mmu.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. #include <asm/vmx.h>
  34. /*
  35. * When setting this variable to true it enables Two-Dimensional-Paging
  36. * where the hardware walks 2 page tables:
  37. * 1. the guest-virtual to guest-physical
  38. * 2. while doing 1. it walks guest-physical to host-physical
  39. * If the hardware supports that we don't need to do shadow paging.
  40. */
  41. bool tdp_enabled = false;
  42. #undef MMU_DEBUG
  43. #undef AUDIT
  44. #ifdef AUDIT
  45. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  46. #else
  47. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  48. #endif
  49. #ifdef MMU_DEBUG
  50. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  51. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  52. #else
  53. #define pgprintk(x...) do { } while (0)
  54. #define rmap_printk(x...) do { } while (0)
  55. #endif
  56. #if defined(MMU_DEBUG) || defined(AUDIT)
  57. static int dbg = 0;
  58. module_param(dbg, bool, 0644);
  59. #endif
  60. static int oos_shadow = 1;
  61. module_param(oos_shadow, bool, 0644);
  62. #ifndef MMU_DEBUG
  63. #define ASSERT(x) do { } while (0)
  64. #else
  65. #define ASSERT(x) \
  66. if (!(x)) { \
  67. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  68. __FILE__, __LINE__, #x); \
  69. }
  70. #endif
  71. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  72. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  73. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  74. #define PT64_LEVEL_BITS 9
  75. #define PT64_LEVEL_SHIFT(level) \
  76. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  77. #define PT64_LEVEL_MASK(level) \
  78. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  79. #define PT64_INDEX(address, level)\
  80. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  81. #define PT32_LEVEL_BITS 10
  82. #define PT32_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  84. #define PT32_LEVEL_MASK(level) \
  85. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  86. #define PT32_LVL_OFFSET_MASK(level) \
  87. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  88. * PT32_LEVEL_BITS))) - 1))
  89. #define PT32_INDEX(address, level)\
  90. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  91. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  92. #define PT64_DIR_BASE_ADDR_MASK \
  93. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  94. #define PT64_LVL_ADDR_MASK(level) \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  96. * PT64_LEVEL_BITS))) - 1))
  97. #define PT64_LVL_OFFSET_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT32_BASE_ADDR_MASK PAGE_MASK
  101. #define PT32_DIR_BASE_ADDR_MASK \
  102. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  103. #define PT32_LVL_ADDR_MASK(level) \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  105. * PT32_LEVEL_BITS))) - 1))
  106. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  107. | PT64_NX_MASK)
  108. #define PFERR_PRESENT_MASK (1U << 0)
  109. #define PFERR_WRITE_MASK (1U << 1)
  110. #define PFERR_USER_MASK (1U << 2)
  111. #define PFERR_RSVD_MASK (1U << 3)
  112. #define PFERR_FETCH_MASK (1U << 4)
  113. #define PT_PDPE_LEVEL 3
  114. #define PT_DIRECTORY_LEVEL 2
  115. #define PT_PAGE_TABLE_LEVEL 1
  116. #define RMAP_EXT 4
  117. #define ACC_EXEC_MASK 1
  118. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  119. #define ACC_USER_MASK PT_USER_MASK
  120. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  121. #define CREATE_TRACE_POINTS
  122. #include "mmutrace.h"
  123. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  124. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  125. struct kvm_rmap_desc {
  126. u64 *sptes[RMAP_EXT];
  127. struct kvm_rmap_desc *more;
  128. };
  129. struct kvm_shadow_walk_iterator {
  130. u64 addr;
  131. hpa_t shadow_addr;
  132. int level;
  133. u64 *sptep;
  134. unsigned index;
  135. };
  136. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  137. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  138. shadow_walk_okay(&(_walker)); \
  139. shadow_walk_next(&(_walker)))
  140. struct kvm_unsync_walk {
  141. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  142. };
  143. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  144. static struct kmem_cache *pte_chain_cache;
  145. static struct kmem_cache *rmap_desc_cache;
  146. static struct kmem_cache *mmu_page_header_cache;
  147. static u64 __read_mostly shadow_trap_nonpresent_pte;
  148. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  149. static u64 __read_mostly shadow_base_present_pte;
  150. static u64 __read_mostly shadow_nx_mask;
  151. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  152. static u64 __read_mostly shadow_user_mask;
  153. static u64 __read_mostly shadow_accessed_mask;
  154. static u64 __read_mostly shadow_dirty_mask;
  155. static inline u64 rsvd_bits(int s, int e)
  156. {
  157. return ((1ULL << (e - s + 1)) - 1) << s;
  158. }
  159. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  160. {
  161. shadow_trap_nonpresent_pte = trap_pte;
  162. shadow_notrap_nonpresent_pte = notrap_pte;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  165. void kvm_mmu_set_base_ptes(u64 base_pte)
  166. {
  167. shadow_base_present_pte = base_pte;
  168. }
  169. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  170. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  171. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  172. {
  173. shadow_user_mask = user_mask;
  174. shadow_accessed_mask = accessed_mask;
  175. shadow_dirty_mask = dirty_mask;
  176. shadow_nx_mask = nx_mask;
  177. shadow_x_mask = x_mask;
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  180. static int is_write_protection(struct kvm_vcpu *vcpu)
  181. {
  182. return vcpu->arch.cr0 & X86_CR0_WP;
  183. }
  184. static int is_cpuid_PSE36(void)
  185. {
  186. return 1;
  187. }
  188. static int is_nx(struct kvm_vcpu *vcpu)
  189. {
  190. return vcpu->arch.shadow_efer & EFER_NX;
  191. }
  192. static int is_shadow_present_pte(u64 pte)
  193. {
  194. return pte != shadow_trap_nonpresent_pte
  195. && pte != shadow_notrap_nonpresent_pte;
  196. }
  197. static int is_large_pte(u64 pte)
  198. {
  199. return pte & PT_PAGE_SIZE_MASK;
  200. }
  201. static int is_writeble_pte(unsigned long pte)
  202. {
  203. return pte & PT_WRITABLE_MASK;
  204. }
  205. static int is_dirty_gpte(unsigned long pte)
  206. {
  207. return pte & PT_DIRTY_MASK;
  208. }
  209. static int is_rmap_spte(u64 pte)
  210. {
  211. return is_shadow_present_pte(pte);
  212. }
  213. static int is_last_spte(u64 pte, int level)
  214. {
  215. if (level == PT_PAGE_TABLE_LEVEL)
  216. return 1;
  217. if (is_large_pte(pte))
  218. return 1;
  219. return 0;
  220. }
  221. static pfn_t spte_to_pfn(u64 pte)
  222. {
  223. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  224. }
  225. static gfn_t pse36_gfn_delta(u32 gpte)
  226. {
  227. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  228. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  229. }
  230. static void __set_spte(u64 *sptep, u64 spte)
  231. {
  232. #ifdef CONFIG_X86_64
  233. set_64bit((unsigned long *)sptep, spte);
  234. #else
  235. set_64bit((unsigned long long *)sptep, spte);
  236. #endif
  237. }
  238. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  239. struct kmem_cache *base_cache, int min)
  240. {
  241. void *obj;
  242. if (cache->nobjs >= min)
  243. return 0;
  244. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  245. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  246. if (!obj)
  247. return -ENOMEM;
  248. cache->objects[cache->nobjs++] = obj;
  249. }
  250. return 0;
  251. }
  252. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  253. {
  254. while (mc->nobjs)
  255. kfree(mc->objects[--mc->nobjs]);
  256. }
  257. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  258. int min)
  259. {
  260. struct page *page;
  261. if (cache->nobjs >= min)
  262. return 0;
  263. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  264. page = alloc_page(GFP_KERNEL);
  265. if (!page)
  266. return -ENOMEM;
  267. set_page_private(page, 0);
  268. cache->objects[cache->nobjs++] = page_address(page);
  269. }
  270. return 0;
  271. }
  272. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  273. {
  274. while (mc->nobjs)
  275. free_page((unsigned long)mc->objects[--mc->nobjs]);
  276. }
  277. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  278. {
  279. int r;
  280. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  281. pte_chain_cache, 4);
  282. if (r)
  283. goto out;
  284. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  285. rmap_desc_cache, 4);
  286. if (r)
  287. goto out;
  288. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  289. if (r)
  290. goto out;
  291. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  292. mmu_page_header_cache, 4);
  293. out:
  294. return r;
  295. }
  296. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  297. {
  298. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  299. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  300. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  301. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  302. }
  303. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  304. size_t size)
  305. {
  306. void *p;
  307. BUG_ON(!mc->nobjs);
  308. p = mc->objects[--mc->nobjs];
  309. return p;
  310. }
  311. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  312. {
  313. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  314. sizeof(struct kvm_pte_chain));
  315. }
  316. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  317. {
  318. kfree(pc);
  319. }
  320. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  321. {
  322. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  323. sizeof(struct kvm_rmap_desc));
  324. }
  325. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  326. {
  327. kfree(rd);
  328. }
  329. /*
  330. * Return the pointer to the largepage write count for a given
  331. * gfn, handling slots that are not large page aligned.
  332. */
  333. static int *slot_largepage_idx(gfn_t gfn,
  334. struct kvm_memory_slot *slot,
  335. int level)
  336. {
  337. unsigned long idx;
  338. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  339. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  340. return &slot->lpage_info[level - 2][idx].write_count;
  341. }
  342. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  343. {
  344. struct kvm_memory_slot *slot;
  345. int *write_count;
  346. int i;
  347. gfn = unalias_gfn(kvm, gfn);
  348. slot = gfn_to_memslot_unaliased(kvm, gfn);
  349. for (i = PT_DIRECTORY_LEVEL;
  350. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  351. write_count = slot_largepage_idx(gfn, slot, i);
  352. *write_count += 1;
  353. }
  354. }
  355. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  356. {
  357. struct kvm_memory_slot *slot;
  358. int *write_count;
  359. int i;
  360. gfn = unalias_gfn(kvm, gfn);
  361. for (i = PT_DIRECTORY_LEVEL;
  362. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  363. slot = gfn_to_memslot_unaliased(kvm, gfn);
  364. write_count = slot_largepage_idx(gfn, slot, i);
  365. *write_count -= 1;
  366. WARN_ON(*write_count < 0);
  367. }
  368. }
  369. static int has_wrprotected_page(struct kvm *kvm,
  370. gfn_t gfn,
  371. int level)
  372. {
  373. struct kvm_memory_slot *slot;
  374. int *largepage_idx;
  375. gfn = unalias_gfn(kvm, gfn);
  376. slot = gfn_to_memslot_unaliased(kvm, gfn);
  377. if (slot) {
  378. largepage_idx = slot_largepage_idx(gfn, slot, level);
  379. return *largepage_idx;
  380. }
  381. return 1;
  382. }
  383. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  384. {
  385. unsigned long page_size = PAGE_SIZE;
  386. struct vm_area_struct *vma;
  387. unsigned long addr;
  388. int i, ret = 0;
  389. addr = gfn_to_hva(kvm, gfn);
  390. if (kvm_is_error_hva(addr))
  391. return page_size;
  392. down_read(&current->mm->mmap_sem);
  393. vma = find_vma(current->mm, addr);
  394. if (!vma)
  395. goto out;
  396. page_size = vma_kernel_pagesize(vma);
  397. out:
  398. up_read(&current->mm->mmap_sem);
  399. for (i = PT_PAGE_TABLE_LEVEL;
  400. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  401. if (page_size >= KVM_HPAGE_SIZE(i))
  402. ret = i;
  403. else
  404. break;
  405. }
  406. return ret;
  407. }
  408. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  409. {
  410. struct kvm_memory_slot *slot;
  411. int host_level;
  412. int level = PT_PAGE_TABLE_LEVEL;
  413. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  414. if (slot && slot->dirty_bitmap)
  415. return PT_PAGE_TABLE_LEVEL;
  416. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  417. if (host_level == PT_PAGE_TABLE_LEVEL)
  418. return host_level;
  419. for (level = PT_DIRECTORY_LEVEL; level <= host_level; ++level) {
  420. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  421. break;
  422. }
  423. return level - 1;
  424. }
  425. /*
  426. * Take gfn and return the reverse mapping to it.
