process_32.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <linux/stackprotector.h>
  11. #include <linux/cpu.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/fs.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/elfcore.h>
  18. #include <linux/smp.h>
  19. #include <linux/stddef.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/user.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/utsname.h>
  25. #include <linux/delay.h>
  26. #include <linux/reboot.h>
  27. #include <linux/init.h>
  28. #include <linux/mc146818rtc.h>
  29. #include <linux/module.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/personality.h>
  33. #include <linux/tick.h>
  34. #include <linux/percpu.h>
  35. #include <linux/prctl.h>
  36. #include <linux/dmi.h>
  37. #include <linux/ftrace.h>
  38. #include <linux/uaccess.h>
  39. #include <linux/io.h>
  40. #include <linux/kdebug.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/system.h>
  43. #include <asm/ldt.h>
  44. #include <asm/processor.h>
  45. #include <asm/i387.h>
  46. #include <asm/desc.h>
  47. #ifdef CONFIG_MATH_EMULATION
  48. #include <asm/math_emu.h>
  49. #endif
  50. #include <linux/err.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/cpu.h>
  53. #include <asm/idle.h>
  54. #include <asm/syscalls.h>
  55. #include <asm/ds.h>
  56. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  57. /*
  58. * Return saved PC of a blocked thread.
  59. */
  60. unsigned long thread_saved_pc(struct task_struct *tsk)
  61. {
  62. return ((unsigned long *)tsk->thread.sp)[3];
  63. }
  64. #ifndef CONFIG_SMP
  65. static inline void play_dead(void)
  66. {
  67. BUG();
  68. }
  69. #endif
  70. /*
  71. * The idle thread. There's no useful work to be
  72. * done, so just try to conserve power and have a
  73. * low exit latency (ie sit in a loop waiting for
  74. * somebody to say that they'd like to reschedule)
  75. */
  76. void cpu_idle(void)
  77. {
  78. int cpu = smp_processor_id();
  79. /*
  80. * If we're the non-boot CPU, nothing set the stack canary up
  81. * for us. CPU0 already has it initialized but no harm in
  82. * doing it again. This is a good place for updating it, as
  83. * we wont ever return from this function (so the invalid
  84. * canaries already on the stack wont ever trigger).
  85. */
  86. boot_init_stack_canary();
  87. current_thread_info()->status |= TS_POLLING;
  88. /* endless idle loop with no priority at all */
  89. while (1) {
  90. tick_nohz_stop_sched_tick(1);
  91. while (!need_resched()) {
  92. check_pgt_cache();
  93. rmb();
  94. if (cpu_is_offline(cpu))
  95. play_dead();
  96. local_irq_disable();
  97. /* Don't trace irqs off for idle */
  98. stop_critical_timings();
  99. pm_idle();
  100. start_critical_timings();
  101. }
  102. tick_nohz_restart_sched_tick();
  103. preempt_enable_no_resched();
  104. schedule();
  105. preempt_disable();
  106. }
  107. }
  108. void __show_regs(struct pt_regs *regs, int all)
  109. {
  110. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  111. unsigned long d0, d1, d2, d3, d6, d7;
  112. unsigned long sp;
  113. unsigned short ss, gs;
  114. const char *board;
  115. if (user_mode_vm(regs)) {
  116. sp = regs->sp;
  117. ss = regs->ss & 0xffff;
  118. gs = get_user_gs(regs);
  119. } else {
  120. sp = (unsigned long) (&regs->sp);
  121. savesegment(ss, ss);
  122. savesegment(gs, gs);
  123. }
  124. printk("\n");
  125. board = dmi_get_system_info(DMI_PRODUCT_NAME);
  126. if (!board)
  127. board = "";
  128. printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
  129. task_pid_nr(current), current->comm,
  130. print_tainted(), init_utsname()->release,
  131. (int)strcspn(init_utsname()->version, " "),
  132. init_utsname()->version, board);
  133. printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
  134. (u16)regs->cs, regs->ip, regs->flags,
  135. smp_processor_id());
  136. print_symbol("EIP is at %s\n", regs->ip);
  137. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  138. regs->ax, regs->bx, regs->cx, regs->dx);
  139. printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  140. regs->si, regs->di, regs->bp, sp);
  141. printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
  142. (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
  143. if (!all)
  144. return;
  145. cr0 = read_cr0();
  146. cr2 = read_cr2();
  147. cr3 = read_cr3();
  148. cr4 = read_cr4_safe();
  149. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  150. cr0, cr2, cr3, cr4);
  151. get_debugreg(d0, 0);
  152. get_debugreg(d1, 1);
  153. get_debugreg(d2, 2);
  154. get_debugreg(d3, 3);
  155. printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
  156. d0, d1, d2, d3);
  157. get_debugreg(d6, 6);
  158. get_debugreg(d7, 7);
  159. printk("DR6: %08lx DR7: %08lx\n",
  160. d6, d7);
  161. }
  162. void show_regs(struct pt_regs *regs)
  163. {
  164. __show_regs(regs, 1);
  165. show_trace(NULL, regs, &regs->sp, regs->bp);
  166. }
  167. /*
  168. * This gets run with %bx containing the
  169. * function to call, and %dx containing
  170. * the "args".
