tsc.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/dmi.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <asm/hpet.h>
  14. #include <asm/timer.h>
  15. #include <asm/vgtod.h>
  16. #include <asm/time.h>
  17. #include <asm/delay.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/nmi.h>
  20. #include <asm/x86_init.h>
  21. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  22. EXPORT_SYMBOL(cpu_khz);
  23. unsigned int __read_mostly tsc_khz;
  24. EXPORT_SYMBOL(tsc_khz);
  25. /*
  26. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  27. */
  28. static int __read_mostly tsc_unstable;
  29. /* native_sched_clock() is called before tsc_init(), so
  30. we must start with the TSC soft disabled to prevent
  31. erroneous rdtsc usage on !cpu_has_tsc processors */
  32. static int __read_mostly tsc_disabled = -1;
  33. static int tsc_clocksource_reliable;
  34. /*
  35. * Scheduler clock - returns current time in nanosec units.
  36. */
  37. u64 native_sched_clock(void)
  38. {
  39. u64 this_offset;
  40. /*
  41. * Fall back to jiffies if there's no TSC available:
  42. * ( But note that we still use it if the TSC is marked
  43. * unstable. We do this because unlike Time Of Day,
  44. * the scheduler clock tolerates small errors and it's
  45. * very important for it to be as fast as the platform
  46. * can achive it. )
  47. */
  48. if (unlikely(tsc_disabled)) {
  49. /* No locking but a rare wrong value is not a big deal: */
  50. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  51. }
  52. /* read the Time Stamp Counter: */
  53. rdtscll(this_offset);
  54. /* return the value in ns */
  55. return __cycles_2_ns(this_offset);
  56. }
  57. /* We need to define a real function for sched_clock, to override the
  58. weak default version */
  59. #ifdef CONFIG_PARAVIRT
  60. unsigned long long sched_clock(void)
  61. {
  62. return paravirt_sched_clock();
  63. }
  64. #else
  65. unsigned long long
  66. sched_clock(void) __attribute__((alias("native_sched_clock")));
  67. #endif
  68. int check_tsc_unstable(void)
  69. {
  70. return tsc_unstable;
  71. }
  72. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  73. #ifdef CONFIG_X86_TSC
  74. int __init notsc_setup(char *str)
  75. {
  76. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  77. "cannot disable TSC completely.\n");
  78. tsc_disabled = 1;
  79. return 1;
  80. }
  81. #else
  82. /*
  83. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  84. * in cpu/common.c
  85. */
  86. int __init notsc_setup(char *str)
  87. {
  88. setup_clear_cpu_cap(X86_FEATURE_TSC);
  89. return 1;
  90. }
  91. #endif
  92. __setup("notsc", notsc_setup);
  93. static int __init tsc_setup(char *str)
  94. {
  95. if (!strcmp(str, "reliable"))
  96. tsc_clocksource_reliable = 1;
  97. return 1;
  98. }
  99. __setup("tsc=", tsc_setup);
  100. #define MAX_RETRIES 5
  101. #define SMI_TRESHOLD 50000
  102. /*
  103. * Read TSC and the reference counters. Take care of SMI disturbance
  104. */
  105. static u64 tsc_read_refs(u64 *p, int hpet)
  106. {
  107. u64 t1, t2;
  108. int i;
  109. for (i = 0; i < MAX_RETRIES; i++) {
  110. t1 = get_cycles();
  111. if (hpet)
  112. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  113. else
  114. *p = acpi_pm_read_early();
  115. t2 = get_cycles();
  116. if ((t2 - t1) < SMI_TRESHOLD)
  117. return t2;
  118. }
  119. return ULLONG_MAX;
  120. }
  121. /*
  122. * Calculate the TSC frequency from HPET reference
  123. */
  124. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  125. {
  126. u64 tmp;
  127. if (hpet2 < hpet1)
  128. hpet2 += 0x100000000ULL;
  129. hpet2 -= hpet1;
  130. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  131. do_div(tmp, 1000000);
  132. do_div(deltatsc, tmp);
  133. return (unsigned long) deltatsc;
  134. }
  135. /*
  136. * Calculate the TSC frequency from PMTimer reference
  137. */
  138. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  139. {
  140. u64 tmp;
  141. if (!pm1 && !pm2)
  142. return ULONG_MAX;
  143. if (pm2 < pm1)
  144. pm2 += (u64)ACPI_PM_OVRRUN;
  145. pm2 -= pm1;
  146. tmp = pm2 * 1000000000LL;
  147. do_div(tmp, PMTMR_TICKS_PER_SEC);
  148. do_div(deltatsc, tmp);
  149. return (unsigned long) deltatsc;
  150. }
  151. #define CAL_MS 10
  152. #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
  153. #define CAL_PIT_LOOPS 1000
  154. #define CAL2_MS 50
  155. #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
  156. #define CAL2_PIT_LOOPS 5000
  157. /*
  158. * Try to calibrate the TSC against the Programmable
  159. * Interrupt Timer and return the frequency of the TSC
  160. * in kHz.