  427. * Note: gfn must be unaliased before this function get called
  428. */
  429. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  430. {
  431. struct kvm_memory_slot *slot;
  432. unsigned long idx;
  433. slot = gfn_to_memslot(kvm, gfn);
  434. if (likely(level == PT_PAGE_TABLE_LEVEL))
  435. return &slot->rmap[gfn - slot->base_gfn];
  436. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  437. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  438. return &slot->lpage_info[level - 2][idx].rmap_pde;
  439. }
  440. /*
  441. * Reverse mapping data structures:
  442. *
  443. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  444. * that points to page_address(page).
  445. *
  446. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  447. * containing more mappings.
  448. *
  449. * Returns the number of rmap entries before the spte was added or zero if
  450. * the spte was not added.
  451. *
  452. */
  453. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  454. {
  455. struct kvm_mmu_page *sp;
  456. struct kvm_rmap_desc *desc;
  457. unsigned long *rmapp;
  458. int i, count = 0;
  459. if (!is_rmap_spte(*spte))
  460. return count;
  461. gfn = unalias_gfn(vcpu->kvm, gfn);
  462. sp = page_header(__pa(spte));
  463. sp->gfns[spte - sp->spt] = gfn;
  464. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  465. if (!*rmapp) {
  466. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  467. *rmapp = (unsigned long)spte;
  468. } else if (!(*rmapp & 1)) {
  469. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  470. desc = mmu_alloc_rmap_desc(vcpu);
  471. desc->sptes[0] = (u64 *)*rmapp;
  472. desc->sptes[1] = spte;
  473. *rmapp = (unsigned long)desc | 1;
  474. } else {
  475. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  476. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  477. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  478. desc = desc->more;
  479. count += RMAP_EXT;
  480. }
  481. if (desc->sptes[RMAP_EXT-1]) {
  482. desc->more = mmu_alloc_rmap_desc(vcpu);
  483. desc = desc->more;
  484. }
  485. for (i = 0; desc->sptes[i]; ++i)
  486. ;
  487. desc->sptes[i] = spte;
  488. }
  489. return count;
  490. }
  491. static void rmap_desc_remove_entry(unsigned long *rmapp,
  492. struct kvm_rmap_desc *desc,
  493. int i,
  494. struct kvm_rmap_desc *prev_desc)
  495. {
  496. int j;
  497. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  498. ;
  499. desc->sptes[i] = desc->sptes[j];
  500. desc->sptes[j] = NULL;
  501. if (j != 0)
  502. return;
  503. if (!prev_desc && !desc->more)
  504. *rmapp = (unsigned long)desc->sptes[0];
  505. else
  506. if (prev_desc)
  507. prev_desc->more = desc->more;
  508. else
  509. *rmapp = (unsigned long)desc->more | 1;
  510. mmu_free_rmap_desc(desc);
  511. }
  512. static void rmap_remove(struct kvm *kvm, u64 *spte)
  513. {
  514. struct kvm_rmap_desc *desc;
  515. struct kvm_rmap_desc *prev_desc;
  516. struct kvm_mmu_page *sp;
  517. pfn_t pfn;
  518. unsigned long *rmapp;
  519. int i;
  520. if (!is_rmap_spte(*spte))
  521. return;
  522. sp = page_header(__pa(spte));
  523. pfn = spte_to_pfn(*spte);
  524. if (*spte & shadow_accessed_mask)
  525. kvm_set_pfn_accessed(pfn);
  526. if (is_writeble_pte(*spte))
  527. kvm_set_pfn_dirty(pfn);
  528. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  529. if (!*rmapp) {
  530. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  531. BUG();
  532. } else if (!(*rmapp & 1)) {
  533. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  534. if ((u64 *)*rmapp != spte) {
  535. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  536. spte, *spte);
  537. BUG();
  538. }
  539. *rmapp = 0;
  540. } else {
  541. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  542. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  543. prev_desc = NULL;
  544. while (desc) {
  545. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  546. if (desc->sptes[i] == spte) {
  547. rmap_desc_remove_entry(rmapp,
  548. desc, i,
  549. prev_desc);
  550. return;
  551. }
  552. prev_desc = desc;
  553. desc = desc->more;
  554. }
  555. BUG();
  556. }
  557. }
  558. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  559. {
  560. struct kvm_rmap_desc *desc;
  561. struct kvm_rmap_desc *prev_desc;
  562. u64 *prev_spte;
  563. int i;
  564. if (!*rmapp)
  565. return NULL;
  566. else if (!(*rmapp & 1)) {
  567. if (!spte)
  568. return (u64 *)*rmapp;
  569. return NULL;
  570. }
  571. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  572. prev_desc = NULL;
  573. prev_spte = NULL;
  574. while (desc) {
  575. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  576. if (prev_spte == spte)
  577. return desc->sptes[i];
  578. prev_spte = desc->sptes[i];
  579. }
  580. desc = desc->more;
  581. }
  582. return NULL;
  583. }
  584. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  585. {
  586. unsigned long *rmapp;
  587. u64 *spte;
  588. int i, write_protected = 0;
  589. gfn = unalias_gfn(kvm, gfn);
  590. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  591. spte = rmap_next(kvm, rmapp, NULL);
  592. while (spte) {
  593. BUG_ON(!spte);
  594. BUG_ON(!(*spte & PT_PRESENT_MASK));
  595. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  596. if (is_writeble_pte(*spte)) {
  597. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  598. write_protected = 1;
  599. }
  600. spte = rmap_next(kvm, rmapp, spte);
  601. }
  602. if (write_protected) {
  603. pfn_t pfn;
  604. spte = rmap_next(kvm, rmapp, NULL);
  605. pfn = spte_to_pfn(*spte);
  606. kvm_set_pfn_dirty(pfn);
  607. }
  608. /* check for huge page mappings */
  609. for (i = PT_DIRECTORY_LEVEL;
  610. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  611. rmapp = gfn_to_rmap(kvm, gfn, i);
  612. spte = rmap_next(kvm, rmapp, NULL);
  613. while (spte) {
  614. BUG_ON(!spte);
  615. BUG_ON(!(*spte & PT_PRESENT_MASK));
  616. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  617. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  618. if (is_writeble_pte(*spte)) {
  619. rmap_remove(kvm, spte);
  620. --kvm->stat.lpages;
  621. __set_spte(spte, shadow_trap_nonpresent_pte);
  622. spte = NULL;
  623. write_protected = 1;
  624. }
  625. spte = rmap_next(kvm, rmapp, spte);
  626. }
  627. }
  628. return write_protected;
  629. }
  630. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  631. unsigned long data)
  632. {
  633. u64 *spte;
  634. int need_tlb_flush = 0;
  635. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  636. BUG_ON(!(*spte & PT_PRESENT_MASK));
  637. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  638. rmap_remove(kvm, spte);
  639. __set_spte(spte, shadow_trap_nonpresent_pte);
  640. need_tlb_flush = 1;
  641. }
  642. return need_tlb_flush;
  643. }
  644. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  645. unsigned long data)
  646. {
  647. int need_flush = 0;
  648. u64 *spte, new_spte;
  649. pte_t *ptep = (pte_t *)data;
  650. pfn_t new_pfn;
  651. WARN_ON(pte_huge(*ptep));
  652. new_pfn = pte_pfn(*ptep);
  653. spte = rmap_next(kvm, rmapp, NULL);
  654. while (spte) {
  655. BUG_ON(!is_shadow_present_pte(*spte));
  656. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  657. need_flush = 1;
  658. if (pte_write(*ptep)) {
  659. rmap_remove(kvm, spte);
  660. __set_spte(spte, shadow_trap_nonpresent_pte);
  661. spte = rmap_next(kvm, rmapp, NULL);
  662. } else {
  663. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  664. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  665. new_spte &= ~PT_WRITABLE_MASK;
  666. new_spte &= ~SPTE_HOST_WRITEABLE;
  667. if (is_writeble_pte(*spte))
  668. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  669. __set_spte(spte, new_spte);
  670. spte = rmap_next(kvm, rmapp, spte);
  671. }
  672. }
  673. if (need_flush)
  674. kvm_flush_remote_tlbs(kvm);
  675. return 0;
  676. }
  677. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  678. unsigned long data,
  679. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  680. unsigned long data))
  681. {
  682. int i, j;
  683. int retval = 0;
  684. /*
  685. * If mmap_sem isn't taken, we can look the memslots with only
  686. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  687. */
  688. for (i = 0; i < kvm->nmemslots; i++) {
  689. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  690. unsigned long start = memslot->userspace_addr;
  691. unsigned long end;
  692. /* mmu_lock protects userspace_addr */
  693. if (!start)
  694. continue;
  695. end = start + (memslot->npages << PAGE_SHIFT);
  696. if (hva >= start && hva < end) {
  697. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  698. retval |= handler(kvm, &memslot->rmap[gfn_offset],
  699. data);
  700. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  701. int idx = gfn_offset;
  702. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  703. retval |= handler(kvm,
  704. &memslot->lpage_info[j][idx].rmap_pde,
  705. data);
  706. }
  707. }
  708. }
  709. return retval;
  710. }
  711. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  712. {
  713. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  714. }
  715. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  716. {
  717. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  718. }
  719. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  720. unsigned long data)
  721. {
  722. u64 *spte;
  723. int young = 0;
  724. /* always return old for EPT */
  725. if (!shadow_accessed_mask)
  726. return 0;
  727. spte = rmap_next(kvm, rmapp, NULL);
  728. while (spte) {
  729. int _young;
  730. u64 _spte = *spte;
  731. BUG_ON(!(_spte & PT_PRESENT_MASK));
  732. _young = _spte & PT_ACCESSED_MASK;
  733. if (_young) {
  734. young = 1;
  735. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  736. }
  737. spte = rmap_next(kvm, rmapp, spte);
  738. }
  739. return young;
  740. }
  741. #define RMAP_RECYCLE_THRESHOLD 1000
  742. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  743. {
  744. unsigned long *rmapp;
  745. struct kvm_mmu_page *sp;
  746. sp = page_header(__pa(spte));
  747. gfn = unalias_gfn(vcpu->kvm, gfn);
  748. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  749. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  750. kvm_flush_remote_tlbs(vcpu->kvm);
  751. }
  752. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  753. {
  754. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  755. }
  756. #ifdef MMU_DEBUG
  757. static int is_empty_shadow_page(u64 *spt)
  758. {
  759. u64 *pos;
  760. u64 *end;
  761. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  762. if (is_shadow_present_pte(*pos)) {
  763. printk(KERN_ERR "%s: %p %llx\n", __func__,
  764. pos, *pos);
  765. return 0;
  766. }
  767. return 1;
  768. }
  769. #endif
  770. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  771. {
  772. ASSERT(is_empty_shadow_page(sp->spt));
  773. list_del(&sp->link);
  774. __free_page(virt_to_page(sp->spt));
  775. __free_page(virt_to_page(sp->gfns));
  776. kfree(sp);
  777. ++kvm->arch.n_free_mmu_pages;
  778. }
  779. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  780. {
  781. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  782. }
  783. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  784. u64 *parent_pte)
  785. {
  786. struct kvm_mmu_page *sp;
  787. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  788. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  789. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  790. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  791. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  792. INIT_LIST_HEAD(&sp->oos_link);
  793. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  794. sp->multimapped = 0;
  795. sp->parent_pte = parent_pte;
  796. --vcpu->kvm->arch.n_free_mmu_pages;
  797. return sp;
  798. }
  799. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  800. struct kvm_mmu_page *sp, u64 *parent_pte)
  801. {
  802. struct kvm_pte_chain *pte_chain;
  803. struct hlist_node *node;
  804. int i;