  171. */
  172. extern void kernel_thread_helper(void);
  173. /*
  174. * Create a kernel thread
  175. */
  176. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  177. {
  178. struct pt_regs regs;
  179. memset(&regs, 0, sizeof(regs));
  180. regs.bx = (unsigned long) fn;
  181. regs.dx = (unsigned long) arg;
  182. regs.ds = __USER_DS;
  183. regs.es = __USER_DS;
  184. regs.fs = __KERNEL_PERCPU;
  185. regs.gs = __KERNEL_STACK_CANARY;
  186. regs.orig_ax = -1;
  187. regs.ip = (unsigned long) kernel_thread_helper;
  188. regs.cs = __KERNEL_CS | get_kernel_rpl();
  189. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  190. /* Ok, create the new process.. */
  191. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  192. }
  193. EXPORT_SYMBOL(kernel_thread);
  194. void release_thread(struct task_struct *dead_task)
  195. {
  196. BUG_ON(dead_task->mm);
  197. release_vm86_irqs(dead_task);
  198. }
  199. /*
  200. * This gets called before we allocate a new thread and copy
  201. * the current task into it.
  202. */
  203. void prepare_to_copy(struct task_struct *tsk)
  204. {
  205. unlazy_fpu(tsk);
  206. }
  207. int copy_thread(unsigned long clone_flags, unsigned long sp,
  208. unsigned long unused,
  209. struct task_struct *p, struct pt_regs *regs)
  210. {
  211. struct pt_regs *childregs;
  212. struct task_struct *tsk;
  213. int err;
  214. childregs = task_pt_regs(p);
  215. *childregs = *regs;
  216. childregs->ax = 0;
  217. childregs->sp = sp;
  218. p->thread.sp = (unsigned long) childregs;
  219. p->thread.sp0 = (unsigned long) (childregs+1);
  220. p->thread.ip = (unsigned long) ret_from_fork;
  221. task_user_gs(p) = get_user_gs(regs);
  222. tsk = current;
  223. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  224. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  225. IO_BITMAP_BYTES, GFP_KERNEL);
  226. if (!p->thread.io_bitmap_ptr) {
  227. p->thread.io_bitmap_max = 0;
  228. return -ENOMEM;
  229. }
  230. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  231. }
  232. err = 0;
  233. /*
  234. * Set a new TLS for the child thread?
  235. */
  236. if (clone_flags & CLONE_SETTLS)
  237. err = do_set_thread_area(p, -1,
  238. (struct user_desc __user *)childregs->si, 0);
  239. if (err && p->thread.io_bitmap_ptr) {
  240. kfree(p->thread.io_bitmap_ptr);
  241. p->thread.io_bitmap_max = 0;
  242. }
  243. clear_tsk_thread_flag(p, TIF_DS_AREA_MSR);
  244. p->thread.ds_ctx = NULL;
  245. clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR);
  246. p->thread.debugctlmsr = 0;
  247. return err;
  248. }
  249. void
  250. start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  251. {
  252. set_user_gs(regs, 0);
  253. regs->fs = 0;
  254. set_fs(USER_DS);
  255. regs->ds = __USER_DS;
  256. regs->es = __USER_DS;
  257. regs->ss = __USER_DS;
  258. regs->cs = __USER_CS;
  259. regs->ip = new_ip;
  260. regs->sp = new_sp;
  261. /*
  262. * Free the old FP and other extended state
  263. */
  264. free_thread_xstate(current);
  265. }
  266. EXPORT_SYMBOL_GPL(start_thread);
  267. /*
  268. * switch_to(x,yn) should switch tasks from x to y.
  269. *
  270. * We fsave/fwait so that an exception goes off at the right time
  271. * (as a call from the fsave or fwait in effect) rather than to
  272. * the wrong process. Lazy FP saving no longer makes any sense
  273. * with modern CPU's, and this simplifies a lot of things (SMP
  274. * and UP become the same).
  275. *
  276. * NOTE! We used to use the x86 hardware context switching. The
  277. * reason for not using it any more becomes apparent when you
  278. * try to recover gracefully from saved state that is no longer
  279. * valid (stale segment register values in particular). With the
  280. * hardware task-switch, there is no way to fix up bad state in
  281. * a reasonable manner.
  282. *
  283. * The fact that Intel documents the hardware task-switching to
  284. * be slow is a fairly red herring - this code is not noticeably
  285. * faster. However, there _is_ some room for improvement here,
  286. * so the performance issues may eventually be a valid point.
  287. * More important, however, is the fact that this allows us much
  288. * more flexibility.
  289. *
  290. * The return value (in %ax) will be the "prev" task after
  291. * the task-switch, and shows up in ret_from_fork in entry.S,
  292. * for example.
