dumpstack_64.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4. */
  5. #include <linux/kallsyms.h>
  6. #include <linux/kprobes.h>
  7. #include <linux/uaccess.h>
  8. #include <linux/hardirq.h>
  9. #include <linux/kdebug.h>
  10. #include <linux/module.h>
  11. #include <linux/ptrace.h>
  12. #include <linux/kexec.h>
  13. #include <linux/bug.h>
  14. #include <linux/nmi.h>
  15. #include <linux/sysfs.h>
  16. #include <asm/stacktrace.h>
  17. #include "dumpstack.h"
  18. static char x86_stack_ids[][8] = {
  19. [DEBUG_STACK - 1] = "#DB",
  20. [NMI_STACK - 1] = "NMI",
  21. [DOUBLEFAULT_STACK - 1] = "#DF",
  22. [STACKFAULT_STACK - 1] = "#SS",
  23. [MCE_STACK - 1] = "#MC",
  24. #if DEBUG_STKSZ > EXCEPTION_STKSZ
  25. [N_EXCEPTION_STACKS ...
  26. N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
  27. #endif
  28. };
  29. int x86_is_stack_id(int id, char *name)
  30. {
  31. return x86_stack_ids[id - 1] == name;
  32. }
  33. static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
  34. unsigned *usedp, char **idp)
  35. {
  36. unsigned k;
  37. /*
  38. * Iterate over all exception stacks, and figure out whether
  39. * 'stack' is in one of them:
  40. */
  41. for (k = 0; k < N_EXCEPTION_STACKS; k++) {
  42. unsigned long end = per_cpu(orig_ist, cpu).ist[k];
  43. /*
  44. * Is 'stack' above this exception frame's end?
  45. * If yes then skip to the next frame.
  46. */
  47. if (stack >= end)
  48. continue;
  49. /*
  50. * Is 'stack' above this exception frame's start address?
  51. * If yes then we found the right frame.
  52. */
  53. if (stack >= end - EXCEPTION_STKSZ) {
  54. /*
  55. * Make sure we only iterate through an exception
  56. * stack once. If it comes up for the second time
  57. * then there's something wrong going on - just
  58. * break out and return NULL:
  59. */
  60. if (*usedp & (1U << k))
  61. break;
  62. *usedp |= 1U << k;
  63. *idp = x86_stack_ids[k];
  64. return (unsigned long *)end;
  65. }
  66. /*
  67. * If this is a debug stack, and if it has a larger size than
  68. * the usual exception stacks, then 'stack' might still
  69. * be within the lower portion of the debug stack:
  70. */
  71. #if DEBUG_STKSZ > EXCEPTION_STKSZ
  72. if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
  73. unsigned j = N_EXCEPTION_STACKS - 1;
  74. /*
  75. * Black magic. A large debug stack is composed of
  76. * multiple exception stack entries, which we
  77. * iterate through now. Dont look:
  78. */
  79. do {
  80. ++j;
  81. end -= EXCEPTION_STKSZ;
  82. x86_stack_ids[j][4] = '1' +
  83. (j - N_EXCEPTION_STACKS);
  84. } while (stack < end - EXCEPTION_STKSZ);
  85. if (*usedp & (1U << j))
  86. break;
  87. *usedp |= 1U << j;
  88. *idp = x86_stack_ids[j];
  89. return (unsigned long *)end;
  90. }
  91. #endif
  92. }
  93. return NULL;
  94. }
  95. /*
  96. * x86-64 can have up to three kernel stacks:
  97. * process stack
  98. * interrupt stack
  99. * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
  100. */
  101. void dump_trace(struct task_struct *task, struct pt_regs *regs,
  102. unsigned long *stack, unsigned long bp,
  103. const struct stacktrace_ops *ops, void *data)
  104. {
  105. const unsigned cpu = get_cpu();
  106. unsigned long *irq_stack_end =
  107. (unsigned long *)per_cpu(irq_stack_ptr, cpu);
  108. unsigned used = 0;
  109. struct thread_info *tinfo;
  110. int graph = 0;
  111. if (!task)
  112. task = current;
  113. if (!stack) {
  114. unsigned long dummy;
  115. stack = &dummy;
  116. if (task && task != current)
  117. stack = (unsigned long *)task->thread.sp;
  118. }
  119. #ifdef CONFIG_FRAME_POINTER
  120. if (!bp) {
  121. if (task == current) {
  122. /* Grab bp right from our regs */
  123. get_bp(bp);
  124. } else {
  125. /* bp is the last reg pushed by switch_to */
  126. bp = *(unsigned long *) task->thread.sp;
  127. }
  128. }
  129. #endif
  130. /*
  131. * Print function call entries in all stacks, starting at the
  132. * current stack address. If the stacks consist of nested
  133. * exceptions
  134. */
  135. tinfo = task_thread_info(task);
  136. for (;;) {
  137. char *id;
  138. unsigned long *estack_end;