  805. if (!parent_pte)
  806. return;
  807. if (!sp->multimapped) {
  808. u64 *old = sp->parent_pte;
  809. if (!old) {
  810. sp->parent_pte = parent_pte;
  811. return;
  812. }
  813. sp->multimapped = 1;
  814. pte_chain = mmu_alloc_pte_chain(vcpu);
  815. INIT_HLIST_HEAD(&sp->parent_ptes);
  816. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  817. pte_chain->parent_ptes[0] = old;
  818. }
  819. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  820. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  821. continue;
  822. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  823. if (!pte_chain->parent_ptes[i]) {
  824. pte_chain->parent_ptes[i] = parent_pte;
  825. return;
  826. }
  827. }
  828. pte_chain = mmu_alloc_pte_chain(vcpu);
  829. BUG_ON(!pte_chain);
  830. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  831. pte_chain->parent_ptes[0] = parent_pte;
  832. }
  833. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  834. u64 *parent_pte)
  835. {
  836. struct kvm_pte_chain *pte_chain;
  837. struct hlist_node *node;
  838. int i;
  839. if (!sp->multimapped) {
  840. BUG_ON(sp->parent_pte != parent_pte);
  841. sp->parent_pte = NULL;
  842. return;
  843. }
  844. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  845. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  846. if (!pte_chain->parent_ptes[i])
  847. break;
  848. if (pte_chain->parent_ptes[i] != parent_pte)
  849. continue;
  850. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  851. && pte_chain->parent_ptes[i + 1]) {
  852. pte_chain->parent_ptes[i]
  853. = pte_chain->parent_ptes[i + 1];
  854. ++i;
  855. }
  856. pte_chain->parent_ptes[i] = NULL;
  857. if (i == 0) {
  858. hlist_del(&pte_chain->link);
  859. mmu_free_pte_chain(pte_chain);
  860. if (hlist_empty(&sp->parent_ptes)) {
  861. sp->multimapped = 0;
  862. sp->parent_pte = NULL;
  863. }
  864. }
  865. return;
  866. }
  867. BUG();
  868. }
  869. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  870. mmu_parent_walk_fn fn)
  871. {
  872. struct kvm_pte_chain *pte_chain;
  873. struct hlist_node *node;
  874. struct kvm_mmu_page *parent_sp;
  875. int i;
  876. if (!sp->multimapped && sp->parent_pte) {
  877. parent_sp = page_header(__pa(sp->parent_pte));
  878. fn(vcpu, parent_sp);
  879. mmu_parent_walk(vcpu, parent_sp, fn);
  880. return;
  881. }
  882. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  883. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  884. if (!pte_chain->parent_ptes[i])
  885. break;
  886. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  887. fn(vcpu, parent_sp);
  888. mmu_parent_walk(vcpu, parent_sp, fn);
  889. }
  890. }
  891. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  892. {
  893. unsigned int index;
  894. struct kvm_mmu_page *sp = page_header(__pa(spte));
  895. index = spte - sp->spt;
  896. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  897. sp->unsync_children++;
  898. WARN_ON(!sp->unsync_children);
  899. }
  900. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  901. {
  902. struct kvm_pte_chain *pte_chain;
  903. struct hlist_node *node;
  904. int i;
  905. if (!sp->parent_pte)
  906. return;
  907. if (!sp->multimapped) {
  908. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  909. return;
  910. }
  911. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  912. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  913. if (!pte_chain->parent_ptes[i])
  914. break;
  915. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  916. }
  917. }
  918. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  919. {
  920. kvm_mmu_update_parents_unsync(sp);
  921. return 1;
  922. }
  923. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  924. struct kvm_mmu_page *sp)
  925. {
  926. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  927. kvm_mmu_update_parents_unsync(sp);
  928. }
  929. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  930. struct kvm_mmu_page *sp)
  931. {
  932. int i;
  933. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  934. sp->spt[i] = shadow_trap_nonpresent_pte;
  935. }
  936. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  937. struct kvm_mmu_page *sp)
  938. {
  939. return 1;
  940. }
  941. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  942. {
  943. }
  944. #define KVM_PAGE_ARRAY_NR 16
  945. struct kvm_mmu_pages {
  946. struct mmu_page_and_offset {
  947. struct kvm_mmu_page *sp;
  948. unsigned int idx;
  949. } page[KVM_PAGE_ARRAY_NR];
  950. unsigned int nr;
  951. };
  952. #define for_each_unsync_children(bitmap, idx) \
  953. for (idx = find_first_bit(bitmap, 512); \
  954. idx < 512; \
  955. idx = find_next_bit(bitmap, 512, idx+1))
  956. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  957. int idx)
  958. {
  959. int i;
  960. if (sp->unsync)
  961. for (i=0; i < pvec->nr; i++)
  962. if (pvec->page[i].sp == sp)
  963. return 0;
  964. pvec->page[pvec->nr].sp = sp;
  965. pvec->page[pvec->nr].idx = idx;
  966. pvec->nr++;
  967. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  968. }
  969. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  970. struct kvm_mmu_pages *pvec)
  971. {
  972. int i, ret, nr_unsync_leaf = 0;
  973. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  974. u64 ent = sp->spt[i];
  975. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  976. struct kvm_mmu_page *child;
  977. child = page_header(ent & PT64_BASE_ADDR_MASK);
  978. if (child->unsync_children) {
  979. if (mmu_pages_add(pvec, child, i))
  980. return -ENOSPC;
  981. ret = __mmu_unsync_walk(child, pvec);
  982. if (!ret)
  983. __clear_bit(i, sp->unsync_child_bitmap);
  984. else if (ret > 0)
  985. nr_unsync_leaf += ret;
  986. else
  987. return ret;
  988. }
  989. if (child->unsync) {
  990. nr_unsync_leaf++;
  991. if (mmu_pages_add(pvec, child, i))
  992. return -ENOSPC;
  993. }
  994. }
  995. }
  996. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  997. sp->unsync_children = 0;
  998. return nr_unsync_leaf;
  999. }
  1000. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1001. struct kvm_mmu_pages *pvec)
  1002. {
  1003. if (!sp->unsync_children)
  1004. return 0;
  1005. mmu_pages_add(pvec, sp, 0);
  1006. return __mmu_unsync_walk(sp, pvec);
  1007. }
  1008. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  1009. {
  1010. unsigned index;
  1011. struct hlist_head *bucket;
  1012. struct kvm_mmu_page *sp;
  1013. struct hlist_node *node;
  1014. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1015. index = kvm_page_table_hashfn(gfn);
  1016. bucket = &kvm->arch.mmu_page_hash[index];
  1017. hlist_for_each_entry(sp, node, bucket, hash_link)
  1018. if (sp->gfn == gfn && !sp->role.direct
  1019. && !sp->role.invalid) {
  1020. pgprintk("%s: found role %x\n",
  1021. __func__, sp->role.word);
  1022. return sp;
  1023. }
  1024. return NULL;
  1025. }
  1026. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1027. {
  1028. WARN_ON(!sp->unsync);
  1029. sp->unsync = 0;
  1030. --kvm->stat.mmu_unsync;
  1031. }
  1032. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1033. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1034. {
  1035. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  1036. kvm_mmu_zap_page(vcpu->kvm, sp);
  1037. return 1;
  1038. }
  1039. trace_kvm_mmu_sync_page(sp);
  1040. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1041. kvm_flush_remote_tlbs(vcpu->kvm);
  1042. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1043. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1044. kvm_mmu_zap_page(vcpu->kvm, sp);
  1045. return 1;
  1046. }
  1047. kvm_mmu_flush_tlb(vcpu);
  1048. return 0;
  1049. }
  1050. struct mmu_page_path {
  1051. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1052. unsigned int idx[PT64_ROOT_LEVEL-1];
  1053. };
  1054. #define for_each_sp(pvec, sp, parents, i) \
  1055. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1056. sp = pvec.page[i].sp; \
  1057. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1058. i = mmu_pages_next(&pvec, &parents, i))
  1059. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1060. struct mmu_page_path *parents,
  1061. int i)
  1062. {
  1063. int n;
  1064. for (n = i+1; n < pvec->nr; n++) {
  1065. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1066. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1067. parents->idx[0] = pvec->page[n].idx;
  1068. return n;
  1069. }
  1070. parents->parent[sp->role.level-2] = sp;
  1071. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1072. }
  1073. return n;
  1074. }
  1075. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1076. {
  1077. struct kvm_mmu_page *sp;
  1078. unsigned int level = 0;
  1079. do {
  1080. unsigned int idx = parents->idx[level];
  1081. sp = parents->parent[level];
  1082. if (!sp)
  1083. return;
  1084. --sp->unsync_children;
  1085. WARN_ON((int)sp->unsync_children < 0);
  1086. __clear_bit(idx, sp->unsync_child_bitmap);
  1087. level++;
  1088. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1089. }
  1090. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1091. struct mmu_page_path *parents,
  1092. struct kvm_mmu_pages *pvec)
  1093. {
  1094. parents->parent[parent->role.level-1] = NULL;
  1095. pvec->nr = 0;
  1096. }
  1097. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1098. struct kvm_mmu_page *parent)
  1099. {
  1100. int i;
  1101. struct kvm_mmu_page *sp;
  1102. struct mmu_page_path parents;
  1103. struct kvm_mmu_pages pages;
  1104. kvm_mmu_pages_init(parent, &parents, &pages);
  1105. while (mmu_unsync_walk(parent, &pages)) {
  1106. int protected = 0;
  1107. for_each_sp(pages, sp, parents, i)
  1108. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1109. if (protected)
  1110. kvm_flush_remote_tlbs(vcpu->kvm);
  1111. for_each_sp(pages, sp, parents, i) {
  1112. kvm_sync_page(vcpu, sp);
  1113. mmu_pages_clear_parents(&parents);
  1114. }
  1115. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1116. kvm_mmu_pages_init(parent, &parents, &pages);
  1117. }
  1118. }
  1119. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1120. gfn_t gfn,
  1121. gva_t gaddr,
  1122. unsigned level,
  1123. int direct,
  1124. unsigned access,
  1125. u64 *parent_pte)
  1126. {
  1127. union kvm_mmu_page_role role;
  1128. unsigned index;
  1129. unsigned quadrant;
  1130. struct hlist_head *bucket;
  1131. struct kvm_mmu_page *sp;
  1132. struct hlist_node *node, *tmp;
  1133. role = vcpu->arch.mmu.base_role;
  1134. role.level = level;
  1135. role.direct = direct;
  1136. role.access = access;
  1137. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1138. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1139. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1140. role.quadrant = quadrant;
  1141. }
  1142. index = kvm_page_table_hashfn(gfn);
  1143. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1144. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1145. if (sp->gfn == gfn) {
  1146. if (sp->unsync)
  1147. if (kvm_sync_page(vcpu, sp))
  1148. continue;
  1149. if (sp->role.word != role.word)
  1150. continue;
  1151. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1152. if (sp->unsync_children) {
  1153. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1154. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1155. }
  1156. trace_kvm_mmu_get_page(sp, false);
  1157. return sp;
  1158. }
  1159. ++vcpu->kvm->stat.mmu_cache_miss;
  1160. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1161. if (!sp)
  1162. return sp;
  1163. sp->gfn = gfn;
  1164. sp->role = role;
  1165. hlist_add_head(&sp->hash_link, bucket);
  1166. if (!direct) {
  1167. if (rmap_write_protect(vcpu->kvm, gfn))
  1168. kvm_flush_remote_tlbs(vcpu->kvm);
  1169. account_shadowed(vcpu->kvm, gfn);
  1170. }
  1171. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1172. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1173. else
  1174. nonpaging_prefetch_page(vcpu, sp);
  1175. trace_kvm_mmu_get_page(sp, true);
  1176. return sp;
  1177. }