  161. *
  162. * Return ULONG_MAX on failure to calibrate.
  163. */
  164. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  165. {
  166. u64 tsc, t1, t2, delta;
  167. unsigned long tscmin, tscmax;
  168. int pitcnt;
  169. /* Set the Gate high, disable speaker */
  170. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  171. /*
  172. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  173. * count mode), binary count. Set the latch register to 50ms
  174. * (LSB then MSB) to begin countdown.
  175. */
  176. outb(0xb0, 0x43);
  177. outb(latch & 0xff, 0x42);
  178. outb(latch >> 8, 0x42);
  179. tsc = t1 = t2 = get_cycles();
  180. pitcnt = 0;
  181. tscmax = 0;
  182. tscmin = ULONG_MAX;
  183. while ((inb(0x61) & 0x20) == 0) {
  184. t2 = get_cycles();
  185. delta = t2 - tsc;
  186. tsc = t2;
  187. if ((unsigned long) delta < tscmin)
  188. tscmin = (unsigned int) delta;
  189. if ((unsigned long) delta > tscmax)
  190. tscmax = (unsigned int) delta;
  191. pitcnt++;
  192. }
  193. /*
  194. * Sanity checks:
  195. *
  196. * If we were not able to read the PIT more than loopmin
  197. * times, then we have been hit by a massive SMI
  198. *
  199. * If the maximum is 10 times larger than the minimum,
  200. * then we got hit by an SMI as well.
  201. */
  202. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  203. return ULONG_MAX;
  204. /* Calculate the PIT value */
  205. delta = t2 - t1;
  206. do_div(delta, ms);
  207. return delta;
  208. }
  209. /*
  210. * This reads the current MSB of the PIT counter, and
  211. * checks if we are running on sufficiently fast and
  212. * non-virtualized hardware.
  213. *
  214. * Our expectations are:
  215. *
  216. * - the PIT is running at roughly 1.19MHz
  217. *
  218. * - each IO is going to take about 1us on real hardware,
  219. * but we allow it to be much faster (by a factor of 10) or
  220. * _slightly_ slower (ie we allow up to a 2us read+counter
  221. * update - anything else implies a unacceptably slow CPU
  222. * or PIT for the fast calibration to work.
  223. *
  224. * - with 256 PIT ticks to read the value, we have 214us to
  225. * see the same MSB (and overhead like doing a single TSC
  226. * read per MSB value etc).
  227. *
  228. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  229. * them each to take about a microsecond on real hardware.
  230. * So we expect a count value of around 100. But we'll be
  231. * generous, and accept anything over 50.
  232. *
  233. * - if the PIT is stuck, and we see *many* more reads, we
  234. * return early (and the next caller of pit_expect_msb()
  235. * then consider it a failure when they don't see the
  236. * next expected value).
  237. *
  238. * These expectations mean that we know that we have seen the
  239. * transition from one expected value to another with a fairly
  240. * high accuracy, and we didn't miss any events. We can thus
  241. * use the TSC value at the transitions to calculate a pretty
  242. * good value for the TSC frequencty.
