABLE_LEVEL,
  243. gpte_to_gfn(gpte), pfn, true, true);
  244. }
  245. /*
  246. * Fetch a shadow pte for a specific level in the paging hierarchy.
  247. */
  248. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  249. struct guest_walker *gw,
  250. int user_fault, int write_fault, int hlevel,
  251. int *ptwrite, pfn_t pfn)
  252. {
  253. unsigned access = gw->pt_access;
  254. struct kvm_mmu_page *shadow_page;
  255. u64 spte, *sptep = NULL;
  256. int direct;
  257. gfn_t table_gfn;
  258. int r;
  259. int level;
  260. pt_element_t curr_pte;
  261. struct kvm_shadow_walk_iterator iterator;
  262. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  263. return NULL;
  264. for_each_shadow_entry(vcpu, addr, iterator) {
  265. level = iterator.level;
  266. sptep = iterator.sptep;
  267. if (iterator.level == hlevel) {
  268. mmu_set_spte(vcpu, sptep, access,
  269. gw->pte_access & access,
  270. user_fault, write_fault,
  271. gw->ptes[gw->level-1] & PT_DIRTY_MASK,
  272. ptwrite, level,
  273. gw->gfn, pfn, false, true);
  274. break;
  275. }
  276. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
  277. continue;
  278. if (is_large_pte(*sptep)) {
  279. rmap_remove(vcpu->kvm, sptep);
  280. __set_spte(sptep, shadow_trap_nonpresent_pte);
  281. kvm_flush_remote_tlbs(vcpu->kvm);
  282. }
  283. if (level <= gw->level) {
  284. int delta = level - gw->level + 1;
  285. direct = 1;
  286. if (!is_dirty_gpte(gw->ptes[level - delta]))
  287. access &= ~ACC_WRITE_MASK;
  288. table_gfn = gpte_to_gfn(gw->ptes[level - delta]);
  289. /* advance table_gfn when emulating 1gb pages with 4k */
  290. if (delta == 0)
  291. table_gfn += PT_INDEX(addr, level);
  292. } else {
  293. direct = 0;
  294. table_gfn = gw->table_gfn[level - 2];
  295. }
  296. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  297. direct, access, sptep);
  298. if (!direct) {
  299. r = kvm_read_guest_atomic(vcpu->kvm,
  300. gw->pte_gpa[level - 2],
  301. &curr_pte, sizeof(curr_pte));
  302. if (r || curr_pte != gw->ptes[level - 2]) {
  303. kvm_mmu_put_page(shadow_page, sptep);
  304. kvm_release_pfn_clean(pfn);
  305. sptep = NULL;
  306. break;
  307. }
  308. }
  309. spte = __pa(shadow_page->spt)
  310. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  311. | PT_WRITABLE_MASK | PT_USER_MASK;
  312. *sptep = spte;
  313. }
  314. return sptep;
  315. }
  316. /*
  317. * Page fault handler. There are several causes for a page fault:
  318. * - there is no shadow pte for the guest pte
  319. * - write access through a shadow pte marked read only so that we can set
  320. * the dirty bit
  321. * - write access to a shadow pte marked read only so we can update the page
  322. * dirty bitmap, when userspace requests it
  323. * - mmio access; in this case we will never install a present shadow pte
  324. * - normal guest page fault due to the guest pte marked not present, not
  325. * writable, or not executable
  326. *
  327. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  328. * a negative value on error.
  329. */
  330. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  331. u32 error_code)
  332. {
  333. int write_fault = error_code & PFERR_WRITE_MASK;
  334. int user_fault = error_code & PFERR_USER_MASK;
  335. int fetch_fault = error_code & PFERR_FETCH_MASK;
  336. struct guest_walker walker;
  337. u64 *sptep;
  338. int write_pt = 0;
  339. int r;
  340. pfn_t pfn;
  341. int level = PT_PAGE_TABLE_LEVEL;
  342. unsigned long mmu_seq;
  343. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  344. kvm_mmu_audit(vcpu, "pre page fault");
  345. r = mmu_topup_memory_caches(vcpu);
  346. if (r)
  347. return r;
  348. /*
  349. * Look up the guest pte for the faulting address.
  350. */
  351. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  352. fetch_fault);
  353. /*
  354. * The page is not mapped by the guest. Let the guest handle it.