  1178. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1179. struct kvm_vcpu *vcpu, u64 addr)
  1180. {
  1181. iterator->addr = addr;
  1182. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1183. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1184. if (iterator->level == PT32E_ROOT_LEVEL) {
  1185. iterator->shadow_addr
  1186. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1187. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1188. --iterator->level;
  1189. if (!iterator->shadow_addr)
  1190. iterator->level = 0;
  1191. }
  1192. }
  1193. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1194. {
  1195. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1196. return false;
  1197. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1198. if (is_large_pte(*iterator->sptep))
  1199. return false;
  1200. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1201. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1202. return true;
  1203. }
  1204. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1205. {
  1206. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1207. --iterator->level;
  1208. }
  1209. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1210. struct kvm_mmu_page *sp)
  1211. {
  1212. unsigned i;
  1213. u64 *pt;
  1214. u64 ent;
  1215. pt = sp->spt;
  1216. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1217. ent = pt[i];
  1218. if (is_shadow_present_pte(ent)) {
  1219. if (!is_last_spte(ent, sp->role.level)) {
  1220. ent &= PT64_BASE_ADDR_MASK;
  1221. mmu_page_remove_parent_pte(page_header(ent),
  1222. &pt[i]);
  1223. } else {
  1224. if (is_large_pte(ent))
  1225. --kvm->stat.lpages;
  1226. rmap_remove(kvm, &pt[i]);
  1227. }
  1228. }
  1229. pt[i] = shadow_trap_nonpresent_pte;
  1230. }
  1231. }
  1232. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1233. {
  1234. mmu_page_remove_parent_pte(sp, parent_pte);
  1235. }
  1236. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1237. {
  1238. int i;
  1239. struct kvm_vcpu *vcpu;
  1240. kvm_for_each_vcpu(i, vcpu, kvm)
  1241. vcpu->arch.last_pte_updated = NULL;
  1242. }
  1243. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1244. {
  1245. u64 *parent_pte;
  1246. while (sp->multimapped || sp->parent_pte) {
  1247. if (!sp->multimapped)
  1248. parent_pte = sp->parent_pte;
  1249. else {
  1250. struct kvm_pte_chain *chain;
  1251. chain = container_of(sp->parent_ptes.first,
  1252. struct kvm_pte_chain, link);
  1253. parent_pte = chain->parent_ptes[0];
  1254. }
  1255. BUG_ON(!parent_pte);
  1256. kvm_mmu_put_page(sp, parent_pte);
  1257. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1258. }
  1259. }
  1260. static int mmu_zap_unsync_children(struct kvm *kvm,
  1261. struct kvm_mmu_page *parent)
  1262. {
  1263. int i, zapped = 0;
  1264. struct mmu_page_path parents;
  1265. struct kvm_mmu_pages pages;
  1266. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1267. return 0;
  1268. kvm_mmu_pages_init(parent, &parents, &pages);
  1269. while (mmu_unsync_walk(parent, &pages)) {
  1270. struct kvm_mmu_page *sp;
  1271. for_each_sp(pages, sp, parents, i) {
  1272. kvm_mmu_zap_page(kvm, sp);
  1273. mmu_pages_clear_parents(&parents);
  1274. }
  1275. zapped += pages.nr;
  1276. kvm_mmu_pages_init(parent, &parents, &pages);
  1277. }
  1278. return zapped;
  1279. }
  1280. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1281. {
  1282. int ret;
  1283. trace_kvm_mmu_zap_page(sp);
  1284. ++kvm->stat.mmu_shadow_zapped;
  1285. ret = mmu_zap_unsync_children(kvm, sp);
  1286. kvm_mmu_page_unlink_children(kvm, sp);
  1287. kvm_mmu_unlink_parents(kvm, sp);
  1288. kvm_flush_remote_tlbs(kvm);
  1289. if (!sp->role.invalid && !sp->role.direct)
  1290. unaccount_shadowed(kvm, sp->gfn);
  1291. if (sp->unsync)
  1292. kvm_unlink_unsync_page(kvm, sp);
  1293. if (!sp->root_count) {
  1294. hlist_del(&sp->hash_link);
  1295. kvm_mmu_free_page(kvm, sp);
  1296. } else {
  1297. sp->role.invalid = 1;
  1298. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1299. kvm_reload_remote_mmus(kvm);
  1300. }
  1301. kvm_mmu_reset_last_pte_updated(kvm);
  1302. return ret;
  1303. }
  1304. /*
  1305. * Changing the number of mmu pages allocated to the vm
  1306. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1307. */
  1308. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1309. {
  1310. int used_pages;
  1311. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1312. used_pages = max(0, used_pages);
  1313. /*
  1314. * If we set the number of mmu pages to be smaller be than the
  1315. * number of actived pages , we must to free some mmu pages before we
  1316. * change the value
  1317. */
  1318. if (used_pages > kvm_nr_mmu_pages) {
  1319. while (used_pages > kvm_nr_mmu_pages) {
  1320. struct kvm_mmu_page *page;
  1321. page = container_of(kvm->arch.active_mmu_pages.prev,
  1322. struct kvm_mmu_page, link);
  1323. kvm_mmu_zap_page(kvm, page);
  1324. used_pages--;
  1325. }
  1326. kvm->arch.n_free_mmu_pages = 0;
  1327. }
  1328. else
  1329. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1330. - kvm->arch.n_alloc_mmu_pages;
  1331. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1332. }
  1333. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1334. {
  1335. unsigned index;
  1336. struct hlist_head *bucket;
  1337. struct kvm_mmu_page *sp;
  1338. struct hlist_node *node, *n;
  1339. int r;
  1340. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1341. r = 0;
  1342. index = kvm_page_table_hashfn(gfn);
  1343. bucket = &kvm->arch.mmu_page_hash[index];
  1344. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1345. if (sp->gfn == gfn && !sp->role.direct) {
  1346. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1347. sp->role.word);
  1348. r = 1;
  1349. if (kvm_mmu_zap_page(kvm, sp))
  1350. n = bucket->first;
  1351. }
  1352. return r;
  1353. }
  1354. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1355. {
  1356. unsigned index;
  1357. struct hlist_head *bucket;
  1358. struct kvm_mmu_page *sp;
  1359. struct hlist_node *node, *nn;
  1360. index = kvm_page_table_hashfn(gfn);
  1361. bucket = &kvm->arch.mmu_page_hash[index];
  1362. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1363. if (sp->gfn == gfn && !sp->role.direct
  1364. && !sp->role.invalid) {
  1365. pgprintk("%s: zap %lx %x\n",
  1366. __func__, gfn, sp->role.word);
  1367. kvm_mmu_zap_page(kvm, sp);
  1368. }
  1369. }
  1370. }
  1371. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1372. {
  1373. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1374. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1375. __set_bit(slot, sp->slot_bitmap);
  1376. }
  1377. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1378. {
  1379. int i;
  1380. u64 *pt = sp->spt;
  1381. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1382. return;
  1383. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1384. if (pt[i] == shadow_notrap_nonpresent_pte)
  1385. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1386. }
  1387. }
  1388. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1389. {
  1390. struct page *page;
  1391. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1392. if (gpa == UNMAPPED_GVA)
  1393. return NULL;
  1394. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1395. return page;
  1396. }
  1397. /*
  1398. * The function is based on mtrr_type_lookup() in
  1399. * arch/x86/kernel/cpu/mtrr/generic.c
  1400. */
  1401. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1402. u64 start, u64 end)
  1403. {
  1404. int i;
  1405. u64 base, mask;
  1406. u8 prev_match, curr_match;
  1407. int num_var_ranges = KVM_NR_VAR_MTRR;
  1408. if (!mtrr_state->enabled)
  1409. return 0xFF;
  1410. /* Make end inclusive end, instead of exclusive */
  1411. end--;
  1412. /* Look in fixed ranges. Just return the type as per start */
  1413. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1414. int idx;
  1415. if (start < 0x80000) {
  1416. idx = 0;
  1417. idx += (start >> 16);
  1418. return mtrr_state->fixed_ranges[idx];
  1419. } else if (start < 0xC0000) {
  1420. idx = 1 * 8;
  1421. idx += ((start - 0x80000) >> 14);
  1422. return mtrr_state->fixed_ranges[idx];
  1423. } else if (start < 0x1000000) {
  1424. idx = 3 * 8;
  1425. idx += ((start - 0xC0000) >> 12);
  1426. return mtrr_state->fixed_ranges[idx];
  1427. }
  1428. }
  1429. /*
  1430. * Look in variable ranges
  1431. * Look of multiple ranges matching this address and pick type
  1432. * as per MTRR precedence
  1433. */
  1434. if (!(mtrr_state->enabled & 2))
  1435. return mtrr_state->def_type;
  1436. prev_match = 0xFF;
  1437. for (i = 0; i < num_var_ranges; ++i) {
  1438. unsigned short start_state, end_state;
  1439. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1440. continue;
  1441. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1442. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1443. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1444. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1445. start_state = ((start & mask) == (base & mask));
  1446. end_state = ((end & mask) == (base & mask));
  1447. if (start_state != end_state)
  1448. return 0xFE;
  1449. if ((start & mask) != (base & mask))
  1450. continue;
  1451. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1452. if (prev_match == 0xFF) {
  1453. prev_match = curr_match;
  1454. continue;
  1455. }
  1456. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1457. curr_match == MTRR_TYPE_UNCACHABLE)
  1458. return MTRR_TYPE_UNCACHABLE;
  1459. if ((prev_match == MTRR_TYPE_WRBACK &&
  1460. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1461. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1462. curr_match == MTRR_TYPE_WRBACK)) {
  1463. prev_match = MTRR_TYPE_WRTHROUGH;
  1464. curr_match = MTRR_TYPE_WRTHROUGH;
  1465. }
  1466. if (prev_match != curr_match)
  1467. return MTRR_TYPE_UNCACHABLE;
  1468. }
  1469. if (prev_match != 0xFF)
  1470. return prev_match;
  1471. return mtrr_state->def_type;
  1472. }
  1473. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1474. {
  1475. u8 mtrr;
  1476. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1477. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1478. if (mtrr == 0xfe || mtrr == 0xff)
  1479. mtrr = MTRR_TYPE_WRBACK;
  1480. return mtrr;
  1481. }
  1482. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1483. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1484. {
  1485. unsigned index;
  1486. struct hlist_head *bucket;
  1487. struct kvm_mmu_page *s;
  1488. struct hlist_node *node, *n;
  1489. trace_kvm_mmu_unsync_page(sp);
  1490. index = kvm_page_table_hashfn(sp->gfn);
  1491. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1492. /* don't unsync if pagetable is shadowed with multiple roles */
  1493. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1494. if (s->gfn != sp->gfn || s->role.direct)
  1495. continue;
  1496. if (s->role.word != sp->role.word)
  1497. return 1;
  1498. }
  1499. ++vcpu->kvm->stat.mmu_unsync;
  1500. sp->unsync = 1;
  1501. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1502. mmu_convert_notrap(sp);
  1503. return 0;
  1504. }
  1505. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1506. bool can_unsync)
  1507. {
  1508. struct kvm_mmu_page *shadow;
  1509. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1510. if (shadow) {
  1511. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1512. return 1;
  1513. if (shadow->unsync)
  1514. return 0;
  1515. if (can_unsync && oos_shadow)
  1516. return kvm_unsync_page(vcpu, shadow);
  1517. return 1;
  1518. }
  1519. return 0;
  1520. }
  1521. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1522. unsigned pte_access, int user_fault,
  1523. int write_fault, int dirty, int level,
  1524. gfn_t gfn, pfn_t pfn, bool speculative,
  1525. bool can_unsync, bool reset_host_protection)
  1526. {
  1527. u64 spte;
  1528. int ret = 0;
  1529. /*
  1530. * We don't set the accessed bit, since we sometimes want to see
  1531. * whether the guest actually used the pte (in order to detect
  1532. * demand paging).