  243. */
  244. static inline int pit_verify_msb(unsigned char val)
  245. {
  246. /* Ignore LSB */
  247. inb(0x42);
  248. return inb(0x42) == val;
  249. }
  250. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  251. {
  252. int count;
  253. u64 tsc = 0;
  254. for (count = 0; count < 50000; count++) {
  255. if (!pit_verify_msb(val))
  256. break;
  257. tsc = get_cycles();
  258. }
  259. *deltap = get_cycles() - tsc;
  260. *tscp = tsc;
  261. /*
  262. * We require _some_ success, but the quality control
  263. * will be based on the error terms on the TSC values.
  264. */
  265. return count > 5;
  266. }
  267. /*
  268. * How many MSB values do we want to see? We aim for
  269. * a maximum error rate of 500ppm (in practice the
  270. * real error is much smaller), but refuse to spend
  271. * more than 25ms on it.
  272. */
  273. #define MAX_QUICK_PIT_MS 25
  274. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  275. static unsigned long quick_pit_calibrate(void)
  276. {
  277. int i;
  278. u64 tsc, delta;
  279. unsigned long d1, d2;
  280. /* Set the Gate high, disable speaker */
  281. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  282. /*
  283. * Counter 2, mode 0 (one-shot), binary count
  284. *
  285. * NOTE! Mode 2 decrements by two (and then the
  286. * output is flipped each time, giving the same
  287. * final output frequency as a decrement-by-one),
  288. * so mode 0 is much better when looking at the
  289. * individual counts.
  290. */
  291. outb(0xb0, 0x43);
  292. /* Start at 0xffff */
  293. outb(0xff, 0x42);
  294. outb(0xff, 0x42);
  295. /*
  296. * The PIT starts counting at the next edge, so we
  297. * need to delay for a microsecond. The easiest way
  298. * to do that is to just read back the 16-bit counter
  299. * once from the PIT.
  300. */
  301. pit_verify_msb(0);
  302. if (pit_expect_msb(0xff, &tsc, &d1)) {
  303. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  304. if (!pit_expect_msb(0xff-i, &delta, &d2))
  305. break;
  306. /*
  307. * Iterate until the error is less than 500 ppm
  308. */
  309. delta -= tsc;
  310. if (d1+d2 >= delta >> 11)
  311. continue;
  312. /*
  313. * Check the PIT one more time to verify that
  314. * all TSC reads were stable wrt the PIT.
  315. *
  316. * This also guarantees serialization of the
  317. * last cycle read ('d2') in pit_expect_msb.
  318. */
  319. if (!pit_verify_msb(0xfe - i))
  320. break;
  321. goto success;
  322. }
  323. }
  324. printk("Fast TSC calibration failed\n");
  325. return 0;
  326. success:
  327. /*
  328. * Ok, if we get here, then we've seen the
  329. * MSB of the PIT decrement 'i' times, and the
  330. * error has shrunk to less than 500 ppm.
  331. *
  332. * As a result, we can depend on there not being
  333. * any odd delays anywhere, and the TSC reads are
  334. * reliable (within the error). We also adjust the
  335. * delta to the middle of the error bars, just
  336. * because it looks nicer.
  337. *
  338. * kHz = ticks / time-in-seconds / 1000;
  339. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  340. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  341. */
  342. delta += (long)(d2 - d1)/2;
  343. delta *= PIT_TICK_RATE;
  344. do_div(delta, i*256*1000);
  345. printk("Fast TSC calibration using PIT\n");
  346. return delta;
  347. }
  348. /**
  349. * native_calibrate_tsc - calibrate the tsc on boot
  350. */
  351. unsigned long native_calibrate_tsc(void)
  352. {
  353. u64 tsc1, tsc2, delta, ref1, ref2;
  354. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  355. unsigned long flags, latch, ms, fast_calibrate;
  356. int hpet = is_hpet_enabled(), i, loopmin;
  357. local_irq_save(flags);
  358. fast_calibrate = quick_pit_calibrate();
  359. local_irq_restore(flags);
  360. if (fast_calibrate)
  361. return fast_calibrate;
  362. /*
  363. * Run 5 calibration loops to get the lowest frequency value
  364. * (the best estimate). We use two different calibration modes
  365. * here:
  366. *
  367. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  368. * load a timeout of 50ms. We read the time right after we
  369. * started the timer and wait until the PIT count down reaches
  370. * zero. In each wait loop iteration we read the TSC and check
  371. * the delta to the previous read. We keep track of the min
  372. * and max values of that delta. The delta is mostly defined
  373. * by the IO time of the PIT access, so we can detect when a
  374. * SMI/SMM disturbance happend between the two reads. If the
  375. * maximum time is significantly larger than the minimum time,
  376. * then we discard the result and have another try.