  355. */
  356. if (!r) {
  357. pgprintk("%s: guest page fault\n", __func__);
  358. inject_page_fault(vcpu, addr, walker.error_code);
  359. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  360. return 0;
  361. }
  362. if (walker.level >= PT_DIRECTORY_LEVEL) {
  363. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  364. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  365. }
  366. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  367. smp_rmb();
  368. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  369. /* mmio */
  370. if (is_error_pfn(pfn)) {
  371. pgprintk("gfn %lx is mmio\n", walker.gfn);
  372. kvm_release_pfn_clean(pfn);
  373. return 1;
  374. }
  375. spin_lock(&vcpu->kvm->mmu_lock);
  376. if (mmu_notifier_retry(vcpu, mmu_seq))
  377. goto out_unlock;
  378. kvm_mmu_free_some_pages(vcpu);
  379. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  380. level, &write_pt, pfn);
  381. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  382. sptep, *sptep, write_pt);
  383. if (!write_pt)
  384. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  385. ++vcpu->stat.pf_fixed;
  386. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  387. spin_unlock(&vcpu->kvm->mmu_lock);
  388. return write_pt;
  389. out_unlock:
  390. spin_unlock(&vcpu->kvm->mmu_lock);
  391. kvm_release_pfn_clean(pfn);
  392. return 0;
  393. }
  394. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  395. {
  396. struct kvm_shadow_walk_iterator iterator;
  397. pt_element_t gpte;
  398. gpa_t pte_gpa = -1;
  399. int level;
  400. u64 *sptep;
  401. int need_flush = 0;
  402. spin_lock(&vcpu->kvm->mmu_lock);
  403. for_each_shadow_entry(vcpu, gva, iterator) {
  404. level = iterator.level;
  405. sptep = iterator.sptep;
  406. /* FIXME: properly handle invlpg on large guest pages */
  407. if (level == PT_PAGE_TABLE_LEVEL ||
  408. ((level == PT_DIRECTORY_LEVEL && is_large_pte(*sptep))) ||
  409. ((level == PT_PDPE_LEVEL && is_large_pte(*sptep)))) {
  410. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  411. pte_gpa = (sp->gfn << PAGE_SHIFT);
  412. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  413. if (is_shadow_present_pte(*sptep)) {
  414. rmap_remove(vcpu->kvm, sptep);
  415. if (is_large_pte(*sptep))
  416. --vcpu->kvm->stat.lpages;
  417. need_flush = 1;
  418. }
  419. __set_spte(sptep, shadow_trap_nonpresent_pte);
  420. break;
  421. }
  422. if (!is_shadow_present_pte(*sptep))
  423. break;
  424. }
  425. if (need_flush)
  426. kvm_flush_remote_tlbs(vcpu->kvm);
  427. spin_unlock(&vcpu->kvm->mmu_lock);
  428. if (pte_gpa == -1)
  429. return;
  430. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  431. sizeof(pt_element_t)))
  432. return;
  433. if (is_present_gpte(gpte) && (gpte & PT_ACCESSED_MASK)) {
  434. if (mmu_topup_memory_caches(vcpu))
  435. return;
  436. kvm_mmu_pte_write(vcpu, pte_gpa, (const u8 *)&gpte,
  437. sizeof(pt_element_t), 0);
  438. }
  439. }
  440. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  441. {
  442. struct guest_walker walker;
  443. gpa_t gpa = UNMAPPED_GVA;
  444. int r;
  445. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  446. if (r) {
  447. gpa = gfn_to_gpa(walker.gfn);
  448. gpa |= vaddr & ~PAGE_MASK;
  449. }
  450. return gpa;
  451. }
  452. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  453. struct kvm_mmu_page *sp)
  454. {
  455. int i, j, offset, r;
  456. pt_element_t pt[256 / sizeof(pt_element_t)];
  457. gpa_t pte_gpa;
  458. if (sp->role.direct
  459. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  460. nonpaging_prefetch_page(vcpu, sp);
  461. return;
  462. }
  463. pte_gpa = gfn_to_gpa(sp->gfn);
  464. if (PTTYPE == 32) {
  465. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  466. pte_gpa += offset * sizeof(pt_element_t);
  467. }
  468. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  469. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  470. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  471. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  472. if (r || is_present_gpte(pt[j]))
  473. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  474. else
  475. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  476. }
  477. }
  478. /*
  479. * Using the cached information from sp->gfns is safe because:
  480. * - The spte has a reference to the struct page, so the pfn for a given gfn
  481. * can't change unless all sptes pointing to it are nuked first.
  482. * - Alias changes zap the entire shadow cache.
  483. */
  484. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  485. {
  486. int i, offset, nr_present;
  487. bool reset_host_protection;
  488. offset = nr_present = 0;
  489. if (PTTYPE == 32)
  490. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  491. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  492. unsigned pte_access;
  493. pt_element_t gpte;
  494. gpa_t pte_gpa;
  495. gfn_t gfn = sp->gfns[i];
  496. if (!is_shadow_present_pte(sp->spt[i]))
  497. continue;
  498. pte_gpa = gfn_to_gpa(sp->gfn);
  499. pte_gpa += (i+offset) * sizeof(pt_element_t);
  500. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  501. sizeof(pt_element_t)))
  502. return -EINVAL;
  503. if (gpte_to_gfn(gpte) != gfn || !is_present_gpte(gpte) ||
  504. !(gpte & PT_ACCESSED_MASK)) {
  505. u64 nonpresent;
  506. rmap_remove(vcpu->kvm, &sp->spt[i]);
  507. if (is_present_gpte(gpte))
  508. nonpresent = shadow_trap_nonpresent_pte;
  509. else
  510. nonpresent = shadow_notrap_nonpresent_pte;
  511. __set_spte(&sp->spt[i], nonpresent);
  512. continue;
  513. }
  514. nr_present++;
  515. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  516. if (!(sp->spt[i] & SPTE_HOST_WRITEABLE)) {
  517. pte_access &= ~ACC_WRITE_MASK;
  518. reset_host_protection = 0;
  519. } else {
  520. reset_host_protection = 1;
  521. }
  522. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  523. is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
  524. spte_to_pfn(sp->spt[i]), true, false,
  525. reset_host_protection);
  526. }
  527. return !nr_present;
  528. }
  529. #undef pt_element_t
  530. #undef guest_walker
  531. #undef FNAME
  532. #undef PT_BASE_ADDR_MASK
  533. #undef PT_INDEX
  534. #undef PT_LEVEL_MASK
  535. #undef PT_LVL_ADDR_MASK
  536. #undef PT_LVL_OFFSET_MASK
  537. #undef PT_LEVEL_BITS
  538. #undef PT_MAX_FULL_LEVELS
  539. #undef gpte_to_gfn
  540. #undef gpte_to_gfn_lvl
  541. #undef CMPXCHG