  1533. */
  1534. spte = shadow_base_present_pte | shadow_dirty_mask;
  1535. if (!speculative)
  1536. spte |= shadow_accessed_mask;
  1537. if (!dirty)
  1538. pte_access &= ~ACC_WRITE_MASK;
  1539. if (pte_access & ACC_EXEC_MASK)
  1540. spte |= shadow_x_mask;
  1541. else
  1542. spte |= shadow_nx_mask;
  1543. if (pte_access & ACC_USER_MASK)
  1544. spte |= shadow_user_mask;
  1545. if (level > PT_PAGE_TABLE_LEVEL)
  1546. spte |= PT_PAGE_SIZE_MASK;
  1547. if (tdp_enabled)
  1548. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1549. kvm_is_mmio_pfn(pfn));
  1550. if (reset_host_protection)
  1551. spte |= SPTE_HOST_WRITEABLE;
  1552. spte |= (u64)pfn << PAGE_SHIFT;
  1553. if ((pte_access & ACC_WRITE_MASK)
  1554. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1555. if (level > PT_PAGE_TABLE_LEVEL &&
  1556. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1557. ret = 1;
  1558. spte = shadow_trap_nonpresent_pte;
  1559. goto set_pte;
  1560. }
  1561. spte |= PT_WRITABLE_MASK;
  1562. /*
  1563. * Optimization: for pte sync, if spte was writable the hash
  1564. * lookup is unnecessary (and expensive). Write protection
  1565. * is responsibility of mmu_get_page / kvm_sync_page.
  1566. * Same reasoning can be applied to dirty page accounting.
  1567. */
  1568. if (!can_unsync && is_writeble_pte(*sptep))
  1569. goto set_pte;
  1570. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1571. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1572. __func__, gfn);
  1573. ret = 1;
  1574. pte_access &= ~ACC_WRITE_MASK;
  1575. if (is_writeble_pte(spte))
  1576. spte &= ~PT_WRITABLE_MASK;
  1577. }
  1578. }
  1579. if (pte_access & ACC_WRITE_MASK)
  1580. mark_page_dirty(vcpu->kvm, gfn);
  1581. set_pte:
  1582. __set_spte(sptep, spte);
  1583. return ret;
  1584. }
  1585. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1586. unsigned pt_access, unsigned pte_access,
  1587. int user_fault, int write_fault, int dirty,
  1588. int *ptwrite, int level, gfn_t gfn,
  1589. pfn_t pfn, bool speculative,
  1590. bool reset_host_protection)
  1591. {
  1592. int was_rmapped = 0;
  1593. int was_writeble = is_writeble_pte(*sptep);
  1594. int rmap_count;
  1595. pgprintk("%s: spte %llx access %x write_fault %d"
  1596. " user_fault %d gfn %lx\n",
  1597. __func__, *sptep, pt_access,
  1598. write_fault, user_fault, gfn);
  1599. if (is_rmap_spte(*sptep)) {
  1600. /*
  1601. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1602. * the parent of the now unreachable PTE.
  1603. */
  1604. if (level > PT_PAGE_TABLE_LEVEL &&
  1605. !is_large_pte(*sptep)) {
  1606. struct kvm_mmu_page *child;
  1607. u64 pte = *sptep;
  1608. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1609. mmu_page_remove_parent_pte(child, sptep);
  1610. } else if (pfn != spte_to_pfn(*sptep)) {
  1611. pgprintk("hfn old %lx new %lx\n",
  1612. spte_to_pfn(*sptep), pfn);
  1613. rmap_remove(vcpu->kvm, sptep);
  1614. } else
  1615. was_rmapped = 1;
  1616. }
  1617. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1618. dirty, level, gfn, pfn, speculative, true,
  1619. reset_host_protection)) {
  1620. if (write_fault)
  1621. *ptwrite = 1;
  1622. kvm_x86_ops->tlb_flush(vcpu);
  1623. }
  1624. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1625. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1626. is_large_pte(*sptep)? "2MB" : "4kB",
  1627. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1628. *sptep, sptep);
  1629. if (!was_rmapped && is_large_pte(*sptep))
  1630. ++vcpu->kvm->stat.lpages;
  1631. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1632. if (!was_rmapped) {
  1633. rmap_count = rmap_add(vcpu, sptep, gfn);
  1634. kvm_release_pfn_clean(pfn);
  1635. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1636. rmap_recycle(vcpu, sptep, gfn);
  1637. } else {
  1638. if (was_writeble)
  1639. kvm_release_pfn_dirty(pfn);
  1640. else
  1641. kvm_release_pfn_clean(pfn);
  1642. }
  1643. if (speculative) {
  1644. vcpu->arch.last_pte_updated = sptep;
  1645. vcpu->arch.last_pte_gfn = gfn;
  1646. }
  1647. }
  1648. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1649. {
  1650. }
  1651. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1652. int level, gfn_t gfn, pfn_t pfn)
  1653. {
  1654. struct kvm_shadow_walk_iterator iterator;
  1655. struct kvm_mmu_page *sp;
  1656. int pt_write = 0;
  1657. gfn_t pseudo_gfn;
  1658. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1659. if (iterator.level == level) {
  1660. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1661. 0, write, 1, &pt_write,
  1662. level, gfn, pfn, false, true);
  1663. ++vcpu->stat.pf_fixed;
  1664. break;
  1665. }
  1666. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1667. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1668. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1669. iterator.level - 1,
  1670. 1, ACC_ALL, iterator.sptep);
  1671. if (!sp) {
  1672. pgprintk("nonpaging_map: ENOMEM\n");
  1673. kvm_release_pfn_clean(pfn);
  1674. return -ENOMEM;
  1675. }
  1676. __set_spte(iterator.sptep,
  1677. __pa(sp->spt)
  1678. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1679. | shadow_user_mask | shadow_x_mask);
  1680. }
  1681. }
  1682. return pt_write;
  1683. }
  1684. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1685. {
  1686. int r;
  1687. int level;
  1688. pfn_t pfn;
  1689. unsigned long mmu_seq;
  1690. level = mapping_level(vcpu, gfn);
  1691. /*
  1692. * This path builds a PAE pagetable - so we can map 2mb pages at
  1693. * maximum. Therefore check if the level is larger than that.
  1694. */
  1695. if (level > PT_DIRECTORY_LEVEL)
  1696. level = PT_DIRECTORY_LEVEL;
  1697. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1698. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1699. smp_rmb();
  1700. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1701. /* mmio */
  1702. if (is_error_pfn(pfn)) {
  1703. kvm_release_pfn_clean(pfn);
  1704. return 1;
  1705. }
  1706. spin_lock(&vcpu->kvm->mmu_lock);
  1707. if (mmu_notifier_retry(vcpu, mmu_seq))
  1708. goto out_unlock;
  1709. kvm_mmu_free_some_pages(vcpu);
  1710. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1711. spin_unlock(&vcpu->kvm->mmu_lock);
  1712. return r;
  1713. out_unlock:
  1714. spin_unlock(&vcpu->kvm->mmu_lock);
  1715. kvm_release_pfn_clean(pfn);
  1716. return 0;
  1717. }
  1718. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1719. {
  1720. int i;
  1721. struct kvm_mmu_page *sp;
  1722. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1723. return;
  1724. spin_lock(&vcpu->kvm->mmu_lock);
  1725. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1726. hpa_t root = vcpu->arch.mmu.root_hpa;
  1727. sp = page_header(root);
  1728. --sp->root_count;
  1729. if (!sp->root_count && sp->role.invalid)
  1730. kvm_mmu_zap_page(vcpu->kvm, sp);
  1731. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1732. spin_unlock(&vcpu->kvm->mmu_lock);
  1733. return;
  1734. }
  1735. for (i = 0; i < 4; ++i) {
  1736. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1737. if (root) {
  1738. root &= PT64_BASE_ADDR_MASK;
  1739. sp = page_header(root);
  1740. --sp->root_count;
  1741. if (!sp->root_count && sp->role.invalid)
  1742. kvm_mmu_zap_page(vcpu->kvm, sp);
  1743. }
  1744. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1745. }
  1746. spin_unlock(&vcpu->kvm->mmu_lock);
  1747. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1748. }
  1749. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1750. {
  1751. int ret = 0;
  1752. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1753. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1754. ret = 1;
  1755. }
  1756. return ret;
  1757. }
  1758. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1759. {
  1760. int i;
  1761. gfn_t root_gfn;
  1762. struct kvm_mmu_page *sp;
  1763. int direct = 0;
  1764. u64 pdptr;
  1765. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1766. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1767. hpa_t root = vcpu->arch.mmu.root_hpa;
  1768. ASSERT(!VALID_PAGE(root));
  1769. if (tdp_enabled)
  1770. direct = 1;
  1771. if (mmu_check_root(vcpu, root_gfn))
  1772. return 1;
  1773. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1774. PT64_ROOT_LEVEL, direct,
  1775. ACC_ALL, NULL);
  1776. root = __pa(sp->spt);
  1777. ++sp->root_count;
  1778. vcpu->arch.mmu.root_hpa = root;
  1779. return 0;
  1780. }
  1781. direct = !is_paging(vcpu);
  1782. if (tdp_enabled)
  1783. direct = 1;
  1784. for (i = 0; i < 4; ++i) {
  1785. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1786. ASSERT(!VALID_PAGE(root));
  1787. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1788. pdptr = kvm_pdptr_read(vcpu, i);
  1789. if (!is_present_gpte(pdptr)) {
  1790. vcpu->arch.mmu.pae_root[i] = 0;
  1791. continue;
  1792. }
  1793. root_gfn = pdptr >> PAGE_SHIFT;
  1794. } else if (vcpu->arch.mmu.root_level == 0)
  1795. root_gfn = 0;
  1796. if (mmu_check_root(vcpu, root_gfn))
  1797. return 1;
  1798. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1799. PT32_ROOT_LEVEL, direct,
  1800. ACC_ALL, NULL);
  1801. root = __pa(sp->spt);
  1802. ++sp->root_count;
  1803. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1804. }
  1805. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1806. return 0;
  1807. }
  1808. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1809. {
  1810. int i;
  1811. struct kvm_mmu_page *sp;
  1812. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1813. return;
  1814. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1815. hpa_t root = vcpu->arch.mmu.root_hpa;
  1816. sp = page_header(root);
  1817. mmu_sync_children(vcpu, sp);
  1818. return;
  1819. }
  1820. for (i = 0; i < 4; ++i) {
  1821. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1822. if (root && VALID_PAGE(root)) {
  1823. root &= PT64_BASE_ADDR_MASK;
  1824. sp = page_header(root);
  1825. mmu_sync_children(vcpu, sp);
  1826. }
  1827. }
  1828. }
  1829. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1830. {
  1831. spin_lock(&vcpu->kvm->mmu_lock);
  1832. mmu_sync_roots(vcpu);
  1833. spin_unlock(&vcpu->kvm->mmu_lock);
  1834. }
  1835. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1836. {
  1837. return vaddr;
  1838. }
  1839. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1840. u32 error_code)
  1841. {
  1842. gfn_t gfn;
  1843. int r;
  1844. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1845. r = mmu_topup_memory_caches(vcpu);
  1846. if (r)
  1847. return r;
  1848. ASSERT(vcpu);
  1849. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1850. gfn = gva >> PAGE_SHIFT;
  1851. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1852. error_code & PFERR_WRITE_MASK, gfn);
  1853. }
  1854. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1855. u32 error_code)
  1856. {
  1857. pfn_t pfn;
  1858. int r;
  1859. int level;
  1860. gfn_t gfn = gpa >> PAGE_SHIFT;
  1861. unsigned long mmu_seq;
  1862. ASSERT(vcpu);
  1863. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1864. r = mmu_topup_memory_caches(vcpu);
  1865. if (r)
  1866. return r;
  1867. level = mapping_level(vcpu, gfn);
  1868. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1869. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1870. smp_rmb();
  1871. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1872. if (is_error_pfn(pfn)) {
  1873. kvm_release_pfn_clean(pfn);