  377. *
  378. * 2) Reference counter. If available we use the HPET or the
  379. * PMTIMER as a reference to check the sanity of that value.
  380. * We use separate TSC readouts and check inside of the
  381. * reference read for a SMI/SMM disturbance. We dicard
  382. * disturbed values here as well. We do that around the PIT
  383. * calibration delay loop as we have to wait for a certain
  384. * amount of time anyway.
  385. */
  386. /* Preset PIT loop values */
  387. latch = CAL_LATCH;
  388. ms = CAL_MS;
  389. loopmin = CAL_PIT_LOOPS;
  390. for (i = 0; i < 3; i++) {
  391. unsigned long tsc_pit_khz;
  392. /*
  393. * Read the start value and the reference count of
  394. * hpet/pmtimer when available. Then do the PIT
  395. * calibration, which will take at least 50ms, and
  396. * read the end value.
  397. */
  398. local_irq_save(flags);
  399. tsc1 = tsc_read_refs(&ref1, hpet);
  400. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  401. tsc2 = tsc_read_refs(&ref2, hpet);
  402. local_irq_restore(flags);
  403. /* Pick the lowest PIT TSC calibration so far */
  404. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  405. /* hpet or pmtimer available ? */
  406. if (!hpet && !ref1 && !ref2)
  407. continue;
  408. /* Check, whether the sampling was disturbed by an SMI */
  409. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  410. continue;
  411. tsc2 = (tsc2 - tsc1) * 1000000LL;
  412. if (hpet)
  413. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  414. else
  415. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  416. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  417. /* Check the reference deviation */
  418. delta = ((u64) tsc_pit_min) * 100;
  419. do_div(delta, tsc_ref_min);
  420. /*
  421. * If both calibration results are inside a 10% window
  422. * then we can be sure, that the calibration
  423. * succeeded. We break out of the loop right away. We
  424. * use the reference value, as it is more precise.
  425. */
  426. if (delta >= 90 && delta <= 110) {
  427. printk(KERN_INFO
  428. "TSC: PIT calibration matches %s. %d loops\n",
  429. hpet ? "HPET" : "PMTIMER", i + 1);
  430. return tsc_ref_min;
  431. }
  432. /*
  433. * Check whether PIT failed more than once. This
  434. * happens in virtualized environments. We need to
  435. * give the virtual PC a slightly longer timeframe for
  436. * the HPET/PMTIMER to make the result precise.
  437. */
  438. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  439. latch = CAL2_LATCH;
  440. ms = CAL2_MS;
  441. loopmin = CAL2_PIT_LOOPS;
  442. }
  443. }
  444. /*
  445. * Now check the results.