  293. */
  294. __notrace_funcgraph struct task_struct *
  295. __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  296. {
  297. struct thread_struct *prev = &prev_p->thread,
  298. *next = &next_p->thread;
  299. int cpu = smp_processor_id();
  300. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  301. bool preload_fpu;
  302. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  303. /*
  304. * If the task has used fpu the last 5 timeslices, just do a full
  305. * restore of the math state immediately to avoid the trap; the
  306. * chances of needing FPU soon are obviously high now
  307. */
  308. preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;
  309. __unlazy_fpu(prev_p);
  310. /* we're going to use this soon, after a few expensive things */
  311. if (preload_fpu)
  312. prefetch(next->xstate);
  313. /*
  314. * Reload esp0.
  315. */
  316. load_sp0(tss, next);
  317. /*
  318. * Save away %gs. No need to save %fs, as it was saved on the
  319. * stack on entry. No need to save %es and %ds, as those are
  320. * always kernel segments while inside the kernel. Doing this
  321. * before setting the new TLS descriptors avoids the situation
  322. * where we temporarily have non-reloadable segments in %fs
  323. * and %gs. This could be an issue if the NMI handler ever
  324. * used %fs or %gs (it does not today), or if the kernel is
  325. * running inside of a hypervisor layer.
  326. */
  327. lazy_save_gs(prev->gs);
  328. /*
  329. * Load the per-thread Thread-Local Storage descriptor.
  330. */
  331. load_TLS(next, cpu);
  332. /*
  333. * Restore IOPL if needed. In normal use, the flags restore
  334. * in the switch assembly will handle this. But if the kernel
  335. * is running virtualized at a non-zero CPL, the popf will
  336. * not restore flags, so it must be done in a separate step.
  337. */
  338. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  339. set_iopl_mask(next->iopl);
  340. /*
  341. * Now maybe handle debug registers and/or IO bitmaps
  342. */
  343. if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
  344. task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
  345. __switch_to_xtra(prev_p, next_p, tss);
  346. /* If we're going to preload the fpu context, make sure clts
  347. is run while we're batching the cpu state updates. */
  348. if (preload_fpu)
  349. clts();
  350. /*
  351. * Leave lazy mode, flushing any hypercalls made here.
  352. * This must be done before restoring TLS segments so
  353. * the GDT and LDT are properly updated, and must be
  354. * done before math_state_restore, so the TS bit is up
  355. * to date.
  356. */
  357. arch_end_context_switch(next_p);
  358. if (preload_fpu)
  359. __math_state_restore();
  360. /*
  361. * Restore %gs if needed (which is common)
  362. */
  363. if (prev->gs | next->gs)
  364. lazy_load_gs(next->gs);
  365. percpu_write(current_task, next_p);
  366. return prev_p;
  367. }
  368. int sys_clone(struct pt_regs *regs)
  369. {
  370. unsigned long clone_flags;
  371. unsigned long newsp;
  372. int __user *parent_tidptr, *child_tidptr;
  373. clone_flags = regs->bx;
  374. newsp = regs->cx;
  375. parent_tidptr = (int __user *)regs->dx;
  376. child_tidptr = (int __user *)regs->di;
  377. if (!newsp)
  378. newsp = regs->sp;
  379. return do_fork(clone_flags, newsp, regs, 0, parent_tidptr, child_tidptr);
  380. }
  381. /*
  382. * sys_execve() executes a new program.
  383. */
  384. int sys_execve(struct pt_regs *regs)
  385. {
  386. int error;
  387. char *filename;
  388. filename = getname((char __user *) regs->bx);
  389. error = PTR_ERR(filename);
  390. if (IS_ERR(filename))
  391. goto out;
  392. error = do_execve(filename,
  393. (char __user * __user *) regs->cx,
  394. (char __user * __user *) regs->dx,
  395. regs);
  396. if (error == 0) {
  397. /* Make sure we don't return using sysenter.. */
  398. set_thread_flag(TIF_IRET);
  399. }
  400. putname(filename);
  401. out:
  402. return error;
  403. }
  404. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  405. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  406. unsigned long get_wchan(struct task_struct *p)
  407. {
  408. unsigned long bp, sp, ip;
  409. unsigned long stack_page;
  410. int count = 0;
  411. if (!p || p == current || p->state == TASK_RUNNING)
  412. return 0;
  413. stack_page = (unsigned long)task_stack_page(p);
  414. sp = p->thread.sp;
  415. if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
  416. return 0;
  417. /* include/asm-i386/system.h:switch_to() pushes bp last. */
  418. bp = *(unsigned long *) sp;
  419. do {
  420. if (bp < stack_page || bp > top_ebp+stack_page)
  421. return 0;
  422. ip = *(unsigned long *) (bp+4);
  423. if (!in_sched_functions(ip))
  424. return ip;
  425. bp = *(unsigned long *) bp;
  426. } while (count++ < 16);
  427. return 0;
  428. }