  1874. return 1;
  1875. }
  1876. spin_lock(&vcpu->kvm->mmu_lock);
  1877. if (mmu_notifier_retry(vcpu, mmu_seq))
  1878. goto out_unlock;
  1879. kvm_mmu_free_some_pages(vcpu);
  1880. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1881. level, gfn, pfn);
  1882. spin_unlock(&vcpu->kvm->mmu_lock);
  1883. return r;
  1884. out_unlock:
  1885. spin_unlock(&vcpu->kvm->mmu_lock);
  1886. kvm_release_pfn_clean(pfn);
  1887. return 0;
  1888. }
  1889. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1890. {
  1891. mmu_free_roots(vcpu);
  1892. }
  1893. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1894. {
  1895. struct kvm_mmu *context = &vcpu->arch.mmu;
  1896. context->new_cr3 = nonpaging_new_cr3;
  1897. context->page_fault = nonpaging_page_fault;
  1898. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1899. context->free = nonpaging_free;
  1900. context->prefetch_page = nonpaging_prefetch_page;
  1901. context->sync_page = nonpaging_sync_page;
  1902. context->invlpg = nonpaging_invlpg;
  1903. context->root_level = 0;
  1904. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1905. context->root_hpa = INVALID_PAGE;
  1906. return 0;
  1907. }
  1908. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1909. {
  1910. ++vcpu->stat.tlb_flush;
  1911. kvm_x86_ops->tlb_flush(vcpu);
  1912. }
  1913. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1914. {
  1915. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1916. mmu_free_roots(vcpu);
  1917. }
  1918. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1919. u64 addr,
  1920. u32 err_code)
  1921. {
  1922. kvm_inject_page_fault(vcpu, addr, err_code);
  1923. }
  1924. static void paging_free(struct kvm_vcpu *vcpu)
  1925. {
  1926. nonpaging_free(vcpu);
  1927. }
  1928. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1929. {
  1930. int bit7;
  1931. bit7 = (gpte >> 7) & 1;
  1932. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1933. }
  1934. #define PTTYPE 64
  1935. #include "paging_tmpl.h"
  1936. #undef PTTYPE
  1937. #define PTTYPE 32
  1938. #include "paging_tmpl.h"
  1939. #undef PTTYPE
  1940. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1941. {
  1942. struct kvm_mmu *context = &vcpu->arch.mmu;
  1943. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1944. u64 exb_bit_rsvd = 0;
  1945. if (!is_nx(vcpu))
  1946. exb_bit_rsvd = rsvd_bits(63, 63);
  1947. switch (level) {
  1948. case PT32_ROOT_LEVEL:
  1949. /* no rsvd bits for 2 level 4K page table entries */
  1950. context->rsvd_bits_mask[0][1] = 0;
  1951. context->rsvd_bits_mask[0][0] = 0;
  1952. if (is_cpuid_PSE36())
  1953. /* 36bits PSE 4MB page */
  1954. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1955. else
  1956. /* 32 bits PSE 4MB page */
  1957. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1958. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1959. break;
  1960. case PT32E_ROOT_LEVEL:
  1961. context->rsvd_bits_mask[0][2] =
  1962. rsvd_bits(maxphyaddr, 63) |
  1963. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1964. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1965. rsvd_bits(maxphyaddr, 62); /* PDE */
  1966. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1967. rsvd_bits(maxphyaddr, 62); /* PTE */
  1968. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1969. rsvd_bits(maxphyaddr, 62) |
  1970. rsvd_bits(13, 20); /* large page */
  1971. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1972. break;
  1973. case PT64_ROOT_LEVEL:
  1974. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1975. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1976. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1977. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1978. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1979. rsvd_bits(maxphyaddr, 51);
  1980. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1981. rsvd_bits(maxphyaddr, 51);
  1982. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1983. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1984. rsvd_bits(maxphyaddr, 51) |
  1985. rsvd_bits(13, 29);
  1986. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1987. rsvd_bits(maxphyaddr, 51) |
  1988. rsvd_bits(13, 20); /* large page */
  1989. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1990. break;
  1991. }
  1992. }
  1993. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1994. {
  1995. struct kvm_mmu *context = &vcpu->arch.mmu;
  1996. ASSERT(is_pae(vcpu));
  1997. context->new_cr3 = paging_new_cr3;
  1998. context->page_fault = paging64_page_fault;
  1999. context->gva_to_gpa = paging64_gva_to_gpa;
  2000. context->prefetch_page = paging64_prefetch_page;
  2001. context->sync_page = paging64_sync_page;
  2002. context->invlpg = paging64_invlpg;
  2003. context->free = paging_free;
  2004. context->root_level = level;
  2005. context->shadow_root_level = level;
  2006. context->root_hpa = INVALID_PAGE;
  2007. return 0;
  2008. }
  2009. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2010. {
  2011. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2012. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2013. }
  2014. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2015. {
  2016. struct kvm_mmu *context = &vcpu->arch.mmu;
  2017. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2018. context->new_cr3 = paging_new_cr3;
  2019. context->page_fault = paging32_page_fault;
  2020. context->gva_to_gpa = paging32_gva_to_gpa;
  2021. context->free = paging_free;
  2022. context->prefetch_page = paging32_prefetch_page;
  2023. context->sync_page = paging32_sync_page;
  2024. context->invlpg = paging32_invlpg;
  2025. context->root_level = PT32_ROOT_LEVEL;
  2026. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2027. context->root_hpa = INVALID_PAGE;
  2028. return 0;
  2029. }
  2030. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2031. {
  2032. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2033. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2034. }
  2035. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2036. {
  2037. struct kvm_mmu *context = &vcpu->arch.mmu;
  2038. context->new_cr3 = nonpaging_new_cr3;
  2039. context->page_fault = tdp_page_fault;
  2040. context->free = nonpaging_free;
  2041. context->prefetch_page = nonpaging_prefetch_page;
  2042. context->sync_page = nonpaging_sync_page;
  2043. context->invlpg = nonpaging_invlpg;
  2044. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2045. context->root_hpa = INVALID_PAGE;
  2046. if (!is_paging(vcpu)) {
  2047. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2048. context->root_level = 0;
  2049. } else if (is_long_mode(vcpu)) {
  2050. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2051. context->gva_to_gpa = paging64_gva_to_gpa;
  2052. context->root_level = PT64_ROOT_LEVEL;
  2053. } else if (is_pae(vcpu)) {
  2054. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2055. context->gva_to_gpa = paging64_gva_to_gpa;
  2056. context->root_level = PT32E_ROOT_LEVEL;
  2057. } else {
  2058. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2059. context->gva_to_gpa = paging32_gva_to_gpa;
  2060. context->root_level = PT32_ROOT_LEVEL;
  2061. }
  2062. return 0;
  2063. }
  2064. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2065. {
  2066. int r;
  2067. ASSERT(vcpu);
  2068. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2069. if (!is_paging(vcpu))
  2070. r = nonpaging_init_context(vcpu);
  2071. else if (is_long_mode(vcpu))
  2072. r = paging64_init_context(vcpu);
  2073. else if (is_pae(vcpu))
  2074. r = paging32E_init_context(vcpu);
  2075. else
  2076. r = paging32_init_context(vcpu);
  2077. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  2078. return r;
  2079. }
  2080. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2081. {
  2082. vcpu->arch.update_pte.pfn = bad_pfn;
  2083. if (tdp_enabled)
  2084. return init_kvm_tdp_mmu(vcpu);
  2085. else
  2086. return init_kvm_softmmu(vcpu);
  2087. }
  2088. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2089. {
  2090. ASSERT(vcpu);
  2091. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2092. vcpu->arch.mmu.free(vcpu);
  2093. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2094. }
  2095. }
  2096. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2097. {
  2098. destroy_kvm_mmu(vcpu);
  2099. return init_kvm_mmu(vcpu);
  2100. }
  2101. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2102. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2103. {
  2104. int r;
  2105. r = mmu_topup_memory_caches(vcpu);
  2106. if (r)
  2107. goto out;
  2108. spin_lock(&vcpu->kvm->mmu_lock);
  2109. kvm_mmu_free_some_pages(vcpu);
  2110. r = mmu_alloc_roots(vcpu);
  2111. mmu_sync_roots(vcpu);
  2112. spin_unlock(&vcpu->kvm->mmu_lock);
  2113. if (r)
  2114. goto out;
  2115. /* set_cr3() should ensure TLB has been flushed */
  2116. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2117. out:
  2118. return r;
  2119. }
  2120. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2121. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2122. {
  2123. mmu_free_roots(vcpu);
  2124. }
  2125. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2126. struct kvm_mmu_page *sp,
  2127. u64 *spte)
  2128. {
  2129. u64 pte;
  2130. struct kvm_mmu_page *child;
  2131. pte = *spte;
  2132. if (is_shadow_present_pte(pte)) {
  2133. if (is_last_spte(pte, sp->role.level))
  2134. rmap_remove(vcpu->kvm, spte);
  2135. else {
  2136. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2137. mmu_page_remove_parent_pte(child, spte);
  2138. }
  2139. }
  2140. __set_spte(spte, shadow_trap_nonpresent_pte);
  2141. if (is_large_pte(pte))
  2142. --vcpu->kvm->stat.lpages;
  2143. }
  2144. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2145. struct kvm_mmu_page *sp,
  2146. u64 *spte,
  2147. const void *new)
  2148. {
  2149. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2150. ++vcpu->kvm->stat.mmu_pde_zapped;
  2151. return;
  2152. }
  2153. ++vcpu->kvm->stat.mmu_pte_updated;
  2154. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2155. paging32_update_pte(vcpu, sp, spte, new);
  2156. else
  2157. paging64_update_pte(vcpu, sp, spte, new);
  2158. }
  2159. static bool need_remote_flush(u64 old, u64 new)
  2160. {
  2161. if (!is_shadow_present_pte(old))
  2162. return false;
  2163. if (!is_shadow_present_pte(new))
  2164. return true;
  2165. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2166. return true;
  2167. old ^= PT64_NX_MASK;
  2168. new ^= PT64_NX_MASK;
  2169. return (old & ~new & PT64_PERM_MASK) != 0;
  2170. }
  2171. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2172. {
  2173. if (need_remote_flush(old, new))
  2174. kvm_flush_remote_tlbs(vcpu->kvm);
  2175. else
  2176. kvm_mmu_flush_tlb(vcpu);
  2177. }
  2178. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2179. {
  2180. u64 *spte = vcpu->arch.last_pte_updated;
  2181. return !!(spte && (*spte & shadow_accessed_mask));
  2182. }
  2183. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2184. const u8 *new, int bytes)
  2185. {
  2186. gfn_t gfn;
  2187. int r;
  2188. u64 gpte = 0;
  2189. pfn_t pfn;
  2190. if (bytes != 4 && bytes != 8)
  2191. return;
  2192. /*
  2193. * Assume that the pte write on a page table of the same type
  2194. * as the current vcpu paging mode. This is nearly always true
  2195. * (might be false while changing modes). Note it is verified later
  2196. * by update_pte().