  446. */
  447. if (tsc_pit_min == ULONG_MAX) {
  448. /* PIT gave no useful value */
  449. printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
  450. /* We don't have an alternative source, disable TSC */
  451. if (!hpet && !ref1 && !ref2) {
  452. printk("TSC: No reference (HPET/PMTIMER) available\n");
  453. return 0;
  454. }
  455. /* The alternative source failed as well, disable TSC */
  456. if (tsc_ref_min == ULONG_MAX) {
  457. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  458. "failed.\n");
  459. return 0;
  460. }
  461. /* Use the alternative source */
  462. printk(KERN_INFO "TSC: using %s reference calibration\n",
  463. hpet ? "HPET" : "PMTIMER");
  464. return tsc_ref_min;
  465. }
  466. /* We don't have an alternative source, use the PIT calibration value */
  467. if (!hpet && !ref1 && !ref2) {
  468. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  469. return tsc_pit_min;
  470. }
  471. /* The alternative source failed, use the PIT calibration value */
  472. if (tsc_ref_min == ULONG_MAX) {
  473. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
  474. "Using PIT calibration\n");
  475. return tsc_pit_min;
  476. }
  477. /*
  478. * The calibration values differ too much. In doubt, we use
  479. * the PIT value as we know that there are PMTIMERs around
  480. * running at double speed. At least we let the user know:
  481. */
  482. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  483. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  484. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  485. return tsc_pit_min;
  486. }
  487. int recalibrate_cpu_khz(void)
  488. {
  489. #ifndef CONFIG_SMP
  490. unsigned long cpu_khz_old = cpu_khz;
  491. if (cpu_has_tsc) {
  492. tsc_khz = x86_platform.calibrate_tsc();
  493. cpu_khz = tsc_khz;
  494. cpu_data(0).loops_per_jiffy =
  495. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  496. cpu_khz_old, cpu_khz);
  497. return 0;
  498. } else
  499. return -ENODEV;
  500. #else
  501. return -ENODEV;
  502. #endif
  503. }
  504. EXPORT_SYMBOL(recalibrate_cpu_khz);
  505. /* Accelerators for sched_clock()
  506. * convert from cycles(64bits) => nanoseconds (64bits)
  507. * basic equation:
  508. * ns = cycles / (freq / ns_per_sec)
  509. * ns = cycles * (ns_per_sec / freq)
  510. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  511. * ns = cycles * (10^6 / cpu_khz)
  512. *
  513. * Then we use scaling math (suggested by george@mvista.com) to get:
  514. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  515. * ns = cycles * cyc2ns_scale / SC
  516. *
  517. * And since SC is a constant power of two, we can convert the div
  518. * into a shift.
  519. *
  520. * We can use khz divisor instead of mhz to keep a better precision, since
  521. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  522. * (mathieu.desnoyers@polymtl.ca)
  523. *
  524. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  525. */
  526. DEFINE_PER_CPU(unsigned long, cyc2ns);
  527. DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
  528. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  529. {
  530. unsigned long long tsc_now, ns_now, *offset;
  531. unsigned long flags, *scale;
  532. local_irq_save(flags);
  533. sched_clock_idle_sleep_event();
  534. scale = &per_cpu(cyc2ns, cpu);
  535. offset = &per_cpu(cyc2ns_offset, cpu);
  536. rdtscll(tsc_now);
  537. ns_now = __cycles_2_ns(tsc_now);
  538. if (cpu_khz) {
  539. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  540. *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
  541. }
  542. sched_clock_idle_wakeup_event(0);
  543. local_irq_restore(flags);
  544. }
  545. #ifdef CONFIG_CPU_FREQ
  546. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  547. * changes.
  548. *
  549. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  550. * not that important because current Opteron setups do not support
  551. * scaling on SMP anyroads.
  552. *
  553. * Should fix up last_tsc too. Currently gettimeofday in the
  554. * first tick after the change will be slightly wrong.
  555. */
  556. static unsigned int ref_freq;
  557. static unsigned long loops_per_jiffy_ref;
  558. static unsigned long tsc_khz_ref;
  559. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  560. void *data)
  561. {
  562. struct cpufreq_freqs *freq = data;
  563. unsigned long *lpj;
  564. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  565. return 0;
  566. lpj = &boot_cpu_data.loops_per_jiffy;
  567. #ifdef CONFIG_SMP
  568. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  569. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  570. #endif
  571. if (!ref_freq) {
  572. ref_freq = freq->old;
  573. loops_per_jiffy_ref = *lpj;
  574. tsc_khz_ref = tsc_khz;
  575. }
  576. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  577. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  578. (val == CPUFREQ_RESUMECHANGE)) {
  579. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  580. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  581. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  582. mark_tsc_unstable("cpufreq changes");
  583. }
  584. set_cyc2ns_scale(tsc_khz, freq->cpu);
  585. return 0;
  586. }
  587. static struct notifier_block time_cpufreq_notifier_block = {
  588. .notifier_call = time_cpufreq_notifier
  589. };
  590. static int __init cpufreq_tsc(void)
  591. {
  592. if (!cpu_has_tsc)
  593. return 0;
  594. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  595. return 0;
  596. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  597. CPUFREQ_TRANSITION_NOTIFIER);
  598. return 0;
  599. }
  600. core_initcall(cpufreq_tsc);
  601. #endif /* CONFIG_CPU_FREQ */
  602. /* clocksource code */
  603. static struct clocksource clocksource_tsc;
  604. /*
  605. * We compare the TSC to the cycle_last value in the clocksource
  606. * structure to avoid a nasty time-warp. This can be observed in a
  607. * very small window right after one CPU updated cycle_last under
  608. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  609. * is smaller than the cycle_last reference value due to a TSC which
  610. * is slighty behind. This delta is nowhere else observable, but in
  611. * that case it results in a forward time jump in the range of hours
  612. * due to the unsigned delta calculation of the time keeping core
  613. * code, which is necessary to support wrapping clocksources like pm
  614. * timer.