  139. estack_end = in_exception_stack(cpu, (unsigned long)stack,
  140. &used, &id);
  141. if (estack_end) {
  142. if (ops->stack(data, id) < 0)
  143. break;
  144. bp = print_context_stack(tinfo, stack, bp, ops,
  145. data, estack_end, &graph);
  146. ops->stack(data, "<EOE>");
  147. /*
  148. * We link to the next stack via the
  149. * second-to-last pointer (index -2 to end) in the
  150. * exception stack:
  151. */
  152. stack = (unsigned long *) estack_end[-2];
  153. continue;
  154. }
  155. if (irq_stack_end) {
  156. unsigned long *irq_stack;
  157. irq_stack = irq_stack_end -
  158. (IRQ_STACK_SIZE - 64) / sizeof(*irq_stack);
  159. if (stack >= irq_stack && stack < irq_stack_end) {
  160. if (ops->stack(data, "IRQ") < 0)
  161. break;
  162. bp = print_context_stack(tinfo, stack, bp,
  163. ops, data, irq_stack_end, &graph);
  164. /*
  165. * We link to the next stack (which would be
  166. * the process stack normally) the last
  167. * pointer (index -1 to end) in the IRQ stack:
  168. */
  169. stack = (unsigned long *) (irq_stack_end[-1]);
  170. irq_stack_end = NULL;
  171. ops->stack(data, "EOI");
  172. continue;
  173. }
  174. }
  175. break;
  176. }
  177. /*
  178. * This handles the process stack:
  179. */
  180. bp = print_context_stack(tinfo, stack, bp, ops, data, NULL, &graph);
  181. put_cpu();
  182. }
  183. EXPORT_SYMBOL(dump_trace);
  184. void
  185. show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
  186. unsigned long *sp, unsigned long bp, char *log_lvl)
  187. {
  188. unsigned long *stack;
  189. int i;
  190. const int cpu = smp_processor_id();
  191. unsigned long *irq_stack_end =
  192. (unsigned long *)(per_cpu(irq_stack_ptr, cpu));
  193. unsigned long *irq_stack =
  194. (unsigned long *)(per_cpu(irq_stack_ptr, cpu) - IRQ_STACK_SIZE);
  195. /*
  196. * debugging aid: "show_stack(NULL, NULL);" prints the
  197. * back trace for this cpu.
  198. */
  199. if (sp == NULL) {
  200. if (task)
  201. sp = (unsigned long *)task->thread.sp;
  202. else
  203. sp = (unsigned long *)&sp;
  204. }
  205. stack = sp;
  206. for (i = 0; i < kstack_depth_to_print; i++) {
  207. if (stack >= irq_stack && stack <= irq_stack_end) {
  208. if (stack == irq_stack_end) {
  209. stack = (unsigned long *) (irq_stack_end[-1]);
  210. printk(" <EOI> ");
  211. }
  212. } else {
  213. if (((long) stack & (THREAD_SIZE-1)) == 0)
  214. break;
  215. }
  216. if (i && ((i % STACKSLOTS_PER_LINE) == 0))
  217. printk("\n%s", log_lvl);
  218. printk(" %016lx", *stack++);
  219. touch_nmi_watchdog();
  220. }
  221. printk("\n");
  222. show_trace_log_lvl(task, regs, sp, bp, log_lvl);
  223. }
  224. void show_registers(struct pt_regs *regs)
  225. {
  226. int i;
  227. unsigned long sp;
  228. const int cpu = smp_processor_id();
  229. struct task_struct *cur = current;
  230. sp = regs->sp;
  231. printk("CPU %d ", cpu);
  232. __show_regs(regs, 1);
  233. printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
  234. cur->comm, cur->pid, task_thread_info(cur), cur);
  235. /*
  236. * When in-kernel, we also print out the stack and code at the
  237. * time of the fault..
  238. */
  239. if (!user_mode(regs)) {
  240. unsigned int code_prologue = code_bytes * 43 / 64;
  241. unsigned int code_len = code_bytes;
  242. unsigned char c;
  243. u8 *ip;
  244. printk(KERN_EMERG "Stack:\n");
  245. show_stack_log_lvl(NULL, regs, (unsigned long *)sp,
  246. regs->bp, KERN_EMERG);
  247. printk(KERN_EMERG "Code: ");
  248. ip = (u8 *)regs->ip - code_prologue;
  249. if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
  250. /* try starting at IP */
  251. ip = (u8 *)regs->ip;
  252. code_len = code_len - code_prologue + 1;
  253. }
  254. for (i = 0; i < code_len; i++, ip++) {
  255. if (ip < (u8 *)PAGE_OFFSET ||
  256. probe_kernel_address(ip, c)) {
  257. printk(" Bad RIP value.");
  258. break;
  259. }
  260. if (ip == (u8 *)regs->ip)
  261. printk("<%02x> ", c);
  262. else
  263. printk("%02x ", c);
  264. }
  265. }
  266. printk("\n");
  267. }
  268. int is_valid_bugaddr(unsigned long ip)
  269. {
  270. unsigned short ud2;
  271. if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
  272. return 0;
  273. return ud2 == 0x0b0f;
  274. }