  2197. */
  2198. if (is_pae(vcpu)) {
  2199. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2200. if ((bytes == 4) && (gpa % 4 == 0)) {
  2201. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2202. if (r)
  2203. return;
  2204. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2205. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2206. memcpy((void *)&gpte, new, 8);
  2207. }
  2208. } else {
  2209. if ((bytes == 4) && (gpa % 4 == 0))
  2210. memcpy((void *)&gpte, new, 4);
  2211. }
  2212. if (!is_present_gpte(gpte))
  2213. return;
  2214. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2215. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2216. smp_rmb();
  2217. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2218. if (is_error_pfn(pfn)) {
  2219. kvm_release_pfn_clean(pfn);
  2220. return;
  2221. }
  2222. vcpu->arch.update_pte.gfn = gfn;
  2223. vcpu->arch.update_pte.pfn = pfn;
  2224. }
  2225. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2226. {
  2227. u64 *spte = vcpu->arch.last_pte_updated;
  2228. if (spte
  2229. && vcpu->arch.last_pte_gfn == gfn
  2230. && shadow_accessed_mask
  2231. && !(*spte & shadow_accessed_mask)
  2232. && is_shadow_present_pte(*spte))
  2233. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2234. }
  2235. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2236. const u8 *new, int bytes,
  2237. bool guest_initiated)
  2238. {
  2239. gfn_t gfn = gpa >> PAGE_SHIFT;
  2240. struct kvm_mmu_page *sp;
  2241. struct hlist_node *node, *n;
  2242. struct hlist_head *bucket;
  2243. unsigned index;
  2244. u64 entry, gentry;
  2245. u64 *spte;
  2246. unsigned offset = offset_in_page(gpa);
  2247. unsigned pte_size;
  2248. unsigned page_offset;
  2249. unsigned misaligned;
  2250. unsigned quadrant;
  2251. int level;
  2252. int flooded = 0;
  2253. int npte;
  2254. int r;
  2255. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2256. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2257. spin_lock(&vcpu->kvm->mmu_lock);
  2258. kvm_mmu_access_page(vcpu, gfn);
  2259. kvm_mmu_free_some_pages(vcpu);
  2260. ++vcpu->kvm->stat.mmu_pte_write;
  2261. kvm_mmu_audit(vcpu, "pre pte write");
  2262. if (guest_initiated) {
  2263. if (gfn == vcpu->arch.last_pt_write_gfn
  2264. && !last_updated_pte_accessed(vcpu)) {
  2265. ++vcpu->arch.last_pt_write_count;
  2266. if (vcpu->arch.last_pt_write_count >= 3)
  2267. flooded = 1;
  2268. } else {
  2269. vcpu->arch.last_pt_write_gfn = gfn;
  2270. vcpu->arch.last_pt_write_count = 1;
  2271. vcpu->arch.last_pte_updated = NULL;
  2272. }
  2273. }
  2274. index = kvm_page_table_hashfn(gfn);
  2275. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2276. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2277. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2278. continue;
  2279. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2280. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2281. misaligned |= bytes < 4;
  2282. if (misaligned || flooded) {
  2283. /*
  2284. * Misaligned accesses are too much trouble to fix
  2285. * up; also, they usually indicate a page is not used
  2286. * as a page table.
  2287. *
  2288. * If we're seeing too many writes to a page,
  2289. * it may no longer be a page table, or we may be
  2290. * forking, in which case it is better to unmap the
  2291. * page.
  2292. */
  2293. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2294. gpa, bytes, sp->role.word);
  2295. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2296. n = bucket->first;
  2297. ++vcpu->kvm->stat.mmu_flooded;
  2298. continue;
  2299. }
  2300. page_offset = offset;
  2301. level = sp->role.level;
  2302. npte = 1;
  2303. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2304. page_offset <<= 1; /* 32->64 */
  2305. /*
  2306. * A 32-bit pde maps 4MB while the shadow pdes map
  2307. * only 2MB. So we need to double the offset again
  2308. * and zap two pdes instead of one.
  2309. */
  2310. if (level == PT32_ROOT_LEVEL) {
  2311. page_offset &= ~7; /* kill rounding error */
  2312. page_offset <<= 1;
  2313. npte = 2;
  2314. }
  2315. quadrant = page_offset >> PAGE_SHIFT;
  2316. page_offset &= ~PAGE_MASK;
  2317. if (quadrant != sp->role.quadrant)
  2318. continue;
  2319. }
  2320. spte = &sp->spt[page_offset / sizeof(*spte)];
  2321. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2322. gentry = 0;
  2323. r = kvm_read_guest_atomic(vcpu->kvm,
  2324. gpa & ~(u64)(pte_size - 1),
  2325. &gentry, pte_size);
  2326. new = (const void *)&gentry;
  2327. if (r < 0)
  2328. new = NULL;
  2329. }
  2330. while (npte--) {
  2331. entry = *spte;
  2332. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2333. if (new)
  2334. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2335. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2336. ++spte;
  2337. }
  2338. }
  2339. kvm_mmu_audit(vcpu, "post pte write");
  2340. spin_unlock(&vcpu->kvm->mmu_lock);
  2341. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2342. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2343. vcpu->arch.update_pte.pfn = bad_pfn;
  2344. }
  2345. }
  2346. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2347. {
  2348. gpa_t gpa;
  2349. int r;
  2350. if (tdp_enabled)
  2351. return 0;
  2352. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2353. spin_lock(&vcpu->kvm->mmu_lock);
  2354. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2355. spin_unlock(&vcpu->kvm->mmu_lock);
  2356. return r;
  2357. }
  2358. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2359. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2360. {
  2361. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2362. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2363. struct kvm_mmu_page *sp;
  2364. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2365. struct kvm_mmu_page, link);
  2366. kvm_mmu_zap_page(vcpu->kvm, sp);
  2367. ++vcpu->kvm->stat.mmu_recycled;
  2368. }
  2369. }
  2370. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2371. {
  2372. int r;
  2373. enum emulation_result er;
  2374. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2375. if (r < 0)
  2376. goto out;
  2377. if (!r) {
  2378. r = 1;
  2379. goto out;
  2380. }
  2381. r = mmu_topup_memory_caches(vcpu);
  2382. if (r)
  2383. goto out;
  2384. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2385. switch (er) {
  2386. case EMULATE_DONE:
  2387. return 1;
  2388. case EMULATE_DO_MMIO:
  2389. ++vcpu->stat.mmio_exits;
  2390. return 0;
  2391. case EMULATE_FAIL:
  2392. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2393. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2394. return 0;
  2395. default:
  2396. BUG();
  2397. }
  2398. out:
  2399. return r;
  2400. }
  2401. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2402. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2403. {
  2404. vcpu->arch.mmu.invlpg(vcpu, gva);
  2405. kvm_mmu_flush_tlb(vcpu);
  2406. ++vcpu->stat.invlpg;
  2407. }
  2408. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2409. void kvm_enable_tdp(void)
  2410. {
  2411. tdp_enabled = true;
  2412. }
  2413. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2414. void kvm_disable_tdp(void)
  2415. {
  2416. tdp_enabled = false;
  2417. }
  2418. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2419. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2420. {
  2421. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2422. }
  2423. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2424. {
  2425. struct page *page;
  2426. int i;
  2427. ASSERT(vcpu);
  2428. /*
  2429. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2430. * Therefore we need to allocate shadow page tables in the first
  2431. * 4GB of memory, which happens to fit the DMA32 zone.
  2432. */
  2433. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2434. if (!page)
  2435. goto error_1;
  2436. vcpu->arch.mmu.pae_root = page_address(page);
  2437. for (i = 0; i < 4; ++i)
  2438. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2439. return 0;
  2440. error_1:
  2441. free_mmu_pages(vcpu);
  2442. return -ENOMEM;
  2443. }
  2444. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2445. {
  2446. ASSERT(vcpu);
  2447. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2448. return alloc_mmu_pages(vcpu);
  2449. }
  2450. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2451. {
  2452. ASSERT(vcpu);
  2453. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2454. return init_kvm_mmu(vcpu);
  2455. }
  2456. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2457. {
  2458. ASSERT(vcpu);
  2459. destroy_kvm_mmu(vcpu);
  2460. free_mmu_pages(vcpu);
  2461. mmu_free_memory_caches(vcpu);
  2462. }
  2463. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2464. {
  2465. struct kvm_mmu_page *sp;
  2466. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2467. int i;
  2468. u64 *pt;
  2469. if (!test_bit(slot, sp->slot_bitmap))
  2470. continue;
  2471. pt = sp->spt;
  2472. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2473. /* avoid RMW */
  2474. if (pt[i] & PT_WRITABLE_MASK)
  2475. pt[i] &= ~PT_WRITABLE_MASK;
  2476. }
  2477. kvm_flush_remote_tlbs(kvm);
  2478. }
  2479. void kvm_mmu_zap_all(struct kvm *kvm)
  2480. {
  2481. struct kvm_mmu_page *sp, *node;
  2482. spin_lock(&kvm->mmu_lock);
  2483. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2484. if (kvm_mmu_zap_page(kvm, sp))
  2485. node = container_of(kvm->arch.active_mmu_pages.next,
  2486. struct kvm_mmu_page, link);
  2487. spin_unlock(&kvm->mmu_lock);
  2488. kvm_flush_remote_tlbs(kvm);
  2489. }
  2490. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2491. {
  2492. struct kvm_mmu_page *page;
  2493. page = container_of(kvm->arch.active_mmu_pages.prev,
  2494. struct kvm_mmu_page, link);
  2495. kvm_mmu_zap_page(kvm, page);
  2496. }
  2497. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2498. {
  2499. struct kvm *kvm;
  2500. struct kvm *kvm_freed = NULL;
  2501. int cache_count = 0;
  2502. spin_lock(&kvm_lock);
  2503. list_for_each_entry(kvm, &vm_list, vm_list) {
  2504. int npages;
  2505. if (!down_read_trylock(&kvm->slots_lock))
  2506. continue;
  2507. spin_lock(&kvm->mmu_lock);
  2508. npages = kvm->arch.n_alloc_mmu_pages -
  2509. kvm->arch.n_free_mmu_pages;
  2510. cache_count += npages;
  2511. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2512. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2513. cache_count--;
  2514. kvm_freed = kvm;
  2515. }
  2516. nr_to_scan--;
  2517. spin_unlock(&kvm->mmu_lock);
  2518. up_read(&kvm->slots_lock);
  2519. }
  2520. if (kvm_freed)
  2521. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2522. spin_unlock(&kvm_lock);
  2523. return cache_count;
  2524. }
  2525. static struct shrinker mmu_shrinker = {
  2526. .shrink = mmu_shrink,
  2527. .seeks = DEFAULT_SEEKS * 10,
  2528. };
  2529. static void mmu_destroy_caches(void)
  2530. {
  2531. if (pte_chain_cache)
  2532. kmem_cache_destroy(pte_chain_cache);
  2533. if (rmap_desc_cache)
  2534. kmem_cache_destroy(rmap_desc_cache);
  2535. if (mmu_page_header_cache)
  2536. kmem_cache_destroy(mmu_page_header_cache);
  2537. }
  2538. void kvm_mmu_module_exit(void)
  2539. {
  2540. mmu_destroy_caches();
  2541. unregister_shrinker(&mmu_shrinker);
  2542. }
  2543. int kvm_mmu_module_init(void)
  2544. {
  2545. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2546. sizeof(struct kvm_pte_chain),
  2547. 0, 0, NULL);
  2548. if (!pte_chain_cache)
  2549. goto nomem;
  2550. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2551. sizeof(struct kvm_rmap_desc),
  2552. 0, 0, NULL);
  2553. if (!rmap_desc_cache)
  2554. goto nomem;
  2555. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2556. sizeof(struct kvm_mmu_page),
  2557. 0, 0, NULL);
  2558. if (!mmu_page_header_cache)
  2559. goto nomem;
  2560. register_shrinker(&mmu_shrinker);
  2561. return 0;
  2562. nomem:
  2563. mmu_destroy_caches();
  2564. return -ENOMEM;
  2565. }
  2566. /*
  2567. * Caculate mmu pages needed for kvm.