  615. */
  616. static cycle_t read_tsc(struct clocksource *cs)
  617. {
  618. cycle_t ret = (cycle_t)get_cycles();
  619. return ret >= clocksource_tsc.cycle_last ?
  620. ret : clocksource_tsc.cycle_last;
  621. }
  622. #ifdef CONFIG_X86_64
  623. static cycle_t __vsyscall_fn vread_tsc(void)
  624. {
  625. cycle_t ret;
  626. /*
  627. * Surround the RDTSC by barriers, to make sure it's not
  628. * speculated to outside the seqlock critical section and
  629. * does not cause time warps:
  630. */
  631. rdtsc_barrier();
  632. ret = (cycle_t)vget_cycles();
  633. rdtsc_barrier();
  634. return ret >= __vsyscall_gtod_data.clock.cycle_last ?
  635. ret : __vsyscall_gtod_data.clock.cycle_last;
  636. }
  637. #endif
  638. static void resume_tsc(void)
  639. {
  640. clocksource_tsc.cycle_last = 0;
  641. }
  642. static struct clocksource clocksource_tsc = {
  643. .name = "tsc",
  644. .rating = 300,
  645. .read = read_tsc,
  646. .resume = resume_tsc,
  647. .mask = CLOCKSOURCE_MASK(64),
  648. .shift = 22,
  649. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  650. CLOCK_SOURCE_MUST_VERIFY,
  651. #ifdef CONFIG_X86_64
  652. .vread = vread_tsc,
  653. #endif
  654. };
  655. void mark_tsc_unstable(char *reason)
  656. {
  657. if (!tsc_unstable) {
  658. tsc_unstable = 1;
  659. printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
  660. /* Change only the rating, when not registered */
  661. if (clocksource_tsc.mult)
  662. clocksource_mark_unstable(&clocksource_tsc);
  663. else {
  664. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  665. clocksource_tsc.rating = 0;
  666. }
  667. }
  668. }
  669. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  670. static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
  671. {
  672. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  673. d->ident);
  674. tsc_unstable = 1;
  675. return 0;
  676. }
  677. /* List of systems that have known TSC problems */
  678. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  679. {
  680. .callback = dmi_mark_tsc_unstable,
  681. .ident = "IBM Thinkpad 380XD",
  682. .matches = {
  683. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  684. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  685. },
  686. },
  687. {}
  688. };
  689. static void __init check_system_tsc_reliable(void)
  690. {
  691. #ifdef CONFIG_MGEODE_LX
  692. /* RTSC counts during suspend */
  693. #define RTSC_SUSP 0x100
  694. unsigned long res_low, res_high;
  695. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  696. /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
  697. if (res_low & RTSC_SUSP)
  698. tsc_clocksource_reliable = 1;
  699. #endif
  700. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  701. tsc_clocksource_reliable = 1;
  702. }
  703. /*
  704. * Make an educated guess if the TSC is trustworthy and synchronized
  705. * over all CPUs.
  706. */
  707. __cpuinit int unsynchronized_tsc(void)
  708. {
  709. if (!cpu_has_tsc || tsc_unstable)
  710. return 1;
  711. #ifdef CONFIG_SMP
  712. if (apic_is_clustered_box())
  713. return 1;
  714. #endif
  715. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  716. return 0;
  717. /*
  718. * Intel systems are normally all synchronized.