  2568. */
  2569. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2570. {
  2571. int i;
  2572. unsigned int nr_mmu_pages;
  2573. unsigned int nr_pages = 0;
  2574. for (i = 0; i < kvm->nmemslots; i++)
  2575. nr_pages += kvm->memslots[i].npages;
  2576. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2577. nr_mmu_pages = max(nr_mmu_pages,
  2578. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2579. return nr_mmu_pages;
  2580. }
  2581. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2582. unsigned len)
  2583. {
  2584. if (len > buffer->len)
  2585. return NULL;
  2586. return buffer->ptr;
  2587. }
  2588. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2589. unsigned len)
  2590. {
  2591. void *ret;
  2592. ret = pv_mmu_peek_buffer(buffer, len);
  2593. if (!ret)
  2594. return ret;
  2595. buffer->ptr += len;
  2596. buffer->len -= len;
  2597. buffer->processed += len;
  2598. return ret;
  2599. }
  2600. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2601. gpa_t addr, gpa_t value)
  2602. {
  2603. int bytes = 8;
  2604. int r;
  2605. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2606. bytes = 4;
  2607. r = mmu_topup_memory_caches(vcpu);
  2608. if (r)
  2609. return r;
  2610. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2611. return -EFAULT;
  2612. return 1;
  2613. }
  2614. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2615. {
  2616. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2617. return 1;
  2618. }
  2619. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2620. {
  2621. spin_lock(&vcpu->kvm->mmu_lock);
  2622. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2623. spin_unlock(&vcpu->kvm->mmu_lock);
  2624. return 1;
  2625. }
  2626. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2627. struct kvm_pv_mmu_op_buffer *buffer)
  2628. {
  2629. struct kvm_mmu_op_header *header;
  2630. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2631. if (!header)
  2632. return 0;
  2633. switch (header->op) {
  2634. case KVM_MMU_OP_WRITE_PTE: {
  2635. struct kvm_mmu_op_write_pte *wpte;
  2636. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2637. if (!wpte)
  2638. return 0;
  2639. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2640. wpte->pte_val);
  2641. }
  2642. case KVM_MMU_OP_FLUSH_TLB: {
  2643. struct kvm_mmu_op_flush_tlb *ftlb;
  2644. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2645. if (!ftlb)
  2646. return 0;
  2647. return kvm_pv_mmu_flush_tlb(vcpu);
  2648. }
  2649. case KVM_MMU_OP_RELEASE_PT: {
  2650. struct kvm_mmu_op_release_pt *rpt;
  2651. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2652. if (!rpt)
  2653. return 0;
  2654. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2655. }
  2656. default: return 0;
  2657. }
  2658. }
  2659. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2660. gpa_t addr, unsigned long *ret)
  2661. {
  2662. int r;
  2663. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2664. buffer->ptr = buffer->buf;
  2665. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2666. buffer->processed = 0;
  2667. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2668. if (r)
  2669. goto out;
  2670. while (buffer->len) {
  2671. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2672. if (r < 0)
  2673. goto out;
  2674. if (r == 0)
  2675. break;
  2676. }
  2677. r = 1;
  2678. out:
  2679. *ret = buffer->processed;
  2680. return r;
  2681. }
  2682. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2683. {
  2684. struct kvm_shadow_walk_iterator iterator;
  2685. int nr_sptes = 0;
  2686. spin_lock(&vcpu->kvm->mmu_lock);
  2687. for_each_shadow_entry(vcpu, addr, iterator) {
  2688. sptes[iterator.level-1] = *iterator.sptep;
  2689. nr_sptes++;
  2690. if (!is_shadow_present_pte(*iterator.sptep))
  2691. break;
  2692. }
  2693. spin_unlock(&vcpu->kvm->mmu_lock);
  2694. return nr_sptes;
  2695. }
  2696. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2697. #ifdef AUDIT
  2698. static const char *audit_msg;
  2699. static gva_t canonicalize(gva_t gva)
  2700. {
  2701. #ifdef CONFIG_X86_64
  2702. gva = (long long)(gva << 16) >> 16;
  2703. #endif
  2704. return gva;
  2705. }
  2706. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2707. u64 *sptep);
  2708. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2709. inspect_spte_fn fn)
  2710. {
  2711. int i;
  2712. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2713. u64 ent = sp->spt[i];
  2714. if (is_shadow_present_pte(ent)) {
  2715. if (!is_last_spte(ent, sp->role.level)) {
  2716. struct kvm_mmu_page *child;
  2717. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2718. __mmu_spte_walk(kvm, child, fn);
  2719. } else
  2720. fn(kvm, sp, &sp->spt[i]);
  2721. }
  2722. }
  2723. }
  2724. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2725. {
  2726. int i;
  2727. struct kvm_mmu_page *sp;
  2728. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2729. return;
  2730. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2731. hpa_t root = vcpu->arch.mmu.root_hpa;
  2732. sp = page_header(root);
  2733. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2734. return;
  2735. }
  2736. for (i = 0; i < 4; ++i) {
  2737. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2738. if (root && VALID_PAGE(root)) {
  2739. root &= PT64_BASE_ADDR_MASK;
  2740. sp = page_header(root);
  2741. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2742. }
  2743. }
  2744. return;
  2745. }
  2746. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2747. gva_t va, int level)
  2748. {
  2749. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2750. int i;
  2751. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2752. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2753. u64 ent = pt[i];
  2754. if (ent == shadow_trap_nonpresent_pte)
  2755. continue;
  2756. va = canonicalize(va);
  2757. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2758. audit_mappings_page(vcpu, ent, va, level - 1);
  2759. else {
  2760. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2761. gfn_t gfn = gpa >> PAGE_SHIFT;
  2762. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2763. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2764. if (is_error_pfn(pfn)) {
  2765. kvm_release_pfn_clean(pfn);
  2766. continue;
  2767. }
  2768. if (is_shadow_present_pte(ent)
  2769. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2770. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2771. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2772. audit_msg, vcpu->arch.mmu.root_level,
  2773. va, gpa, hpa, ent,
  2774. is_shadow_present_pte(ent));
  2775. else if (ent == shadow_notrap_nonpresent_pte
  2776. && !is_error_hpa(hpa))
  2777. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2778. " valid guest gva %lx\n", audit_msg, va);
  2779. kvm_release_pfn_clean(pfn);
  2780. }
  2781. }
  2782. }
  2783. static void audit_mappings(struct kvm_vcpu *vcpu)
  2784. {
  2785. unsigned i;
  2786. if (vcpu->arch.mmu.root_level == 4)
  2787. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2788. else
  2789. for (i = 0; i < 4; ++i)
  2790. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2791. audit_mappings_page(vcpu,
  2792. vcpu->arch.mmu.pae_root[i],
  2793. i << 30,
  2794. 2);
  2795. }
  2796. static int count_rmaps(struct kvm_vcpu *vcpu)
  2797. {
  2798. int nmaps = 0;
  2799. int i, j, k;
  2800. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2801. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2802. struct kvm_rmap_desc *d;
  2803. for (j = 0; j < m->npages; ++j) {
  2804. unsigned long *rmapp = &m->rmap[j];
  2805. if (!*rmapp)
  2806. continue;
  2807. if (!(*rmapp & 1)) {
  2808. ++nmaps;
  2809. continue;
  2810. }
  2811. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2812. while (d) {
  2813. for (k = 0; k < RMAP_EXT; ++k)
  2814. if (d->sptes[k])
  2815. ++nmaps;
  2816. else
  2817. break;
  2818. d = d->more;
  2819. }
  2820. }
  2821. }
  2822. return nmaps;
  2823. }
  2824. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2825. {
  2826. unsigned long *rmapp;
  2827. struct kvm_mmu_page *rev_sp;
  2828. gfn_t gfn;
  2829. if (*sptep & PT_WRITABLE_MASK) {
  2830. rev_sp = page_header(__pa(sptep));
  2831. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2832. if (!gfn_to_memslot(kvm, gfn)) {
  2833. if (!printk_ratelimit())
  2834. return;
  2835. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2836. audit_msg, gfn);
  2837. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2838. audit_msg, sptep - rev_sp->spt,
  2839. rev_sp->gfn);
  2840. dump_stack();
  2841. return;
  2842. }
  2843. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2844. is_large_pte(*sptep));
  2845. if (!*rmapp) {
  2846. if (!printk_ratelimit())
  2847. return;
  2848. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2849. audit_msg, *sptep);
  2850. dump_stack();
  2851. }
  2852. }
  2853. }
  2854. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2855. {
  2856. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2857. }
  2858. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2859. {
  2860. struct kvm_mmu_page *sp;
  2861. int i;
  2862. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2863. u64 *pt = sp->spt;
  2864. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2865. continue;
  2866. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2867. u64 ent = pt[i];
  2868. if (!(ent & PT_PRESENT_MASK))
  2869. continue;
  2870. if (!(ent & PT_WRITABLE_MASK))
  2871. continue;
  2872. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2873. }
  2874. }
  2875. return;
  2876. }
  2877. static void audit_rmap(struct kvm_vcpu *vcpu)
  2878. {
  2879. check_writable_mappings_rmap(vcpu);
  2880. count_rmaps(vcpu);
  2881. }
  2882. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2883. {
  2884. struct kvm_mmu_page *sp;
  2885. struct kvm_memory_slot *slot;
  2886. unsigned long *rmapp;
  2887. u64 *spte;
  2888. gfn_t gfn;
  2889. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2890. if (sp->role.direct)
  2891. continue;
  2892. if (sp->unsync)
  2893. continue;
  2894. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2895. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2896. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2897. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2898. while (spte) {
  2899. if (*spte & PT_WRITABLE_MASK)
  2900. printk(KERN_ERR "%s: (%s) shadow page has "
  2901. "writable mappings: gfn %lx role %x\n",
  2902. __func__, audit_msg, sp->gfn,
  2903. sp->role.word);
  2904. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2905. }
  2906. }
  2907. }
  2908. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2909. {
  2910. int olddbg = dbg;
  2911. dbg = 0;
  2912. audit_msg = msg;
  2913. audit_rmap(vcpu);
  2914. audit_write_protection(vcpu);
  2915. if (strcmp("pre pte write", audit_msg) != 0)
  2916. audit_mappings(vcpu);
  2917. audit_writable_sptes_have_rmaps(vcpu);
  2918. dbg = olddbg;
  2919. }
  2920. #endif