  719. * Exceptions must mark TSC as unstable:
  720. */
  721. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  722. /* assume multi socket systems are not synchronized: */
  723. if (num_possible_cpus() > 1)
  724. tsc_unstable = 1;
  725. }
  726. return tsc_unstable;
  727. }
  728. static void __init init_tsc_clocksource(void)
  729. {
  730. clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
  731. clocksource_tsc.shift);
  732. if (tsc_clocksource_reliable)
  733. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  734. /* lower the rating if we already know its unstable: */
  735. if (check_tsc_unstable()) {
  736. clocksource_tsc.rating = 0;
  737. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  738. }
  739. clocksource_register(&clocksource_tsc);
  740. }
  741. #ifdef CONFIG_X86_64
  742. /*
  743. * calibrate_cpu is used on systems with fixed rate TSCs to determine
  744. * processor frequency
  745. */
  746. #define TICK_COUNT 100000000
  747. static unsigned long __init calibrate_cpu(void)
  748. {
  749. int tsc_start, tsc_now;
  750. int i, no_ctr_free;
  751. unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
  752. unsigned long flags;
  753. for (i = 0; i < 4; i++)
  754. if (avail_to_resrv_perfctr_nmi_bit(i))
  755. break;
  756. no_ctr_free = (i == 4);
  757. if (no_ctr_free) {
  758. WARN(1, KERN_WARNING "Warning: AMD perfctrs busy ... "
  759. "cpu_khz value may be incorrect.\n");
  760. i = 3;
  761. rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
  762. wrmsrl(MSR_K7_EVNTSEL3, 0);
  763. rdmsrl(MSR_K7_PERFCTR3, pmc3);
  764. } else {
  765. reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
  766. reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
  767. }
  768. local_irq_save(flags);
  769. /* start measuring cycles, incrementing from 0 */
  770. wrmsrl(MSR_K7_PERFCTR0 + i, 0);
  771. wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
  772. rdtscl(tsc_start);
  773. do {
  774. rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
  775. tsc_now = get_cycles();
  776. } while ((tsc_now - tsc_start) < TICK_COUNT);
  777. local_irq_restore(flags);
  778. if (no_ctr_free) {
  779. wrmsrl(MSR_K7_EVNTSEL3, 0);
  780. wrmsrl(MSR_K7_PERFCTR3, pmc3);
  781. wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
  782. } else {
  783. release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
  784. release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
  785. }
  786. return pmc_now * tsc_khz / (tsc_now - tsc_start);
  787. }
  788. #else
  789. static inline unsigned long calibrate_cpu(void) { return cpu_khz; }
  790. #endif
  791. void __init tsc_init(void)
  792. {
  793. u64 lpj;
  794. int cpu;
  795. x86_init.timers.tsc_pre_init();
  796. if (!cpu_has_tsc)
  797. return;
  798. tsc_khz = x86_platform.calibrate_tsc();
  799. cpu_khz = tsc_khz;
  800. if (!tsc_khz) {
  801. mark_tsc_unstable("could not calculate TSC khz");
  802. return;
  803. }
  804. if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
  805. (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
  806. cpu_khz = calibrate_cpu();
  807. printk("Detected %lu.%03lu MHz processor.\n",
  808. (unsigned long)cpu_khz / 1000,
  809. (unsigned long)cpu_khz % 1000);
  810. /*
  811. * Secondary CPUs do not run through tsc_init(), so set up
  812. * all the scale factors for all CPUs, assuming the same
  813. * speed as the bootup CPU. (cpufreq notifiers will fix this
  814. * up if their speed diverges)
  815. */
  816. for_each_possible_cpu(cpu)
  817. set_cyc2ns_scale(cpu_khz, cpu);
  818. if (tsc_disabled > 0)
  819. return;
  820. /* now allow native_sched_clock() to use rdtsc */
  821. tsc_disabled = 0;
  822. lpj = ((u64)tsc_khz * 1000);
  823. do_div(lpj, HZ);
  824. lpj_fine = lpj;
  825. use_tsc_delay();
  826. /* Check and install the TSC clocksource */
  827. dmi_check_system(bad_tsc_dmi_table);
  828. if (unsynchronized_tsc())
  829. mark_tsc_unstable("TSCs unsynchronized");
  830. check_system_tsc_reliable();
  831. init_tsc_clocksource();
  832. }